1
|
Perry GA, Ketchum JN, Quail LK. Importance of preovulatory estradiol on uterine receptivity and luteal function. Anim Reprod 2023; 20:e20230061. [PMID: 37720725 PMCID: PMC10503890 DOI: 10.1590/1984-3143-ar2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023] Open
Abstract
Animals that exhibited estrus had greater pregnancy success compared to animals that did not exhibit estrus before fixed-time AI (FTAI). Estradiol is synthesized in bovine ovarian follicles under gonadotropin regulation and can directly and indirectly regulate the uterine receptivity and luteal function. Estradiol concentrations at FTAI impacted oviductal gene expression and has been reported to play an important role in establishing the timing of uterine receptivity. These changes have been reported to impact uterine pH and sperm transport to the site of fertilization. After fertilization, preovulatory estradiol has been reported to improve embryo survival likely by mediating changes in uterine blood flow, endometrial thickness and changes in histotroph. Cows with greater estradiol concentrations at the time of GnRH-induced ovulation also had a larger dominant follicle size and greater circulating progesterone concentrations on day 7. Therefore, it is impossible to accurately determine the individual benefit of greater estradiol concentrations prior to ovulation and greater progesterone concentrations following ovulation to pregnancy establishment, as these two measurements are confounded. Research has indicated an importance in the occurrence and timing of increasing preovulatory concentrations of estradiol, but increasing estradiol concentrations by supplementation may not be sufficient to increase fertility. Increased production of estradiol by the preovulatory follicle may be required to enhance fertility through the regulation of sperm transport, fertilization, oviductal secretions, the uterine environment, and embryo survival.
Collapse
Affiliation(s)
| | - Jaclyn Nicole Ketchum
- Texas A&M AgriLife Research, Overton, Texas, United States of America
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Lacey Kay Quail
- Texas A&M AgriLife Research, Overton, Texas, United States of America
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
2
|
Panwar D, Rawal L, Ali S. The potential role of the KFG and KITLG proteins in preventing granulosa cell apoptosis in Bubalus bubalis. J Genet Eng Biotechnol 2023; 21:39. [PMID: 37000378 PMCID: PMC10066048 DOI: 10.1186/s43141-023-00480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND The dynamics of mammalian follicular development and atresia is an intricate process involving the cell-cell communication mediated by secreted ovarian factors. These interactions are critical for oocyte development and regulation of follicular atresia which in part are mediated by keratinocyte growth factor (KGF) and kit ligand (KITLG), but their roles in the regulation of apoptosis in buffalo granulosa cells have not yet been defined. During mammalian follicular development, granulosa cell apoptosis triggers the atresia so ~ 1% follicles reach the ovulation stage. In the present study, we used buffalo granulosa cells to examine the effects of KGF and KITLG in apoptosis regulation and investigated potential mechanism on Fas-FasL and Bcl-2 signaling pathways. RESULT Isolated buffalo granulosa cells were cultured with KGF and KITLG proteins using different doses (0, 10, 20, and 50 ng/ml) independently or in combination. Expression analysis for both anti-apoptotic (Bcl-2, Bcl-xL, and cFLIP) and pro-apoptotic (Bax, Fas, and FasL) genes at transcriptional levels were carried out by real-time PCR. Upon treatments, expression levels of anti-apoptotic genes were significantly upregulated in a dose-dependent manner, showing an upregulation at 50 ng/ml (independently), and at 10 ng/ml in combination. Additionally, upregulation of growth-promoting factors, bFGF, and α-Inhibin was also observed. CONCLUSIONS Our findings suggest the potential roles of KGF and KITLG in determining granulosa cell growth and regulating apoptosis.
Collapse
Affiliation(s)
- Deepak Panwar
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Present Address: National Reference Laboratory, Dr. Lal Pathlabs, B7 Road, Block E, Rohini Sector 18, New Delhi, 110085, India
| | - Leena Rawal
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Present Address: National Reference Laboratory, Dr. Lal Pathlabs, B7 Road, Block E, Rohini Sector 18, New Delhi, 110085, India
| | - Sher Ali
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Present Address: Department of Personalized Medicine, VC Office, Era University, Lucknow, 226003, India.
| |
Collapse
|
3
|
Mu Z, Shen S, Lei L. Resistant ovary syndrome: Pathogenesis and management strategies. Front Med (Lausanne) 2022; 9:1030004. [PMCID: PMC9626816 DOI: 10.3389/fmed.2022.1030004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Resistant ovary syndrome (ROS) is a rare and difficult gynecological endocrine disorder that poses a serious risk to women’s reproductive health. The clinical features are normal sex characteristics, regular female karyotype, and usual ovarian reserve, but elevated endogenous gonadotropin levels and low estrogen levels with primary or secondary amenorrhea. Although there have been many case reports of the disease over the past 50 years, the pathogenesis of the disease is still poorly understood, and there are still no effective clinical management strategies. In this review, we have collected all the current reports on ROS and summarized the pathogenesis and treatment strategies for this disease, intending to provide some clinical references for the management and treatment of this group of patients and provide the foothold for future studies.
Collapse
|
4
|
Juengel JL, Cushman RA, Dupont J, Fabre S, Lea RG, Martin GB, Mossa F, Pitman JL, Price CA, Smith P. The ovarian follicle of ruminants: the path from conceptus to adult. Reprod Fertil Dev 2021; 33:621-642. [PMID: 34210385 DOI: 10.1071/rd21086] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022] Open
Abstract
This review resulted from an international workshop and presents a consensus view of critical advances over the past decade in our understanding of follicle function in ruminants. The major concepts covered include: (1) the value of major genes; (2) the dynamics of fetal ovarian development and its sensitivity to nutritional and environmental influences; (3) the concept of an ovarian follicle reserve, aligned with the rise of anti-Müllerian hormone as a controller of ovarian processes; (4) renewed recognition of the diverse and important roles of theca cells; (5) the importance of follicular fluid as a microenvironment that determines oocyte quality; (6) the 'adipokinome' as a key concept linking metabolic inputs with follicle development; and (7) the contribution of follicle development to the success of conception. These concepts are important because, in sheep and cattle, ovulation rate is tightly regulated and, as the primary determinant of litter size, it is a major component of reproductive efficiency and therefore productivity. Nowadays, reproductive efficiency is also a target for improving the 'methane efficiency' of livestock enterprises, increasing the need to understand the processes of ovarian development and folliculogenesis, while avoiding detrimental trade-offs as greater performance is sought.
