1
|
Engdahl K, Rönnberg H, Saellström S, Hedhammar Å, Holst BS. The epidemiology of mammary tumours in insured female dogs in Sweden. Vet J 2025:106359. [PMID: 40254121 DOI: 10.1016/j.tvjl.2025.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Mammary tumour (MT) is the most common neoplasia in bitches. This study explored the incidence and cause-specific mortality rate of and risk factors for MT in dogs insured by Agria Djurförsäkring in Sweden, 2011-2016. The study population included just over 600,000 dogs, and 13,109 females had veterinary care claims for MT. The incidence rate in females was 157 cases per 10,000 dog-years at risk (95% confidence interval (CI): 154-160). The breeds at highest risk of MT were the Kerry blue terrier (relative risk (RR) 4.72, 95% CI 2.58-7.92) and English springer spaniel (RR 3.32, 95% CI: 3.02-3.63), while the breeds at lowest risk were the German spitz (RR 0.06, 95% CI: 0.00-0.33) and English bulldog (RR 0.07, 95% CI: 0.00-0.37). The median age at first MT diagnosis was 8.94 years (interquartile range (IQR) 7.43-10.5). The Dogue de Bordeaux (median age at diagnosis 5.30 years) and Irish wolfhound (6.42 years) were youngest at diagnosis, and the Miniature dachshund (10.9 years) and West highland white terrier (11.0 years) were oldest. Higher odds of MT were found in bitches with a history of pseudopregnancy (OR 2.10, P < 0.001) and acute mastitis (OR 4.93, P < 0.001). In total, 486 bitches died of MT-related causes at a median age of 9.32 years (IQR 8.37-9.99). The Large munsterlander had the highest risk of MT-related death (RR 40.3, 95% CI: 8.28-118.4). In conclusion, MT mainly affected middle-aged to older bitches. Large breed-related differences in the risk of MT and age at diagnosis were found.
Collapse
Affiliation(s)
- Karolina Engdahl
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, PO Box 7054, 750 07 Uppsala, Sweden.
| | - Henrik Rönnberg
- Department of Animal Biosciences, PO Box 7036, SE-750 07 Uppsala, Sweden.
| | - Sara Saellström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, PO Box 7054, 750 07 Uppsala, Sweden.
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, PO Box 7054, 750 07 Uppsala, Sweden.
| | - Bodil Ström Holst
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, PO Box 7054, 750 07 Uppsala, Sweden.
| |
Collapse
|
2
|
Yi S, Xie M. DriverMEDS: Cancer driver gene identification using mutual exclusivity from embeded features and driver mutation scoring. Methods 2025; 239:22-29. [PMID: 40113153 DOI: 10.1016/j.ymeth.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/24/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Efficiently identifying cancer driver genes plays a key role in the cancer development, diagnosis and treatment. Current unsupervised driver gene identification methods typically integrate multi-omics data into gene function networks and employ network embedding algorithms to learn gene features. Additionally, they consider mutual exclusivity and mutation frequency as crucial concepts in identifying driver genes. However, existing approaches neglect the possible important implications of mutual exclusivity in the embedding space. Furthermore, they simply assume that all driver genes exhibit high mutation frequencies. Fortunately, we explored the mutual exclusivity implanted in the learned features and have verified that the Euclidean distances between learned features are strongly related to the mutual exclusivity and they can reveal more information for the mutual exclusivity. Thus, we designed an unsupervised driver gene predicting framework DriverMEDS based on the above idea and a novel driver mutation scoring strategy. First, we design a feature clustering algorithm to generate gene modules. In each module, the Euclidean distances of learned features are used to calculate a module importance score for each gene based on the related mutual exclusivity. Then, following the fact that most of driver genes have intermediate mutation frequencies, a driver mutation scoring function is designed for each gene to optimize the existing mutation frequency scoring strategy. Finally, the weighted sum of the module importance score and the driver mutation score is used to prioritize the genes. The experiment results and analysis show that DriverMEDS could detect novel cancer driver genes and relevant function modules, and outperforms other five state-of-the-art methods for cancer driver identification.
Collapse
Affiliation(s)
- Sichen Yi
- Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha 410081, China.
| | - Minzhu Xie
- Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha 410081, China; College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
3
|
Basu R, Boguszewski CL, Kopchick JJ. Growth Hormone Action as a Target in Cancer: Significance, Mechanisms, and Possible Therapies. Endocr Rev 2025; 46:224-280. [PMID: 39657053 DOI: 10.1210/endrev/bnae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/29/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Growth hormone (GH) is a pituitary-derived endocrine hormone required for normal postnatal growth and development. Hypo- or hypersecretion of endocrine GH results in 2 pathologic conditions, namely GH deficiency (GHD) and acromegaly. Additionally, GH is also produced in nonpituitary and tumoral tissues, where it acts rather as a cellular growth factor with an autocrine/paracrine mode of action. An increasingly persuasive and large body of evidence over the last 70 years concurs that GH action is implicit in escalating several cancer-associated events, locally and systemically. This pleiotropy of GH's effects is puzzling, but the association with cancer risk automatically raises a concern for patients with acromegaly and for individuals treated with GH. By careful assessment of the available knowledge on the fundamental concepts of cancer, suggestions from epidemiological and clinical studies, and the evidence from specific reports, in this review we aimed to help clarify the distinction of endocrine vs autocrine/paracrine GH in promoting cancer and to reconcile the discrepancies between experimental and clinical data. Along this discourse, we critically weigh the targetability of GH action in cancer-first by detailing the molecular mechanisms which posit GH as a critical node in tumor circuitry; and second, by enumerating the currently available therapeutic options targeting GH action. On the basis of our discussion, we infer that a targeted intervention on GH action in the appropriate patient population can benefit a sizable subset of current cancer prognoses.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
| | - Cesar L Boguszewski
- SEMPR, Endocrine Division, Department of Internal Medicine, Federal University of Parana, Curitiba 80060-900, Brazil
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
4
|
Fu Y, Tian L, Zhang W. STsisal: a reference-free deconvolution pipeline for spatial transcriptomics data. Front Genet 2025; 16:1512435. [PMID: 40098978 PMCID: PMC11911522 DOI: 10.3389/fgene.2025.1512435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Spatial transcriptomics has emerged as an invaluable tool, helping to reveal molecular status within complex tissues. Nonetheless, these techniques have a crucial challenge: the absence of single-cell resolution, resulting in the observation of multiple cells in each spatial spot. While reference-based deconvolution methods have aimed to solve the challenge, their effectiveness is contingent upon the quality and availability of single-cell RNA (scRNA) datasets, which may not always be accessible or comprehensive. In response to these constraints, our study introduces STsisal, a reference-free deconvolution method meticulously crafted for the intricacies of spatial transcriptomics (ST) data. STsisal leverages a novel approach that integrates marker gene selection, mixing ratio decomposition, and cell type characteristic matrix analysis to discern distinct cell types with precision and efficiency within complex tissues. The main idea of our method is its adaptation of the SISAL algorithm, which expertly disentangles the ratio matrix, facilitating the identification of simplices within the ST data. STsisal offers a robust means to unveil the intricate composition of cell types in spatially resolved transcriptomic data. To verify the efficacy of STsisal, we conducted extensive simulations and applied the method to real data, comparing its performance against existing techniques. Our findings highlight the superiority of STsisal, underscoring its utility in capturing the cell composition within complex tissues.
Collapse
Affiliation(s)
- Yinghao Fu
- School of Mathematical Information, Shaoxing University, Zhejiang, China
- Department of Biostatistics, City University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute of Big Data, School of Data Science, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Leqi Tian
- Shenzhen Research Institute of Big Data, School of Data Science, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Weiwei Zhang
- School of Mathematical Information, Shaoxing University, Zhejiang, China
| |
Collapse
|
5
|
Zhong S, Liang H, Peng F, Lu Y, Liu T, Kulchytski U, Dong W. Simultaneous Detection of Prolactin and Growth Hormone Using a Dual-label Time-resolved Fluorescence Immunoassay. J Fluoresc 2025; 35:1417-1422. [PMID: 38349483 DOI: 10.1007/s10895-023-03395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 04/04/2025]
Abstract
Prolactin (PRL) and growth hormone (GH) are two important hormones secreted by the pituitary gland, and their abnormal levels are often related to disease status. This study aimed to establish a new dual-label time-resolved fluorescence immunoassay (TRFIA) to quantitatively measure PRL and GH levels in serum. A sandwich TRFIA was optimized and established: anti-PRL/GH antibodies immobilized on 96-well plates captured PRL/GH and then banded together with anti-PRL/GH paired antibodies labeled with europium(III) (Eu3+)/samarium(III) (Sm3+) chelates. Finally, a time-resolved analyzer measured the Eu3+/Sm3+ fluorescence values. Clinical serum samples were used to evaluate the detection performance of this method. The sensitivities of this dual-label TRFIA were 0.35 ng/mL and 0.45 ng/mL, respectively, and the detection range was between 0.1 and 1000 ng/mL. All the cross-reactivities were lower than 1.07%. The intra-assay and interassay coefficients of variation were 2.18-7.85% and 2.25-7.30%, respectively. Compared with the registered TRFIA kits, a high Pearson coefficient (r = 0.9626 and 0.9675) was observed. This dual-label TRFIA has high sensitivity, accuracy and specificity with good clinical detection performance, representing a suitable alternative to existing methods for determining PRL and GH levels, and is expected to be used in the clinic in the future.
Collapse
Affiliation(s)
- Shuhai Zhong
- Guangzhou Yidenuo Biotechnology Co., Ltd., Guangzhou, 510663, China
| | - Huankun Liang
- Jinan Laide Biotechnology Co., Ltd., Jinan, 271100, China
| | - Fenglan Peng
- Taian Disabled Soldiers' Hospital of Shandong Province, Taian, 271099, China
| | - Yanhong Lu
- Jinan Laide Biotechnology Co., Ltd., Jinan, 271100, China
| | - Tiancai Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Uladzimir Kulchytski
- Institute of Physiology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - Wenqi Dong
- Guangzhou Zhenda Biopharmaceutical Technology Co., Ltd., No. 3 Juquan Road, Huangpu District, Guangzhou, 510663, China.
| |
Collapse
|
6
|
Kang CW, Oh JH, Wang EK, Bao Y, Kim YB, Lee MH, Lee YJ, Jo YS, Ku CR, Lee EJ. Excess endocrine growth hormone in acromegaly promotes the aggressiveness and metastasis of triple-negative breast cancer. iScience 2024; 27:110137. [PMID: 39006481 PMCID: PMC11246000 DOI: 10.1016/j.isci.2024.110137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/24/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024] Open
Abstract
Pituitary adenoma-induced excess endocrine growth hormone (GH) secretion can lead to breast cancer development and metastasis. Herein, we used an acromegaly mouse model to investigate the role of excess endocrine GH on triple-negative breast cancer (TNBC) growth and metastasis. Additionally, we aimed to elucidate the molecular mechanism of transcription factor 20 (TCF20)/nuclear factor erythroid 2-related factor 2 (NRF2) signaling-mediated aggressiveness and metastasis of TNBC. Excess endocrine GH induced TCF20 activates the transcription of NRF2 and NRF2-target genes to facilitate TNBC metastasis. Inhibition of GH receptor (GHR) and TCF20 activity using the GHR antagonist or small-interfering RNA-induced gene knockdown resulted in reduced tumor volume and metastasis, suggesting that excess endocrine GH stimulates TCF20/NRF2 pathways in TNBC and promotes metastasis to the lung. GHR inhibitors present an effective therapeutic strategy to prevent TNBC cell growth and metastasis. Our findings revealed functional and mechanistic roles of the GH-TCF20-NRF2 signaling axis in TBNC progression.
