1
|
Pan P, Cao S, Gao H, Qu X, Ma Y, Yang J, Pei X, Yang Y. Immp2l gene knockout induces granulosa cell senescence by activation of cGAS-STING pathway via TFAM-mediated mtDNA leakage. Int J Biol Macromol 2025; 307:142368. [PMID: 40120895 DOI: 10.1016/j.ijbiomac.2025.142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Granulosa cell-produced inflammatory factors may be key contributors to ovarian dysfunction, and Immp2l deficiency accelerates ovarian aging via granulosa cell senescence; however, the role of inflammation in granulosa cell senescence is largely unknown. Therefore, in this study, cGAS-STING-mediated inflammation was explored in Immp2l deficiency-induced granulosa cell senescence. Immp2l deficiency led to senescence-associated secretory phenotype (SASP) and granulosa cell senescence. Immp2l knockout caused mitochondrial dysfunction and mitochondrial DNA (mtDNA) leakage into the cytoplasm. The cytoplasmic mtDNA was recognized by the DNA-sensing molecule cGAS-STING, which activates cGAS-STING and key downstream interferon-stimulated genes (ISGs) and then promotes the secretion of proinflammatory factors, leading to SASP in senescent granulosa cells. Interestingly, the mitochondrial inner membrane pore protein (Cyclophilin D40) CyPD40 and the outer membrane pore protein voltage-dependent-anion channel 1 (VDAC1) were markedly increased in senescent granulosa cells, accompanied by significantly increased expression of the mtDNA stability protein mitochondrial transcription factor A (TFAM). Downregulation of TFAM with siRNA in senescent granulosa cells improved mitochondrial function, significantly decreased mtDNA in the cytoplasm, inhibited the cGAS-STING pathway and markedly decreased CyPD40 and VDAC1 protein levels in TFAM-treated senescent granulosa cells. The SASP phenotype was also alleviated. In addition, senescent granulosa cells were treated with procyanidin B2 (PCB2), which has anti-inflammatory effects, and the TFAM-mediated mtDNA-cGAS-STING pathway was inhibited, accompanied by a markedly reduced SASP phenotype and granulosa cell senescence. In conclusion, Immp2l gene knockout induced granulosa cell senescence by activation of the cGAS-STING pathway via TFAM-mediated mtDNA leakage into the cytoplasm through the CyPD40 and the VDAC1.
Collapse
Affiliation(s)
- Pengge Pan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Sinan Cao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hui Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoya Qu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yan Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Jinyi Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; Emergency Department, The First People's Hospital of Yinchuan, The Second Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
2
|
Samie KA, Kowalewski MP, Schuler G, Gastal GDA, Bollwein H, Scarlet D. Roles of GDF9 and BMP15 in equine follicular development: in vivo content and in vitro effects of IGF1 and cortisol on granulosa cells. BMC Vet Res 2025; 21:292. [PMID: 40289073 PMCID: PMC12034142 DOI: 10.1186/s12917-025-04744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND In horses, the mechanisms behind ovarian follicle growth and oocyte maturation remain largely unknown. In other species, oocyte-secreted factors growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) have been related to the acquisition of developmental competence and to interaction with granulosa cells for the regulation of follicle development. This study assessed the expression and localization of GDF9 in the equine ovary, and its possible relationship with granulosa cell function. RESULTS Using custom-made antibodies, GDF9 protein was localized in oocytes from the primary follicle stage onwards. Together with BMP15, its intrafollicular concentration was higher in small antral follicles compared to larger ones (P < 0.05). Negative correlations were observed between intrafollicular BMP15 concentration and estradiol sulfate (E2S) (r = -0.36, P = 0.048), as well as between BMP15 and E2S/P4 ratio (r = -0.37, P = 0.046). In vivo, equine granulosa cells showed increasing mRNA expression of genes involved in steroidogenesis (STAR and HSD3B2) and cell proliferation (KI67) with increasing follicle size, while expression of GDF9 and of apoptosis-related genes (BCL2 and CASP3) were not affected by follicle size. Simultaneous stimulation of granulosa cells in vitro with IGF1 and cortisol significantly increased HSD3B2 and CYP19A1 transcriptional levels, as well as E2 concentration in culture media, while IGF1-induced P4 secretion was suppressed in the presence of cortisol. Blocking the stimulatory effect of IGF1 on E2, E2S and P4 by H89 was associated with increased GDF9 mRNA levels and reduced STAR, PCNA, KI67 and BCL2 mRNA expression. Significant negative correlations of GDF9 with STAR and PCNA mRNA, respectively, were seen in vivo and in vitro. CONCLUSIONS Together, our results show GDF9 localization and expression in the equine ovary and a temporal relationship with steroidogenesis and cell proliferation within the surrounding granulosa cells. Moreover, results of the in vitro study suggest a supporting role of cortisol during follicle maturation. Our study sheds light on possible mechanisms for the regulation of ovarian function in horses using GDF9.
Collapse
Affiliation(s)
- Kosar Abbasi Samie
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Gerhard Schuler
- Veterinary Clinic for Reproductive Medicine and Neonatology, Justus-Liebig-University, Frankfurter Strasse 106, 35392, Giessen, Germany
| | - Gustavo D A Gastal
- Instituto Nacional de Investigación Agropecuaria INIA, Estacion Experimental La Estanzela, Ruta 50 km 11, Cologne, Colonia, 39173, Uruguay
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
- AgroVet-Strickhof, Vetsuisse Faculty, Eschikon, Lindau, Switzerland
| | - Dragos Scarlet
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland.
- Clinic of Reproductive Medicine, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland.
- AgroVet-Strickhof, Vetsuisse Faculty, Eschikon, Lindau, Switzerland.
| |
Collapse
|
3
|
He M, Liang Y, Nie X, Zhang T, Zhao D, Zhang J, Lin H, Zeng Z, Song X, Wang Y, Ran S, Zhao S, Chen T, Zhang C, Feng Z. p300 maintains primordial follicle activation by repressing VEGFA transcription. Am J Physiol Cell Physiol 2025; 328:C514-C527. [PMID: 39510134 DOI: 10.1152/ajpcell.00198.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
During the reproductive life, most primordial follicles (PFs) remain dormant for years or decades, while some are progressively activated for development. Misactivation of primordial follicles can cause ovarian diseases, for example, premature ovarian insufficiency (POI). Our results show that p300 expression increased with primordial follicle activation. Using a p300 inhibitor resulted in premature activation of primordial follicles in cultured mouse ovaries. Conversely, the ratio of primordial follicle activation was markedly decreased upon culturing with the p300 agonist. Furthermore, p300 regulated primordial follicle activation by inhibiting Vegfa transcription in granulosa cells. In addition, this study was extended to potential clinical applications, showing that short-term treatment with a p300 inhibitor in vitro significantly increased primordial follicle activation in newborn mouse ovaries after the renal subcapsular transplantation in female NSG mice. Our results revealed that p300 controls the activation of primordial follicles in mammalian ovaries.NEW & NOTEWORTHY In this study, our results show that p300 expression increases with primordial follicle activation. A p300 inhibitor results in premature activation of primordial follicles in cultured mouse ovaries. Conversely, the ratio of primordial follicle activation markedly decreases upon culturing with the p300 agonist. Furthermore, p300 regulates primordial follicle activation by inhibiting Vegfa transcription in granulosa cells.
Collapse
Affiliation(s)
- Meina He
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Engineering Research Center for Molecular Medicine, Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, People's Republic of China
| | - Yaoyun Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Xiaoran Nie
- Engineering Research Center for Molecular Medicine, Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, People's Republic of China
| | - Tuo Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, People's Republic of China
| | - Danqing Zhao
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Jixian Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, People's Republic of China
| | - Huan Lin
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, People's Republic of China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Xingyu Song
- Engineering Research Center for Molecular Medicine, Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Yitong Wang
- Engineering Research Center for Molecular Medicine, Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Shiling Ran
- Engineering Research Center for Molecular Medicine, Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Shuyun Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Tengxiang Chen
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, People's Republic of China
| | - Chunlin Zhang
- Engineering Research Center for Molecular Medicine, Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, People's Republic of China
| | - Zhanhui Feng
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| |
Collapse
|
4
|
Borges E, Braga DPAF, Guilherme P, Iaconelli A, Setti AS. Morphokinetic embryo behaviour in low-prognosis patients according to the POSEIDON criteria: an analysis of 3326 injected oocytes. ZYGOTE 2025; 33:56-61. [PMID: 40079805 DOI: 10.1017/s0967199424000480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The objective of this cohort study was to investigate whether embryo quality and morphokinetic behaviour differ in the four groups of low-prognosis women as stratified by the POSEIDON criteria. The study was performed in a private university-affiliated in vitro fertilization (IVF) centre, and included 3326 injected oocytes from 846 women undergoing ICSI cycles between March 2019 and April 2022. Kinetic markers from the point of insemination were recorded in the EmbryoScope incubator. Generalized mixed models followed by Bonferroni post hoc were used to compare morphokinetics among the POSEIDON groups. Embryos derived from patients in the POSEIDON groups 2, 3 and 4 showed significantly slower divisions compared to those from POSEIDON 1 group. The KIDScore rank was significantly lower for embryos deriving from POSEIDON groups 2, 3 and 4 (2: 4.4 ± 0.7 vs. 3: 4.2 ± 0.2 vs. 4: 3.0 ± 0.4) compared to those deriving from POSEIDON 1 group (4.8 ± 0.1, p < 0.001). Group POSEIDON 1 showed improved implantation (26.9% vs. 2: 22.4% vs. 3: 20.0% vs. 4: 14.0, p < 0.001) and miscarriage rates (5.6% vs. 2: 31.2% vs. 4: 50.0%, p = 0.013). Embryo quality and morphokinetic behaviour differ across the POSEIDON groups, being more favourable in POSEIDON group 1, as well as implantation and miscarriage rates. Embryo development was more favourable in POSEIDON group 1 (young age and adequate ovarian reserve), suggesting that oocyte quality is determinant of embryo developmental potential. These findings show the reasonability of classifying POR by the POSEIDON criteria and provide information for counselling of POR regarding their possible prognosis.
Collapse
Affiliation(s)
- Edson Borges
- Fertility Medical Group / FERTGROUP Medicina Reprodutiva, São Paulo - SP, Brazil
- Sapientiae Institute - Centro de Estudos e Pesquisa em Reprodução Humana Assistida, São Paulo - SP, Brazil
| | - Daniela Paes Almeida Ferreira Braga
- Fertility Medical Group, São Paulo, Brazil
- Sapientiae Institute - Centro de Estudos e Pesquisa em Reprodução Humana Assistida, São Paulo - SP, Brazil
| | - Patricia Guilherme
- Fertility Medical Group / FERTGROUP Medicina Reprodutiva, São Paulo - SP, Brazil
| | - Assumpto Iaconelli
- Fertility Medical Group / FERTGROUP Medicina Reprodutiva, São Paulo - SP, Brazil
- Sapientiae Institute - Centro de Estudos e Pesquisa em Reprodução Humana Assistida, São Paulo - SP, Brazil
| | - Amanda Sousa Setti
- Fertility Medical Group, São Paulo, Brazil
- Sapientiae Institute - Centro de Estudos e Pesquisa em Reprodução Humana Assistida, São Paulo - SP, Brazil
| |
Collapse
|
5
|
Mate NA, Wadhwa G, Taliyan R, Banerjee A. Impact of polyamine supplementation on GnRH expression, folliculogenesis, and puberty onset in young mice. Theriogenology 2024; 229:202-213. [PMID: 39217649 DOI: 10.1016/j.theriogenology.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The hypothalamic-pituitary-gonadal (HPG) axis is pivotal in regulating reproductive functions, with gonadotropin-releasing hormone (GnRH) acting as a central regulator. Recently, polyamines have been shown to regulate the HPG axis, including GnRH expression and ovarian biology in old and adult rodents. The present study firstly highlights the age-specific variation in the polyamine and their corresponding biosynthetic enzymes in the ovary during aging, and further, the study focuses on the effect of polyamines, putrescine, and agmatine, in young female mice. METHOD AND RESULT Immunofluorescence analysis revealed age-related differences in the expression of ornithine decarboxylase 1 (ODC1), spermine (SPM), and spermidine (SPD) in the ovaries, with adult mice exhibiting significantly higher expression levels compared to young and old mice. Likewise, qPCR analysis showed the mRNA levels of Odc1, Spermidine synthase (Srm), and Spermine synthase (Sms) show a significant increase in adult ovaries, which is then followed by a significant decline in old age. Histological examination demonstrated morphological alterations in the ovaries with age, including decreased follicle numbers and increased stromal cells in old mice. Furthermore, treatment with putrescine, a polyamine, in young mice resulted in larger ovaries and increased follicle numbers compared to controls. Additionally, serum levels of gonadotropin-releasing hormone (GnRH) and progesterone (P4) were measured, showing elevated levels in polyamine-treated mice. GnRH mRNA expression also increased significantly. Gene expression analysis revealed upregulation of genes associated with folliculogenesis such as Fshr, Bmp15, Gdf9, Amh, Star, Hsdb3, and Plaur in the ovaries and onset of puberty such as Tac2, and Kiss1, and a decrease in Mkrn3 in the hypothalamus of polyamine-treated mice. CONCLUSION This study investigates the effect of polyamines in young immature female mice, shedding light on their role in upregulating GnRH, and enhancing folliculogenesis. Overall, these findings suggest that polyamines play a crucial role in ovarian aging and HPG axis regulation, offering potential therapeutics to reinstate fertility in reproductively challenged individuals.