Collapse
Affiliation(s)
- Jennifer L Juengel
- AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand; and Corresponding author
| | - Robert A Cushman
- Livestock Biosystems Research Unit, US Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, Clay Center, NE, USA
| | - Joëlle Dupont
- INRAE Institute UMR85 Physiologie de la Reproduction et des Comportements, Tours University, France
| | - Stéphane Fabre
- GenPhySE, Université de Toulouse, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Institut national polytechnique de Toulouse, Ecole nationale vétérinaire de Toulouse, Castanet Tolosan, France
| | - Richard G Lea
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Graeme B Martin
- UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Francesca Mossa
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Italy
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Christopher A Price
- Faculty of Veterinary Medicine, Université de Montréal, Montréal, QC, Canada
| | - Peter Smith
- AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
| |
Collapse
|
5
|
Exploration of the effects of goose TCs on GCs at different follicular stages using a co-culture model. Biosci Rep 2021; 40:225883. [PMID: 32706022 PMCID: PMC7414519 DOI: 10.1042/bsr20200445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Granulosa cells (GCs) play a critical role in follicular development, which cannot be separated from the assistance of theca cells (TCs). In the present study, we used a transwell system to develop three stages of goose GCs in vitro mono-culture and co-culture models, and we analyzed the morphology, activity, intracellular lipid content and the expression of core genes involved in de novo lipogenesis (DNL), steroidogenesis, proliferation and apoptosis of the GCs. In the co-culture group, the activity of all three stages of GCs showed significant (P<0.01) changes, and they had a strong (P<0.01) correlation with culture time; further, the intracellular lipid deposition of hierarchical GCs was significantly different (P<0.01) between the two methods. Moreover, after co-culture, in pre-hierarchical GCs, the expression of SREBP, CYP11 and 3βHSD was promoted (P<0.01). In hierarchical GCs, the expression of ACC, SREBP, STAR, CYP11, 3βHSD and CCND1 was promoted at 48 h, but they were inhibited (P<0.05) at 96 h. In F1 GCs, the expression of ACC, FAS, SREBP, CYP11, BCL2 and CAS3 was inhibited (P<0.01). The results indicate that goose TCs had complex and time-dependent effects on the biological function of GCs at each corresponding stage, and the effects were distinct in the different stages. In addition, DNL, steroidogenesis, proliferation and apoptosis in hierarchical and F1 GCs might have some synergistic relationships in the effects of TCs on GCs. Furthermore, we speculated that TCs might play an important role in the differentiation and maturation of GCs during follicular development.
Collapse
|
6
|
Perego MC, Morrell BC, Zhang L, Schütz LF, Spicer LJ. Developmental and hormonal regulation of ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 gene expression in ovarian granulosa and theca cells of cattle. J Anim Sci 2020; 98:5866609. [PMID: 32614952 DOI: 10.1093/jas/skaa205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022] Open
Abstract
Ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 (UHRF1) is a multi-domain nuclear protein that plays an important role in epigenetics and tumorigenesis, but its role in normal ovarian follicle development remains unknown. Thus, the present study evaluated if UHRF1 mRNA abundance in bovine follicular cells is developmentally and hormonally regulated, and if changes in UHRF1 are associated with changes in DNA methylation in follicular cells. Abundance of UHRF1 mRNA was greater in granulosa cells (GC) and theca cells (TC) from small (<6 mm) than large (≥8 mm) follicles and was greater in small-follicle GC than TC. In GC and TC, fibroblast growth factor 9 (FGF9) treatment increased (P < 0.05) UHRF1 expression by 2-fold. Also, luteinizing hormone (LH) and insulin-like growth factor 1 (IGF1) increased (P < 0.05) UHRF1 expression in TC by 2-fold, and forskolin (an adenylate cyclase inducer) alone or combined with IGF1 increased (P < 0.05) UHRF1 expression by 3-fold. An E2F transcription factor inhibitor (E2Fi) decreased (P < 0.05) UHRF1 expression by 44% in TC and by 99% in GC. Estradiol, progesterone, and dibutyryl-cAMP decreased (P < 0.05) UHRF1 mRNA abundance in GC. Treatment of GC with follicle-stimulating hormone (FSH) alone had no effect but when combined with IGF1 enhanced the UHRF1 mRNA abundance by 2.7-fold. Beauvericin (a mycotoxin) completely inhibited the FSH plus IGF1-induced UHRF1 expression in small-follicle GC. Treatments that increased UHRF1 mRNA (i.e., FGF9) in GC tended to decrease (by 63%; P < 0.10) global DNA methylation, and those that decreased UHRF1 mRNA (i.e., E2Fi) in GC tended to increase (by 2.4-fold; P < 0.10) global DNA methylation. Collectively, these results suggest that UHRF1 expression in both GC and TC is developmentally and hormonally regulated, and that UHRF1 may play a role in follicular growth and development as well as be involved in ovarian epigenetic processes.
Collapse
Affiliation(s)
| | - Breanne C Morrell
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| | | | | | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| |
Collapse
|
7
|
Morrell BC, Zhang L, Schütz LF, Perego MC, Maylem ERS, Spicer LJ. Regulation of the transcription factor E2F8 gene expression in bovine ovarian cells. Mol Cell Endocrinol 2019; 498:110572. [PMID: 31493442 DOI: 10.1016/j.mce.2019.110572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Overexpression of the transcription factor, E2F8, has been associated with ovarian cancer. Objectives of this study were to determine: 1) if E2F8 gene expression in granulosa cells (GC) and theca cells (TC) change with follicular development, and 2) if E2F8 mRNA abundance in TC and GC is hormonally regulated. Using real-time PCR, E2F8 mRNA abundance in GC and TC was greater (P < 0.05) in small than large follicles. FGF9 induced an increase (P < 0.05) in E2F8 mRNA abundance by 1.6- to 7-fold in large-follicle (8-20 mm) TC and GC as well as in small-follicle (1-5 mm) GC. Abundance of E2F8 mRNA in TC was increased (P < 0.05) with FGF2, FGF9 or VEGFA treatments alone in vitro, and concomitant treatment of VEGFA with FGF9 increased (P < 0.05) abundance of E2F8 mRNA above any of the singular treatments; BMP4, WNT3A and LH were without effect. IGF1 amplified the stimulatory effect of FGF9 on E2F8 mRNA abundance by 2.7-fold. Collectively, our studies show for the first time that follicular E2F8 is developmentally and hormonally regulated indicating that E2F8 may be involved in follicular development.
Collapse
Affiliation(s)
- Breanne C Morrell
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Lingna Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Luis F Schütz
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - M Chiara Perego
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Excel Rio S Maylem
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
8
|
Castilho A, Dalanezi F, Franchi F, Price C, Ferreira J, Trevisol E, Buratini J. Expression of fibroblast growth factor 22 (FGF22) and its receptor, FGFR1B, during development and regression of bovine corpus luteum. Theriogenology 2019; 125:1-5. [DOI: 10.1016/j.theriogenology.2018.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
|
9
|
Han P, Guerrero-Netro H, Estienne A, Price CA. Effects of fibroblast growth factors and the transcription factor, early growth response 1, on bovine theca cells. Mol Cell Endocrinol 2018; 476:96-102. [PMID: 29723542 DOI: 10.1016/j.mce.2018.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 01/17/2023]
Abstract
The theca cell layer of the ovarian follicle secretes growth factors that impact the function of granulosa cells. One such factor is fibroblast growth factor 18 (FGF18) that causes apoptosis of granulosa cells, however it is not known if FGF18 induces apoptosis also in theca cells. Addition of recombinant FGF18 to bovine theca cells in vitro inhibited steroidogenesis but, in contrast to previous data in granulosa cells, decreased the incidence of apoptosis. FGF18 activated typical FGF signaling pathways in theca cells, which was not previously observed in granulosa cells. The transcription factor Early Growth Response-1 (EGR1) was a target of FGF18 action; overexpression and knock-down experiments demonstrated that EGR1 is a major upstream component of FGF signaling in theca cells and that it directs cell fate toward proliferation. These data suggest that FGF18 is mitogenic for theca cells while being pro-apoptotic in granulosa cells.