Collapse
Affiliation(s)
- Chan Woo Kang
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hun Oh
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Kyung Wang
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Yaru Bao
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Ye Bin Kim
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Min-Ho Lee
- University of Medicine and Health Sciences, New York, NY, USA
| | - Yang Jong Lee
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Seok Jo
- Open NBI Convergence Technology Research Laboratory, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Cheol Ryong Ku
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Jig Lee
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Qin F, Cai G, Amos CI, Xiao F. A statistical learning method for simultaneous copy number estimation and subclone clustering with single-cell sequencing data. Genome Res 2024; 34:85-93. [PMID: 38290978 PMCID: PMC10903939 DOI: 10.1101/gr.278098.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
The availability of single-cell sequencing (SCS) enables us to assess intra-tumor heterogeneity and identify cellular subclones without the confounding effect of mixed cells. Copy number aberrations (CNAs) have been commonly used to identify subclones in SCS data using various clustering methods, as cells comprising a subpopulation are found to share a genetic profile. However, currently available methods may generate spurious results (e.g., falsely identified variants) in the procedure of CNA detection, thereby diminishing the accuracy of subclone identification within a large, complex cell population. In this study, we developed a subclone clustering method based on a fused lasso model, referred to as FLCNA, which can simultaneously detect CNAs in single-cell DNA sequencing (scDNA-seq) data. Spike-in simulations were conducted to evaluate the clustering and CNA detection performance of FLCNA, benchmarking it against existing copy number estimation methods (SCOPE, HMMcopy) in combination with commonly used clustering methods. Application of FLCNA to a scDNA-seq data set of breast cancer revealed different genomic variation patterns in neoadjuvant chemotherapy-treated samples and pretreated samples. We show that FLCNA is a practical and powerful method for subclone identification and CNA detection with scDNA-seq data.
Collapse
Affiliation(s)
- Fei Qin
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Guoshuai Cai
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Christopher I Amos
- Department of Quantitative Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Feifei Xiao
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida 32603, USA
| |
Collapse
|
8
|
Roman AM, Petca RC, Dumitrașcu MC, Petca A, Ionescu (Miron) AI, Șandru F. Frontal Fibrosing Alopecia and Reproductive Health: Assessing the Role of Sex Hormones in Disease Development. J Pers Med 2024; 14:72. [PMID: 38248773 PMCID: PMC10817300 DOI: 10.3390/jpm14010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Frontal Fibrosing Alopecia (FFA) is a distinctive form of cicatricial alopecia characterized by gradual hairline recession, predominantly affecting postmenopausal individuals, thus implying a potential hormonal origin. This narrative review, spanning 2000 to 2023, delves into PubMed literature, focusing on the menopausal and hormonal status of women with FFA. The objective is to unravel the intricate nature of FFA and its plausible associations with hormonal dysregulations in women. While menopause remains a pivotal demographic characteristic linked to FFA, existing data suggest that its hormonal imbalances may not fully account for the development of FFA. Conversely, substantial evidence indicates a strong association between a reduction in fertile years, particularly through surgical interventions leading to an abrupt hormonal imbalance, and FFA in women. Additionally, exposure to hormone replacement therapy or oral contraceptives has shown varying degrees of association with FFA. Gynecologists should maintain a heightened awareness regarding the ramifications of their interventions and their pivotal role in overseeing women's fertility, recognizing the potential influence on the progression of FFA. The recurrent theme of hormonal disruption strongly implies a causal connection between alterations in sex hormones and FFA in women. Nevertheless, this relationship's extent and underlying mechanisms remain subjects of ongoing debate.
Collapse
Affiliation(s)
- Alexandra-Maria Roman
- Dermatology Department, “Elias” University Emergency Hospital, 011461 Bucharest, Romania; (A.-M.R.); (F.Ș.)
| | - Răzvan-Cosmin Petca
- Department of Urology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Urology, “Prof. Dr. Th. Burghele” Clinical Hospital, 050659 Bucharest, Romania
| | - Mihai Cristian Dumitrașcu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Obstetrics and Gynecology, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Obstetrics and Gynecology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Andreea-Iuliana Ionescu (Miron)
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Medical Oncology, Colțea Clinical Hospital, 030167 Bucharest, Romania
| | - Florica Șandru
- Dermatology Department, “Elias” University Emergency Hospital, 011461 Bucharest, Romania; (A.-M.R.); (F.Ș.)
- Department of Dermatovenerology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
9
|
Apaydin T, Zonis S, Zhou C, Valencia CW, Barrett R, Strous GJ, Mol JA, Chesnokova V, Melmed S. WIP1 is a novel specific target for growth hormone action. iScience 2023; 26:108117. [PMID: 37876819 PMCID: PMC10590974 DOI: 10.1016/j.isci.2023.108117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
DNA damage repair (DDR) is mediated by phosphorylating effectors ATM kinase, CHK2, p53, and γH2AX. We showed earlier that GH suppresses DDR by suppressing pATM, resulting in DNA damage accumulation. Here, we show GH acting through GH receptor (GHR) inducing wild-type p53-inducible phosphatase 1 (WIP1), which dephosphorylated ATM and its effectors in normal human colon cells and three-dimensional human intestinal organoids. Mice bearing GH-secreting xenografts exhibited induced colon WIP1 with suppressed pATM and γH2AX. WIP1 was also induced in buffy coats derived from patients with elevated GH from somatotroph adenomas. In contrast, decreased colon WIP1 was observed in GHR-/- mice. WIP1 inhibition restored ATM phosphorylation and reversed GH-induced DNA damage. We elucidated a novel GH signaling pathway activating Src/AMPK to trigger HIPK2 nuclear-cytoplasmic relocation and suppressing WIP1 ubiquitination. Concordantly, blocking either AMPK or Src abolished GH-induced WIP1. We identify WIP1 as a specific target for GH-mediated epithelial DNA damage accumulation.
Collapse
Affiliation(s)
- Tugce Apaydin
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Svetlana Zonis
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cuiqi Zhou
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Wong Valencia
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert Barrett
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ger J. Strous
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, the Netherlands
| | - Vera Chesnokova
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shlomo Melmed
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
Guan YB, Sun XX, Chen SL, Zhu XT, Zeng ZH, Lu HW, Feng HM, Guo Y, Jiang WG, Xiong K, Yang XR, Nam HW, Yang ZS. Seroprevalence of Toxoplasma gondii infection among patients of a tertiary hospital in Guangzhou, Guangdong province, PR China. PLoS One 2023; 18:e0286430. [PMID: 37428723 DOI: 10.1371/journal.pone.0286430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023] Open
Abstract
PURPOSE This study aimed to explore the prevalence of Toxoplasma gondii (T. gondii) among patients in Guangzhou city, South China, and to identify susceptible patient populations and analyze the causes of infection differences. METHODS From May 2020 to May 2022, a total of 637 sera were collected from patients, and 205 sera were collected from health participants as health control. All sera were examined by colloidal gold kits to detect the positivity of antibodies against T. gondii. And the positivity of antibodies in sera was confirmed with ARCHITECT i2000SR system. RESULTS The prevalence of T. gondii infection in patients was 7.06% (45/637), which was lower than the prevalence in health participants 4.88% (10/205). Among patients, 34 (5.34%) were positive only for IgG, 10 (1.57%) were only for IgM, and 1 (0.16%) was positive for both IgG and IgM. There was a significant difference in prevalence between male and female patients, but not among different age groups or diseases groups. The prevalence of T. gondii infection in diseases groups varied. The prevalence was relatively high in patients with the disorders of thyroid gland and the malignant neoplasms of digestive organs, which suggests that caution should be taken to avoid T. gondii infection in these patients. Surprisingly, the prevalence was quite low in diffuse Large B-cell Lymphoma (DLBC) patients. This may be due to the overexpression of TNF-α in tumor tissues of DLBC patients and the higher protein level of TNF-α in sera of DLBC patients. CONCLUSION This study provides a systematic exploration of the prevalence of T. gondii infection in patients in a tertiary hospital. Our data contributes to a better understanding of the epidemic investigation of T. gondii among patients in South China, which can help the prevention and treatment of the disease caused by T. gondii infection.
Collapse
Affiliation(s)
- Yu-Bin Guan
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Xiao-Xiao Sun
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Shao-Lian Chen
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Xiao-Ting Zhu
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Zhi-Hua Zeng
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Han-Wei Lu
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Hong-Mei Feng
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Yu Guo
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Wen-Gong Jiang
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Kui Xiong
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Xiao-Rong Yang
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Ho-Woo Nam
- Department of Parasitology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Zhao-Shou Yang
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
11
|
Zou S, Lin Y, Yu X, Eriksson M, Lin M, Fu F, Yang H. Genetic and lifestyle factors for breast cancer risk assessment in Southeast China. Cancer Med 2023; 12:15504-15514. [PMID: 37264741 PMCID: PMC10417168 DOI: 10.1002/cam4.6198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/01/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Despite the rising incidence and mortality of breast cancer among women in China, there are currently few predictive models for breast cancer in the Chinese population and with low accuracy. This study aimed to identify major genetic and life-style risk factors in a Chinese population for potential application in risk assessment models. METHODS A case-control study in southeast China was conducted including 1321 breast cancer patients and 2045 controls during 2013-2016, in which the data were randomly divided into a training set and a test set on a 7:3 scale. The association between genetic and life-style factors and breast cancer was examined using logistic regression models. Using AUC curves, we also compared the performance of the logistic model to machine learning models, namely LASSO regression model and support vector machine (SVM), and the scores calculated from CKB, Gail and Tyrer-Cuzick models in the test set. RESULTS Among all factors considered, the best model was achieved when polygenetic risk score, lifestyle, and reproductive factors were considered jointly in the logistic regression model (AUC = 0.73; 95% CI: 0.70-0.77). The models created in this study performed better than those using scores calculated from the CKB, Gail, and Tyrer-Cuzick models. However, the logistic model and machine learning models did not significantly differ from one another. CONCLUSION In summary, we have found genetic and lifestyle risk predictors for breast cancer with moderate discrimination, which might provide reference for breast cancer screening in southeast China. Further population-based studies are needed to validate the model for future applications in personalized breast cancer screening programs.
Collapse
Affiliation(s)
- Shuqing Zou
- Department of Epidemiology and Health Statistics, School of Public HealthFujian Medical UniversityFuzhouChina
| | - Yuxiang Lin
- Department of Breast SurgeryFujian Medical University Union HospitalFuzhouChina
- Department of General SurgeryFujian Medical University Union HospitalFuzhouChina
- Breast Cancer Institute, Fujian Medical UniversityFuzhouChina
| | - Xingxing Yu
- Department of Epidemiology and Health Statistics, School of Public HealthFujian Medical UniversityFuzhouChina
| | - Mikael Eriksson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | | | - Fangmeng Fu
- Department of Breast SurgeryFujian Medical University Union HospitalFuzhouChina
- Department of General SurgeryFujian Medical University Union HospitalFuzhouChina
- Breast Cancer Institute, Fujian Medical UniversityFuzhouChina
| | - Haomin Yang
- Department of Epidemiology and Health Statistics, School of Public HealthFujian Medical UniversityFuzhouChina
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| |
Collapse
|
12
|
Voltan G, Mazzeo P, Regazzo D, Scaroni C, Ceccato F. Role of Estrogen and Estrogen Receptor in GH-Secreting Adenomas. Int J Mol Sci 2023; 24:9920. [PMID: 37373068 DOI: 10.3390/ijms24129920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Acromegaly is a rare disease with several systemic complications that may lead to increased overall morbidity and mortality. Despite several available treatments, ranging from transsphenoidal resection of GH-producing adenomas to different medical therapies, complete hormonal control is not achieved in some cases. Some decades ago, estrogens were first used to treat acromegaly, resulting in a significant decrease in IGF1 levels. However, due to the consequent side effects of the high dose utilized, this treatment was later abandoned. The evidence that estrogens are able to blunt GH activity also derives from the evidence that women with GH deficiency taking oral estro-progestins pills need higher doses of GH replacement therapy. In recent years, the role of estrogens and Selective Estrogens Receptor Modulators (SERMs) in acromegaly treatment has been re-evaluated, especially considering poor control of the disease under first- and second-line medical treatment. In this review, we analyze the state of the art concerning the impact of estrogen and SERMs on the GH/IGF1 axis, focusing on molecular pathways and the possible implications for acromegaly treatment.