Collapse
Affiliation(s)
- Nayan Anand Mate
- Department of Biological Sciences, Birla Institute of Technology and Science, K K Birla Goa Campus, Zuarinagar, Goa, India
| | - Geetika Wadhwa
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Arnab Banerjee
- Department of Biological Sciences, Birla Institute of Technology and Science, K K Birla Goa Campus, Zuarinagar, Goa, India.
| |
Collapse
|
6
|
Qu X, Pan P, Cao S, Ma Y, Yang J, Gao H, Pei X, Yang Y. Immp2l Deficiency Induced Granulosa Cell Senescence Through STAT1/ATF4 Mediated UPR mt and STAT1/(ATF4)/HIF1α/BNIP3 Mediated Mitophagy: Prevented by Enocyanin. Int J Mol Sci 2024; 25:11122. [PMID: 39456903 PMCID: PMC11508440 DOI: 10.3390/ijms252011122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Dysfunctional mitochondria producing excessive ROS are the main factors that cause ovarian aging. Immp2l deficiency causes mitochondrial dysfunction and excessive ROS production, leading to ovarian aging, which is attributed to granulosa cell senescence. The pathway controlling mitochondrial proteostasis and mitochondrial homeostasis of the UPRmt and mitophagy are closely related with the ROS and cell senescence. Our results suggest that Immp2l knockout led to granulosa cell senescence, and enocyanin treatment alleviated Immp2l deficiency-induced granulosa cell senescence, which was accompanied by improvements in mitochondrial function and reduced ROS levels. Interestingly, redox-related protein modifications, including S-glutathionylation and S-nitrosylation, were markedly increased in Immp2l-knockout granulosa cells, and were markedly reduced by enocyanin treatment. Furthermore, STAT1 was significantly increased in Immp2l-knockout granulosa cells and reduced by enocyanin treatment. The co-IP results suggest that the expression of STAT1 was controlled by S-glutathionylation and S-nitrosylation, but not phosphorylation. The UPRmt was impaired in Immp2l-deficient granulosa cells, and unfolded and misfolded proteins aggregated in mitochondria. Then, the HIF1α/BNIP3-mediated mitophagy pathway was activated, but mitophagy was impaired due to the reduced fusion of mitophagosomes and lysosomes. The excessive aggregation of mitochondria increased ROS production, leading to senescence. Hence, Enocyanin treatment alleviated granulosa cell senescence through STAT1/ATF4-mediated UPRmt and STAT1/(ATF4)/HIF1α/BNIP3-mediated mitophagy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuying Pei
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (X.Q.); (P.P.); (S.C.); (Y.M.); (J.Y.); (H.G.)
| | - Yanzhou Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (X.Q.); (P.P.); (S.C.); (Y.M.); (J.Y.); (H.G.)
| |
Collapse
|
7
|
Madikyzy M, Durmanova A, Trofimov A, Akbay B, Tokay T. Evaluation of Biochemical Serum Markers for the Diagnosis of Polycystic Ovary Syndrome (PCOS) in Obese Women in Kazakhstan: Is Anti-Müllerian Hormone a Potential Marker? Biomedicines 2024; 12:2333. [PMID: 39457645 PMCID: PMC11504444 DOI: 10.3390/biomedicines12102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Polycystic Ovarian Syndrome (PCOS) is a common endocrine condition that affects 8-13% of women of reproductive age. In Kazakhstan, the prevalence of this syndrome is particularly high compared with other countries and the global average. Currently, the diagnosis of PCOS is based on internationally established Rotterdam criteria, using hyperandrogenism as a key parameter. These criteria are applied to diagnose PCOS in all female patients, although obese patients may have excess testosterone produced by adipose tissue. To avoid possible misdiagnosis, an additional criterion, especially for the diagnosis of PCOS in obese women, could be considered. The aim of this study was to identify whether anti-Müllerian hormone (AMH) or other biochemical criteria can be used for this purpose. Methods: A total of 138 women were recruited for this study and grouped into control (n = 46), obese subjects without PCOS (n = 67), and obese patients with PCOS (n = 25). The health status, anthropometric parameters, and serum indicators for glucose, glycosylated hemoglobin, and hormone levels were examined for all subjects. Statistical data were analyzed using GraphPad Prism 10 software for interpretation of the data. Results: Serum AMH, testosterone, and LH were positively correlated in obese PCOS patients, while AMH and FSH were negatively correlated. Compared with other biochemical indicators, the serum AMH and testosterone levels in obese PCOS patients were significantly higher than those in non-PCOS patients (regardless of obesity), and AMH was also positively correlated with testosterone. Conclusions: AMH appears to be a reliable criterion in addition to testosterone for the diagnosis of PCOS in obese women.
Collapse
Affiliation(s)
- Malika Madikyzy
- Department of Internal Medicine, University Medical Center, 46 Syganak St., Astana 010000, Kazakhstan; (M.M.); (A.D.)
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan; (A.T.); (B.A.)
| | - Aigul Durmanova
- Department of Internal Medicine, University Medical Center, 46 Syganak St., Astana 010000, Kazakhstan; (M.M.); (A.D.)
| | - Alexander Trofimov
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan; (A.T.); (B.A.)
| | - Burkitkan Akbay
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan; (A.T.); (B.A.)
| | - Tursonjan Tokay
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan; (A.T.); (B.A.)
| |
Collapse
|
8
|
Yang X, Cai J, Jiang L, Jiang X, Liu Z, Chen J, Chen K, Yang C, Geng J, Ma C, Ren J, Liu L. Neutral effect of Zishen Yutai Pill on frozen-thawed embryo transfer: a propensity score matching study. Front Endocrinol (Lausanne) 2024; 15:1379590. [PMID: 39268234 PMCID: PMC11390590 DOI: 10.3389/fendo.2024.1379590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Objective To investigate whether using Zishen Yutai Pills (ZYP) following embryo transfer would affect the live birth rate in frozen-thawed embryo transfer (FET) cycles. Methods A retrospective analysis was performed on 15044 FET cycles in the Reproductive Medicine Center of The Affiliated Chenggong Hospital of Xiamen University from January 2013 to December 2020. Patients who used Zishen Yutai Pills were defined as Zishen Yutai Pills Group (ZYP, n=2735), while patients who did not use them were defined as Non- Zishen Yutai Pills Group (Non-ZYP, n=12309). The propensity score matching method was used to control for potential confounders between the two groups, and logistic regression analysis was also used to assess whether using ZYP would affect the live birth rate. Results After propensity score matching, basic characteristics were similar between the two groups. Using ZYP did not increase the pregnancy rate (51.5% vs. 52.7%, P=0.372), and live birth rate (43.0% vs. 44.7%, P=0.354). This was also confirmed by the logistic regression analysis results (OR=0.95, 95%CI=0.85-1.06). In the subgroup analysis of the endometrial preparation protocols, however, it was found that the use of ZYP in patients with natural cycles increased the live birth rate (47.4% vs. 41.5%, P=0.004). A significant interaction between endometrial preparation and ZYP was found (OR=1.38, 95%CI=1.07-1.79) in the multivariate model. Conclusion The use of ZYP may not improve the live birth rate of unselected patients in FET cycles. However, a future study is needed on the effect of ZYP in natural cycles for endometrial preparation.
Collapse
Affiliation(s)
- Xiaolian Yang
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jiali Cai
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Li Jiang
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiaoming Jiang
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Zhenfang Liu
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jinghua Chen
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Kaijie Chen
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Chao Yang
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jie Geng
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Caihui Ma
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jianzhi Ren
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Lanlan Liu
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
- Medical College, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
9
|
Tao H, Chen Z, Yao B, Ren X, Shuai H, Xu S, Zha Q, Li P. Galaxamide alleviates cisplatin-induced premature ovarian insufficiency via the PI3K signaling pathway in HeLa tumor-bearing mice. BMC Cancer 2024; 24:1060. [PMID: 39192214 DOI: 10.1186/s12885-024-12848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND It is challenging to improve the effects of chemotherapy and reduce its adverse impact on the ovaries. Our previous study suggested that the combination of galaxamide could enhance the antitumor effect of cisplatin (CIS) in HeLa cell xenograft mice. However, their potential effects on ovarian tissues remain unknown. METHODS The Hela tumor-bearing female BALB/c mice model was established and randomly divided into three groups: control group (PBS group), CIS group (0.3 mg/kg CIS group) and galaxamide group (0.3 mg/kg CIS + 3 mg/kg galaxamide-treated group). The serum sex hormones levels, ovarian morphology, functional and molecular characterisation were determined and compared with those of the control group. RESULTS The hormonal effects indicated premature ovarian insufficiency (POI) associated with CIS-induced tumor-bearing mice. CIS induces the apoptosis in primordial and developing follicles and subsequently increases follicular atresia, eventually leading to follicle loss. After cotreatment, galaxamide significantly increased anti-Mullerian hormone (AMH) and follicle-stimulating hormone receptor (FSHR) expression and prevented the CIS-induced PI3K pathway, which triggers follicle activation, apoptosis or atresia. CONCLUSION These findings demonstrate that galaxamide could attenuate CIS-induced follicle loss by acting on the PI3K signaling pathway by stimulating AMH and/or FSHR and thus provides promising therapeutic options for patients with cervical cancer.
Collapse
Affiliation(s)
- Huan Tao
- Center of Reproductive Medicine, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Zongbin Chen
- Department of Gynecology & Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Bo Yao
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Xinyi Ren
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Hanlin Shuai
- Department of Gynecology & Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shihai Xu
- Department of Chemistry, College of Chemistry and Material Science, Jian University, Guangzhou, 510632, China.
| | - Qingbing Zha
- Center of Reproductive Medicine, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Ping Li
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Duan Y, Cai B, Guo J, Wang C, Mai Q, Xu Y, Zeng Y, Shi Y, Wang B, Ding C, Chen M, Zhou C, Xu Y. GDF9 His209GlnfsTer6/S428T and GDF9 Q321X/S428T bi-allelic variants caused female subfertility with defective follicle enlargement. Cell Commun Signal 2024; 22:235. [PMID: 38643161 PMCID: PMC11031944 DOI: 10.1186/s12964-024-01616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/12/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Antral follicles consist of an oocyte cumulus complex surrounding by somatic cells, including mural granulosa cells as the inner layer and theca cells as the outsider layer. The communications between oocytes and granulosa cells have been extensively explored in in vitro studies, however, the role of oocyte-derived factor GDF9 on in vivo antral follicle development remains elusive due to lack of an appropriate animal model. Clinically, the phenotype of GDF9 variants needs to be determined. METHODS Whole-exome sequencing (WES) was performed on two unrelated infertile women characterized by an early rise of estradiol level and defect in follicle enlargement. Besides, WES data on 1,039 women undergoing ART treatment were collected. A Gdf9Q308X/S415T mouse model was generated based on the variant found in one of the patients. RESULTS Two probands with bi-allelic GDF9 variants (GDF9His209GlnfsTer6/S428T, GDF9Q321X/S428T) and eight GDF9S428T heterozygotes with normal ovarian response were identified. In vitro experiments confirmed that these variants caused reduction of GDF9 secretion, and/or alleviation in BMP15 binding. Gdf9Q308X/S415T mouse model was constructed, which recapitulated the phenotypes in probands with abnormal estrogen secretion and defected follicle enlargement. Further experiments in mouse model showed an earlier expression of STAR in small antral follicles and decreased proliferative capacity in large antral follicles. In addition, RNA sequencing of granulosa cells revealed the transcriptomic profiles related to defective follicle enlargement in the Gdf9Q308X/S415T group. One of the downregulated genes, P4HA2 (a collagen related gene), was found to be stimulated by GDF9 protein, which partly explained the phenotype of defective follicle enlargement. CONCLUSIONS GDF9 bi-allelic variants contributed to the defect in antral follicle development. Oocyte itself participated in the regulation of follicle development through GDF9 paracrine effect, highlighting the essential role of oocyte-derived factors on ovarian response.
Collapse
Affiliation(s)
- Yuwei Duan
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Guangzhou, Guangdong, 510080, China
| | - Bing Cai
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Guangzhou, Guangdong, 510080, China
| | - Jing Guo
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Guangzhou, Guangdong, 510080, China
| | - Chen Wang
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Guangzhou, Guangdong, 510080, China
| | - Qingyun Mai
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Guangzhou, Guangdong, 510080, China
| | - Yan Xu
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Guangzhou, Guangdong, 510080, China
| | - Yang Zeng
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Guangzhou, Guangdong, 510080, China
| | - Yue Shi
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Guangzhou, Guangdong, 510080, China
| | - Boyan Wang
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Guangzhou, Guangdong, 510080, China
| | - Chenhui Ding
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Guangzhou, Guangdong, 510080, China
| | - Minghui Chen
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Guangzhou, Guangdong, 510080, China
| | - Canquan Zhou
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Guangzhou, Guangdong, 510080, China
| | - Yanwen Xu
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
11
|
Tang Y, Lu S, Wei J, Xu R, Zhang H, Wei Q, Han B, Gao Y, Zhao X, Peng S, Pan M, Ma B. Growth differentiation factor 9 regulates the expression of estrogen receptors via Smad2/3 signaling in goat cumulus cells. Theriogenology 2024; 219:65-74. [PMID: 38402699 DOI: 10.1016/j.theriogenology.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Both oocyte secretory factors (OSFs) and estrogen are essential for the development and function of mammalian ovarian follicles, playing synergistic role in regulating oocyte growth. OSFs can significantly affect the biological processes regulated by estrogen in cumulus cells (CCs). It is a scientific question worth investigating whether oocyte secretory factors can influence the expression of estrogen receptors in CCs. In our study, we observed a significant increase in the mRNA and protein expressions of estrogen receptor β (Esr2/ERβ) and G-protein-coupled estrogen receptor (GPER) in cumulus cells of goat cumulus-oocyte complexes (COCs) cultured in vitro for 6 h. Furthermore, the addition of 10 ng/mL growth-differentiation factor 9 (GDF9) and 5 ng/mL bone morphogenetic protein 15 (BMP15) to the culture medium of goat COCs resulted in a significant increase in the expressions of ERβ and GPER in cumulus cells. To explore the mechanism further, we performed micromanipulation to remove oocyte contents and co-cultured the oocytectomized complexes (OOXs) with denuded oocytes (DOs) or GDF9/BMP15. The expressions of ERβ and GPER in the co-culture groups were significantly higher than those in the OOXs group, but there was no difference compared to the COCs group. Mechanistically, we found that SB431542 (inhibitor of GDF9 bioactivity), but not LDN193189 (inhibitor of BMP15 bioactivity), abolished the upregulation of ERβ and GPER in cumulus cells and the activation of Smad2/3 signaling. In conclusion, our results demonstrate that the oocyte secretory factor GDF9 promotes the activation of Smad2/3 signaling in cumulus cells during goat COCs culture in vitro, and the phosphorylation of Smad2/3 induces the expression of estrogen receptors ERβ and GPER in cumulus cells.