Collapse
Affiliation(s)
- Peng Han
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe QC Canada; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hilda Guerrero-Netro
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe QC Canada
| | - Anthony Estienne
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe QC Canada
| | - Christopher A Price
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe QC Canada.
| |
Collapse
|
10
|
Rajabi Z, Khokhar Z, Yazdekhasti H. The Growth of Preantral Follicles and the Impact of Different Supplementations and Circumstances: A Review Study with Focus on Bovine and Human Preantral Follicles. Cell Reprogram 2018; 20:164-177. [PMID: 29782184 DOI: 10.1089/cell.2017.0068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
One of the most important concerns cancer survivors face is fertility. Current treatment modalities often result in damage to the reproductive system. Different options have been proposed to preserve the fertility of affected women, and many attempts have been made to improve their chance of childbearing after therapy. Cryopreservation of ovarian tissue and follicles before the onset of cancer treatment and then either transplantation of ovarian tissue or culture of ovarian tissue and individual follicles in vitro is a commonly cited approach. Extensive research is being done to design an optimal condition for the culture of ovarian follicles. Improving follicle culture systems by understanding their actual growth needs might be a crucial step toward fertility preservation in cancer patients. This review article will try to provide a summary of the role of different factors and conditions on growth of human and bovine preantral follicles in vitro.
Collapse
Affiliation(s)
- Zahra Rajabi
- 1 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran .,2 Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Zunair Khokhar
- 3 Department of Cell Biology, University of Virginia , Charlottesville, Virginia
| | - Hossein Yazdekhasti
- 4 Center for Research in Contraception and Reproductive Health, University of Virginia , Charlottesville, Virginia.,5 Center for Membrane & Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
11
|
Gareis N, Huber E, Hein G, Rodríguez F, Salvetti N, Angeli E, Ortega H, Rey F. Impaired insulin signaling pathways affect ovarian steroidogenesis in cows with COD. Anim Reprod Sci 2018; 192:298-312. [DOI: 10.1016/j.anireprosci.2018.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 01/28/2023]
|
12
|
Totty ML, Morrell BC, Spicer LJ. Fibroblast growth factor 9 (FGF9) regulation of cyclin D1 and cyclin-dependent kinase-4 in ovarian granulosa and theca cells of cattle. Mol Cell Endocrinol 2017; 440:25-33. [PMID: 27816766 PMCID: PMC5173412 DOI: 10.1016/j.mce.2016.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023]
Abstract
To determine the mechanism by which fibroblast growth factor 9 (FGF9) alters granulosa (GC) and theca (TC) cell proliferation, cell cycle proteins that regulate progression through G1 phase of the cell cycle, cyclin D1 (CCND1) and cyclin-dependent kinase-4 (CDK4; CCND1's catalytic partner), were evaluated. Ovaries were obtained from a local abattoir, GC were harvested from small (1-5 mm) and large (8-22 mm) follicles, and TC were harvested from large follicles. GC and TC were plated in medium containing 10% fetal calf serum followed by various treatments in serum-free medium. Treatment with 30 ng/mL of either FGF9 or IGF1 significantly increased GC numbers and when combined, synergized to further increase GC numbers by threefold. Abundance of CCND1 and CDK4 mRNA in TC and GC were quantified via real-time PCR. Alone and in combination with IGF1, FGF9 significantly increased CCND1 mRNA expression in both GC and TC. Western blotting revealed that CCND1 protein levels were increased by FGF9 in TC after 6 h and 12 h of treatment, but CDK4 protein was not affected. A mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway inhibitor, U0126, significantly reduced FGF9-induced CCND1 mRNA expression to basal levels. For the first time we show that CCND1 mRNA expression is increased by FGF9 in bovine TC and GC, and that FGF9 likely uses the MAPK pathway to induce CCND1 mRNA production in bovine TC.
Collapse
Affiliation(s)
- M L Totty
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - B C Morrell
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
13
|
Mishra S, Thakur N, Somal A, Parmar M, Reshma R, Rajesh G, Yadav V, Bharti M, Bharati J, Paul A, Chouhan V, Sharma G, Singh G, Sarkar M. Expression and localization of fibroblast growth factor (FGF) family in buffalo ovarian follicle during different stages of development and modulatory role of FGF2 on steroidogenesis and survival of cultured buffalo granulosa cells. Res Vet Sci 2016; 108:98-111. [DOI: 10.1016/j.rvsc.2016.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 07/09/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
|
14
|
Larimore EL, Amundson OL, Bridges GA, McNeel AK, Cushman RA, Perry GA. Changes in ovarian function associated with circulating concentrations of estradiol before a GnRH-induced ovulation in beef cows. Domest Anim Endocrinol 2016; 57:71-9. [PMID: 27565233 DOI: 10.1016/j.domaniend.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/29/2016] [Accepted: 06/01/2016] [Indexed: 11/29/2022]
Abstract
These studies were conducted to evaluate causes for differences in circulating concentrations of estradiol before a GnRH-induced ovulation. Beef cows were synchronized by an injection of GnRH on day -7 and an injection of prostaglandin F2α (PGF2α) on day 0. In experiment 1, blood samples were collected every 3 h from PGF2α on day 0 to hour 33 after PGF2α and at slaughter (hour 36 to 42; n = 10). Cows were assigned to treatment group based on circulating concentrations of estradiol (E2): HighE2 vs LowE2. At slaughter, follicular fluid (FF) and granulosa cells were collected from the dominant follicle. In experiment 2, blood samples (n = 30) were collected every 8 h from PGF2α until the dominant follicle was aspirated via ultrasound-guided follicular aspiration to collect FF and granulosa cells (hour 38 to 46). In experiment 1, HighE2 had increased abundance of 3β-hydroxysteroid dehydrogenase, cytochrome P450 aromatase, and LHR (P ≤ 0.02), and greater concentrations of estradiol and androstenedione (P ≤ 0.02) in the FF. In experiment 2, HighE2 had increased abundance of CYP11A1, 3β-hydroxysteroid dehydrogenase, cytochrome P450 aromatase, and LHR (P ≤ 0.03) vs either LowE2 or GnRHLowE2. There was a tendency (P = 0.07) for LH pulse frequency to be increased in both the GnRHLowE2 and HighE2 compared with LowE2. HighE2 cows experienced increas in circulating concentrations of estradiol compared with LowE2. In conclusion, animals with greater concentrations of circulating estradiol before fixed-time AI experienced an upregulation of the steroidogenic pathway during the preovulatory period.