Collapse
Affiliation(s)
- Giacomo Voltan
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| | - Pierluigi Mazzeo
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| | - Daniela Regazzo
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Carla Scaroni
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| | - Filippo Ceccato
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| |
Collapse
|
13
|
Qin F, Cai G, Xiao F. A statistical learning method for simultaneous copy number estimation and subclone clustering with single cell sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537346. [PMID: 37131674 PMCID: PMC10153109 DOI: 10.1101/2023.04.18.537346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The availability of single cell sequencing (SCS) enables us to assess intra-tumor heterogeneity and identify cellular subclones without the confounding effect of mixed cells. Copy number aberrations (CNAs) have been commonly used to identify subclones in SCS data using various clustering methods, since cells comprising a subpopulation are found to share genetic profile. However, currently available methods may generate spurious results (e.g., falsely identified CNAs) in the procedure of CNA detection, hence diminishing the accuracy of subclone identification from a large complex cell population. In this study, we developed a CNA detection method based on a fused lasso model, referred to as FLCNA, which can simultaneously identify subclones in single cell DNA sequencing (scDNA-seq) data. Spike-in simulations were conducted to evaluate the clustering and CNA detection performance of FLCNA benchmarking to existing copy number estimation methods (SCOPE, HMMcopy) in combination with the existing and commonly used clustering methods. Interestingly, application of FLCNA to a real scDNA-seq dataset of breast cancer revealed remarkably different genomic variation patterns in neoadjuvant chemotherapy treated samples and pre-treated samples. We show that FLCNA is a practical and powerful method in subclone identification and CNA detection with scDNA-seq data.
Collapse
|
14
|
Barone I, Gelsomino L, Accattatis FM, Giordano F, Gyorffy B, Panza S, Giuliano M, Veneziani BM, Arpino G, De Angelis C, De Placido P, Bonofiglio D, Andò S, Giordano C, Catalano S. Analysis of circulating extracellular vesicle derived microRNAs in breast cancer patients with obesity: a potential role for Let-7a. J Transl Med 2023; 21:232. [PMID: 37004031 PMCID: PMC10064709 DOI: 10.1186/s12967-023-04075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The incidence of obesity, a known risk factor for several metabolic and chronic diseases, including numerous malignancies, has risen sharply in the world. Various clinical studies demonstrate that excessive Body Mass Index (BMI) may worsen the incidence, prognosis, and mortality rates of breast cancer. Thus, understanding the link tying up obesity and breast cancer onset and progression is critically important, as it can impact patients' survival and quality of life. Recently, circulating extracellular vesicle (EV) derived miRNAs have attracted much attention for their diagnostic, prognostic and therapeutic potential in oncology research. Although the potential role of EV-derived miRNAs in the early detection of breast cancer has been repeatedly mentioned, screening of miRNAs packaged within serum EVs has not yet been reported in patients with obesity. METHODS Circulating EVs were isolated from normal weight (NW), and overweight/obese (OW/Ob) breast cancer patients and characterized by Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and protein marker expression. Evaluation of EV-associated miRNAs was conducted in a screening (RNA-seq) and a validation (qRT-PCR) cohort. Bioinformatic analysis was performed to uncover significantly enriched biological processes, molecular functions and pathways. ROC and Kaplain-Meier survival analyses were used for clinical significance. RESULTS Comparison of serum EV-derived miRNAs from NW and OW/Ob patients detected seven differentially expressed miRNAs (let-7a-5p, miR-122-5p, miR-30d-5p, miR-126-3p, miR-27b-3p, miR-4772-3p, and miR-10a-5p) in the screening cohort. GO analysis revealed the enrichment of protein phosphorylation, intracellular signal transduction, signal transduction, and vesicle-mediated transport among the top biological processes. In addition, the target genes were significantly enriched in pathways related to PI3K/Akt, growth hormones, and insulin signalings, which are all involved in obesity-related diseases and/or breast cancer progression. In the validation cohort, qRT-PCR confirmed a significant down-regulation of EV-derived let-7a in the serum of OW/Ob breast cancer patients compared to NW patients. Let-7a levels also exhibited a negative correlation with BMI values. Importantly, decreased let-7a miRNA expression was associated with higher tumor grade and poor survival in patients with breast cancer. CONCLUSION These results suggest that serum-EV derived miRNAs may reflect a differential profile in relation to a patient's BMI, which, once validated in larger cohorts of patients, could provide insights into novel specific biomarkers and innovative targets to prevent the progression of obesity-mediated breast cancer.
Collapse
Affiliation(s)
- Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Balazs Gyorffy
- Departments of Bioinformatics and Pediatrics, Semmelweis University, 1094, Budapest, Hungary
- TTK Cancer Biomarker Research Group, 1117, Budapest, Hungary
| | - Salvatore Panza
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
| |
Collapse
|
15
|
Peruchet-Noray L, Dimou N, Sedlmeier AM, Fervers B, Romieu I, Viallon V, Ferrari P, Gunter MJ, Carreras-Torres R, Freisling H. Body Shape Phenotypes and Breast Cancer Risk: A Mendelian Randomization Analysis. Cancers (Basel) 2023; 15:1296. [PMID: 36831637 PMCID: PMC9954632 DOI: 10.3390/cancers15041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Observational and genetic studies have linked different anthropometric traits to breast cancer (BC) risk, with inconsistent results. We aimed to investigate the association between body shape defined by a principal component (PC) analysis of anthropometric traits (body mass index [BMI], height, weight, waist-to-hip ratio [WHR], and waist and hip circumference) and overall BC risk and by tumor sub-type (luminal A, luminal B, HER2+, triple negative, and luminal B/HER2 negative). We performed two-sample Mendelian randomization analyses to assess the association between 188 genetic variants robustly linked to the first three PCs and BC (133,384 cases/113,789 controls from the Breast Cancer Association Consortium (BCAC)). PC1 (general adiposity) was inversely associated with overall BC risk (0.89 per 1 SD [95% CI: 0.81-0.98]; p-value = 0.016). PC2 (tall women with low WHR) was weakly positively associated with overall BC risk (1.05 [95% CI: 0.98-1.12]; p-value = 0.135), but with a confidence interval including the null. PC3 (tall women with large WHR) was not associated with overall BC risk. Some of these associations differed by BC sub-types. For instance, PC2 was positively associated with a risk of luminal A BC sub-type (1.09 [95% CI: 1.01-1.18]; p-value = 0.02). To clarify the inverse association of PC1 with breast cancer risk, future studies should examine independent risk associations of this body shape during childhood/adolescence and adulthood.
Collapse
Affiliation(s)
- Laia Peruchet-Noray
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, CEDEX 08, 69372 Lyon, France
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08007 Barcelona, Spain
| | - Niki Dimou
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, CEDEX 08, 69372 Lyon, France
| | - Anja M. Sedlmeier
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Béatrice Fervers
- Département Prévention Cancer Environnement, Centre Léon Bérard, CEDEX 08, 69373 Lyon, France
| | - Isabelle Romieu
- National Institute of Public Health, Cuernavaca 62100, Morelos, Mexico
| | - Vivian Viallon
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, CEDEX 08, 69372 Lyon, France
| | - Pietro Ferrari
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, CEDEX 08, 69372 Lyon, France
| | - Marc J. Gunter
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, CEDEX 08, 69372 Lyon, France
| | - Robert Carreras-Torres
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), 17190 Salt, Spain
| | - Heinz Freisling
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, CEDEX 08, 69372 Lyon, France
| |
Collapse
|
16
|
List EO, Berryman DE, List BP, Kopchick JJ. Early Investigations of 20-kDa Human Placental GH Show Promise. Endocr Metab Immune Disord Drug Targets 2023; 23:1674-1677. [PMID: 37190799 PMCID: PMC11483157 DOI: 10.2174/1871530323666230515153130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Edward O. List
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Athens Ohio
| | - Darlene E. Berryman
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens Ohio
| | - Brian P. List
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens Ohio
| |
Collapse
|
17
|
Mohamed YI, Duda DG, Awiwi MO, Lee SS, Altameemi L, Xiao L, Morris JS, Wolff RA, Elsayes KM, Hatia RI, Qayyum A, Chamseddine SM, Rashid A, Yao JC, Mahvash A, Hassan MM, Amin HM, Kaseb AO. Plasma growth hormone is a potential biomarker of response to atezolizumab and bevacizumab in advanced hepatocellular carcinoma patients. Oncotarget 2022; 13:1314-1321. [PMID: 36473155 PMCID: PMC9726202 DOI: 10.18632/oncotarget.28322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) has limited systemic therapy options when discovered at an advanced stage. Thus, there is a need for accessible and minimally invasive biomarkers of response to guide the selection of patients for treatment. This study investigated the biomarker value of plasma growth hormone (GH) level as a potential biomarker to predict outcome in unresectable HCC patients treated with current standard therapy, atezolizumab plus bevacizumab (Atezo/Bev). MATERIALS AND METHODS Study included unresectable HCC patients scheduled to receive Atezo/Bev. Patients were followed to determine progression-free survival (PFS) and overall survival (OS). Plasma GH levels were measured by ELISA and used to stratify the HCC patients into GH-high and GH-low groups (the cutoff normal GH levels in women and men are ≤3.7 μg/L and ≤0.9 μg/L, respectively). Kaplan-Meier method was used to calculate median OS and PFS and Log rank test was used to compare survival outcomes between GH-high and -low groups. RESULTS Thirty-seven patients were included in this analysis, of whom 31 were males and 6 females, with a median age of 67 years (range: 37-80). At the time of the analysis, the one-year survival rate was 70% (95% CI: 0.51, 0.96) among GH low patients and 33% (95% CI: 0.16, 0.67) among GH high patients. OS was significantly superior in GH-low compared to GH-high patients (median OS: 18.9 vs. 9.3 months; p = 0.014). PFS showed a non-significant trend in favor of GH-low patients compared to the GH-high group (median PFS: 6.6 vs. 2.9 months; p = 0.053). DISCUSSION AND CONCLUSIONS Plasma GH is a biomarker candidate for predicting treatment outcomes in advanced HCC patients treated with Atezo/Bev. This finding should be further validated in larger randomized clinical trials in advanced HCC patients.
Collapse
Affiliation(s)
- Yehia I. Mohamed
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan G. Duda
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Muhammad O. Awiwi
- Department of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sunyoung S. Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lina Altameemi
- Hurley Medical Center, Michigan State University, East Lansing, MI 48824, USA
| | - Lianchun Xiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey S. Morris
- Department of Biostatistics, Epidemiology, and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Robert A. Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Khaled M. Elsayes
- Department of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rikita I. Hatia
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aliya Qayyum
- Department of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shadi M. Chamseddine
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James C. Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Armeen Mahvash
- Department of Interventional Radiology, Division of Diagnostic Imaging, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Manal M. Hassan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hesham M. Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ahmed Omar Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
Liu C, Li S, Zhang X, Jin C, Zhao B, Li L, Miao QR, Jin Y, Fan Z. Nogo-B receptor increases glycolysis and the paclitaxel resistance of estrogen receptor-positive breast cancer via the HIF-1α-dependent pathway. Cancer Gene Ther 2022; 30:647-658. [PMID: 36241702 DOI: 10.1038/s41417-022-00542-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 12/29/2022]
Abstract
Chemotherapy can improve the prognosis and overall survival of breast cancer patients, but chemoresistance continues a major problem in clinical. Most breast cancer is estrogen receptor (ER) positive but responds less to neoadjuvant or adjuvant chemotherapy than ER-negative breast cancer. The Nogo-B receptor (NgBR) increases the chemoresistance of ER-positive breast cancer by facilitating oncogene signaling pathways. Here, we further investigated the potential role of NgBR as a novel target to overcome glycolysis-dependent paclitaxel resistance in ER-positive breast cancer. NgBR knockdown inhibited glycolysis and promoted paclitaxel-induced apoptosis by attenuating HIF-1α expression in ER-positive breast cancer cells via NgBR-mediated estrogen receptor alpha (ERα)/hypoxia-inducible factor-1 alpha (HIF-1α) and nuclear factor-kappa B subunit (NF-κB)/HIF-1α signaling pathways. A ChIP assay further confirmed that NgBR overexpression not only facilitates ERα binding to HIF-1α and GLUT1 genes but also promotes HIF-1α binding to GLUT1, HK2, and LDHA genes, which further promotes glycolysis and induces paclitaxel resistance. In conclusion, our study suggests that NgBR expression is essential for maintaining the metabolism and paclitaxel resistance of ER-positive breast cancer, and the NgBR can be a new therapeutic target for improving chemoresistance in ER-positive breast cancer.