Collapse
Affiliation(s)
- Yaju Tang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Sihai Lu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Juncai Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Rui Xu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Hui Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Bin Han
- Yulin Animal Husbandry and Veterinary Service Center, Yulin, 719000, Shaanxi, PR China
| | - Yan Gao
- Yulin Animal Husbandry and Veterinary Service Center, Yulin, 719000, Shaanxi, PR China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Sha Peng
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
12
|
Yildiz S, Moolhuijsen LME, Visser JA. The Role of Anti-Müllerian Hormone in Ovarian Function. Semin Reprod Med 2024; 42:15-24. [PMID: 38781987 DOI: 10.1055/s-0044-1786732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Anti-Müllerian hormone (AMH) is a member of the transforming growth factor β (TGFβ) superfamily, whose actions are restricted to the endocrine-reproductive system. Initially known for its role in male sex differentiation, AMH plays a role in the ovary, acting as a gatekeeper in folliculogenesis by regulating the rate of recruitment and growth of follicles. In the ovary, AMH is predominantly expressed by granulosa cells of preantral and antral follicles (i.e., post primordial follicle recruitment and prior to follicle-stimulating hormone (FSH) selection). AMH signals through a BMP-like signaling pathway in a manner distinct from other TGFβ family members. In this review, the latest insights in AMH processing, signaling, its regulation of spatial and temporal expression pattern, and functioning in folliculogenesis are summarized. In addition, effects of AMH variants on ovarian function are reviewed.
Collapse
Affiliation(s)
- Sena Yildiz
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Loes M E Moolhuijsen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Liu H, Tu M, Yin Z, Zhang D, Ma J, He F. Unraveling the complexity of polycystic ovary syndrome with animal models. J Genet Genomics 2024; 51:144-158. [PMID: 37777062 DOI: 10.1016/j.jgg.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a highly familial and heritable endocrine disorder. Over half of the daughters born to women with PCOS may eventually develop their own PCOS-related symptoms. Progress in the treatment of PCOS is currently hindered by the complexity of its clinical manifestations and incomplete knowledge of its etiopathogenesis. Various animal models, including experimentally induced, naturally occurring, and spontaneously arising ones, have been established to emulate a wide range of phenotypical and pathological traits of human PCOS. These studies have led to a paradigm shift in understanding the genetic, developmental, and evolutionary origins of this disorder. Furthermore, emerging evidence suggests that animal models are useful in evaluating state-of-the-art drugs and treatments for PCOS. This review aims to provide a comprehensive summary of recent studies of PCOS in animal models, highlighting the power of these disease models in understanding the biology of PCOS and aiding high-throughput approaches.
Collapse
Affiliation(s)
- Huanju Liu
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Mixue Tu
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Zhiyong Yin
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Dan Zhang
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Clinical Research Center on Birth Defect Prevention and Intervention of Zhejiang Province, Hangzhou, Zhejiang 310006, China.
| | - Jun Ma
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.
| | - Feng He
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
14
|
Dutta S, Sivakumar KK, Erwin JW, Stanley JA, Arosh JA, Taylor RJ, Banu SK. Alteration of epigenetic methyl and acetyl marks by postnatal chromium(VI) exposure causes apoptotic changes in the ovary of the F1 offspring. Reprod Toxicol 2024; 123:108492. [PMID: 37931768 DOI: 10.1016/j.reprotox.2023.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
Hexavalent chromium, Cr(VI), is a heavy metal endocrine disruptor used widely in various industries worldwide and is considered a reproductive toxicant. Our previous studies demonstrated that lactational exposure to Cr(VI) caused follicular atresia, disrupted steroid hormone biosynthesis and signaling, and delayed puberty. However, the underlying mechanism was unknown. The current study investigated the effects of Cr(VI) exposure (25 ppm) during postnatal days 1-21 via dam's milk on epigenetic alterations in the ovary of F1 offspring. Data indicated that Cr(VI) disrupted follicle development and caused apoptosis by increasing DNMT3a /3b and histone methyl marks (H3K27me3 and H3K9me3) along with decreasing histone acetylation marks (H3K9ac and H3K27ac). Our study demonstrates that exposure to Cr(VI) causes changes in the epigenetic marks, partially contributing to the transcriptional repression of genes regulating ovarian development, cell proliferation (PCNA), cell survival (BCL-XL and BCL-2), and activation of genes regulating apoptosis (AIF and cleaved caspase-3), resulting in follicular atresia. The current study suggests a role for epigenetics in Cr(VI)-induced ovotoxicity and infertility.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Kirthiram K Sivakumar
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - John W Erwin
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Jone A Stanley
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Joe A Arosh
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Robert J Taylor
- Trace Element Research Laboratory, VIBS, CVMBS, Texas A& M University, College Station, TX 77843, USA
| | - Sakhila K Banu
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA.
| |
Collapse
|
15
|
Patel RH, Truong VB, Sabry R, Acosta JE, McCahill K, Favetta LA. SMAD signaling pathway is disrupted by BPA via the AMH receptor in bovine granulosa cells†. Biol Reprod 2023; 109:994-1008. [PMID: 37724935 DOI: 10.1093/biolre/ioad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Significant events that determine oocyte competence occur during follicular growth and oocyte maturation. The anti-Mullerian hormone, a positive predictor of fertility, has been shown to be affected by exposure to endocrine disrupting compounds, such as bisphenol A and S. However, the interaction between bisphenols and SMAD proteins, mediators of the anti-Mullerian hormone pathway, has not yet been elucidated. AMH receptor (AMHRII) and downstream SMAD expression was investigated in bovine granulosa cells treated with bisphenol A, bisphenol S, and then competitively with the anti-Mullerian hormone. Here, we show that 24-h bisphenol A exposure in granulosa cells significantly increased SMAD1, SMAD4, and SMAD5 mRNA expression. No significant changes were observed in AMHRII or SMADs protein expression after 24-h treatment. Following 12-h treatments with bisphenol A (alone or with the anti-Mullerian hormone), a significant increase in SMAD1 and SMAD4 mRNA expression was observed, while a significant decrease in SMAD1 and phosphorylated SMAD1 was detected at the protein level. To establish a functional link between bisphenols and the anti-Mullerian hormone signaling pathway, antisense oligonucleotides were utilized to suppress AMHRII expression with or without bisphenol exposure. Initially, transfection conditions were optimized and validated with a 70% knockdown achieved. Our findings show that bisphenol S exerts its effects independently of the anti-Mullerian hormone receptor, while bisphenol A may act directly through the anti-Mullerian hormone signaling pathway providing a potential mechanism by which bisphenols may exert their actions to disrupt follicular development and decrease oocyte competence.
Collapse
Affiliation(s)
- Rushi H Patel
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Vivien B Truong
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Reem Sabry
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Julianna E Acosta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Kiera McCahill
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Laura A Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
16
|
Zhou X, He Y, Quan H, Pan X, Zhou Y, Zhang Z, Yuan X, Li J. HDAC1-Mediated lncRNA Stimulatory Factor of Follicular Development to Inhibit the Apoptosis of Granulosa Cells and Regulate Sexual Maturity through miR-202-3p- COX1 Axis. Cells 2023; 12:2734. [PMID: 38067162 PMCID: PMC10706290 DOI: 10.3390/cells12232734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Abnormal sexual maturity exhibits significant detrimental effects on adult health outcomes, and previous studies have indicated that targeting histone acetylation might serve as a potential therapeutic approach to regulate sexual maturity. However, the mechanisms that account for it remain to be further elucidated. Using the mouse model, we showed that Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, downregulated the protein level of Hdac1 in ovaries to promote the apoptosis of granulosa cells (GCs), and thus arrested follicular development and delayed sexual maturity. Using porcine GCs as a cell model, a novel sexual maturity-associated lncRNA, which was named as the stimulatory factor of follicular development (SFFD), transcribed from mitochondrion and mediated by HDAC1, was identified using RNA sequencing. Mechanistically, HDAC1 knockdown significantly reduced the H3K27ac level at the -953/-661 region of SFFD to epigenetically inhibit its transcription. SFFD knockdown released miR-202-3p to reduce the expression of cyclooxygenase 1 (COX1), an essential rate-limited enzyme involved in prostaglandin synthesis. This reduction inhibited the proliferation and secretion of 17β-estradiol (E2) while promoting the apoptosis of GCs. Consequently, follicular development was arrested and sexual maturity was delayed. Taken together, HDAC1 knockdown-mediated SFFD downregulation promoted the apoptosis of GCs through the miR-202-3p-COX1 axis and lead to delayed sexual maturity. Our findings reveal a novel regulatory network modulated by HDAC1, and HDAC1-mediated SFFD may be a promising new therapeutic target to treat delayed sexual maturity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Y.H.); (H.Q.); (X.P.); (Y.Z.); (Z.Z.)
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Y.H.); (H.Q.); (X.P.); (Y.Z.); (Z.Z.)
| |
Collapse
|
17
|
Francoeur L, Scoville DM, Johnson PA. Effect of IGF1 and FSH on the function of granulosa cells from prehierarchal follicles in chickens†. Biol Reprod 2023; 109:498-506. [PMID: 37504508 DOI: 10.1093/biolre/ioad082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Insulin-like growth factor 1 (IGF1) is an essential regulator of mammalian follicle development and synergizes with follicle-stimulating hormone (FSH) to amplify its effects. In avian preovulatory follicles, IGF1 increases the expression of genes involved in steroidogenesis and progesterone and inhibin A production. The role of IGF1 in prehierarchal follicles has not been well studied in chickens. The aim of this study was to investigate the role of IGF1 in granulosa cells from prehierarchal follicles and to determine whether IGF1 and FSH synergize to promote follicle development. Granulosa cells of 3-5 and 6-8 mm prehierarchal follicles were cultured with IGF1 (0, 10, 100 ng/mL) in the presence or absence of FSH (0, 10 ng/mL). Cell proliferation, expression of genes important in follicle development (FSHR, IGF1R, AMH, STAR, CYP11A1, INHA, and INHBA), and progesterone production were evaluated following treatment. IGF1 treatment alone significantly increased STAR, CYP11A1, and INHBA mRNA expression and cell proliferation in granulosa cells of 6-8 mm follicles. IGF1 and FSH synergized to increase STAR mRNA expression in 6-8 mm follicles. IGF1 and FSH co-treatment were necessary to increase INHA mRNA expression in 6-8 mm follicles. Although IGF1 significantly increased the expression of genes involved in steroidogenesis, progesterone production in granulosa cells of 6-8 mm follicles was not affected. IGF1 did not affect AMH mRNA expression, although FSH significantly decreased AMH expression in granulosa cells of 3-5 mm follicles. These results suggest that IGF1 may act with FSH to promote follicle selection at the prehierarchal follicle stage.
Collapse
Affiliation(s)
- Laurie Francoeur
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Deena M Scoville
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Patricia A Johnson
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
18
|
Buratini J, Dellaqua TT, de Lima PF, Renzini MM, Canto MD, Price CA. Oocyte secreted factors control genes regulating FSH signaling and the maturation cascade in cumulus cells: the oocyte is not in a hurry. J Assist Reprod Genet 2023; 40:1961-1971. [PMID: 37204638 PMCID: PMC10371970 DOI: 10.1007/s10815-023-02822-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/29/2023] [Indexed: 05/20/2023] Open
Abstract
PURPOSE To assess the effects of the oocyte on mRNA abundance of FSHR, AMH and major genes of the maturation cascade (AREG, EREG, ADAM17, EGFR, PTGS2, TNFAIP6, PTX3, and HAS2) in bovine cumulus cells. METHODS (1) Intact cumulus-oocyte complexes, (2) microsurgically oocytectomized cumulus-oolema complexes (OOX), and (3) OOX + denuded oocytes (OOX+DO) were subjected to in vitro maturation (IVM) stimulated with FSH for 22 h or with AREG for 4 and 22 h. After IVM, cumulus cells were separated and relative mRNA abundance was measured by RT-qPCR. RESULTS After 22 h of FSH-stimulated IVM, oocytectomy increased FSHR mRNA levels (p=0.005) while decreasing those of AMH (p=0.0004). In parallel, oocytectomy increased mRNA abundance of AREG, EREG, ADAM17, PTGS2, TNFAIP6, and PTX3, while decreasing that of HAS2 (p<0.02). All these effects were abrogated in OOX+DO. Oocytectomy also reduced EGFR mRNA levels (p=0.009), which was not reverted in OOX+DO. The stimulatory effect of oocytectomy on AREG mRNA abundance (p=0.01) and its neutralization in OOX+DO was again observed after 4 h of AREG-stimulated IVM. After 22 h of AREG-stimulated IVM, oocytectomy and addition of DOs to OOX caused the same effects on gene expression observed after 22 h of FSH-stimulated IVM, except for ADAM17 (p<0.025). CONCLUSION These findings suggest that oocyte-secreted factors inhibit FSH signaling and the expression of major genes of the maturation cascade in cumulus cells. These may be important actions of the oocyte favoring its communication with cumulus cells and preventing premature activation of the maturation cascade.