Collapse
Affiliation(s)
- E L Larimore
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - O L Amundson
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - G A Bridges
- North Central Research and Outreach Center, University of Minnesota, Grand Rapids, MN, USA
| | - A K McNeel
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - R A Cushman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - G A Perry
- Department of Animal Science, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
15
|
Mishra S, Parmar M, Chouhan V, Rajesh G, Yadav V, Bharti M, Bharati J, Mondal T, Reshma R, Paul A, Dangi S, Das B, González L, Sharma G, Singh G, Sarkar M. Expression and localization of fibroblast growth factor (FGF) family in corpus luteum during different stages of estrous cycle and synergistic role of FGF2 and vascular endothelial growth factor (VEGF) on steroidogenesis, angiogenesis and survivability of cultured buffalo luteal cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aggene.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Amweg AN, Rodríguez FM, Huber E, Marelli BE, Salvetti NR, Rey F, Ortega HH. Role of Glucocorticoids in Cystic Ovarian Disease: Expression of Glucocorticoid Receptor in the Bovine Ovary. Cells Tissues Organs 2015; 201:138-47. [DOI: 10.1159/000442150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to characterize the expression of glucocorticoid receptor (GR) in the components of normal bovine ovary and in animals with cystic ovarian disease (COD). Changes in the protein and mRNA expression levels were determined in control cows and cows with COD by immunohistochemistry and real-time PCR. GR protein expression in granulosa cells was higher in cysts from animals with spontaneous COD and adrenocorticotropic hormone-induced COD than in tertiary follicles from control animals. In theca interna cells, GR expression was higher in cysts from animals with spontaneous COD than in tertiary follicles from control animals. The increase in GR expression observed in cystic follicles suggests a mechanism of action for cortisol and its receptor through the activation/inactivation of specific transcription factors. These factors could be related to the pathogenesis of COD in cattle.
Collapse
|
17
|
Mishra S, Bharati J, Bharti M, Singh G, Sarkar M. Expression and Localization of Fibroblast Growth Factor 10 (FGF10) in Ovarian Follicle During Different Stages Development in Buffalo. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajava.2015.433.442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Cross Talk between KGF and KITLG Proteins Implicated with Ovarian Folliculogenesis in Buffalo Bubalus bubalis. PLoS One 2015; 10:e0127993. [PMID: 26083339 PMCID: PMC4470682 DOI: 10.1371/journal.pone.0127993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
Molecular interactions between mesenchymal-derived Keratinocyte growth factor (KGF) and Kit ligand (KITLG) are essential for follicular development. These factors are expressed by theca and granulosa cells. We determined full length coding sequence of buffalo KGF and KITLG proteins having 194 and 274 amino acids, respectively. The recombinant KGF and KITLG proteins were solubilized in 10 mM Tris, pH 7.5 and 50 mM Tris, pH 7.4 and purified using Ni-NTA column and GST affinity chromatography, respectively. The purity and molecular weight of His-KGF (~23 kDa) and GST-KITLG (~57 kDa) proteins were confirmed by SDS-PAGE and western blotting. The co-immunoprecipitation assay accompanied with computational analysis demonstrated the interaction between KGF and KITLG proteins. We deduced 3D structures of the candidate proteins and assessed their binding based on protein docking. In the process, KGF specific residues, Lys123, Glu135, Lys140, Lys155 and Trp156 and KITLG specific ones, Ser226, Phe233, Gly234, Ala235, Phe236, Trp238 and Lys239 involved in the formation of KGF-KITLG complex were detected. The hydrophobic interactions surrounding KGF-KITLG complex affirmed their binding affinity and stability to the interacting interface. Additionally, in-silico site directed mutagenesis enabled the assessment of changes that occurred in the binding energies of mutated KGF-KITLG protein complex. Our results demonstrate that in the presence of KITLG, KGF mimics its native binding mode suggesting all the KGF residues are specific to their binding complex. This study provides an insight on the critical amino acid residues participating in buffalo ovarian folliculogenesis.
Collapse
|
19
|
Hein G, Panzani C, Rodríguez F, Salvetti N, Díaz P, Gareis N, Benítez G, Ortega H, Rey F. Impaired insulin signaling pathway in ovarian follicles of cows with cystic ovarian disease. Anim Reprod Sci 2015; 156:64-74. [DOI: 10.1016/j.anireprosci.2015.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 01/30/2023]
|
20
|
Portela VM, Dirandeh E, Guerrero-Netro HM, Zamberlam G, Barreta MH, Goetten AF, Price CA. The role of fibroblast growth factor-18 in follicular atresia in cattle. Biol Reprod 2014; 92:14. [PMID: 25411391 DOI: 10.1095/biolreprod.114.121376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although the various members of the fibroblast growth factor (FGF) family are generally mitotic, one member, FGF18, has been shown to increase the rate of apoptosis of ovarian granulosa cells. In the present study, we first determined whether granulosa cells express FGF18 and we then explored the mechanism through which FGF18 increases apoptosis in vitro. Under culture conditions that favored estradiol secretion and CYP19A1 expression, granulosa FGF18 mRNA levels were barely detectable; however, withdrawing gonadotropic support (follicle-stimulating hormone or insulin-like growth factor 1) reduced levels of CYP19A1 mRNA and increased abundance of mRNA encoding the death ligand FASLG and FGF18. Addition of FGF18, but not FGF2, FGF10, or EGF, increased the proportion of apoptotic cells and frequency of caspase 3 activation, and these effects were abrogated by coculture with estradiol. Addition of FGF18 decreased abundance of mRNA encoding the antiapoptotic proteins GADD45B and MDM2, and increased that encoding the proapoptotic protein BBC3; these effects were reversed by coculture with estradiol. The physiological relevance of FGF18 was determined using an in vivo model: injection of FGF18 directly into growing bovine dominant follicles caused cessation of follicle growth by 24 h after injection. Collectively, these data demonstrate that FGF18 is proapoptotic in vivo and may act through a mechanism involving the BBC3-MDM2 pathway.