Collapse
Affiliation(s)
- Chang Liu
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoxiao Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chunxiang Jin
- Institute Department of Ultrasonography, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute, Liaoning, China
| | - Liying Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qing Robert Miao
- Department of Foundations of Medicine, NYU Long Island School of Medicine, New York, NY, USA.
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
19
|
Tian W, Qi H, Wang Z, Qiao S, Wang P, Dong J, Wang H. Hormone supply to the pituitary gland: A comprehensive investigation of female‑related tumors (Review). Int J Mol Med 2022; 50:122. [PMID: 35946461 PMCID: PMC9387558 DOI: 10.3892/ijmm.2022.5178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The hypothalamus acts on the pituitary gland after signal integration, thus regulating various physiological functions of the body. The pituitary gland includes the adenohypophysis and neurohypophysis, which differ in structure and function. The hypothalamus-hypophysis axis controls the secretion of adenohypophyseal hormones through the pituitary portal vein system. Thyroid-stimulating hormone, adrenocorticotropic hormone, gonadotropin, growth hormone (GH), and prolactin (PRL) are secreted by the adenohypophysis and regulate the functions of the body in physiological and pathological conditions. The aim of this review was to summarize the functions of female-associated hormones (GH, PRL, luteinizing hormone, and follicle-stimulating hormone) in tumors. Their pathophysiology was described and the mechanisms underlying female hormone-related diseases were investigated.
Collapse
Affiliation(s)
- Wenxiu Tian
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huimin Qi
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Zhimei Wang
- Jiangsu Province Hi‑Tech Key Laboratory for Biomedical Research, and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, D‑66421 Homburg‑Saar, Germany
| | - Ping Wang
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Junhong Dong
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
20
|
Kopchick JJ, Basu R, Berryman DE, Jorgensen JOL, Johannsson G, Puri V. Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer. Nat Rev Endocrinol 2022; 18:558-573. [PMID: 35750929 PMCID: PMC9703363 DOI: 10.1038/s41574-022-00702-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/20/2022]
Abstract
Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have investigated its structure, how it interacts with the GH receptor and its multiple actions. These include effects on growth, substrate metabolism, body composition, bone mineral density, the cardiovascular system and brain function, among many others. Recombinant human GH is approved for use to promote growth in children with GH deficiency (GHD), along with several additional clinical indications. Studies of humans and animals with altered levels of GH, from complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis (or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of GH in fibrosis, cardiovascular function and cancer.
Collapse
Affiliation(s)
- John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- The Diabetes Institute, Ohio University, Athens, OH, USA.
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
| | - Reetobrata Basu
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Jens O L Jorgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Gudmundur Johannsson
- Department of Endocrinology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Göteborg, Gothenburg, Sweden
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| |
Collapse
|
21
|
Lüke F, Harrer DC, Pantziarka P, Pukrop T, Ghibelli L, Gerner C, Reichle A, Heudobler D. Drug Repurposing by Tumor Tissue Editing. Front Oncol 2022; 12:900985. [PMID: 35814409 PMCID: PMC9270020 DOI: 10.3389/fonc.2022.900985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The combinatory use of drugs for systemic cancer therapy commonly aims at the direct elimination of tumor cells through induction of apoptosis. An alternative approach becomes the focus of attention if biological changes in tumor tissues following combinatory administration of regulatorily active drugs are considered as a therapeutic aim, e.g., differentiation, transdifferentiation induction, reconstitution of immunosurveillance, the use of alternative cell death mechanisms. Editing of the tumor tissue establishes new biological 'hallmarks' as a 'pressure point' to attenuate tumor growth. This may be achieved with repurposed, regulatorily active drug combinations, often simultaneously targeting different cell compartments of the tumor tissue. Moreover, tissue editing is paralleled by decisive functional changes in tumor tissues providing novel patterns of target sites for approved drugs. Thus, agents with poor activity in non-edited tissue may reveal new clinically meaningful outcomes. For tissue editing and targeting edited tissue novel requirements concerning drug selection and administration can be summarized according to available clinical and pre-clinical data. Monoactivity is no pre-requisite, but combinatory bio-regulatory activity. The regulatorily active dose may be far below the maximum tolerable dose, and besides inhibitory active drugs stimulatory drug activities may be integrated. Metronomic scheduling often seems to be of advantage. Novel preclinical approaches like functional assays testing drug combinations in tumor tissue are needed to select potential drugs for repurposing. The two-step drug repurposing procedure, namely establishing novel functional systems states in tumor tissues and consecutively providing novel target sites for approved drugs, facilitates the systematic identification of drug activities outside the scope of any original clinical drug approvals.
Collapse
Affiliation(s)
- Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Tang X, Hao N, Zhou Y, Liu Y. Ultrasound targeted microbubble destruction-mediated SOCS3 attenuates biological characteristics and epithelial-mesenchymal transition (EMT) of breast cancer stem cells. Bioengineered 2022; 13:3896-3910. [PMID: 35109743 PMCID: PMC8973955 DOI: 10.1080/21655979.2022.2031384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SOCS3 is low-expressed in breast cancer and may be a potential target. Ultrasound targeted microbubble destruction (UTMD) improved the efficiency of gene transfection. We explored the effects of UTMD-mediated transfection of SOCS3 on the biological characteristics and epithelial-mesenchymal transition (EMT) of breast cancer stem cells (BCSCs). The expression of SOCS3 in breast cancer (BC) and its association with prognosis were evaluated by GEPIA and The Cancer Genome Atlas (TCGA) websites. BCSCs were sorted by flow cytometry and immunomagnetic bead method, followed by sphere formation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and xenograft assays to test their effects in vitro and in vivo. The levels of SOCS3, EMT- and STAT3 pathway-related genes were determined by RT-qPCR and Western blot, respectively. The effects of liposome and UTMD on BCSCs and mice were compared by the gain-of-function experiments. Low expression of SOCS3 was associated with poor prognosis of BC patients, and found in BC and BCSCs. BCSCs were successfully sorted, with high viability and tumorigenicity. UTMD increased the transfection rate of SOCS3. Moreover, UTMD- and liposome-mediated SOCS3 reduced cell viability, proliferation, migration and invasion, blocked cell cycle, inhibited sphere formation in BCSCs, and retarded tumor growth in mice. Mechanistically, overexpressed SOCS3 inhibited the expressions of EMT-related genes and the activation of STAT3 pathway in BCSCs and mice. The regulatory effects of UTMD-mediated SOCS3 on the above-mentioned biological characteristics were better than liposome-mediated SOCS3. UTMD-mediated SOCS3 has a better therapeutic effect in BC, providing new experimental evidence for the treatment of BC.
Collapse
Affiliation(s)
- Xiaojiang Tang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Hao
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuhui Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Tidblad A. The history, physiology and treatment safety of growth hormone. Acta Paediatr 2022; 111:215-224. [PMID: 34028879 DOI: 10.1111/apa.15948] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
Growth hormone treatment was introduced in the 1950s to address growth disturbances and metabolic abnormalities. Hundreds of thousands of children have been treated, with gradual expansion of treatment indications. From initially being offered only to patients with severe growth hormone deficiency, today many children are treated for conditions in which the associated short stature is not primarily thought to be due to deficient endogenous growth hormone secretion. This review discusses the history, physiology and safety of growth hormone treatment, with focus on the long-term risks of mortality, cardiovascular morbidity and cancer. Conclusion: Continuous follow-up is needed to increase our knowledge of the long-term treatment safety.
Collapse
Affiliation(s)
- Anders Tidblad
- Division of Pediatric Endocrinology Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| |
Collapse
|
24
|
Kozlov AP. Mammalian tumor-like organs. 1. The role of tumor-like normal organs and atypical tumor organs in the evolution of development (carcino-evo-devo). Infect Agent Cancer 2022; 17:2. [PMID: 35012580 PMCID: PMC8751115 DOI: 10.1186/s13027-021-00412-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Earlier I hypothesized that hereditary tumors might participate in the evolution of multicellular organisms. I formulated the hypothesis of evolution by tumor neofunctionalization, which suggested that the evolutionary role of hereditary tumors might consist in supplying evolving multicellular organisms with extra cell masses for the expression of evolutionarily novel genes and the origin of new cell types, tissues, and organs. A new theory—the carcino-evo-devo theory—has been developed based on this hypothesis. Main text My lab has confirmed several non-trivial predictions of this theory. Another non-trivial prediction is that evolutionarily new organs if they originated from hereditary tumors or tumor-like structures, should recapitulate some tumor features in their development. This paper reviews the tumor-like features of evolutionarily novel organs. It turns out that evolutionarily new organs such as the eutherian placenta, mammary gland, prostate, the infantile human brain, and hoods of goldfishes indeed have many features of tumors. I suggested calling normal organs, which have many tumor features, the tumor-like organs. Conclusion Tumor-like organs might originate from hereditary atypical tumor organs and represent the part of carcino-evo-devo relationships, i.e., coevolution of normal and neoplastic development. During subsequent evolution, tumor-like organs may lose the features of tumors and the high incidence of cancer and become normal organs without (or with almost no) tumor features.
Collapse
Affiliation(s)
- A P Kozlov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3, Gubkina Street, Moscow, Russia, 117971. .,Peter the Great St. Petersburg Polytechnic University, 29, Polytekhnicheskaya Street, St. Petersburg, Russia, 195251.
| |
Collapse
|
25
|
Muralidharan R. Applied Physiology of Breast Cancer. Breast Cancer 2022. [DOI: 10.1007/978-981-16-4546-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Bojorge MA, Cicconi NS, Cebrón JR, Fang Y, Lamb CA, Bartke A, Miquet JG, González L. Morphological and molecular effects of overexpressed GH on mice mammary gland. Mol Cell Endocrinol 2021; 538:111465. [PMID: 34597725 DOI: 10.1016/j.mce.2021.111465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022]
Abstract
Growth Hormone (GH) plays crucial roles in mammary gland development and growth, and its upregulation has been associated with breast cancer promotion and/or progression. To ascertain how high GH levels could promote mammary tissue oncogenic transformation, morphological characteristics and the expression of receptors involved in mammary growth, development and cancer, and of mitogenic mediators were analyzed in the mammary gland of virgin adult transgenic mice that overexpress GH. Whole mounting and histologic analysis evidenced that transgenic mice exhibit increased epithelial ductal elongation and enlarged ducts along with deficient branching and reduced number of alveolar structures compared to wild type mice. The number of differentiated alveolar structures was diminished in transgenic mice while the amount of terminal end buds (TEBs) did not differ between both groups of mice. GH, insulin-like growth factor 1 (IGF1) and GH receptor mRNA levels were augmented in GH-overexpressing mice breast tissue, as well as IGF1 receptor protein content. However, GH receptor protein levels were decreased in transgenic mice. Fundamental receptors for breast growth and development like progesterone receptor and epidermal growth factor receptor were also increased in mammary tissue from transgenic animals. In turn, the levels of the proliferation marker Ki67, cFOS and Cyclin D1 were increased in GH-overexpressing mice, while cJUN expression was decreased and cMYC did not vary. In conclusion, prolonged exposure to high GH levels induces morphological and molecular alterations in the mammary gland that affects its normal development. While these effects would not be tumorigenic per se, they might predispose to oncogenic transformation.