Collapse
Affiliation(s)
- Jose Buratini
- Biogenesi, Reproductive Medicine Centre, Monza, Italy
- Clinica EUGIN, Milan, Italy
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP Brazil
| | - Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP Brazil
| | - Paula Fernanda de Lima
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP Brazil
| | | | | | - Christopher A. Price
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| |
Collapse
|
19
|
Morton AJ, Candelaria JI, McDonnell SP, Zgodzay DP, Denicol AC. Review: Roles of follicle-stimulating hormone in preantral folliculogenesis of domestic animals: what can we learn from model species and where do we go from here? Animal 2023; 17 Suppl 1:100743. [PMID: 37567683 DOI: 10.1016/j.animal.2023.100743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 08/13/2023] Open
Abstract
The pituitary gonadotropin FSH is a glycoprotein critical for the development of ovarian follicles. Upon binding to its G protein-coupled membrane receptor located on the granulosa cells of ovarian follicles, FSH elicits a cascade of downstream intracellular responses to promote follicle growth, maturation and steroidogenic activity, leading to the acquisition of meiotic and developmental competence of the enclosed oocyte. The essential role of FSH for proper antral follicle development and fertility is indisputable; over the decades, increasing evidence has also pointed toward survival and growth-promoting effects elicited by FSH in earlier-stage preantral follicles, deeming these follicles FSH-responsive as opposed to the FSH-dependent antral follicles. Transgenic mouse models lacking GnRH1, Fshβ or Fshr clearly demonstrate this difference by showing that, morphologically, preantral follicles develop to the secondary stage without FSH signaling; however, exogenous expression or administration of FSH to hormone-deficient mice promotes preantral follicle development, with more pronounced effects seen in earlier stages (i.e., primary follicles). In hypophysectomized sheep, FSH administration also promotes the growth of primary-stage preantral follicles. However, in vivo studies in this area are more challenging to perform in domestic animals compared to rodents, and therefore most of the research to date has been done in vitro. Here, we present the existing evidence for a role of FSH in regulating the growth and survival of preantral follicles from data generated in rodents and domestic animals. We provide an overview of the process of folliculogenesis, FSH synthesis and cellular signaling, and the response to FSH by preantral follicles in vivo and in vitro, as well as interactions between FSH and other molecules to regulate preantral folliculogenesis. The widespread use of FSH in ovarian stimulation programs for assisted reproduction creates a real need for a better understanding of the effects of FSH beyond stimulation of antral follicle growth, and more research in this area could lead to the development of more effective fertility programs. In addition to its importance as an agricultural species, the cow provides a desirable model for humans regarding ovarian stimulation due to similar timing of folliculogenesis and follicle size, as well as similar ovarian architecture. The refinement of minimally invasive methods to allow the study of preantral folliculogenesis in live animals will be critical to understand the short- and long-term effects of FSH in ovarian folliculogenesis.
Collapse
Affiliation(s)
- Amanda J Morton
- Department of Animal Science, University of California Davis, 450 Bioletti Way, Davis, CA 95616, United States
| | - Juliana I Candelaria
- Department of Animal Science, University of California Davis, 450 Bioletti Way, Davis, CA 95616, United States
| | - Stephanie P McDonnell
- Department of Animal Science, University of California Davis, 450 Bioletti Way, Davis, CA 95616, United States
| | - Daniel P Zgodzay
- Department of Animal Science, University of California Davis, 450 Bioletti Way, Davis, CA 95616, United States
| | - Anna C Denicol
- Department of Animal Science, University of California Davis, 450 Bioletti Way, Davis, CA 95616, United States.
| |
Collapse
|
20
|
Celik S, Ozkavukcu S, Celik-Ozenci C. Recombinant anti-Mullerian hormone treatment attenuates primordial follicle loss after ovarian cryopreservation and transplantation. J Assist Reprod Genet 2023; 40:1117-1134. [PMID: 36856968 PMCID: PMC10239422 DOI: 10.1007/s10815-023-02754-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
PURPOSE The foremost drawback of ovarian tissue cryopreservation and re-transplantation (OTCT) technique is the rapid loss of the primordial follicle (PF) pool. In recent studies, we have demonstrated that post-transplantation burnout of the PFs occurs due to the altered expression of the activatory and inhibitory proteins that control PF reserve, and rapamycin prevented it. METHODS Here, we investigated whether anti-Mullerian hormone administration in the bilateral oophorectomy and transplantation group and internal AMH in the unilateral oophorectomy and transplantation group protect follicle reserve by regulating the expression of the molecules that control follicle growth after OTCT in mice. RESULTS After 14 days of OTCT, PF reserve is significantly reduced in both unilateral oophorectomy and transplantation and bilateral oophorectomy and transplantation groups, while anti-Mullerian hormone treatment attenuates PF loss after bilateral oophorectomy and transplantation. The expression of KitL, Bmp-15, and p27 decreased after unilateral oophorectomy and transplantation and bilateral oophorectomy and transplantation, yet recombinant anti-Mullerian hormone treatment did not restore the expression of these proteins in the BLO-T group. CONCLUSION Exogenous recombinant anti-Mullerian hormone administration in the BLO-T group preserved the expressions of Tsc1 and Gdf-9 in PF and p-s6k and Gdf-9 in growing follicles after OTCT. Nonetheless, recombinant anti-Mullerian hormone administration did not affect granulosa cell proliferation and death rates in the growing follicles. These findings suggest a novel hormonal replacement strategy for fertility preservation by restoring anti-Mullerian hormone to regulate Tsc1 and p-s6k, thereby linking this hormone with the mTOR pathway and Gdf-9 signaling.
Collapse
Affiliation(s)
- Soner Celik
- Department of Histology and Embryology, School of Medicine, Akdeniz University, 07070, Antalya, Turkey
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Yale University, New Haven, CT, USA
| | - Sinan Ozkavukcu
- School of Medicine, Ninewells Hospital, University of Dundee, Assisted Conception Unit, DD2 1SG, Dundee, Scotland
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, School of Medicine, Koc University Medical Faculty, Koc University, Rumelifeneri Yolu 34450, Sariyer, Istanbul, Turkey.
- Koç University Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey.
| |
Collapse
|
21
|
Jin J, Ren P, Li X, Zhang Y, Yang W, Ma Y, Lai M, Yu C, Zhang S, Zhang YL. Ovulatory signal-triggered chromatin remodeling in ovarian granulosa cells by HDAC2 phosphorylation activation-mediated histone deacetylation. Epigenetics Chromatin 2023; 16:11. [PMID: 37076890 PMCID: PMC10116676 DOI: 10.1186/s13072-023-00485-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/07/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Epigenetic reprogramming is involved in luteinizing hormone (LH)-induced ovulation; however, the underlying mechanisms are largely unknown. RESULTS We here observed a rapid histone deacetylation process between two waves of active transcription mediated by the follicle-stimulating hormone (FSH) and the LH congener human chorionic gonadotropin (hCG), respectively. Analysis of the genome-wide H3K27Ac distribution in hCG-treated granulosa cells revealed that a rapid wave of genome-wide histone deacetylation remodels the chromatin, followed by the establishment of specific histone acetylation for ovulation. HDAC2 phosphorylation activation coincides with histone deacetylation in mouse preovulatory follicles. When HDAC2 was silenced or inhibited, histone acetylation was retained, leading to reduced gene transcription, retarded cumulus expansion, and ovulation defect. HDAC2 phosphorylation was associated with CK2α nuclear translocation, and inhibition of CK2α attenuated HDAC2 phosphorylation, retarded H3K27 deacetylation, and inactivated the ERK1/2 signaling cascade. CONCLUSIONS This study demonstrates that the ovulatory signal erases histone acetylation through activation of CK2α-mediated HDAC2 phosphorylation in granulosa cells, which is an essential prerequisite for subsequent successful ovulation.
Collapse
Affiliation(s)
- Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Xiang Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Yinyi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Mengru Lai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Chao Yu
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China.
| | - Yin-Li Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
22
|
Effects of Zishen Yutai Pills on in vitro Fertilization-Embryo Transfer Outcomes in Patients with Diminished Ovarian Reserve: A Prospective, Open-Labeled, Randomized and Controlled Study. Chin J Integr Med 2023; 29:291-298. [PMID: 36809499 DOI: 10.1007/s11655-023-3546-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/23/2023]
Abstract
OBJECTIVE To explore the effects of Zishen Yutai Pills (ZYPs) on the quality of oocytes and embryos, as well as pregnancy outcomes in patients with diminished ovarian reserve (DOR) receiving in vitro fertilization-embryo transfer (IVF-ET). The possible mechanisms, involving the regulation of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9), were also investigated. METHODS A total of 120 patients with DOR who underwent their IVF-ET cycle were randomly allocated to 2 groups in a 1:1 ratio. The patients in the treatment group (60 cases) received ZYPs from the mid-luteal phase of the former menstrual cycle by using gonadotropin-releasing hormone (GnRH) antagonist protocol. The patients in the control group (60 cases) received the same protocol but without ZYPs. The primary outcomes were the number of oocytes retrieved and high-quality embryos. Secondary outcomes included other oocyte or embryo indices as well as pregnancy outcomes. Adverse events were assessed by comparison of the incidence of ectopic pregnancy, pregnancy complications, pregnancy loss, and preterm birth. Contents of BMP15 and GDF9 in the follicle fluids (FF) were also quantified with enzyme-linked immunosorbent assay. RESULTS Compared with the control group, the numbers of oocytes retrieved and high-quality embryos were significantly increased in the ZYPs group (both P<0.05). After treatment with ZYPs, a significant regulation of serum sex hormones was observed, including progesterone and estradiol. Both hormones were up-regulated compared with the control group (P=0.014 and 0.008), respectively. No significant differences were observed with regard to pregnancy outcomes including implantation rates, biochemical pregnancy rates, clinical pregnancy rates, live birth rates, and pregnancy loss rates (all P>0.05). The administration of ZYPs did not increase the incidence of adverse events. The expressions of BMP15 and GDF9 in the ZYPs group were significantly up-regulated compared with the control group (both P<0.05). CONCLUSIONS ZYPs exhibited beneficial effects in DOR patients undergoing IVF-ET, resulting in increments of oocytes and embryos, and up-regulation of BMP15 and GDF9 expressions in the FF. However, the effects of ZYPs on pregnancy outcomes should be assessed in clinical trials with larger sample sizes (Trial reqistration No. ChiCTR2100048441).
Collapse
|
23
|
Wu Y, Huang J, Chen H, Tao H, He Y, Yang G, Zha Q, Lash GE, Li P. Tumor-Derived Oxidative Stress Triggers Ovarian Follicle Loss in Breast Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:608-623. [PMID: 36804378 DOI: 10.1016/j.ajpath.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 02/19/2023]
Abstract
Breast cancer is a common indication for ovarian cryopreservation. However, whether the grafting ovarian tissue meets functional requirements, as well as the need for additional interventions, remains unclear. The current study demonstrates abnormal serum hormones in breast cancer in humans and breast cancer cell line-derived tumor-bearing mice, and for the first time shows tumor-induced loss of primordial and growing follicles and the number of follicles being lost to either growth or atresia. A gene signature of tumor-bearing mice demonstrates the disturbed regulatory network of steroidogenesis, which links to mitochondria dysfunction in oocytes and granulosa cells via the phosphatidylinositol 3-kinase signaling pathway. Notably, increased reactive oxygen species are identified in serum and ovarian tissues in tumor-bearing mice. Furthermore, supplementation with vitamin C promotes follicular quiescence, repairing tumor-induced follicle loss via inactivation of the phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway, indicating that antioxidants should be a potential fertility therapy to achieve more numbers of healthy follicles ready for ovarian cryopreservation.
Collapse
Affiliation(s)
- Yongqi Wu
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China
| | - Jieqiong Huang
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China
| | - Hui Chen
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China
| | - Huan Tao
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunbiao He
- Department of Medical Statistics, Jinan University School of Medicine, Guangzhou, China
| | - Guang Yang
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China
| | - Qingbing Zha
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Gendie E Lash
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China.
| | - Ping Li
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China; Department of Gynecology and Obstetrics, The Fifth Affiliated Hospital of Jinan University, Heyuan, China.
| |
Collapse
|
24
|
Wang L, Wang Y, Li B, Zhang Y, Song S, Ding W, Xu D, Zhao Z. BMP6 regulates AMH expression via SMAD1/5/8 in goat ovarian granulosa cells. Theriogenology 2023; 197:167-176. [PMID: 36525856 DOI: 10.1016/j.theriogenology.2022.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Anti-Müllerian hormone (AMH) is produced by ovarian granulosa cells (GCs)and plays a major role in inhibiting the recruitment of primordial follicles and reducing the sensitivity of growing follicles to follicle-stimulating hormone (FSH). Bone morphogenetic protein 6 (BMP6) has similar spatiotemporal expression to AMH during follicular development, suggesting that BMP6 may regulate AMH expression. However, the specific mechanism by which BMP6 regulates AMH expression remains unclear. The objectives of this study were to examine the molecular pathway by which BMP6 regulates AMH expression. The results showed that BMP6 promoted the secretion and expression of AMH in goat ovarian GCs. Mechanistically, BMP6 upregulated the expression of sex-determining region Y-box 9 (SOX9) and GATA-binding factor 4 (GATA4), which was associated with the transcriptional initiation of AMH. AMH expression was significantly decreased by GATA4 knockdown. Moreover, BMP6 treatment promoted the phosphorylation of SMAD1/5/8, whereas inhibiting the SMAD1/5/8 signaling pathway significantly abolished BMP6-induced upregulation of AMH and GATA4 expression. Interestingly, the activation of SMAD1/5/8 alone did not affect the expression of AMH or GATA4. The results suggested that BMP6 upregulated GATA4 through the SMAD1/5/8 signaling pathway, which in turn promoted AMH expression.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Yukun Wang
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Bijun Li
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Yiyu Zhang
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Shuaifei Song
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Wenfei Ding
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Dejun Xu
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China.