Collapse
Affiliation(s)
- Valério M Portela
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada Campus Universitário Curitibanos, Universidade Federal de Santa Catarina, Curitibanos, Santa Catarina, Brazil
| | - Essa Dirandeh
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Hilda M Guerrero-Netro
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Gustavo Zamberlam
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Marcos H Barreta
- Campus Universitário Curitibanos, Universidade Federal de Santa Catarina, Curitibanos, Santa Catarina, Brazil
| | - André F Goetten
- Campus Universitário Curitibanos, Universidade Federal de Santa Catarina, Curitibanos, Santa Catarina, Brazil
| | - Christopher A Price
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
21
|
Silva M, Ulloa-Leal C, Norambuena C, Fernández A, Adams G, Ratto M. Ovulation-inducing factor (OIF/NGF) from seminal plasma origin enhances Corpus Luteum function in llamas regardless the preovulatory follicle diameter. Anim Reprod Sci 2014; 148:221-7. [DOI: 10.1016/j.anireprosci.2014.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
|
22
|
Ortega I, Villanueva JA, Wong DH, Cress AB, Sokalska A, Stanley SD, Duleba AJ. Resveratrol potentiates effects of simvastatin on inhibition of rat ovarian theca-interstitial cells steroidogenesis. J Ovarian Res 2014; 7:21. [PMID: 24524197 PMCID: PMC3940290 DOI: 10.1186/1757-2215-7-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/02/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is characterized by ovarian enlargement, hyperplastic theca compartment and increased androgen production due to, at least in part, excessive expression of several key genes involved in steroidogenesis. Previously, our group has demonstrated that simvastatin, competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), a rate-limiting step of the mevalonate pathway, reduces rat-theca interstitial cell steroidogenesis by inhibiting Cyp17a1 gene expression, the key enzyme of the androgen biosynthesis pathway. Recently, we demonstrated that resveratrol, a bioflavonoid abundant in red grapes, decreases rat theca-interstitial cell steroidogenesis and this suppressive effect is mediated through mechanisms independent of the mevalonate pathway. The present study evaluated the effect of combining simvastatin and resveratrol treatments on rat theca-interstitial cell steroidogenesis. METHODS Rat theca-interstitial cells isolated from 30 day-old female rats were cultured for up to 48 h with or without simvastatin (1 μM) and/or resveratrol (3-10 μM). Steroidogenic enzymes gene expression was evaluated by quantitative real time PCR and steroid levels were measured by liquid chromatography-mass spectrometry. Comparisons between groups were performed using ANOVA and Tukey test. RESULTS Resveratrol potentiated inhibitory effects of simvastatin on androstenedione and androsterone production in theca-interstitial cells. This suppressive effect correlated with profound inhibition in Cyp17a1 mRNA expression in the presence of a combination of resveratrol and simvastatin. CONCLUSIONS The present findings indicate that resveratrol potentiates the simvastatin-induced inhibitory effect on theca-interstitial cell androgen production, raising the possibility of development of novel treatments of PCOS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antoni J Duleba
- Department of Obstetrics and Gynecology, School of Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
23
|
Castilho ACS, da Silva RB, Price CA, Machado MF, Amorim RL, Buratini J. Expression of fibroblast growth factor 10 and cognate receptors in the developing bovine ovary. Theriogenology 2014; 81:1268-74. [PMID: 24650928 DOI: 10.1016/j.theriogenology.2014.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 01/29/2023]
Abstract
In the mammalian ovary, FGF10 is expressed in oocytes and theca cells and is a candidate for paracrine signaling to the developing granulosa cells. To gain insight into the participation of FGF10 in the regulation of fetal folliculogenesis, we assessed mRNA expression patterns of FGF10 and its receptors, FGFR1B and FGFR2B, in relation to fetal follicle dynamics and localized FGF10 protein in bovine fetal ovaries at different ages. Primordial, primary, secondary, and antral follicles were first observed on Days 75, 90, 150, and 210 of gestation, respectively. The levels of GDF9 and BMP15 mRNA, markers for primordial and primary follicles, respectively, increased during fetal ovary development in a consistent manner with fetal follicle dynamics. CYP17A1 mRNA abundance increased from Day 60 to Day 75 and then from Day 120 to Day 150, coinciding with the appearance of secondary follicles. FGF10 mRNA abundance increased from Day 90, and this increase was temporally associated with increases in FGFR1B mRNA abundance and in the population of primary follicles. In contrast, FGFR2B mRNA expression was highest on Day 60 and decreased thereafter. FGF10 protein was localized to oogonia and oocytes and surrounding granulosa cells at all fetal ages. The present data suggest a role for FGF10 in the control of fetal folliculogenesis in cattle.
Collapse
Affiliation(s)
- A C S Castilho
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil
| | - R Bueno da Silva
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil
| | - C A Price
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - M F Machado
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil
| | - R L Amorim
- Departamento de Clínica Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil
| | - J Buratini
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil.
| |
Collapse
|
24
|
Evans JR, Schreiber NB, Williams JA, Spicer LJ. Effects of fibroblast growth factor 9 on steroidogenesis and control of FGFR2IIIc mRNA in porcine granulosa cells. J Anim Sci 2014; 92:511-9. [PMID: 24664559 PMCID: PMC10837796 DOI: 10.2527/jas.2013-6989] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The objectives of this study were to investigate the effects of fibroblast growth factor 9 (FGF9) on hormone-stimulated porcine granulosa cell proliferation and steroid production and to further elucidate the hormonal and developmental control of FGFR2IIIc gene expression in granulosa cells. Porcine ovaries were collected from a local slaughterhouse and granulosa cells were collected from small to medium (1 to 5 mm) follicles for 5 in vitro studies that were conducted. Cells were cultured for 48 h in 5% fetal calf serum plus 5% porcine serum and then treated with various combinations of FSH, IGF-I, FGF9, Sonic hedgehog (SHH), cortisol, PGE2, and/or wingless-type mouse mammary tumor virus integration site family member 5A (WNT5A) in serum-free medium for an additional 24 or 48 h. Medium was collected for analysis of steroid concentration via RIA, or RNA was collected for gene expression analysis of FGFR2IIIc via quantitative reverse transcription PCR. Fibroblast growth factor 9 stimulated (P < 0.05) IGF-I-induced estradiol production in the presence of FSH and testosterone. However, FGF9 had inconsistent effects on progesterone production, stimulating progesterone production in the presence of FSH and testosterone but inhibiting progesterone production in the presence of IGF-I, FSH, and testosterone. Cell numbers were increased (P < 0.05) by FGF9 in the presence of IGF-I and FSH but not in the presence of FSH and absence of IGF-I. For FGFR2IIIc mRNA studies, granulosa cells were treated with FSH, IGF-I, FGF9, SHH, cortisol, PGE2, or WNT5A. Follicle-stimulating hormone alone had no effect (P > 0.10) whereas IGF-I increased (P < 0.05) FGFR2IIIc mRNA abundance. Cortisol, PGE2, SHH, and WNT5A had no effect (P > 0.10) on FGFR2IIIc gene expression whereas FGF9 in the presence of FSH and IGF-I inhibited (P < 0.05) FGFR2IIIc gene expression. In an in vivo study, granulosa cells from large (7 to 14 mm) follicles had greater (P < 0.05) abundance of FGFR2IIIc mRNA than small (1 to 3 mm) or medium (4 to 6 mm) follicles. In conclusion, IGF-I-induced FGFR2IIIc mRNA may be a mechanism for increased responses to FGF9 in FSH plus IGF-I-treated granulosa cells. Fibroblast growth factor 9 and IGF-I may work together as amplifiers of follicular growth and granulosa cell differentiation by stimulating estradiol production and concomitantly stimulating granulosa cell growth in pigs.
Collapse
Affiliation(s)
- J R Evans
- Department of Animal Science, Oklahoma State University, Stillwater 74078
| | | | | | | |
Collapse
|
25
|
Jiang Z, Guerrero-Netro HM, Juengel JL, Price CA. Divergence of intracellular signaling pathways and early response genes of two closely related fibroblast growth factors, FGF8 and FGF18, in bovine ovarian granulosa cells. Mol Cell Endocrinol 2013; 375:97-105. [PMID: 23707615 DOI: 10.1016/j.mce.2013.05.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/19/2013] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factors (FGFs) modulate ovarian function, including FGF8 and FGF18. These FGFs activate the same receptors, although FGF18 is unusual in that it increases apoptosis in ovarian granulosa cells whereas the 'typical' response to FGF is increased proliferation. The objective of the present study was to determine which early response genes and pathways are activated by FGF8 and FGF18 in bovine granulosa cells. FGF8 increased abundance of mRNA encoding the FGF-responsive genes SPRY1, SPRY2, SPRY4, NR4A1 and NR4A3 whereas FGF18 did not. FGF8 increased but FGF18 decreased levels of mRNA encoding the growth arrest associated protein, GADD45B. FGF8 increased ERK1/2 phosphorylation but FGF18 did not. Microarray analysis identified EGR1, FOS, FOSL1, BAMBI, XIRP1 and PLK2 as other FGF8 immediate-early response genes, and FGF18 stimulated EGR1, FOSL1, BAMBI and PLK2, but not FOS or XIRP1. This study demonstrates that FGF8 and FGF18 signal through divergent pathways in ovarian granulosa cells, despite reportedly similar receptor activation patterns.