Collapse
Affiliation(s)
- Mariana A Bojorge
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Nadia S Cicconi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Julieta R Cebrón
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Yimin Fang
- Department of Neurology, School of Medicine, Southern Illinois University, Springfield, IL, 62794, USA
| | - Caroline A Lamb
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado, 2490 1428, Buenos Aires, Argentina
| | - Andrzej Bartke
- Geriatrics Research, Departments of Internal Medicine and Physiology, School of Medicine, Southern Illinois University, Springfield, IL, 62794, USA
| | - Johanna G Miquet
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Lorena González
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Lee J, Gong YX, Jeong H, Seo H, Xie DP, Sun HN, Kwon T. Pharmacological effects of Picrasma quassioides (D. Don) Benn for inflammation, cancer and neuroprotection (Review). Exp Ther Med 2021; 22:1357. [PMID: 34659503 PMCID: PMC8515544 DOI: 10.3892/etm.2021.10792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Picrasma quassioides (D. Don) Benn is an Asian shrub with a considerable history of traditional medicinal use. P. quassioides and its extracts exhibit good therapeutic properties against several diseases, including anti-inflammatory, antibacterial and anticancer effects. However, the composition of compounds contained in P. quassioides is complex; although various studies have examined mixtures or individual compounds extracted from it, studies on the application of P. quassioides extracts remain limited. In the present review, the structures and functions of the compounds identified from P. quassioides and their utility in anti-inflammatory, anticancer and neuroprotectant therapies was discussed. The present review provided up-to-date information on pharmacological activities and clinical applications for P. quassioides extracts.
Collapse
Affiliation(s)
- Jaihyung Lee
- Epigenetics Drug Discovery Center, Hwalmyeong Convalescence Hospital, Gapyeong, Gyeonggi 12458, Republic of Korea
- Korean Convergence Medicine Center, Hwalmyeong Hospital of Korean Medicine, Seoul 03790, Republic of Korea
| | - Yi-Xi Gong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hyunjeong Jeong
- Epigenetics Drug Discovery Center, Hwalmyeong Convalescence Hospital, Gapyeong, Gyeonggi 12458, Republic of Korea
- Korean Convergence Medicine Center, Hwalmyeong Hospital of Korean Medicine, Seoul 03790, Republic of Korea
| | - Hoyoung Seo
- Epigenetics Drug Discovery Center, Hwalmyeong Convalescence Hospital, Gapyeong, Gyeonggi 12458, Republic of Korea
- Korean Convergence Medicine Center, Hwalmyeong Hospital of Korean Medicine, Seoul 03790, Republic of Korea
| | - Dan-Ping Xie
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeonbuk 56216, Republic of Korea
| |
Collapse
|
28
|
Keller CR, Hu Y, Ruud KF, VanDeen AE, Martinez SR, Kahn BT, Zhang Z, Chen RK, Li W. Human Breast Extracellular Matrix Microstructures and Protein Hydrogel 3D Cultures of Mammary Epithelial Cells. Cancers (Basel) 2021; 13:cancers13225857. [PMID: 34831010 PMCID: PMC8616054 DOI: 10.3390/cancers13225857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Human breast tissue extracellular matrix (ECM) is a microenvironment essential for the survival and biological activities of mammary epithelial cells. The ECM structural features of human breast tissues remain poorly defined. In this study, we identified the structural and mechanical properties of human normal breast and invasive ductal carcinoma tissue ECM using histological methods and atomic force microscopy. Additionally, a protein hydrogel was generated using human breast tissue ECM and defined for its microstructural features using immunofluorescence imaging and machine learning. Furthermore, we examined the three-dimensional growth of normal mammary epithelial cells or breast cancer cells cultured on the ECM protein hydrogel, where the cells exhibited biological phenotypes like those seen in native breast tissues. Our data provide novel insights into cancer cell biology, tissue microenvironment mimicry and engineering, and native tissue ECM-based biomedical and pharmaceutical applications. Abstract Tissue extracellular matrix (ECM) is a structurally and compositionally unique microenvironment within which native cells can perform their natural biological activities. Cells grown on artificial substrata differ biologically and phenotypically from those grown within their native tissue microenvironment. Studies examining human tissue ECM structures and the biology of human tissue cells in their corresponding tissue ECM are lacking. Such investigations will improve our understanding about human pathophysiological conditions for better clinical care. We report here human normal breast tissue and invasive ductal carcinoma tissue ECM structural features. For the first time, a hydrogel was successfully fabricated using whole protein extracts of human normal breast ECM. Using immunofluorescence staining of type I collagen (Col I) and machine learning of its fibrous patterns in the polymerized human breast ECM hydrogel, we have defined the microstructural characteristics of the hydrogel and compared the microstructures with those of other native ECM hydrogels. Importantly, the ECM hydrogel supported 3D growth and cell-ECM interaction of both normal and cancerous mammary epithelial cells. This work represents further advancement toward full reconstitution of the human breast tissue microenvironment, an accomplishment that will accelerate the use of human pathophysiological tissue-derived matrices for individualized biomedical research and therapeutic development.
Collapse
Affiliation(s)
- Chandler R. Keller
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.R.K.); (K.F.R.)
| | - Yang Hu
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA 99164, USA; (Y.H.); (Z.Z.)
| | - Kelsey F. Ruud
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.R.K.); (K.F.R.)
| | - Anika E. VanDeen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; (A.E.V.); (R.K.C.)
| | - Steve R. Martinez
- Department of Surgery, The Everett Clinic and Providence Regional Cancer Partnership, Everett, WA 98201, USA;
- Department of Medical Education and Clinical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Barry T. Kahn
- CellNetix Pathology & Laboratories, Seattle, WA 98104, USA;
- Providence Regional Medical Center, Everett, WA 98201, USA
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA 99164, USA; (Y.H.); (Z.Z.)
| | - Roland K. Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; (A.E.V.); (R.K.C.)
| | - Weimin Li
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.R.K.); (K.F.R.)
- Correspondence:
| |
Collapse
|
29
|
McHann MC, Blanton HL, Guindon J. Role of sex hormones in modulating breast and ovarian cancer associated pain. Mol Cell Endocrinol 2021; 533:111320. [PMID: 34033890 PMCID: PMC8263503 DOI: 10.1016/j.mce.2021.111320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/16/2021] [Accepted: 05/09/2021] [Indexed: 01/18/2023]
Abstract
According to the National Cancer Institute in 2020 there will be an estimated 21,750 new ovarian cancer cases and 276,480 new breast cancer cases. Both breast and ovarian cancer are hormone dependent cancers, meaning they cannot grow without the presence of hormones. The two most studied hormones in these two cancers are estrogen and progesterone, which are also involved in the modulation of pain. The incidence of pain in breast and ovarian cancer is very high. Research about mechanisms involved in modulation of pain by hormones are still being debated, as some studies find estrogen to be anti-nociceptive and others pro-nociceptive in pain studies. Moreover, analgesic treatments for breast and ovarian cancer-associated pain are limited and often ineffective. In this review, we will focus on estrogen and progesterone mechanisms of action in modulation of pain and cancer. We will also discuss new treatment options for these types of cancer and associated-pain.
Collapse
Affiliation(s)
- Melissa C McHann
- Department of Pharmacology and Neuroscience at Texas Tech University Health Sciences Center, USA
| | - Henry L Blanton
- Department of Pharmacology and Neuroscience at Texas Tech University Health Sciences Center, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience at Texas Tech University Health Sciences Center, USA.
| |
Collapse
|
30
|
Ye J, Li J, Zhao P. Roles of ncRNAs as ceRNAs in Gastric Cancer. Genes (Basel) 2021; 12:genes12071036. [PMID: 34356052 PMCID: PMC8305186 DOI: 10.3390/genes12071036] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
Although ignored in the past, with the recent deepening of research, significant progress has been made in the field of non-coding RNAs (ncRNAs). Accumulating evidence has revealed that microRNA (miRNA) response elements regulate RNA. Long ncRNAs, circular RNAs, pseudogenes, miRNAs, and messenger RNAs (mRNAs) form a competitive endogenous RNA (ceRNA) network that plays an essential role in cancer and cardiovascular, neurodegenerative, and autoimmune diseases. Gastric cancer (GC) is one of the most common cancers, with a high degree of malignancy. Considerable progress has been made in understanding the molecular mechanism and treatment of GC, but GC’s mortality rate is still high. Studies have shown a complex ceRNA crosstalk mechanism in GC. lncRNAs, circRNAs, and pseudogenes can interact with miRNAs to affect mRNA transcription. The study of the involvement of ceRNA in GC could improve our understanding of GC and lead to the identification of potential effective therapeutic targets. The research strategy for ceRNA is mainly to screen the different miRNAs, lncRNAs, circRNAs, pseudogenes, and mRNAs in each sample through microarray or sequencing technology, predict the ceRNA regulatory network, and, finally, conduct functional research on ceRNA. In this review, we briefly discuss the proposal and development of the ceRNA hypothesis and the biological function and principle of ceRNAs in GC, and briefly introduce the role of ncRNAs in the GC’s ceRNA network.
Collapse
Affiliation(s)
- Junhong Ye
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China;
| | - Jifu Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China;
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China;
- Correspondence: ; Tel.: +86-23-6825-0885
| |
Collapse
|
31
|
Romera-Giner S, Andreu Martínez Z, García-García F, Hidalgo MR. Common pathways and functional profiles reveal underlying patterns in Breast, Kidney and Lung cancers. Biol Direct 2021; 16:9. [PMID: 34039407 PMCID: PMC8152308 DOI: 10.1186/s13062-021-00293-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Background Cancer is a major health problem which presents a high heterogeneity. In this work we explore omics data from Breast, Kidney and Lung cancers at different levels as signalling pathways, functions and miRNAs, as part of the CAMDA 2019 Hi-Res Cancer Data Integration Challenge. Our goal is to find common functional patterns which give rise to the generic microenvironment in these cancers and contribute to a better understanding of cancer pathogenesis and a possible clinical translation down further studies. Results After a tumor versus normal tissue comparison of the signaling pathways and cell functions, we found 828 subpathways, 912 Gene Ontology terms and 91 Uniprot keywords commonly significant to the three studied tumors. Such features interestingly show the power to classify tumor samples into subgroups with different survival times, and predict tumor state and tissue of origin through machine learning techniques. We also found cancer-specific alternative activation subpathways, such as the ones activating STAT5A in ErbB signaling pathway. miRNAs evaluation show the role of miRNAs, such as mir-184 and mir-206, as regulators of many cancer pathways and their value in prognoses. Conclusions The study of the common functional and pathway activities of different cancers is an interesting approach to understand molecular mechanisms of the tumoral process regardless of their tissue of origin. The existence of platforms as the CAMDA challenges provide the opportunity to share knowledge and improve future scientific research and clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-021-00293-8.