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China.
| |
Collapse
|
25
|
Nguyen MT, Krishnan S, Phatak SV, Karakas SE. Anti-Mullerian Hormone-Based Phenotyping Identifies Subgroups of Women with Polycystic Ovary Syndrome with Differing Clinical and Biochemical Characteristics. Diagnostics (Basel) 2023; 13:diagnostics13030500. [PMID: 36766605 PMCID: PMC9914382 DOI: 10.3390/diagnostics13030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Even though polycystic ovary syndrome (PCOS) was originally defined as "amenorrhea associated with bilateral polycystic ovaries", women without PCO morphology can be included in this diagnosis. This may contribute to the clinical heterogeneity seen in PCOS. Serum anti-Mullerian hormone (AMH) correlates with the number of ovarian cysts. We investigated whether phenotyping based on serum AMH can distinguish subgroups of PCOS with different clinical and biochemical characteristics. The electronic medical records of 108 women with PCOS (Rotterdam criteria) were reviewed. The serum AMH value correlated inversely (0.03 < p < 0.0001) with age, weight, and BMI values and directly with serum total testosterone (T), free T, and bioavailable T values. When divided into quartiles based on serum AMH values, the women in the highest quartile (AMH: 18.5 ± 9.9 ng/mL; n = 27) had lower BMI (29.4 ± 6.9 vs. 34.0 ± 10.6-36.7 ± 7.2 kg/m2) but higher total T (51.3 ± 27.2 vs. 26.5 ± 10.4-35.1 ± 16.3 ng/dL), free T (7.7 ± 6.0 vs. 4.4 ± 2.3-5.7 ± 3.2 ng/dL), and bioavailable T (22.1 ± 17.0 vs. 12.2 ± 6.6-16.5 ± 8.7 ng/dL) values. The combination of high AMH and high testosterone values may point to the ovaries and reproductive etiology for PCOS in this subgroup. Thus, AMH-based phenotyping may provide a practical and cost-effective tool to explore the heterogeneity in PCOS.
Collapse
Affiliation(s)
- Minhthao Thi Nguyen
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Sridevi Krishnan
- Department of Pediatrics, Glycobiology Research and Training Center, University of California San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Sonal V. Phatak
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Sidika E. Karakas
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Correspondence:
| |
Collapse
|
26
|
Wang K, Guan Y, Zhang Y, Jia R, Wu S, Yao Z, Zhang M, Li Z. Analysis of cumulative outcomes and influencing factors of patients with discrepancies between age and AMH levels in the early follicular phase prolonged protocol. Front Endocrinol (Lausanne) 2023; 14:1098131. [PMID: 36967754 PMCID: PMC10031014 DOI: 10.3389/fendo.2023.1098131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVE To explore the cumulative outcomes and influencing factors of patients with discrepancies between age and Anti-Müllerian hormone (AMH) levels in the early follicular phase prolonged protocol. METHODS A total of 1282 cycles of in-vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) assisted pregnancy with the early follicular phase prolonged protocol in the Reproductive Medicine Center of the Third Affiliated Hospital of Zhengzhou University from September 2015 to December 2020 were retrospectively analyzed. They were divided into the young low-AMH group (n=1076) and the older high-AMH group (n=206). The primary outcomes included cumulative clinical pregnancy rate (CCPR) and cumulative live birth rate (CLBR). Secondary outcomes included the number of oocytes retrieved, number of available embryos, clinical pregnancy rate (CPR), live birth rate (LBR), miscarriage rate (MR), pregnancy complications, and neonatal outcomes. RESULTS The CPR (68.7% vs. 59.4%) and the LBR (60.7% vs. 43.1%) in the young low-AMH group were higher than those in the older high-AMH group. In contrast, the number of oocytes retrieved (11 vs. 17), number of available embryos (5 vs. 8), and MR (10.6% vs. 18.3%) in the young low-AMH group were lower. There was no significant difference between the two groups in the CCPR, CLBR, pregnancy complications, and neonatal outcomes. Logistic regression analysis showed that infertility duration, basal follicle-stimulating hormone (FSH), and antral follicle count (AFC) correlated with CCPR, while maternal age, type of infertility, basal FSH, AFC, and infertility duration correlated with CLBR. The area under the receiver operating characteristic curves (ROC) curve for the combined model of infertility duration, AFC, and basal FSH to predict cumulative pregnancy was 0.629 (95%CI:0.592-0.666), while the combined model of maternal age, AFC, basal FSH, infertility duration, and type of infertility to predict cumulative live birth was 0.649 (95%CI:0.615-0.682). CONCLUSION Although AMH levels are low by contrast, young patients have a favorable outcome after IVF/ICSI. In patients with discrepancies between age and AMH levels in the early follicular phase prolonged protocol, maternal age correlates better with cumulative live birth. The model that combines maternal age and other factors can help predict cumulative live birth, but its value is limited.
Collapse
|
27
|
Jozkowiak M, Piotrowska-Kempisty H, Kobylarek D, Gorska N, Mozdziak P, Kempisty B, Rachon D, Spaczynski RZ. Endocrine Disrupting Chemicals in Polycystic Ovary Syndrome: The Relevant Role of the Theca and Granulosa Cells in the Pathogenesis of the Ovarian Dysfunction. Cells 2022; 12:cells12010174. [PMID: 36611967 PMCID: PMC9818374 DOI: 10.3390/cells12010174] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disorder among women of reproductive age. The pathogenesis of PCOS remains elusive; however, there is evidence suggesting the potential contribution of genetic interactions or predispositions combined with environmental factors. Among these, endocrine disrupting chemicals (EDCs) have been proposed to potentially contribute to the etiology of PCOS. Granulosa and theca cells are known to cooperate to maintain ovarian function, and any disturbance can lead to endocrine disorders, such as PCOS. This article provides a review of the recent knowledge on PCOS pathophysiology, the role of granulosa and theca cells in PCOS pathogenesis, and the evidence linking exposure to EDCs with reproductive disorders such as PCOS.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
- Correspondence: ; Tel.: +48-61847-0721
| | - Dominik Kobylarek
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Natalia Gorska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dominik Rachon
- Department of Clinical and Experimental Endocrinology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Robert Z. Spaczynski
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Pastelowa 8, 60-198 Poznan, Poland
| |
Collapse
|
28
|
Esencan E, Beroukhim G, Seifer DB. Age-related changes in Folliculogenesis and potential modifiers to improve fertility outcomes - A narrative review. Reprod Biol Endocrinol 2022; 20:156. [PMID: 36397149 PMCID: PMC9670479 DOI: 10.1186/s12958-022-01033-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Reproductive aging is characterized by a decline in oocyte quantity and quality, which is directly associated with a decline in reproductive potential, as well as poorer reproductive success and obstetrical outcomes. As women delay childbearing, understanding the mechanisms of ovarian aging and follicular depletion have become increasingly more relevant. Age-related meiotic errors in oocytes are well established. In addition, it is also important to understand how intraovarian regulators change with aging and how certain treatments can mitigate the impact of aging. Individual studies have demonstrated that reproductive pathways involving antimullerian hormone (AMH), vascular endothelial growth factor (VEGF), neurotropins, insulin-like growth factor 1 (IGF1), and mitochondrial function are pivotal for healthy oocyte and cumulus cell development and are altered with increasing age. We provide a comprehensive review of these individual studies and explain how these factors change in oocytes, cumulus cells, and follicular fluid. We also summarize how modifiers of folliculogenesis, such as vitamin D, coenzyme Q, and dehydroepiandrosterone (DHEA) may be used to potentially overcome age-related changes and enhance fertility outcomes of aged follicles, as evidenced by human and rodent studies.
Collapse
Affiliation(s)
- Ecem Esencan
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA.
| | - Gabriela Beroukhim
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - David B Seifer
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| |
Collapse
|
29
|
Devillers MM, Mhaouty-Kodja S, Guigon CJ. Deciphering the Roles & Regulation of Estradiol Signaling during Female Mini-Puberty: Insights from Mouse Models. Int J Mol Sci 2022; 23:ijms232213695. [PMID: 36430167 PMCID: PMC9693133 DOI: 10.3390/ijms232213695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Mini-puberty of infancy is a short developmental phase occurring in humans and other mammals after birth. In females, it corresponds to transient and robust activation of the hypothalamo-pituitary-ovarian (HPO) axis revealed by high levels of gonadotropin hormones, follicular growth, and increased estradiol production by the ovary. The roles of estradiol signaling during this intriguing developmental phase are not yet well known, but accumulating data support the idea that it aids in the implementation of reproductive function. This review aims to provide in-depth information on HPO activity during this particular developmental phase in several mammal species, including humans, and to propose emerging hypotheses on the putative effect of estradiol signaling on the development and function of organs involved in female reproduction.
Collapse
Affiliation(s)
- Marie M. Devillers
- Sorbonne Paris Cité, Université de Paris Cité, CNRS, Inserm, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l’Axe Gonadotrope U1133, CEDEX 13, 75205 Paris, France
| | - Sakina Mhaouty-Kodja
- Neuroscience Paris Seine—Institut de Biologie Paris Seine, Sorbonne Université, CNRS UMR 8246, INSERM U1130, 75005 Paris, France
| | - Céline J. Guigon
- Sorbonne Paris Cité, Université de Paris Cité, CNRS, Inserm, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l’Axe Gonadotrope U1133, CEDEX 13, 75205 Paris, France
- Correspondence:
| |
Collapse
|
30
|
Roy S, Abudu A, Salinas I, Sinha N, Cline-Fedewa H, Yaw AM, Qi W, Lydic TA, Takahashi DL, Hennebold JD, Hoffmann HM, Wang J, Sen A. Androgen-mediated Perturbation of the Hepatic Circadian System Through Epigenetic Modulation Promotes NAFLD in PCOS Mice. Endocrinology 2022; 163:bqac127. [PMID: 35933634 PMCID: PMC9419696 DOI: 10.1210/endocr/bqac127] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/19/2022]
Abstract
In women, excess androgen causes polycystic ovary syndrome (PCOS), a common fertility disorder with comorbid metabolic dysfunctions including diabetes, obesity, and nonalcoholic fatty liver disease. Using a PCOS mouse model, this study shows that chronic high androgen levels cause hepatic steatosis while hepatocyte-specific androgen receptor (AR)-knockout rescues this phenotype. Moreover, through RNA-sequencing and metabolomic studies, we have identified key metabolic genes and pathways affected by hyperandrogenism. Our studies reveal that a large number of metabolic genes are directly regulated by androgens through AR binding to androgen response element sequences on the promoter region of these genes. Interestingly, a number of circadian genes are also differentially regulated by androgens. In vivo and in vitro studies using a circadian reporter [Period2::Luciferase (Per2::LUC)] mouse model demonstrate that androgens can directly disrupt the hepatic timing system, which is a key regulator of liver metabolism. Consequently, studies show that androgens decrease H3K27me3, a gene silencing mark on the promoter of core clock genes, by inhibiting the expression of histone methyltransferase, Ezh2, while inducing the expression of the histone demethylase, JMJD3, which is responsible for adding and removing the H3K27me3 mark, respectively. Finally, we report that under hyperandrogenic conditions, some of the same circadian/metabolic genes that are upregulated in the mouse liver are also elevated in nonhuman primate livers. In summary, these studies not only provide an overall understanding of how hyperandrogenism associated with PCOS affects liver gene expression and metabolism but also offer insight into the underlying mechanisms leading to hepatic steatosis in PCOS.
Collapse
Affiliation(s)
- Sambit Roy
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Aierken Abudu
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Irving Salinas
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Niharika Sinha
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Holly Cline-Fedewa
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Alexandra M Yaw
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Wenjie Qi
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Todd A Lydic
- Collaborative Mass Spectrometry Core, Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Hanne M Hoffmann
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
31
|
Kristensen SG, Kumar A, Mamsen LS, Kalra B, Pors SE, Bøtkjær JA, Macklon KT, Fedder J, Ernst E, Hardy K, Franks S, Andersen CY. Intrafollicular Concentrations of the Oocyte-secreted Factors GDF9 and BMP15 Vary Inversely in Polycystic Ovaries. J Clin Endocrinol Metab 2022; 107:e3374-e3383. [PMID: 35511085 PMCID: PMC9282257 DOI: 10.1210/clinem/dgac272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT The oocyte-secreted factors growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) play essential roles in follicle development and oocyte maturation, and aberrant regulation might contribute to the pathogenesis of polycystic ovary syndrome. OBJECTIVE Are there measurable differences in concentrations of GDF9, BMP15, and the GDF9/BMP15 heterodimer in small antral follicle fluids from women with and without polycystic ovaries (PCO)? DESIGN AND SETTING Follicle fluids (n = 356) were collected from 4- to 11-mm follicles in unstimulated ovaries of 87 women undergoing ovarian tissue cryopreservation for fertility preservation. PATIENTS Twenty-seven women with PCO were identified and 60 women without PCO-like characteristics (non-PCO women) were matched according to age and follicle size. MAIN OUTCOME MEASURES Intrafollicular concentrations of GDF9, BMP15, GDF9/BMP15 heterodimer, anti-Mullerian hormone (AMH), inhibin-A and -B, total inhibin, activin-B and -AB, and follistatin were measured using enzyme-linked immunosorbent assays. RESULTS The detectability of GDF9, BMP15, and the GDF9/BMP15 heterodimer were 100%, 94.4%, and 91.5%, respectively, and concentrations were significantly negatively correlated with increasing follicle size (P < 0.0001). GDF9 was significantly higher in women with PCO (PCO: 4230 ± 189 pg/mL [mean ± SEM], n = 188; non-PCO: 3498 ± 199 pg/mL, n = 168; P < 0.03), whereas BMP15 was lower in women with PCO (PCO: 431 ± 40 pg/mL, n = 125; non-PCO: 573 ± 55 pg/mL, n = 109; P = 0.10), leading to a significantly higher GDF9:BMP15 ratio in women with PCO (P < 0.01). Significant positive associations between BMP15 and AMH, activins, and inhibins in non-PCO women switched to negative associations in women with PCO. CONCLUSIONS Intrafollicular concentrations of GDF9 and BMP15 varied inversely in women with PCO reflecting an aberrant endocrine environment. An increased GDF9:BMP15 ratio may be a new biomarker for PCO.