Collapse
Affiliation(s)
- Zhongliang Jiang
- College of Animal Science and Technology, Northwestern Agricultural and Forestry University, Yangling, Shaanxi, China
| | | | | | | |
Collapse
|
26
|
Faustino L, Lima I, Carvalho A, Silva C, Castro S, Lobo C, Lucci C, Campello C, Figueiredo J, Rodrigues A. Interaction between keratinocyte growth factor-1 and kit ligand on the goat preantral follicles cultured in vitro. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2013.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Schreiber NB, Spicer LJ. Effects of fibroblast growth factor 9 (FGF9) on steroidogenesis and gene expression and control of FGF9 mRNA in bovine granulosa cells. Endocrinology 2012; 153:4491-501. [PMID: 22798350 PMCID: PMC3423607 DOI: 10.1210/en.2012-1003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene expression of fibroblast growth factor-9 (FGF9) is decreased in granulosa cells (GC) of cystic follicles compared with normal dominant follicles in cattle. The objectives of this study were to investigate the effects of FGF9 on GC steroidogenesis, gene expression, and cell proliferation and to determine the hormonal control of GC FGF9 production. GC were collected from small (1-5 mm) and large (8-22 mm) bovine follicles and treated in vitro with various hormones in serum-free medium for 24 or 48 h. In small- and large-follicle GC, FGF9 inhibited (P < 0.05) IGF-I-, dibutyryl cAMP-, and forskolin-induced progesterone and estradiol production. In contrast, FGF9 increased (P < 0.05) GC numbers induced by IGF-I and 10% fetal calf serum. FGF9 inhibited (P < 0.05) FSHR and CYP11A1 mRNA abundance in small- and large-follicle GC but had no effect (P > 0.10) on CYP19A1 or StAR mRNA. In the presence of a 3β-hydroxysteroid dehydrogenase inhibitor, trilostane, FGF9 also decreased (P < 0.05) pregnenolone production. IGF-I inhibited (P < 0.05) whereas estradiol and FSH had no effect (P > 0.10) on FGF9 mRNA abundance. TNFα and wingless-type mouse mammary tumor virus integration site family member-3A decreased (P < 0.05) whereas T(4) and sonic hedgehog increased (P < 0.05) FGF9 mRNA abundance in control and IGF-I-treated GC. Thus, GC FGF9 gene expression is hormonally regulated, and FGF9 may act as an autocrine regulator of ovarian function by slowing follicular differentiation via inhibiting IGF-I action, gonadotropin receptors, the cAMP signaling cascade, and steroid synthesis while stimulating GC proliferation in cattle.
Collapse
Affiliation(s)
- Nicole B Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | |
Collapse
|
28
|
Angiotensin II, progesterone, and prostaglandins are sequential steps in the pathway to bovine oocyte nuclear maturation. Theriogenology 2012; 77:1779-87. [DOI: 10.1016/j.theriogenology.2011.12.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 12/12/2011] [Accepted: 12/15/2011] [Indexed: 11/18/2022]
|
29
|
Qiu Y, Seager M, Osman A, Castle-Miller J, Bevan H, Tortonese DJ, Murphy D, Harper SJ, Fraser HM, Donaldson LF, Bates DO. Ovarian VEGF(165)b expression regulates follicular development, corpus luteum function and fertility. Reproduction 2012; 143:501-11. [PMID: 22232745 PMCID: PMC3325318 DOI: 10.1530/rep-11-0091] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 12/07/2011] [Accepted: 01/09/2012] [Indexed: 12/22/2022]
Abstract
Angiogenesis and vascular regression are critical for the female ovulatory cycle. They enable progression and regression of follicular development, and corpora lutea formation and regression. Angiogenesis in the ovary occurs under the control of the vascular endothelial growth factor-A (VEGFA) family of proteins, which are generated as both pro-(VEGF(165)) and anti(VEGF(165)b)-angiogenic isoforms by alternative splicing. To determine the role of the VEGF(165)b isoforms in the ovulatory cycle, we measured VEGF(165)b expression in marmoset ovaries by immunohistochemistry and ELISA, and used transgenic mice over-expressing VEGF(165)b in the ovary. VEGF(165)b was expressed in the marmoset ovaries in granulosa cells and theca, and the balance of VEGF(165)b:VEGF(165) was regulated during luteogenesis. Mice over-expressing VEGF(165)b in the ovary were less fertile than wild-type littermates, had reduced secondary and tertiary follicles after mating, increased atretic follicles, fewer corpora lutea and generated fewer embryos in the oviduct after mating, and these were more likely not to retain the corona radiata. These results indicate that the balance of VEGFA isoforms controls follicle progression and luteogenesis, and that control of isoform expression may regulate fertility in mammals, including in primates.
Collapse
Affiliation(s)
- Y Qiu
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - M Seager
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - A Osman
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - J Castle-Miller
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
- Centre for Comparative and Clinical AnatomyUniversity of BristolPre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - H Bevan
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - D J Tortonese
- Centre for Comparative and Clinical AnatomyUniversity of BristolPre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - D Murphy
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of BristolBristolUK
| | - S J Harper
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - H M Fraser
- MRC Human Reproductive Sciences UnitQueen's Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| | - L F Donaldson
- School of Physiology and PharmacologyMedical Sciences Building, University Walk, Bristol, BS8 1TDUK
| | - D O Bates
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| |
Collapse
|
30
|
Portela VM, Machado M, Buratini J, Zamberlam G, Amorim RL, Goncalves P, Price CA. Expression and function of fibroblast growth factor 18 in the ovarian follicle in cattle. Biol Reprod 2010; 83:339-46. [PMID: 20484739 DOI: 10.1095/biolreprod.110.084277] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factors (FGF) are involved in paracrine signaling between cell types in the ovarian follicle. FGF8, for example, is secreted by oocytes and controls cumulus cell metabolism. The closely related FGF18 is also expressed in oocytes in mice. The objective of this study was to assess the potential role of FGF18 in follicle growth in a monovulatory species, the cow. Messenger RNA encoding FGF18 was detected primarily in theca cells, and in contrast to the mouse, FGF18 was not detected in bovine oocytes. Addition of FGF18 protein to granulosa cell cultures inhibited estradiol and progesterone secretion as well as the abundance of mRNA encoding steroidogenic enzymes and the follicle-stimulating hormone receptor. In vivo, onset of atresia of the subordinate follicle was associated with increased thecal FGF18 mRNA levels and FGF18 protein in follicular fluid. In vitro, FGF18 altered cell cycle progression as measured by flow cytometry, resulting in increased numbers of dead cells (sub-G1 peak) and decreased cells in S phase. This was accompanied by decreased levels of mRNA encoding the cell cycle checkpoint regulator GADD45B. Collectively, these data point to a unique role for this FGF in signaling from theca cells to granulosa cells and suggest that FGF18 influences the process of atresia in ovarian follicles.