Collapse
Affiliation(s)
- Sergio Romera-Giner
- Bioinformatics & Biostatistics Unit, Principe Felipe Research Center, 46012, Valencia, Spain.,ATOS Research & Innovation (ARI), 28037, Madrid, Spain
| | - Zoraida Andreu Martínez
- Bioinformatics & Biostatistics Unit, Principe Felipe Research Center, 46012, Valencia, Spain.,Foundation Valencian Institute of Oncology (FIVO), 46009, Valencia, Spain
| | - Francisco García-García
- Bioinformatics & Biostatistics Unit, Principe Felipe Research Center, 46012, Valencia, Spain.,Spanish National Bioinformatics Institute, ELIXIR-Spain (INB, ELIXIR-ES), 46012, Valencia, Spain
| | - Marta R Hidalgo
- Bioinformatics & Biostatistics Unit, Principe Felipe Research Center, 46012, Valencia, Spain.
| |
Collapse
|
32
|
Rocha PRS, Oliveira VD, Vasques CI, Dos Reis PED, Amato AA. Exposure to endocrine disruptors and risk of breast cancer: A systematic review. Crit Rev Oncol Hematol 2021; 161:103330. [PMID: 33862246 DOI: 10.1016/j.critrevonc.2021.103330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
AIM The aim of this study was to investigate the association between human exposure to endocrine disruptors (EDs) and the risk of breast cancer. METHODS This was a systematic review conducted by searching Cochrane Library, LILACS, Livivo, PubMed, and Science Direct. Observational studies addressing the association between exposure to EDs and breast cancer risk in adults were included. Risk of bias was assessed using the National Toxicology Program's Office of Health Assessment Translation tool. RESULTS a total of 37 studies were included. Most studies reported that exposure to organochlorine pesticides, phthalates, heavy metals, and polycyclic aromatic hydrocarbons was associated with increased breast cancer risk. CONCLUSION qualitative analysis of observational studies indicates that human exposure to EDs is associated with increased breast cancer risk. Additional studies are needed to determine whether this association is causal.
Collapse
Affiliation(s)
- Priscilla Roberta Silva Rocha
- Faculty of Ceilândia, University of Brasília, Campus Universitário s/n, Metropolitan Center, Brasília, DF, 72220-275, Brazil.
| | | | - Christiane Inocêncio Vasques
- Nursing Department, School of Health Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Paula Elaine Diniz Dos Reis
- Nursing Department, School of Health Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Angélica Amorim Amato
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
| |
Collapse
|
33
|
Lantvit DD, Unterberger CJ, Lazar M, Arneson PD, Longhurst CA, Swanson SM, Marker PC. Mammary Tumors Growing in the Absence of Growth Hormone Are More Sensitive to Doxorubicin Than Wild-Type Tumors. Endocrinology 2021; 162:bqab013. [PMID: 33475144 PMCID: PMC7881836 DOI: 10.1210/endocr/bqab013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Previously, we reported that N-methyl-N-nitrosourea (MNU)-induced mammary tumors could be established in mutant spontaneous dwarf rats (SDRs), which lack endogenous growth hormone (GH) by supplementing with exogenous GH, and almost all such tumors regressed upon GH withdrawal. When the highly inbred SDR line was outcrossed to wild-type (WT) Sprague-Dawley rats, MNU-induced mammary tumors could still be established in resulting outbred SDRs by supplementing with exogenous GH. However, unlike tumors in inbred SDRs, 65% of mammary tumors established in outbred SDRs continued growth after GH withdrawal. We further tested whether these tumors were more sensitive to doxorubicin than their WT counterparts. To accomplish this, MNU-induced mammary tumors were established in WT rats and in SDRs supplemented with exogenous GH. Once mammary tumors reached 1 cm3 in size, exogenous GH was withdrawn from SDRs, and the subset that harbored tumors that continued or resumed growth in the absence of GH were selected for doxorubicin treatment. Doxorubicin was then administered in 6 injections over 2 weeks at 2.5 mg/kg or 1.25 mg/kg for both the WT and SDR groups. The SDR mammary tumors that had been growing in the absence of GH regressed at both doxorubicin doses while WT tumors continued to grow robustly. The regression of SDR mammary tumors treated with 1.25 mg/kg doxorubicin was accompanied by reduced proliferation and dramatically higher apoptosis relative to the WT mammary tumors treated with 1.25 mg/kg doxorubicin. These data suggest that downregulating GH signaling may decrease the doxorubicin dose necessary to effectively treat breast cancer.
Collapse
Affiliation(s)
- Daniel D Lantvit
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher J Unterberger
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle Lazar
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Paige D Arneson
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin A Longhurst
- School of Medicine and Public Health, Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven M Swanson
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul C Marker
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
34
|
Li XM, Li MT, Jiang N, Si YC, Zhu MM, Wu QY, Shi DC, Shi H, Luo Q, Yu B. Network Pharmacology-Based Approach to Investigate the Molecular Targets of Sinomenine for Treating Breast Cancer. Cancer Manag Res 2021; 13:1189-1204. [PMID: 33603465 PMCID: PMC7881794 DOI: 10.2147/cmar.s282684] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Sinomenine has been known to inhibit the proliferation of breast cancer cells. However, its targets have not been found yet. This study aimed to search for molecular targets of sinomenine for treating breast cancer via network pharmacology. Methods Potential targets of sinomenine or breast cancer were separately screened from indicated databases. The common targets of both sinomenine and breast cancer were considered as the targets of sinomenine for treating breast cancer. A sinomenine-target-pathway network was constructed based on the obtained results from Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The putative targets of sinomenine were further determined by using protein–protein interaction (PPI) analysis and molecular docking. Finally, the putative targets were verified in vitro and in vivo. Results Twenty predicted targets were identified through network pharmacological analysis. Gene Ontology (GO) and KEGG pathway enrichment indicated that these predicted targets enriched in the process of MAP kinase activity, VEGF signaling pathway, Relaxin signaling pathway, Growth hormone synthesis, secretion and action. MAPK1, NOS3, NR3C1, NOS1 and NOS2 were further identified as the putative targets by using PPI and molecular docking analysis. Expression of MAPK1, NR3C1, NOS1, NOS2 and NOS3 genes were significantly regulated by sinomenine in both MCF-7 cells and MDA-MB-231 cells. Furthermore, the expression of NR3C1 in human breast cancer specimens was lower than that in para-tumor normal tissues. Meanwhile, the expression of NR3C1 in xenograft tumors was up-regulated after sinomenine treatment. Conclusion MAPK1, NR3C1, NOS1, NOS2 and NOS3 were identified as the putative targets of sinomenine for treating breast cancer. NR3C1 was preliminarily confirmed as a target of sinomenine in two breast cancer cell lines, xenograft tumor models and human breast cancer specimens. These data indicated that the network pharmacology-based prediction of sinomenine targets for treating breast cancer could be reliable.
Collapse
Affiliation(s)
- Xiao-Mei Li
- Cancer Research Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, 563003, People's Republic of China.,Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Mao-Ting Li
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China.,Student Brigade, Second Military Medical University, Shanghai, People's Republic of China
| | - Ni Jiang
- Cancer Research Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, 563003, People's Republic of China
| | - Ya-Chen Si
- Student Brigade, Second Military Medical University, Shanghai, People's Republic of China
| | - Meng-Mei Zhu
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Qiao-Yuan Wu
- Cancer Research Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, 563003, People's Republic of China
| | - Dong-Chen Shi
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Shanghai, 200433, People's Republic of China
| | - Hui Shi
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Shanghai, 200433, People's Republic of China
| | - Qing Luo
- Cancer Research Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, 563003, People's Republic of China
| | - Bing Yu
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| |
Collapse
|
35
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
36
|
Tian M, Qi Y, Zhang X, Wu Z, Chen J, Chen F, Guan W, Zhang S. Regulation of the JAK2-STAT5 Pathway by Signaling Molecules in the Mammary Gland. Front Cell Dev Biol 2020; 8:604896. [PMID: 33282878 PMCID: PMC7705115 DOI: 10.3389/fcell.2020.604896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Janus kinase 2 (JAK2) and signal transducers and activators of transcription 5 (STAT5) are involved in the proliferation, differentiation, and survival of mammary gland epithelial cells. Dysregulation of JAK2-STAT5 activity invariably leads to mammary gland developmental defects and/or diseases, including breast cancer. Proper functioning of the JAK2-STAT5 signaling pathway relies on crosstalk with other signaling pathways (synergistically or antagonistically), which leads to normal biological performance. This review highlights recent progress regarding the critical components of the JAK2-STAT5 pathway and its crosstalk with G-protein coupled receptor (GPCR) signaling, PI3K-Akt signaling, growth factors, inflammatory cytokines, hormone receptors, and cell adhesion.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingao Qi
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
37
|
Patterns of de-novo metastasis and breast cancer-specific mortality by race and molecular subtype in the SEER population-based dataset. Breast Cancer Res Treat 2020; 186:509-518. [PMID: 33175313 DOI: 10.1007/s10549-020-06007-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To examine patterns of de-novo metastases (mets) and association with breast cancer-specific mortality across subtypes and racial groups. METHODS Non-Hispanic (NH) Black and NH-White patients ages 40 years and older with primary breast cancer (BC) between 2010 and 2015 were examined. Multilevel logistic regression and Cox proportional hazards models were used to assess (1) odds of de-novo mets to specific sites by subtype, and (2) association of subtype with risk of BC mortality among patients with de-novo mets by race. RESULTS A total of 204,941 BC patients were included in analysis. The most common de-novo mets site was to the bone, and overall prevalence of de-novo mets was higher among NH-Black (6.4%) versus NH-White (4.1%) patients. The odds of de-novo mets to any site were lower for TNBC (OR 0.68, 95% CI 0.62-0.73) and HR+/HER2- (OR 0.50, 95% CI 0.47-0.53) subtypes, but higher for HR-/HER2+ (OR 1.16, 95% CI 1.06-1.28) relative to HR+/HER2+ . De-novo mets to the brain only was associated with the highest mortality risk across all subtypes, ranging from a 13-fold increase (hazard ratio 13.45, 95% CI 5.03-35.96) for HR-/HER2+ to a 39-fold increase (hazard ratio 39.04, 95% CI 26.2-58.14) for HR+/HER2-. CONCLUSION Site and fatality of de-novo mets vary by subtype and by race. This information may help improve risk stratification and post-diagnostic surveillance to ultimately reduce BC mortality.