Collapse
Affiliation(s)
- Stine Gry Kristensen
- Correspondence: Stine Gry Kristensen, PhD, Laboratory of Reproductive Biology, Section 5701, Copenhagen University Hospital – Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Jane Alrø Bøtkjær
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Kirsten Tryde Macklon
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Odense University Hospital, 5000 Odense, Denmark
| | - Erik Ernst
- Department of Gynecology and Obstetrics, Horsens Regional Hospital, 8700 Horsens, Denmark
| | - Kate Hardy
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
32
|
Farhat SA, Jabbari F, Jabbari P, Rezaei N. Targeting signaling pathways involved in primordial follicle growth or dormancy: potential application in prevention of follicular loss and infertility. Expert Opin Biol Ther 2022; 22:871-881. [PMID: 35658707 DOI: 10.1080/14712598.2022.2086042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Premature ovarian failure (POF) is one of the important causes of infertility in females. To date, no efficient preventive pharmacological treatment has been offered to prevent POF. Therefore, it is necessary to focus on strategies that provide a normal reproductive lifespan to females at risk of developing POF. AREAS COVERED Recently, attention has been drawn to discovering pathways involved in primordial follicle activation, as the inhibition of this process might maintain the stock of primordial follicles and therefore, prevent POF. In vitro and animal studies have resulted in the discovery of several of these pathways that can be used to develop new treatments for POF. These studies show crosstalk of these pathways at different levels. One of the important crossing points of many of these pathways involves anti-Mullerian hormone (AMH). Herein, we discuss different aspects of this topic by reviewing related published articles indexed in PubMed and Web of Science as of December 2021. EXPERT OPINION Although the findings seem promising, most of the studies were conducted on animals, and the interaction between these factors and the possible outcomes of their administration in the long term are still unknown. Therefore, further investigation is necessary to assess these aspects.
Collapse
Affiliation(s)
- Sara Ali Farhat
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Forouq Jabbari
- Maternal, Fetal and Neonatal Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnian Jabbari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Roy S, Sinha N, Huang B, Cline-Fedewa H, Gleicher N, Wang J, Sen A. Jumonji Domain-containing Protein-3 (JMJD3/Kdm6b) Is Critical for Normal Ovarian Function and Female Fertility. Endocrinology 2022; 163:6565906. [PMID: 35396990 PMCID: PMC9070484 DOI: 10.1210/endocr/bqac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/19/2022]
Abstract
In females, reproductive success is dependent on the expression of a number of genes regulated at different levels, one of which is through epigenetic modulation. How a specific epigenetic modification regulates gene expression and their downstream effect on ovarian function are important for understanding the female reproductive process. The trimethylation of histone3 at lysine27 (H3K27me3) is associated with gene repression. JMJD3 (or KDM6b), a jumonji domain-containing histone demethylase specifically catalyzes the demethylation of H3K27me3, that positively influences gene expression. This study reports that the expression of JMJD3 specifically in the ovarian granulosa cells (GCs) is critical for maintaining normal female fertility. Conditional deletion of Jmjd3 in the GCs results in a decreased number of total healthy follicles, disrupted estrous cycle, and increased follicular atresia culminating in subfertility and premature ovarian failure. At the molecular level, the depletion of Jmjd3 and RNA-seq analysis reveal that JMJD3 is essential for mitochondrial function. JMJD3-mediated reduction of H3K27me3 induces the expression of Lif (Leukemia inhibitory factor) and Ctnnb1 (β-catenin), that in turn regulate the expression of key mitochondrial genes critical for the electron transport chain. Moreover, mitochondrial DNA content is also significantly decreased in Jmjd3 null GCs. Additionally, we have uncovered that the expression of Jmjd3 in GCs decreases with age, both in mice and in humans. Thus, in summary, our studies highlight the critical role of JMJD3 in nuclear-mitochondrial genome coordination that is essential for maintaining normal ovarian function and female fertility and underscore a potential role of JMJD3 in female reproductive aging.
Collapse
Affiliation(s)
- Sambit Roy
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Niharika Sinha
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Binbin Huang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Holly Cline-Fedewa
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: Aritro Sen, PhD, Reproductive and Developmental Sciences Program, Department of Animal Sciences, 766 Service Rd, Interdisciplinary Science & Technology Building, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
34
|
Song Y, Chen W, Zhu B, Ge W. Disruption of Epidermal Growth Factor Receptor but Not EGF Blocks Follicle Activation in Zebrafish Ovary. Front Cell Dev Biol 2022; 9:750888. [PMID: 35111746 PMCID: PMC8802807 DOI: 10.3389/fcell.2021.750888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Folliculogenesis is controlled by intimate communications between oocytes and surrounding follicle cells. Epidermal growth factor (EGF/Egf) is an important paracrine/autocrine factor in vertebrate ovary, and it is well known for its stimulation of oocyte maturation. However, the role of EGF signaling through its receptor (EGFR/Egfr) in ovarian folliculogenesis is poorly understood, especially at early stages of follicle development. In this study, we created zebrafish mutants for Egf (egf−/−) and Egfr (egfra−/− and egfrb−/−) by CRISPR/Cas9 technique. Surprisingly, these mutants all survived well with little abnormality in growth and development. Spermatogenesis and folliculogenesis were both normal in egf−/− males and females. Their fecundity was comparable to that of the wildtype fish at 4 months post-fertilization (mpf); however, the fertilization rate of mutant eggs (egf−/−) decreased significantly at 7 mpf. Interestingly, disruption of egfra (egfra−/−) led to failed follicle activation with folliculogenesis being blocked at primary–secondary growth transition (PG-SG transition), leading to female infertility, whereas the mutant males remained fertile. The mutant ovary (egfra−/−) showed abnormal expression of a substantial number of genes involved in oxidative metabolism, gene transcription, cytomembrane transport, steroid hormone biosynthesis, and immune response. The stunted PG oocytes in egfra−/− ovary eventually underwent degeneration after 6 months followed by sex reversal to males with functional testes. No abnormal phenotypes were found in the mutant of truncated form of EGFR (egfrb). In summary, our data revealed critical roles for EGFR signaling in early folliculogenesis, especially at the PG-SG transition or follicle activation.
Collapse
Affiliation(s)
| | | | | | - Wei Ge
- *Correspondence: Wei Ge, ,
| |
Collapse
|
35
|
Ovarian insufficiency and secondary amenorrhea in a patient with a novel variant within GDF9 gene. Menopause 2022; 29:491-495. [PMID: 35013061 DOI: 10.1097/gme.0000000000001928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Premature ovarian insufficiency is a heterogeneous condition that can be caused by several factors, such as genetic, environmental, etc. and represents one of the main causes of female infertility. One of the genes implicated is GDF9, which encodes a member of the transforming growth factor-beta superfamily that participates in the coordination of somatic cell activity, female fertility, including folliculogenesis, and oocyte maturation. Damaging variants in GDF9-encoded growth factors can cause the production of inhibin, perturb oocyte granulosa cell microenvironments, and obstruct follicle development. A novel GDF9 variant is herein reported to consolidate the role of GDF9 in ovarian function and female fertility. METHODS A 38-year-old female was referred for the investigation of secondary amenorrhea. Eventually, she was referred for genetic evaluation whereby conventional karyotyping and Fragile-X molecular testing were normal. Whole Exome Sequencing was performed, followed by targeted Sanger sequencing in all family members for variant confirmation and evaluation. RESULTS In this study we report a patient presenting with secondary amenorrhea due to premature ovarian failure and a pituitary lesion with radiological characteristics compatible with a Rathke cyst or a macroadenoma, residing between the adenohypophysis and neurohypophysis. Whole exome sequencing revealed a novel heterozygous stop-loss variant c.1364A>C, p.(*455Serext*8) in the GDF9 gene. CONCLUSIONS Should the predicted elongated GDF9 protein and differentially configurated GDF9 mature protein molecule form unstable dimers, rapid proteolytic degradation may take place and inhibit homo/heterodimer formation.
Collapse
|
36
|
Tanbakooei S, Haramshahi SMA, Vahabzadeh G, Barati M, Katebi M, Golab F, Shetabi Q, Niknam N, Roudbari L, Rajabi Fomeshi M, Amini Moghadam S. Ovarian Stem Cells Differentiation into Primary Oocytes Using Follicle Stimulating Hormone, Basic Fibroblast Growth Factor, and Neurotrophin 3. J Reprod Infertil 2022; 22:241-250. [PMID: 34987985 PMCID: PMC8669404 DOI: 10.18502/jri.v22i4.7649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/25/2021] [Indexed: 11/24/2022] Open
Abstract
Background: In vitro obtaining oocytes can be an appropriate alternative for patients with gonadal insufficiency or cancer survivors. The purpose of the current research was isolating stem cells from ovarian cortical tissue as well as evaluating the effectiveness of follicle stimulating hormone (FSH), basic fibroblast growth factor (bFGF), and neurotrophin 3 (NT3) in differentiating to oocyte-like cells. Methods: A human ovary was dissected and cortical tissue pieces were cultured for cell isolation. Isolated cells were divided into 8 groups (3 cases in each group) of control, FSH, NT3, bFGF, FSH+NT3, FSH+bFGF, NT3+bFGF, and FSH+NT3+ bFGF. Pluripotency specific gene (OCT4-A and Nanog), initial germ cells (c-KIT and VASA) and PF growth initiators (GDF-9 and Lhx-8) were evaluated by qRTPCR. Experiments were performed in triplicate and there were 3 samples in each group. The results were analyzed using one-way ANOVA and p-value less than 0.05 was considered statistically significant. Results: Flow cytometry results showed that cells isolated from the ovarian cortex expressed markers of pluripotency. The results showed that the expression of Nanog, OCT4, GDF-9 and VASA was significantly increased in FSH+NT3 group, while treatment with bFGF caused significant expression of c-KIT and Lhx-8 (p<0.05). Also, according to the results, isolated cells treated with NT3 significantly increased c-KIT expression. Conclusion: According to our results, the ovarian cortex cells could be differentiated into primordial follicles if treated with the proper combination of FSH, bFGF, and NT3. These findings provided a new perspective for the future of in vitro gamete proudest.
Collapse
Affiliation(s)
- Sara Tanbakooei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gelareh Vahabzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Katebi
- Department of Anatomy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Qazal Shetabi
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Narges Niknam
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Leila Roudbari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Motahareh Rajabi Fomeshi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Amini Moghadam
- Department of Gynecology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Buratini J, Dellaqua TT, Dal Canto M, La Marca A, Carone D, Mignini Renzini M, Webb R. The putative roles of FSH and AMH in the regulation of oocyte developmental competence: from fertility prognosis to mechanisms underlying age-related subfertility. Hum Reprod Update 2021; 28:232-254. [PMID: 34969065 DOI: 10.1093/humupd/dmab044] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fertility loss during female ageing is associated with increasing basal FSH and decreasing anti-Müllerian hormone (AMH) concentrations, together with compromised oocyte quality, presumably due to increased oxidative stress (OS) and DNA damage, as well as reduced metabolic and meiotic competences. Basal FSH and AMH circulatory concentrations have been broadly utilized as IVF success predictors, regardless of fluctuations in prognostic accuracy; basal FSH and AMH perform better in pre-advanced maternal age (AMA: >35 years) and AMA patients, respectively. The relationships between FSH and AMH intrafollicular levels and IVF outcomes suggest, nevertheless, that both hormones regulate oocyte competence, supporting the hypothesis that changes in FSH/AMH levels cause, at least in part, oocyte quality degradation during ageing. To understand the reasons behind the fluctuations in FSH and AMH prognostic accuracies and to clarify their participation in mechanisms determining oocyte competence and age-related subfertility, a deeper knowledge of the regulation of FSH and AMH intrafollicular signalling during the female reproductive lifespan, and of their effects on the cumulus-oocyte complex, is required. OBJECTIVE AND RATIONALE An extensive body of information on the regulation of FSH and AMH intrafollicular availability and signalling, as well as on the control of folliculogenesis and oocyte metabolism, has been accumulated. However, these datasets have been explored within the relatively narrow boundaries of their specific subjects. Given the aforementioned gaps in knowledge and their clinical relevance, herein we integrate clinical and basic data, within a wide biological perspective, aiming to shed light on (i) the reasons for the variability in the accuracy of serum FSH and AMH as fertility markers, and on (ii) the potential roles of these hormones in mechanisms regulating oocyte quality, particularly those associated with ageing. SEARCH METHODS The PubMed database encompassing the period between 1960 and 2021 was searched. Principal search terms were FSH, FSH receptor, AMH, oocyte, maternal age, cumulus, transzonal projections (TZPs), actin, OS, redox, reactive oxygen species, mitochondria, DNA damage, DNA repair, aneuploidy, spindle, meiosis, gene expression, transcription, translation, oocyte secreted factors (OSFs), cAMP, cyclic guanosine monophosphate, natriuretic peptide C, growth differentiation factor 9, bone morphogenetic protein 15 and fibroblast growth factor. OUTCOMES Our analysis suggests that variations in the accuracy of fertility prognosis reflect a modest association between circulatory AMH levels and oocyte quality as well as increasing basal FSH inter-cycle variability with age. In addition, the basic and clinical data articulated herein support the hypothesis that increased intrafollicular FSH levels, as maternal age advances, may override the physiological protective influences of AMH and OSFs against excessive FSH signalling in cumulus cells. This would result in the disruption of oocyte homeostasis via reduced TZP-mediated transfer of cumulus-derived molecules essential for meiotic competence, gene expression, redox activity and DNA repair. WIDER IMPLICATIONS In-depth data analysis, encompassing a wide biological perspective has revealed potential causative mechanisms of age-related subfertility triggered by alterations in FSH/AMH signalling during the female reproductive life. Insights from new mechanistic models arising from this analysis should contribute to advancing our comprehension of oocyte biology in humans and serve as a valuable reference for novel AMA subfertility treatments aimed at improving oocyte quality through the modulation of AMH/FSH action.