Collapse
Affiliation(s)
- Valerio M Portela
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Songsasen N, Fickes A, Pukazhenthi BS, Wildt DE. Follicular morphology, oocyte diameter and localisation of fibroblast growth factors in the domestic dog ovary. Reprod Domest Anim 2010; 44 Suppl 2:65-70. [PMID: 19754538 DOI: 10.1111/j.1439-0531.2009.01424.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Remarkably little is known about folliculogenesis in the dog. Objectives were to characterise (1) changes in follicle/oocyte diameter and granulosa cell number and (2) localisation of fibroblast growth factor (FGF)-2 and FGF-7 during dog ovarian follicle development. Fourteen ovarian pairs were excised and processed for histological evaluation. Two to four serial sections/bitch were stained with hematoxylin, and follicle/oocyte diameters and granulosa cell number were determined at each developmental stage. Mean follicle and oocyte size were compared among stages by one-way analysis of variance. Relationships between follicle and oocyte size and granulosa cell number were determined using correlation and regression analysis, respectively. Another eight serial sections/bitch were processed for immunostaining to determine FGF-2 and FGF-7 localisation. Primordial and primary follicles were similar in size, but smaller than the progressively increasing (p < 0.05) diameter of the later stages. Oocyte diameter gradually increased (p < 0.05) among oocytes derived from primordial, primary, secondary and early antral follicles with no difference (p > 0.05) thereafter. Oocyte size and granulosa cell number increased (p < 0.01) with follicular diameter. Except during anoestrus, FGF-2 occurred in oocytes and granulosa cells of primordial to secondary follicles. In adult bitches, FGF-7 was localised in granulosa cells of primary and secondary follicles and also occurred in the theca layer of antral follicles during prooestrus and oestrus. In summary, folliculogenesis in the domestic dog occurs in two phases: pre-antral phase characterised by increasing follicle size in association with oocyte growth and granulosa cell proliferation and antral phase linked with marked granulosa cell proliferation and accumulation of antral cavity fluid. Finally, the temporal localisation pattern of FGF-2 implies its role in follicular activation, whereas FGF-7 activities appear related to later folliculogenesis.
Collapse
Affiliation(s)
- N Songsasen
- Department of Reproductive Sciences, Center for Species Survival, Smithsonian's National Zoological Park, Front Royal, VA 22630, USA.
| | | | | | | |
Collapse
|
32
|
Li JZ, Zhou YP, Zhen Y, Xu Y, Cheng PX, Wang HN, Deng FJ. Cloning and Characterization of the SSB-1 and SSB-4 Genes Expressed in Zebrafish Gonads. Biochem Genet 2009; 47:179-90. [DOI: 10.1007/s10528-008-9215-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
|
33
|
Abir R, Fisch B, Zhang X, Felz C, Kessler-Icekson G, Krissi H, Nitke S, Ao A. Keratinocyte growth factor and its receptor in human ovaries from fetuses, girls and women. Mol Hum Reprod 2008; 15:69-75. [DOI: 10.1093/molehr/gan080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Cho JH, Itoh T, Sendai Y, Hoshi H. Fibroblast growth factor 7 stimulates in vitro growth of oocytes originating from bovine early antral follicles. Mol Reprod Dev 2008; 75:1736-43. [DOI: 10.1002/mrd.20912] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Portela VM, Gonçalves PBD, Veiga AM, Nicola E, Buratini J, Price CA. Regulation of angiotensin type 2 receptor in bovine granulosa cells. Endocrinology 2008; 149:5004-11. [PMID: 18583424 DOI: 10.1210/en.2007-1767] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiotensin II (AngII) is best known for its role in blood pressure regulation, but it also has documented actions in the reproductive system. There are two AngII receptors, type 1 (AGTR1) and type 2 (AGTR2). AGTR2 mediates the noncardiovascular effects of AngII and is expressed in the granulosa cell layer in rodents and is associated with follicle atresia. In contrast, expression of AGTR2 is reported to occur only in theca cells in cattle. The objective of the present study was to determine whether AngII also plays a role in follicle atresia in cattle. RT-PCR demonstrated AGTR2 mRNA in both granulosa and theca cells of bovine follicles. The presence of AGTR2 protein was confirmed by immunofluorescence. Abundance of AGTR2 mRNA in granulosa cells was higher in healthy compared with atretic follicles, whereas in theca cells, it did not change. Granulosa cells were cultured in serum-free medium, and treatment with hormones that increase estradiol secretion (FSH, IGF-I, and bone morphogenetic protein-7) increased AGTR2 mRNA and protein levels, whereas fibroblast growth factors inhibited estradiol secretion and AGTR2 protein levels. The addition of AngII or an AGTR2-specific agonist to granulosa cells in culture did not affect estradiol secretion or cell proliferation but inhibited abundance of mRNA encoding serine protease inhibitor E2, a protein involved in tissue remodeling. Because estradiol secretion is a major marker of nonatretic granulosa cells, these data suggest that AngII is not associated with follicle atresia in cattle but may have other specific roles during follicle growth.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Bone Morphogenetic Protein 7
- Bone Morphogenetic Proteins/pharmacology
- Cattle
- Cells, Cultured
- Estradiol/metabolism
- Female
- Fibroblast Growth Factors/pharmacology
- Follicle Stimulating Hormone/pharmacology
- Follicular Atresia/physiology
- Granulosa Cells/cytology
- Granulosa Cells/drug effects
- Granulosa Cells/physiology
- Insulin-Like Growth Factor I/pharmacology
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Theca Cells/cytology
- Theca Cells/physiology
- Transforming Growth Factor beta/pharmacology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Valério M Portela
- Laboratório de Biotecnologia e Reprodução Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | | | |
Collapse
|
36
|
Skinner MK, Schmidt M, Savenkova MI, Sadler-Riggleman I, Nilsson EE. Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development. Mol Reprod Dev 2008; 75:1457-72. [PMID: 18288646 PMCID: PMC5749411 DOI: 10.1002/mrd.20883] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coordinated interactions between ovarian granulosa and theca cells are required for female endocrine function and fertility. To elucidate these interactions the regulation of the granulosa and theca cell transcriptomes during bovine antral follicle development were investigated. Granulosa cells and theca cells were isolated from small (<5 mm), medium (5-10 mm), and large (>10 mm) antral bovine follicles. A microarray analysis of 24,000 bovine genes revealed that granulosa cells and theca cells each had gene sets specific to small, medium and large follicle cells. Transcripts regulated (i.e., minimally changed 1.5-fold) during antral follicle development for the granulosa cells involved 446 genes and for theca cells 248 genes. Only 28 regulated genes were common to both granulosa and theca cells. Regulated genes were functionally categorized with a focus on growth factors and cytokines expressed and regulated by the two cell types. Candidate regulatory growth factor proteins mediating both paracrine and autocrine cell-cell interactions include macrophage inflammatory protein (MIP1 beta), teratocarcinoma-derived growth factor 1 (TDGF1), stromal derived growth factor 1 (SDF1; i.e., CXCL12), growth differentiation factor 8 (GDF8), glia maturation factor gamma (GMFG), osteopontin (SPP1), angiopoietin 4 (ANGPT4), and chemokine ligands (CCL 2, 3, 5, and 8). The current study examined granulosa cell and theca cell regulated genes associated with bovine antral follicle development and identified candidate growth factors potentially involved in the regulation of cell-cell interactions required for ovarian function.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4231, USA.