Collapse
|
38
|
Gao S, Ni Q, Wu X, Cao T. GHR knockdown enhances the sensitivity of HCC cells to sorafenib. Aging (Albany NY) 2020; 12:18127-18136. [PMID: 32970612 PMCID: PMC7585089 DOI: 10.18632/aging.103625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/04/2020] [Indexed: 01/24/2023]
Abstract
Sorafenib is approved for treatment of advanced hepatocellular carcinoma (HCC) by the Drug Administration. However, the efficacy of sorafenib has become very limited because most tumors have developed resistance to this drug. In this study, we found that sorafenib stimulated GHR expression in HCC cell lines. Thus, GHR might be linked to sorafenib resistance. To verify this hypothesis, we researched the roles of GHR knockdown and sorafenib combination in cell viability, apoptosis, cycle, and migration. The results showed that GHR blockage enhanced sorafenib blocking of cell cycle progression, leading to inhibition of this drug on HCC cell viability, and the improved promoting ability of sorafenib on cell apoptosis. In addition, it was found that GHR knockdown enhanced sorafenib inhibition of cell migration. The synergistic antitumor effects of sorafenib and GHR knockdown combination may be attributed to inhibition of PI3K/AKT/ERK1/2 signaling pathway. In conclusion, the findings suggest that GHR knockdown enhances the sensitivity of HCC cells to sorafenib. and the inactivation of PI3K/AKT/ERK1/2 signaling pathway may be the underlying mechanisms. This highlights the absence of GHR as a promising way to enhance sorafenib efficacy in HCC.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Gastroenterology, The Third Affiliated Hospital of Naval Military Medical University, Shanghai 201800, China
| | - Qianwen Ni
- Department of Gastroenterology, Zhongshan Qingpu Hospital Fudan University, Shanghai 201799, China
| | - Xiuli Wu
- Department of Gastroenterology, Luoyang First People's Hospital, Luoyang 471000, China
| | - Tieliu Cao
- Department of Traditional Chinese Medicine, Minhang Branch, Shanghai Cancer Center, Fudan University, Shanghai 200240, China
| |
Collapse
|
39
|
Tamshen K, Wang Y, Jamieson SM, Perry JK, Maynard HD. Genetic Code Expansion Enables Site-Specific PEGylation of a Human Growth Hormone Receptor Antagonist through Click Chemistry. Bioconjug Chem 2020; 31:2179-2190. [PMID: 32786367 PMCID: PMC8291075 DOI: 10.1021/acs.bioconjchem.0c00365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulation of human growth hormone (GH) signaling has important applications in the remediation of several diseases including acromegaly and cancer. Growth hormone receptor (GHR) antagonists currently provide the most effective means for suppression of GH signaling. However, these small 22 kDa recombinantly engineered GH analogues exhibit short plasma circulation times. To improve clinical viability, between four and six molecules of 5 kDa poly(ethylene glycol) (PEG) are nonspecifically conjugated to the nine amines of the GHR antagonist designated as B2036 in the FDA-approved therapeutic pegvisomant. PEGylation increases the molecular weight of B2036 and considerably extends its circulation time, but also dramatically reduces its bioactivity, contributing to high dosing requirements and increased cost. As an alternative to nonspecific PEGylation, we report the use of genetic code expansion technology to site-specifically incorporate the unnatural amino acid propargyl tyrosine (pglY) into B2036 with the goal of producing site-specific protein-polymer conjugates. Substitution of tyrosine 35 with pglY yielded a B2036 variant containing an alkyne functional group without compromising bioactivity, as verified by a cellular assay. Subsequent conjugation of 5, 10, and 20 kDa azide-containing PEGs via the copper-catalyzed click reaction yielded high purity, site-specific conjugates with >89% conjugation efficiencies. Site-specific attachment of PEG to B2036 is associated with substantially improved in vitro bioactivity values compared to pegvisomant, with an inverse relationship between polymer size and activity observed. Notably, the B2036-20 kDa PEG conjugate has a molecular weight comparable to pegvisomant, while exhibiting a 12.5 fold improvement in half-maximal inhibitory concentration in GHR-expressing Ba/F3 cells (103.3 nM vs 1289 nM). We expect that this straightforward route to achieve site-specific GHR antagonists will be useful for GH signal regulation.
Collapse
Affiliation(s)
- Kyle Tamshen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Yue Wang
- Liggins Institute, University of Auckland, Auckland 1203, New Zealand
| | - Stephen M.F. Jamieson
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1023, New Zealand
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jo K. Perry
- Liggins Institute, University of Auckland, Auckland 1203, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1023, New Zealand
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095-1569, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
40
|
Proteoglycans in the Pathogenesis of Hormone-Dependent Cancers: Mediators and Effectors. Cancers (Basel) 2020; 12:cancers12092401. [PMID: 32847060 PMCID: PMC7563227 DOI: 10.3390/cancers12092401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Hormone-dependent cancers exhibit high morbidity and mortality. In spite of advances in therapy, the treatment of hormone-dependent cancers remains an unmet health need. The tumor microenvironment (TME) exhibits unique characteristics that differ among various tumor types. It is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded and supported by components of the extracellular matrix (ECM). Therefore, the interactions among cancer cells, stromal cells, and components of the ECM determine cancer progression and response to therapy. Proteoglycans (PGs), hybrid molecules consisting of a protein core to which sulfated glycosaminoglycan chains are bound, are significant components of the ECM that are implicated in all phases of tumorigenesis. These molecules, secreted by both the stroma and cancer cells, are crucial signaling mediators that modulate the vital cellular pathways implicated in gene expression, phenotypic versatility, and response to therapy in specific tumor types. A plethora of deregulated signaling pathways contributes to the growth, dissemination, and angiogenesis of hormone-dependent cancers. Specific inputs from the endocrine and immune systems are some of the characteristics of hormone-dependent cancer pathogenesis. Importantly, the mechanisms involved in various aspects of cancer progression are executed in the ECM niche of the TME, and the PG components crucially mediate these processes. Here, we comprehensively discuss the mechanisms through which PGs affect the multifaceted aspects of hormone-dependent cancer development and progression, including cancer metastasis, angiogenesis, immunobiology, autophagy, and response to therapy.
Collapse
|
41
|
List EO, Berryman DE, Basu R, Buchman M, Funk K, Kulkarni P, Duran-Ortiz S, Qian Y, Jensen EA, Young JA, Yildirim G, Yakar S, Kopchick JJ. The Effects of 20-kDa Human Placental GH in Male and Female GH-deficient Mice: An Improved Human GH? Endocrinology 2020; 161:5859553. [PMID: 32556100 PMCID: PMC7375802 DOI: 10.1210/endocr/bqaa097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/11/2020] [Indexed: 11/19/2022]
Abstract
A rare 20K isoform of GH-V (here abbreviated as GHv) was discovered in 1998. To date, only 1 research article has characterized this isoform in vivo, observing that GHv treatment in male high-fat fed rats had several GH-like activities, but unlike GH lacked diabetogenic and lactogenic activities and failed to increase IGF-1 or body length. Therefore, the current study was conducted to further characterize the in vivo activities of GHv in a separate species and in a GH-deficient model (GH-/- mice) and with both sexes represented. GHv-treated GH-/- mice had significant increases to serum IGF-1, femur length, body length, body weight, and lean body mass and reduced body fat mass similar to mice receiving GH treatment. GH treatment increased circulating insulin levels and impaired insulin sensitivity; in contrast, both measures were unchanged in GHv-treated mice. Since GHv lacks prolactin receptor (PRLR) binding activity, we tested the ability of GH and GHv to stimulate the proliferation of human cancer cell lines and found that GHv has a decreased proliferative response in cancers with high PRLR. Our findings demonstrate that GHv can stimulate insulin-like growth factor-1 and subsequent longitudinal body growth in GH-deficient mice similar to GH, but unlike GH, GHv promoted growth without inhibiting insulin action and without promoting the growth of PRLR-positive cancers in vitro. Thus, GHv may represent improvements to current GH therapies especially for individuals at risk for metabolic syndrome or PRLR-positive cancers.
Collapse
Affiliation(s)
- Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
- Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Athens, Ohio
- Correspondence: Edward O. List, PhD, Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701. E-mail:
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens, Ohio
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
| | - Mathew Buchman
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
| | - Kevin Funk
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
| | | | | | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
| | | | | | - Gozde Yildirim
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Shoshana Yakar
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens, Ohio
| |
Collapse
|
42
|
Dabrosin N, Dabrosin C. Postmenopausal Dense Breasts Maintain Premenopausal Levels of GH and Insulin-like Growth Factor Binding Proteins in Vivo. J Clin Endocrinol Metab 2020; 105:5695904. [PMID: 31900484 DOI: 10.1210/clinem/dgz323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/01/2020] [Indexed: 12/24/2022]
Abstract
CONTEXT Dense breast tissue is associated with 4 to 6 times higher risk of breast cancer by poorly understood mechanisms. No preventive therapy for this high-risk group is available. After menopause, breast density decreases due to involution of the mammary gland. In dense breast tissue, this process is haltered by undetermined biological actions. Growth hormone (GH) and insulin-like binding proteins (IGFBPs) play major roles in normal mammary gland development, but their roles in maintaining breast density are unknown. OBJECTIVE To reveal in vivo levels of GH, IGFBPs, and other pro-tumorigenic proteins in the extracellular microenvironment in breast cancer, in normal breast tissue with various breast density in postmenopausal women, and premenopausal breasts. We also sought to determine possible correlations between these determinants. SETTING AND DESIGN Microdialysis was used to collect extracellular in vivo proteins intratumorally from breast cancers before surgery and from normal human breast tissue from premenopausal women and postmenopausal women with mammographic dense or nondense breasts. RESULTS Estrogen receptor positive breast cancers exhibited increased extracellular GH (P < .01). Dense breasts of postmenopausal women exhibited similar levels of GH as premenopausal breasts and significantly higher levels than in nondense breasts (P < .001). Similar results were found for IGFBP-1, -2, -3, and -7 (P < .01) and for IGFBP-6 (P <.05). Strong positive correlations were revealed between GH and IGFBPs and pro-tumorigenic matrix metalloproteinases, urokinase-type plasminogen activator, Interleukin 6, Interleukin 8, and vascular endothelial growth factor in normal breast tissue. CONCLUSIONS GH pathways may be targetable for cancer prevention therapeutics in postmenopausal women with dense breast tissue.
Collapse
Affiliation(s)
- Nina Dabrosin
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Charlotta Dabrosin
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
43
|
Qin CX, Yang XQ, Zhan ZY. Connection between SOX7 Expression and Breast Cancer Prognosis. Med Sci Monit 2020; 26:e921510. [PMID: 32238796 PMCID: PMC7152737 DOI: 10.12659/msm.921510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background SOX7 exerts a repressing effect against tumors and imposes vital influences on malignancies. Our research discussed the importance of SOX7 in breast cancer prognoses. Material/Methods SOX7 mRNA expression in breast cancer tissues samples and matched adjacent normal controls of breast cancer patients was measured by quantitative real-time-polymerase chain reaction (qRT-PCR). The relationship of SOX7 with clinicopathological characteristics were analyzed via chi-square test. The association of SOX7 levels with clinical outcomes was evaluated adopting the Kaplan-Meier method and multivariate Cox proportional hazards regression model. Results SOX7 mRNA degree of expression exhibited a declining tendency in breast cancer tissue compared to paired bordering normal tissue specimens (P<0.001). In addition, the reduced SOX7 degree of expression had a strong correlation to larger cancer mass dimension (P=0.006) and lymph node metastasis (P=0.001). Survival analysis revealed that the overall survival (OS) time was much shorter among cases harboring low SOX7 degree of expression compared to high degree of expression (P=0.005). Moreover, SOX7 expression alone could predict OS among breast cancer patients (hazard ratio=3.956, 95% confidence interval=1.330–11.772, P=0.013). Conclusions SOX7 expression was downregulated in breast cancer tissues, and it could function as a useful prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Chun-Xin Qin
- Department of Thyroid Breast Surgery, Weihai Municipal Hospital, Weihai, Shandong, China (mainland)
| | - Xiao-Qing Yang
- Department of Thyroid Breast Surgery, Weihai Municipal Hospital, Weihai, Shandong, China (mainland)
| | - Zhi-Yong Zhan
- Department of Thyroid Breast Surgery, Weihai Municipal Hospital, Weihai, Shandong, China (mainland)
| |
Collapse
|
44
|
Gao Y, Khan GJ, Wei X, Zhai KF, Sun L, Yuan S. DT-13 inhibits breast cancer cell migration via non-muscle myosin II-A regulation in tumor microenvironment synchronized adaptations. Clin Transl Oncol 2020; 22:1591-1602. [PMID: 32056128 DOI: 10.1007/s12094-020-02303-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tumor metastasis is a terrifying characteristic of cancer. Numerous studies have been conducted to overcome metastasis by targeting tumor microenvironment (TME). However, due to complexity of tumor microenvironment, it remained difficult for accurate targeting. Dwarf-lillytruf tuber monomer-13 (DT-13) possess good potential against TME. OBJECTIVE As TME is supportive for tumor metastasis, alternatively it is a challenging for therapeutic intervention. In our present study, we explored molecular mechanism through which TME induced cell migration and how DT-13 interferes in this mechanism. METHODS We used a novel model of co-culture system which is eventually developed in our lab. Tumor cells were co-cultured with hypoxia induced cancer-associated fibroblasts (CAF) or with chemically induced cancer-associated adipocytes (CAA). The effect of hypoxia in conditioned medium for CAF was assessed through expression of α-SMA and HIF by western blotting while oil red staining was done to assess the successful chemical induction for adipocytes (CAA), the effect of TME through conditioned medium on cell migration was analyzed by trans-well cell migration, and cell motility (wound healing) analyses. The expression changes in cellular proteins were assessed through western blotting and immunofluorescent studies. RESULTS AND CONCLUSION Our results showed that tumor microenvironment has a direct role in promoting breast cancer cell migration by stromal cells; moreover, we found that DT-13 restricts this TME regulated cell migration via targeting stromal cells in vitro. Additionally we also found that DT-13 targets NMII-A for its effect on breast cancer cell migration for the regulation of stromal cells in TME.