Collapse
Affiliation(s)
- Jose Buratini
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy.,Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Mariabeatrice Dal Canto
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy
| | - Antonio La Marca
- Clinica Eugin Modena, Modena, Italy.,Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Mario Mignini Renzini
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy
| | - Robert Webb
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Nottinghamshire, UK
| |
Collapse
|
38
|
Ma X, Yi H. BMP15 regulates FSHR through TGF-β receptor II and SMAD4 signaling in prepubertal ovary of Rongchang pigs. Res Vet Sci 2021; 143:66-73. [PMID: 34979443 DOI: 10.1016/j.rvsc.2021.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
Bone morphogenetic protein 15 (BMP15) and follicle-stimulating hormone (FSH) both play important roles in mammalian ovary and follicular development. The aim of the present study is to investigate the effects of BMP15 and FSH in the prepubertal ovary of Rongchang pigs considering a possible signaling mechanism involving TβRII/ SMAD4 and FSHR in granulosa cells. For this purpose, we quantified expression levels of BMP15, SMAD2, SMAD3, SMAD4, SMAD7, TGF-β1, TGF-β2, TGF-β3, TGFβRI, TGFβRII, and FSHR via qRT-PCR at different ages in prepubertal ovaries and cultured biopsy of 90-day-old ovary in Rongchang pig. Additionally, the protein levels of BMP15, FSHR, SMAD2, SMAD4, TGFβRI, TGFβRII, TGF-β1, TGF-β2 were quantified via Western blot and the localizations of BMP15, FSHR and TGFβRII were observed via immunofluorescence confocal microscope. The results showed that expression levels of BMP15, TGF-β1, TGFβRII and FSHR increased significantly at day 60 as compared to day 30 and reached peak value at day 90 in prepubertal ovary of Rongchang pigs. We observed that BMP15, TGFβRII and FSHR was highly presented, which TGFβRII and FSHR displayed co-localization in the follicles of the prepubertal ovaries of 90-day-old Rongchang gilts. Treatment with TGFβRI/II inhibitor LY2109761 significantly decreased the expression of TGFβRI, TGFβRII and SMAD4 and TGFβRI inhibitor LY2157299 decreased TGFβRI, but increased the TGFβRII, SMAD4 and FSHR expression levels. Furthermore, the addition of rBMP15 and rFSH group significantly increased the expression of TGFβRII and FSHR proteins (P < 0.01), but no significant change in the expression of TGFβRI (P > 0.05) was observed by Western blot. In conclusion, BMP15, TGFβRII and FSHR were increased significantly in the prepubertal ovarian follicles of Rongchang pigs and FSHR expression in GCs was regulated by BMP15 and FSH through the TGFβRII.
Collapse
Affiliation(s)
- Xianping Ma
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, PR China; Chongqing Veterinary Science Engineering Research Center, Rongchang, Chongqing, PR China
| | - Huashan Yi
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, PR China; Chongqing NaBii Veterinary Diagnostic and Technical Services Co., Ltd. Rongchang, Chongqing, PR China; National Center of Technology Innovation for Pigs, Rongchang, Chongqing, PR China.
| |
Collapse
|
39
|
Sacha CR, Souter I, Williams PL, Chavarro JE, Ford J, Mahalingaiah S, Donahoe PK, Hauser R, Pépin D, Mínguez-Alarcón L. Urinary phthalate metabolite concentrations are negatively associated with follicular fluid anti-müllerian hormone concentrations in women undergoing fertility treatment. ENVIRONMENT INTERNATIONAL 2021; 157:106809. [PMID: 34375942 PMCID: PMC9675335 DOI: 10.1016/j.envint.2021.106809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Exposure to phthalates, endocrine-disrupting chemicals commonly used as plasticizers and in consumer products, has been associated with infertility and premature ovarian failure. Our objective was to investigate whether urinary phthalate metabolite concentrations were associated with pre-ovulatory follicular fluid (FF) anti-müllerian hormone (AMH) concentrations in women undergoing fertility treatment. This cross-sectional analysis included 138 women with urinary phthalate data available in the Environment and Reproductive Health (EARTH) Study (2010-2016) in whom FF AMH concentrations were quantified using a sandwich enzyme-linked immunosorbent assay (ELISA). We also quantified 8 phthalate metabolite concentrations using tandem mass spectrometry in 1-2 urine samples per cycle (total 331 urines) and calculated the cycle-specific geometric mean for each metabolite. We applied cluster-weighted generalized estimating equation models (CWGEE) to evaluate the associations of tertiles of urinary phthalate metabolite concentrations with log-transformed FF AMH concentrations adjusting for potential confounders. Study participants had median age of 34.0 years (IQR 32.0, 37.0), 83% were white, and median BMI of 23.1 kg/m2 (IQR 21.2, 26.1). The following stimulation protocols were used: luteal phase agonist (70%), antagonist (14%), or flare (16%). Urinary concentrations of select phthalate metabolites were negatively associated with FF AMH. For example, women whose urinary mEOHP was in the lowest tertile (range 0.30-4.04 ng/ml) had an adjusted mean FF AMH of 0.72 ng/mL (95% CI = 0.36, 1.44), compared to women in the highest tertile (range 9.90-235), who had an adjusted mean of 0.24 ng/mL (95% CI = 0.12-0.48, p < 0.05). The negative association between urinary concentrations of certain phthalate metabolites with FF AMH concentrations may have implications for antral follicle recruitment and fertility treatment outcomes.
Collapse
Affiliation(s)
- Caitlin R Sacha
- Massachusetts General Hospital Fertility Center, Boston, MA, United States; Massachusetts General Hospital Pediatric Surgical Research Laboratories, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Irene Souter
- Massachusetts General Hospital Fertility Center, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Paige L Williams
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Jorge E Chavarro
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Nutrition and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, United States
| | - Jennifer Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Shruthi Mahalingaiah
- Massachusetts General Hospital Fertility Center, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Patricia K Donahoe
- Massachusetts General Hospital Pediatric Surgical Research Laboratories, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - David Pépin
- Massachusetts General Hospital Pediatric Surgical Research Laboratories, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, United States
| |
Collapse
|
40
|
di Clemente N, Racine C, Pierre A, Taieb J. Anti-Müllerian Hormone in Female Reproduction. Endocr Rev 2021; 42:753-782. [PMID: 33851994 DOI: 10.1210/endrev/bnab012] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/26/2022]
Abstract
Anti-Müllerian hormone (AMH), also called Müllerian inhibiting substance, was shown to be synthesized by the ovary in the 1980s. This article reviews the main findings of the past 20 years on the regulation of the expression of AMH and its specific receptor AMHR2 by granulosa cells, the mechanism of action of AMH, the different roles it plays in the reproductive organs, its clinical utility, and its involvement in the principal pathological conditions affecting women. The findings in respect of regulation tell us that AMH and AMHR2 expression is mainly regulated by bone morphogenetic proteins, gonadotropins, and estrogens. It has now been established that AMH regulates the different steps of folliculogenesis and that it has neuroendocrine effects. On the other hand, the importance of serum AMH as a reliable marker of ovarian reserve and as a useful tool in the prediction of the polycystic ovary syndrome (PCOS) and primary ovarian failure has also been acknowledged. Last but not least, a large body of evidence points to the involvement of AMH in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Nathalie di Clemente
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Chrystèle Racine
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut Hospitalo-Universitaire ICAN, Paris, France.,Sorbonne Paris Cité, Paris-Diderot Université, Paris, France
| | - Alice Pierre
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, INSERM, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l'Axe Gonadotrope U1133, Paris, France
| | - Joëlle Taieb
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, INSERM, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l'Axe Gonadotrope U1133, Paris, France
| |
Collapse
|
41
|
Generation of offspring-producing 3D ovarian organoids derived from female germline stem cells and their application in toxicological detection. Biomaterials 2021; 279:121213. [PMID: 34715637 DOI: 10.1016/j.biomaterials.2021.121213] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022]
Abstract
In vitro production of oocytes capable of producing offspring has exciting potential applications in reproductive medicine. Here, we generated and characterized an ovarian organoid model derived from female germline stem cells using a three-dimensional culture system. We show that this model generated normal offspring and detected drug toxicity. The ovarian organoids could produce oocytes and exhibited endocrine functions. Single-cell analysis of ovarian organoids identified six ovarian cell lineages, such as germ, granulosa and theca cells, and produced gene-expression signatures for each cell type. Investigation of the expression patterns of genes related to meiosis and gene ontogeny analysis for germ cell clusters showed that a germ cell population was maintained in the ovarian organoids. Moreover, flow cytometric analysis confirmed that the population of germ cells could be maintained on the organoids and showed that ascorbic acid treatment had a beneficial effect of germ cell population maintenance on the organoids. Furthermore, we demonstrated the successful production of offspring from oocytes derived from ovarian organoids. Finally, we showed the ovarian organoids had the potential to drug toxicological detection. For example, we found that salinomycin impaired the formation of ovarian organoids and germ cell population maintenance by inducing apoptosis. These results indicate that the female germline stem cell-derived ovarian organoids represent a valuable model system for generating oocytes that can yield offspring, and provide a novel model for drug screening and toxicological detection.
Collapse
|
42
|
Chirivi M, Rendon CJ, Myers MN, Prom CM, Roy S, Sen A, Lock AL, Contreras GA. Lipopolysaccharide induces lipolysis and insulin resistance in adipose tissue from dairy cows. J Dairy Sci 2021; 105:842-855. [PMID: 34696909 DOI: 10.3168/jds.2021-20855] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/05/2021] [Indexed: 01/05/2023]
Abstract
Intense and protracted adipose tissue (AT) fat mobilization increases the risk of metabolic and inflammatory periparturient diseases in dairy cows. This vulnerability increases when cows have endotoxemia-common during periparturient diseases such as mastitis, metritis, and pneumonia-but the mechanisms are unknown. Fat mobilization intensity is determined by the balance between lipolysis and lipogenesis. Around parturition, the rate of lipolysis surpasses that of lipogenesis, leading to enhanced free fatty acid release into the circulation. We hypothesized that exposure to endotoxin (ET) increases AT lipolysis by activation of classic and inflammatory lipolytic pathways and reduction of insulin sensitivity. In experiment 1, subcutaneous AT (SCAT) explants were collected from periparturient (n = 12) Holstein cows at 11 ± 3.6 d (mean ± SE) before calving, and 6 ± 1 d and 13 ± 1.4 d after parturition. Explants were treated with the endotoxin lipopolysaccharide (LPS; 20 µg/mL; basal = 0 µg/mL) for 3 h. The effect of LPS on lipolysis was assessed in the presence of the β-adrenergic agonist and promoter of lipolysis isoproterenol (ISO; 1 µM; LPS+ISO). In experiment 2, SCAT explants were harvested from 24 nonlactating, nongestating multiparous Holstein dairy cows and exposed to the same treatments as in experiment 1 for 3 and 7 h. The effect of LPS on the antilipolytic responses induced by insulin (INS = 1 µL/L, LPS+INS) was established during ISO stimulation [ISO+INS, LPS+ISO+INS]. The characterization of lipolysis included the quantification of glycerol release and the assessment of markers of lipase activity [adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and phosphorylated HSL Ser563 (pHSL)], and insulin pathway activation (AKT, pAKT) using capillary electrophoresis. Inflammatory gene networks were evaluated by real-time quantitative PCR. In periparturient cows, LPS increased AT lipolysis by 67 ± 12% at 3 h across all time points compared with basal. In nonlactating cows, LPS was an effective lipolytic agent at 3 h and 7 h, increasing glycerol release by 115 ± 18% and 68.7 ± 16%, respectively, relative to basal. In experiment 2, LPS enhanced ATGL activity with minimal HSL activation at 3 h. In contrast, at 7 h, LPS increased HSL phosphorylation (i.e., HSL activity) by 123 ± 11%. The LPS-induced HSL lipolytic activity at 7 h coincided with the activation of the MEK/ERK inflammatory pathway. In experiment 2, INS reduced the lipolytic effect of ISO (ISO+INS: -63 ± 18%) and LPS (LPS+INS: -45.2 ± 18%) at 3 h. However, the antilipolytic effect of INS was lost in the presence of LPS at 7 h (LPS+INS: -16.3 ± 16%) and LPS+ISO+INS at 3 and 7 h (-3.84 ± 23.6% and -21.2 ± 14.6%). Accordingly, LPS reduced pAKT:AKT (0.11 ± 0.07) compared with basal (0.18 ± 0.05) at 7 h. Our results indicated that exposure to LPS activated the classic and inflammatory lipolytic pathways and reduced insulin sensitivity in SCAT. These data provide evidence that during endotoxemia, dairy cows may be more susceptible to lipolysis dysregulation and loss of adipocyte sensitivity to the antilipolytic action of insulin.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824
| | - C Javier Rendon
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824
| | - Madison N Myers
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824
| | - Crystal M Prom
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - Sambit Roy
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - Aritro Sen
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - Adam L Lock
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - G Andres Contreras
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
43
|
Clark-Patterson GL, Roy S, Desrosiers L, Knoepp LR, Sen A, Miller KS. Role of fibulin-5 insufficiency and prolapse progression on murine vaginal biomechanical function. Sci Rep 2021; 11:20956. [PMID: 34697337 PMCID: PMC8546087 DOI: 10.1038/s41598-021-00351-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
The vagina plays a critical role in supporting the pelvic organs and loss of support leads to pelvic organ prolapse. It is unknown what microstructural changes influence prolapse progression nor how decreased elastic fibers contributes to vaginal remodeling and smooth muscle contractility. The objective for this study was to evaluate the effect of fibulin-5 haploinsufficiency, and deficiency with progressive prolapse on the biaxial contractile and biomechanical function of the murine vagina. Vaginas from wildtype (n = 13), haploinsufficient (n = 13), and deficient mice with grade 1 (n = 9) and grade 2 or 3 (n = 9) prolapse were explanted for biaxial contractile and biomechanical testing. Multiaxial histology (n = 3/group) evaluated elastic and collagen fiber microstructure. Western blotting quantified protein expression (n = 6/group). A one-way ANOVA or Kruskal-Wallis test evaluated statistical significance. Pearson's or Spearman's test determined correlations with prolapse grade. Axial contractility decreased with fibulin-5 deficiency and POP (p < 0.001), negatively correlated with prolapse grade (ρ = - 0.80; p < 0.001), and positively correlated with muscularis elastin area fraction (ρ = - 0.78; p = 0.004). Circumferential (ρ = 0.71; p < 0.001) and axial (ρ = 0.69; p < 0.001) vaginal wall stresses positively correlated with prolapse grade. These findings demonstrated that fibulin-5 deficiency and prolapse progression decreased vaginal contractility and increased vaginal wall stress. Future work is needed to better understand the processes that contribute to prolapse progression in order to guide diagnostic, preventative, and treatment strategies.
Collapse
Affiliation(s)
| | - Sambit Roy
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, 48824, USA
| | - Laurephile Desrosiers
- Department of Female Pelvic Medicine and Reconstructive Surgery, University of Queensland Ochsner Clinical School, New Orleans, 70121, USA
| | - Leise R Knoepp
- Department of Female Pelvic Medicine and Reconstructive Surgery, University of Queensland Ochsner Clinical School, New Orleans, 70121, USA
| | - Aritro Sen
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, 48824, USA
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University, New Orleans, 70118, USA.
| |
Collapse
|
44
|
Sinha N, Roy S, Huang B, Wang J, Padmanabhan V, Sen A. Developmental programming: prenatal testosterone-induced epigenetic modulation and its effect on gene expression in sheep ovary†. Biol Reprod 2021; 102:1045-1054. [PMID: 31930385 DOI: 10.1093/biolre/ioaa007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/19/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal perturbations or sub-optimal conditions during fetal development can predispose the offspring to diseases in adult life. Animal and human studies show that prenatal androgen excess may be an underlying cause of polycystic ovary syndrome (PCOS) later in life. In women, PCOS is a common fertility disorder with comorbid metabolic dysfunction. Here, using a sheep model of PCOS phenotype, we elucidate the epigenetic changes induced by prenatal (30-90 day) testosterone (T) treatment and its effect on gene expression in fetal day 90 (D90) and adult year 2 (Y2) ovaries. RNA-seq study shows 65 and 99 differentially regulated genes in prenatal T-treated fetal and adult ovaries, respectively. Interestingly, there were no differences in gene inducing histone marks H3K27ac, H3K9ac, and H3K4me3 or in gene silencing marks, H3K27me3 and H3K9me3 in the fetal D90 ovaries of control and excess T-exposed fetuses. In contrast, except for H3K4me3 and H3K27me3, all the other histone marks were upregulated in the prenatal T-treated adult Y2 ovary. Chromatin immunoprecipitation (ChIP) studies in adult Y2 ovaries established a direct relationship between the epigenetic modifications with the upregulated and downregulated genes obtained from RNA-seq. Results show increased gene inducing marks, H3K27ac and H3K9ac, on the promoter region of upregulated genes while gene silencing mark, H3K9me3, was also significantly increased on the downregulated genes. This study provides a mechanistic insight into prenatal T-induced developmental programming and its effect on ovarian gene expression that may contribute to reproductive dysfunction and development of PCOS in adult life.
Collapse
Affiliation(s)
- Niharika Sinha
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - Sambit Roy
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - Binbin Huang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | | | - Aritro Sen
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
45
|
Pan Q, Kay T, Depincé A, Adolfi M, Schartl M, Guiguen Y, Herpin A. Evolution of master sex determiners: TGF-β signalling pathways at regulatory crossroads. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200091. [PMID: 34247498 DOI: 10.1098/rstb.2020.0091] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To date, more than 20 different vertebrate master sex-determining genes have been identified on different sex chromosomes of mammals, birds, frogs and fish. Interestingly, six of these genes are transcription factors (Dmrt1- or Sox3- related) and 13 others belong to the TGF-β signalling pathway (Amh, Amhr2, Bmpr1b, Gsdf and Gdf6). This pattern suggests that only a limited group of factors/signalling pathways are prone to become top regulators again and again. Although being clearly a subordinate member of the sex-regulatory network in mammals, the TGF-β signalling pathway made it to the top recurrently and independently. Facing this rolling wave of TGF-β signalling pathways, this review will decipher how the TGF-β signalling pathways cope with the canonical sex gene regulatory network and challenge the current evolutionary concepts accounting for the diversity of sex-determining mechanisms. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Tomas Kay
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - Mateus Adolfi
- University of Würzburg, Developmental Biochemistry, Biocenter, 97074 Würzburg, Germany
| | - Manfred Schartl
- University of Würzburg, Developmental Biochemistry, Biocenter, 97074 Würzburg, Germany.,Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| | - Yann Guiguen
- INRAE, UR 1037 Fish Physiology and Genomics, 35000 Rennes, France
| | - Amaury Herpin
- INRAE, UR 1037 Fish Physiology and Genomics, 35000 Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, People's Republic of China
| |
Collapse
|
46
|
Ma Y, Gu M, Chen L, Shen H, Pan Y, Pang Y, Miao S, Tong R, Huang H, Zhu Y, Sun L. Recent advances in critical nodes of embryo engineering technology. Theranostics 2021; 11:7391-7424. [PMID: 34158857 PMCID: PMC8210615 DOI: 10.7150/thno.58799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The normal development and maturation of oocytes and sperm, the formation of fertilized ova, the implantation of early embryos, and the growth and development of foetuses are the biological basis of mammalian reproduction. Therefore, research on oocytes has always occupied a very important position in the life sciences and reproductive medicine fields. Various embryo engineering technologies for oocytes, early embryo formation and subsequent developmental stages and different target sites, such as gene editing, intracytoplasmic sperm injection (ICSI), preimplantation genetic diagnosis (PGD), and somatic cell nuclear transfer (SCNT) technologies, have all been established and widely used in industrialization. However, as research continues to deepen and target species become more advanced, embryo engineering technology has also been developing in a more complex and sophisticated direction. At the same time, the success rate also shows a declining trend, resulting in an extension of the research and development cycle and rising costs. By studying the existing embryo engineering technology process, we discovered three critical nodes that have the greatest impact on the development of oocytes and early embryos, namely, oocyte micromanipulation, oocyte electrical activation/reconstructed embryo electrofusion, and the in vitro culture of early embryos. This article mainly demonstrates the efforts made by researchers in the relevant technologies of these three critical nodes from an engineering perspective, analyses the shortcomings of the current technology, and proposes a plan and prospects for the development of embryo engineering technology in the future.
Collapse
Affiliation(s)
- Youwen Ma
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Mingwei Gu
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Liguo Chen
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Hao Shen
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Yifan Pan
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Yan Pang
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Sheng Miao
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Ruiqing Tong
- Cardiology, Dushuhu Public Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Haibo Huang
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Yichen Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Lining Sun
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
- State Key Laboratory of Robotics & Systems, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
47
|
Yang D, Yang X, Dai F, Wang Y, Yang Y, Hu M, Cheng Y. The Role of Bone Morphogenetic Protein 4 in Ovarian Function and Diseases. Reprod Sci 2021; 28:3316-3330. [PMID: 33966186 DOI: 10.1007/s43032-021-00600-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) are the largest subfamily of the transforming growth factor-β (TGF-β) superfamily. BMP4 is a secreted protein that was originally identified due to its role in bone and cartilage development. Over the past decades, extensive literature has indicated that BMP4 and its receptors are widely expressed in the ovary. Dysregulation of BMP4 expression may play a vital role in follicular development, polycystic ovary syndrome (PCOS), and ovarian cancer. In this review, we summarized the expression pattern of BMP4 in the ovary, focused on the role of BMP4 in follicular development and steroidogenesis, and discussed the role of BMP4 in ovarian diseases such as polycystic ovary syndrome and ovarian cancer. Some studies have shown that the expression of BMP4 in the ovary is spatiotemporal and species specific, but the effects of BMP4 seem to be similar in follicular development of different species. In addition, BMP4 is involved in the development of hyperandrogenemia in PCOS and drug resistance in ovarian cancer, but further research is still needed to clarify the specific mechanisms.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072, China.
| | - Min Hu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
48
|
Robertson DM, Lee CH, Baerwald A. Interactions between serum FSH, inhibin B and antral follicle count in the decline of serum AMH during the menstrual cycle in late reproductive age. Endocrinol Diabetes Metab 2021; 4:e00172. [PMID: 33855196 PMCID: PMC8029535 DOI: 10.1002/edm2.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate the hormonal interrelationships during the menstrual cycle in women of late reproductive age with suppressed serum AMH and antral follicle count (AFC). Methods Serum hormones (AMH, FSH, LH, estradiol, progesterone, inhibin A, inhibin B), AFC (2-10 mm) and AMH/AFC ratio (an estimate of AMH/follicle) were assessed every 2-3 days across the menstrual cycle in 26 healthy ovulatory women aged 18-50 years. Results An 11-fold fall in AMH/AFC was observed in women aged ≥45 years compared to those 18-45 years (P < .001). Although women ≥45 years exhibited normal menstrual cycle patterns of serum estradiol, progesterone, LH and inhibin A, FSH was elevated (P < .001) and inhibin B suppressed (P < .001) compared to the younger group. Overall FSH was inversely correlated (r = .55, P < .05) and AMH directly correlated (r = .88, P < .01) with AFC; however, these relationships were curvilinear and more pronounced when AFC was low. Inhibin B was directly linearly correlated (r = .70, P < .01) with AFC across both high and low AMH/follicle groups. Conclusions It is hypothesized that the marked fall in AMH/follicle in late reproductive age is attributed to the change in the hormonal interplay between the pituitary and ovary. The fall in AFC leads to a decrease in inhibin B and a concomitant increase in FSH by a recognized feedback mechanism. It is postulated the elevated FSH suppresses AMH either directly or indirectly through oocyte-specific growth factors leading to a marked fall in AMH/follicle. We propose that pituitary-ovarian and intra-ovarian regulatory systems underpin the accelerated fall in AMH/follicle during the transition to menopause.
Collapse
Affiliation(s)
- David M. Robertson
- Centre for Endocrinology and MetabolismHudson Institute of Medical Research, Clayton, VictoriaMonash UniversityClaytonVictoriaAustralia
- School of Women’s and Children’s HealthUniversity of New South WalesKensingtonAustralia
| | - Chel Hee Lee
- Department of Mathematics and StatisticsUniversity of CalgaryAlbertaCanada
| | - Angela Baerwald
- Department of Academic Family MedicineCollege of MedicineUniversity of SaskatchewanSaskatchewanCanada
| |
Collapse
|
49
|
Roy S, Huang B, Sinha N, Wang J, Sen A. Androgens regulate ovarian gene expression by balancing Ezh2-Jmjd3 mediated H3K27me3 dynamics. PLoS Genet 2021; 17:e1009483. [PMID: 33784295 PMCID: PMC8034747 DOI: 10.1371/journal.pgen.1009483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/09/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Conventionally viewed as male hormone, androgens play a critical role in female fertility. Although androgen receptors (AR) are transcription factors, to date very few direct transcriptional targets of ARs have been identified in the ovary. Using mouse models, this study provides three critical insights about androgen-induced gene regulation in the ovary and its impact on female fertility. First, RNA-sequencing reveals a number of genes and biological processes that were previously not known to be directly regulated by androgens in the ovary. Second, androgens can also influence gene expression by decreasing the tri-methyl mark on lysine 27 of histone3 (H3K27me3), a gene silencing epigenetic mark. ChIP-seq analyses highlight that androgen-induced modulation of H3K27me3 mark within gene bodies, promoters or distal enhancers have a much broader impact on ovarian function than the direct genomic effects of androgens. Third, androgen-induced decrease of H3K27me3 is mediated through (a) inhibiting the expression and activity of Enhancer of Zeste Homologue 2 (EZH2), a histone methyltransferase that promotes tri-methylation of K27 and (b) by inducing the expression of a histone demethylase called Jumonji domain containing protein-3 (JMJD3/KDM6B), responsible for removing the H3K27me3 mark. Androgens through the PI3K/Akt pathway, in a transcription-independent fashion, increase hypoxia-inducible factor 1 alpha (HIF1α) protein levels, which in turn induce JMJD3 expression. Furthermore, proof of concept studies involving in vivo knockdown of Ar in the ovary and ovarian (granulosa) cell-specific Ar knockout mouse model show that ARs regulate the expression of key ovarian genes through modulation of H3K27me3.
Collapse
Affiliation(s)
- Sambit Roy
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Binbin Huang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Niharika Sinha
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, MI, United States of America
- * E-mail:
| |
Collapse
|
50
|
Paulini F, Melo EO. Effects of Growth and Differentiation Factor 9 and Bone Morphogenetic Protein 15 overexpression on the steroidogenic metabolism in bovine granulosa cells in vitro. Reprod Domest Anim 2021; 56:837-847. [PMID: 33683747 DOI: 10.1111/rda.13923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/26/2022]
Abstract
Granulosa cells (GCs) play important roles in the regulation of ovarian functions, and in vitro culture is a relevant model for the study of steroidogenesis in ovarian follicles. Thus, growth factors secreted by the oocyte, like Growth and Differentiation Factor 9 (GDF9) and Bone Morphogenetic Protein 15 (BMP15), play an important part in the luteinization of granulosa cells. The aim of this work was to express GDF9 and BMP15 genes in bovine GCs in vitro and evaluate their effects on the luteinization process. Samples of culture medium and GCs transfected with GDF9 and BMP15 were obtained for 21 consecutive days to analyse the steroidogenic hormones' concentration (progesterone (P4 ) and estradiol (E2 )) and the expression of STAR, GDF9 and BMP15 and their respective receptors. The results demonstrated an inhibitory effect of GDF9 and BMPF15 on P4 secretion in bovine GCs cultured in vitro. Moreover, our study demonstrated the entire expression of their respective receptors (TGFBR1, BMPR1B and BMPR2) and the inhibition of the steroidogenic marker, STAR gene. This work sheds light on a novel biological function of BMP15 and GDF9 in bovine GCs physiology, which could elucidate a non-described biological role for GDF9 and BMP15 in bovine granulosa cells' metabolism.
Collapse
Affiliation(s)
- Fernanda Paulini
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Eduardo O Melo
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Postgraduate Program in Biotechnology, University of Tocantins-UFT, Gurupi, Brazil
| |
Collapse
|