Collapse
Affiliation(s)
- Y Gao
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - G J Khan
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.,Faculty of Pharmacy (FOP), University of Central Punjab, Lahore, Pakistan
| | - X Wei
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - K-F Zhai
- Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering, Suzhou University, 49, Bianhe Road, Suzhou, 234000, People's Republic of China.
| | - L Sun
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China.
| | - S Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
45
|
Bhyan SB, Zhao L, Wee Y, Liu Y, Zhao M. Genetic links between endometriosis and cancers in women. PeerJ 2019; 7:e8135. [PMID: 31879572 PMCID: PMC6927350 DOI: 10.7717/peerj.8135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/01/2019] [Indexed: 12/23/2022] Open
Abstract
Endometriosis is a chronic disease occurring during the reproductive stage of women. Although there is only limited association between endometriosis and gynecological cancers with regard to clinical features, the molecular basis of the relationship between these diseases is unexplored. We conducted a systematic study by integrating literature-based evidence, gene expression and large-scale cancer genomics data in order to reveal any genetic relationships between endometriosis and cancers in women. We curated 984 endometriosis-related genes from 3270 PubMed articles and then conducted a meta-analysis of the two public gene expression profiles related to endometriosis which identified Differential Expression of Genes (DEGs). Following an overlapping analysis, we identified 39 key endometriosis-related genes common in both literature and DEG analysis. Finally, the functional analysis confirmed that all the 39 genes were associated with the vital processes of tumour formation and cancer progression and that two genes (PGR and ESR1) were common to four cancers of women. From network analysis, we identified a novel linker gene, C3AR1, which had not been implicated previously in endometriosis. The shared genetic mechanisms of endometriosis and cancers in women identified in this study provided possible new avenues of multiple disease management and treatments through early diagnosis.
Collapse
Affiliation(s)
- Salma Begum Bhyan
- School of Science and Engineering, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Li Zhao
- Dongguan Women and Children’s Hospital, Dongguan, China
| | - YongKiat Wee
- School of Science and Engineering, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Min Zhao
- School of Science and Engineering, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| |
Collapse
|
46
|
Das L, Rai A, Vaiphei K, Garg A, Mohsina S, Bhansali A, Dutta P, Tripathy S. Idiopathic gigantomastia: newer mechanistic insights implicating the paracrine milieu. Endocrine 2019; 66:166-177. [PMID: 31502211 DOI: 10.1007/s12020-019-02065-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Gigantomastia refers to pathological breast enlargement usually occurring in the peripubertal or peripartum period. Idiopathic gigantomastia, however, is a rare entity with hypotheses citing local expression of hormones and growth factors in causing this disease, none of which have been systemically analysed. The purpose of this study was to delve deeper into the mechanistic pathways causing this condition. METHODS Herein, we describe three patients of idiopathic gigantomastia, all of whom had had normal puberty and uneventful pregnancies. Further, one of the patients had postmenopausal gigantomastia which is extremely rare, with only four cases described in the literature. Serum markers of autoimmunity, incriminated hormones and growth factors analysed, were normal in all the cases. Breast tissue specimens were subjected to histopathological examination and immunohistochemistry for ER, PR and Her-2-Neu. Quantitative immunofluorescence for aromatase, IGF2, EGFR, TGF-β, PDGFR-α, β, IGF1 and PTHrP was also performed. RESULTS Of these, the tissue expression of aromatase, IGF2, EGFR, TGF-β, PDGFR-α and β were found to be upregulated, whereas IGF1 and PTHrP were comparable to normal breast. CONCLUSION This observation that paracrine overexpression of these factors is responsible for the pathogenesis of apparently idiopathic gigantomastia may have therapeutic ramifications in the future for patients with this debilitating condition.
Collapse
Affiliation(s)
- Liza Das
- Department of Endocrinology, PGIMER, Chandigarh, India
| | - Ashutosh Rai
- Department of Translational and Regenerative Medicine, PGIMER, Chandigarh, India
| | - Kim Vaiphei
- Department of Pathology, PGIMER, Chandigarh, India
| | - Akhil Garg
- Department of Plastic surgery, PGIMER, Chandigarh, India
| | - Subair Mohsina
- Department of Plastic surgery, PGIMER, Chandigarh, India
| | - Anil Bhansali
- Department of Endocrinology, PGIMER, Chandigarh, India
| | - Pinaki Dutta
- Department of Endocrinology, PGIMER, Chandigarh, India.
| | | |
Collapse
|
47
|
Basu R, Kopchick JJ. The effects of growth hormone on therapy resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:827-846. [PMID: 32382711 PMCID: PMC7204541 DOI: 10.20517/cdr.2019.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pituitary derived and peripherally produced growth hormone (GH) is a crucial mediator of longitudinal growth, organ development, metabolic regulation with tissue specific, sex specific, and age-dependent effects. GH and its cognate receptor (GHR) are expressed in several forms of cancer and have been validated as an anti-cancer target through a large body of in vitro, in vivo and epidemiological analyses. However, the underlying molecular mechanisms of GH action in cancer prognosis and therapeutic response had been sparse until recently. This review assimilates the critical details of GH-GHR mediated therapy resistance across different cancer types, distilling the therapeutic implications based on our current understanding of these effects.
Collapse
Affiliation(s)
- Reetobrata Basu
- Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Ohio University, Athens, OH 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Ohio University, Athens, OH 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
48
|
Hamann M, Grill S, Struck J, Bergmann A, Hartmann O, Pölcher M, Kiechle M. Detection of early breast cancer beyond mammographic screening: a promising biomarker panel. Biomark Med 2019; 13:1107-1117. [DOI: 10.2217/bmm-2019-0085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: We assessed the suitability of a biomarker panel to improve early detection and individual risk assessment in breast cancer (BC) patients. Materials & methods: PENK, pro-SP, hGH and CA15-3 of 204 BC patients and 68 healthy controls were measured. Results: PENK and human growth hormone concentrations were significantly lower and pro-SP values higher in BC patients compared with controls. C-index increased from 0.628 for CA15-3 alone to 0.754 when all three biomarkers were added to the model. Conclusion: This biomarker panel may improve early detection of BC and influence the assessment of breast imaging. It might be useful for a risk-adapted cancer surveillance or primary prevention program by a more precise determination of an individualized BC risk.
Collapse
Affiliation(s)
- Moritz Hamann
- Department of Gynecology, Red Cross Hospital Munich, Taxisstr. 3, Munich 80637, Germany
| | - Sabine Grill
- Department of Gynecology & Obstetrics, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Joachim Struck
- Sphingotec GmbH, Neuendorfstraße 15A, Hennigsdorf 16761, Germany
| | - Andreas Bergmann
- Sphingotec GmbH, Neuendorfstraße 15A, Hennigsdorf 16761, Germany
| | - Oliver Hartmann
- Sphingotec GmbH, Neuendorfstraße 15A, Hennigsdorf 16761, Germany
| | - Martin Pölcher
- Department of Gynecology, Red Cross Hospital Munich, Taxisstr. 3, Munich 80637, Germany
| | - Marion Kiechle
- Department of Gynecology & Obstetrics, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| |
Collapse
|
49
|
Mao X, Dong B, Gao M, Ruan G, Huang M, Braicu EI, Sehouli J, Sun P. Dual targeting of estrogen receptor α and estrogen-related receptor α: a novel endocrine therapy for endometrial cancer. Onco Targets Ther 2019; 12:6757-6767. [PMID: 31686835 PMCID: PMC6709363 DOI: 10.2147/ott.s216146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/16/2019] [Indexed: 11/24/2022] Open
Abstract
Background Endometrial cancer (EC) is a hormone dependent carcinoma that may involve complex molecular mechanisms. Endocrine therapy by blocking the estrogen and estrogen receptor α (ERα) has been effective in breast cancer, while it is still controversial in EC. Recently, estrogen-related receptor α (ERRα) was proven to be another endocrine therapy target. Methods The anti-tumor effect of selective estrogen receptor modulators (SERMs) and XCT790 (XCT) used alone or in combination were evaluated in both of ERα-positive (ERα+) and ERα-negative (ERα-) EC cells. ERα and ERRα mRNA were tested by qPCR, while the protein was detected by Western blot. The proliferation was tested by MTS and cell cycle, apoptosis rate were analyzed by flow cytometry. Results A relatively high dose (10 μM) of tamoxifen (TAM) suppressed the expression of ERα and ERRα in two types of EC cells. However, 10 μM raloxifene (RAL) exhibited no effect on ERα and ERRα, while 10 μM XCT down regulated ERRα specifically, but not ERα in all EC cells. When dual targeting on ERα and ERRα by combining TAM with XCT, the proliferation inhibitory effect and apoptosis reached the strongest in all EC cells (P<0.05). Moreover, the inhibitory effect of proliferation was attributed significantly to the G0/G1 arrest (P<0.05). Interestingly, the apoptosis induced by combining TAM with XCT were obviously higher in ERα+ EC cells than ERα- EC cells (P<0.05). Conclusion Taken together, the results indicate that dual targeting on ERα and ERRα represents a better anti-tumor effect, which provides a novel endocrine based therapy strategy for EC.
Collapse
Affiliation(s)
- XiaoDan Mao
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Binhua Dong
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Min Gao
- Department of Gynecology Oncology, Peking University Cancer Hospital, Beijing 100142, People's Republic of China
| | - GuanYu Ruan
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - MeiMei Huang
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Elena Ioana Braicu
- Department of Gynecology, Campus Virchow-Klinikum, Charité Universitätmedizin Berlin, Berlin D-13353, Germany
| | - Jalid Sehouli
- Department of Gynecology, Campus Virchow-Klinikum, Charité Universitätmedizin Berlin, Berlin D-13353, Germany
| | - PengMing Sun
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, People's Republic of China
| |
Collapse
|
50
|
Boguszewski CL, Boguszewski MCDS. Growth Hormone's Links to Cancer. Endocr Rev 2019; 40:558-574. [PMID: 30500870 DOI: 10.1210/er.2018-00166] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Several components of the GH axis are involved in tumor progression, and GH-induced intracellular signaling has been strongly associated with breast cancer susceptibility in genome-wide association studies. In the general population, high IGF-I levels and low IGF-binding protein-3 levels within the normal range are associated with the development of common malignancies, and components of the GH-IGF signaling system exhibit correlations with clinical, histopathological, and therapeutic parameters in cancer patients. Despite promising findings in preclinical studies, anticancer therapies targeting the GH-IGF signaling system have led to disappointing results in clinical trials. There is substantial evidence for some degree of protection against tumor development in several animal models and in patients with genetic defects associated with GH deficiency or resistance. In contrast, the link between GH excess and cancer risk in acromegaly patients is much less clear, and cancer screening in acromegaly has been a highly controversial issue. Recent studies have shown that increased life expectancy in acromegaly patients who attain normal GH and IGF-I levels is associated with more deaths due to age-related cancers. Replacement GH therapy in GH deficiency hypopituitary adults and short children has been shown to be safe when no other risk factors for malignancy are present. Nevertheless, the use of GH in cancer survivors and in short children with RASopathies, chromosomal breakage syndromes, or DNA-repair disorders should be carefully evaluated owing to an increased risk of recurrence, primary cancer, or second neoplasia in these individuals.
Collapse
Affiliation(s)
- Cesar Luiz Boguszewski
- Department of Internal Medicine, Endocrine Division (SEMPR), University Hospital, Federal University of Parana, Curitiba, Brazil
| | | |
Collapse
|