| | | | | | | | | |
Collapse
|
37
|
Castilho A, Giometti I, Berisha B, Schams D, Price C, Amorim R, Papa P, Buratini J. Expression of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2B, in the bovine corpus luteum. Mol Reprod Dev 2008; 75:940-5. [DOI: 10.1002/mrd.20811] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Drummond AE, Tellbach M, Dyson M, Findlay JK. Fibroblast growth factor-9, a local regulator of ovarian function. Endocrinology 2007; 148:3711-21. [PMID: 17494997 DOI: 10.1210/en.2006-1668] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fibroblast growth factor 9 (FGF9) is widely expressed in embryos and fetuses and has been shown to be involved in male sex determination, testicular cord formation, and Sertoli cell differentiation. Given its male gender bias, the ovary has not been reported to express FGF9, nor has a role in ovarian function been explored. We report here that FGF9 mRNA and protein are present in the rat ovary and provide evidence that supports a role for FGF9 in ovarian progesterone production. FGF9 mRNA levels as determined by real-time PCR were high in 4-d-old rat ovaries, thereafter declining and stabilizing at levels approximately 30% of d 4 levels at d 12-25. Levels of FGF9 mRNA in the ovary were significantly higher than that present in adult testis, at all ages studied. The FGF9 receptors FGFR2 and FGFR3 mRNAs were present in postnatal and immature rat ovary and appeared to be constitutively expressed. FGF9 protein was localized to theca, stromal cells, and corpora lutea and FGFR2 and FGFR3 proteins to granulosa cells, theca cells, oocytes, and corpora lutea, by immunohistochemistry. Follicular differentiation induced by gonadotropin treatment reduced the expression of FGF9 mRNA by immature rat ovaries, whereas the estrogen-stimulated development of large preantral follicles had no significant effect. In vitro, FGF9 stimulated progesterone production by granulosa cells beyond that elicited by a maximally stimulating dose of FSH. When the granulosa cells were pretreated with FSH to induce LH receptors, FGF9 was found not to be as potent as LH in stimulating progesterone production, nor did it enhance LH-stimulated production. The combined treatments of FSH/FGF9 and FSH/LH, however, were most effective at stimulating progesterone production by these differentiated granulosa cells. Analyses of steroidogenic regulatory proteins indicate that steroidogenic acute regulatory protein and P450 side chain cleavage mRNA levels were enhanced by FGF9, providing a mechanism of action for the increased progesterone synthesis. In summary, the data are consistent with a paracrine role for FGF9 in the ovary.
Collapse
MESH Headings
- 3-Hydroxysteroid Dehydrogenases/genetics
- Animals
- Cells, Cultured
- Cholesterol Side-Chain Cleavage Enzyme/genetics
- Diethylstilbestrol/pharmacology
- Estrogens, Non-Steroidal/pharmacology
- Female
- Fibroblast Growth Factor 9/genetics
- Fibroblast Growth Factor 9/metabolism
- Gene Expression/drug effects
- Gene Expression/physiology
- Granulosa Cells/cytology
- Granulosa Cells/physiology
- Immunohistochemistry
- Male
- Paracrine Communication/physiology
- Phosphoproteins/genetics
- Pregnancy
- Progesterone/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Steroids/biosynthesis
- Testis/cytology
- Testis/physiology
Collapse
Affiliation(s)
- Ann E Drummond
- Prince Henry's Institute of Medical Research, PO Box 5152, Clayton, Victoria 3168, Australia.
| | | | | | | |
Collapse
|
39
|
Buratini J, Pinto MGL, Castilho AC, Amorim RL, Giometti IC, Portela VM, Nicola ES, Price CA. Expression and function of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2B, in bovine follicles. Biol Reprod 2007; 77:743-50. [PMID: 17582010 DOI: 10.1095/biolreprod.107.062273] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Some fibroblast growth factors (FGFs) affect ovarian follicle cell growth and/or differentiation. Whereas many FGFs activate several FGF receptors, FGF7 and FGF10 primarily activate only one, FGFR2B. As FGF7 is produced by bovine theca cells and acts on granulosa cells, we tested the hypothesis that FGF10 may also play a role in folliculogenesis in cattle. Reverse transcription-polymerase chain reaction demonstrated the presence of FGF10 mRNA in the oocytes and theca cells of the antral follicles, as well as in the preantral follicles. FGF10 protein was detected by immunohistochemistry in the oocytes of the preantral and antral follicles, and in the granulosa and theca cells of the antral follicles. FGF10 expression in theca cells changed during follicle development; mRNA abundance decreased with increasing follicular estradiol concentration in healthy follicles, and was lowest in highly atretic follicles. Culturing of granulosa cells in serum-free medium revealed FSH regulation of FGF10 receptor expression. The addition of FGF10 to cultured granulosa cells decreased the level of estradiol but did not alter cell proliferation. These data support a role for FGF10 in signaling to granulosa cells from theca cells and/or the oocyte.
Collapse
Affiliation(s)
- J Buratini
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, CEP 18618-000, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Taniguchi F, Harada T, Iwabe T, Ohama Y, Takenaka Y, Terakawa N. Aberrant expression of keratinocyte growth factor receptor in ovarian surface epithelial cells of endometrioma. Fertil Steril 2007; 89:478-80. [PMID: 17482184 DOI: 10.1016/j.fertnstert.2007.02.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 02/23/2007] [Accepted: 02/23/2007] [Indexed: 10/23/2022]
Abstract
Ovarian surface epithelial cells (OSEs) are considered to be the common source of endometrioma and epithelial ovarian cancer. The present study reveals that keratinocyte growth factor receptor (KGFR) messenger RNA was expressed in OSEs of endometriomas but not in those of normal ovaries, suggesting that autocrine KGF/KGFR and paracrine fibroblast growth factor 10/KGFR signaling loops may be involved with the proliferation in OSEs of endometrioma.
Collapse
Affiliation(s)
- Fuminori Taniguchi
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, Yonago, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Tajima K, Orisaka M, Yata H, Goto K, Hosokawa K, Kotsuji F. Role of granulosa and theca cell interactions in ovarian follicular maturation. Microsc Res Tech 2006; 69:450-8. [PMID: 16718667 DOI: 10.1002/jemt.20304] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We developed a culture system in which two types of ovarian follicular cells were allowed to attach to opposite sides of a collagen membrane. Using this in vitro cell culture system, we studied the effects of granulosa- and theca-cell interaction on the morphology, structure, and function of bovine ovarian follicular cells. In the first part of the study, we explored how the interaction between theca and granulosa cells affects the morphology and structure of the cells. This study was done using follicular cells collected from bovine ovarian follicles at the early developmental stage. Granulosa cells cultured alone were flattened, and formed a monolayer sheet. By contrast, granulosa cells cultured with theca cells were convex, and formed multilayer sheets. Theca cells cultured alone were thin, flat, and spindle-shaped. Theca cells cultured with granulosa cells were also spindle-shaped; however, they appeared convex and more densely packed when compared with theca cells cultured alone. In the second part of the study, the possible role of the cellular interaction in the control of differentiation and growth of granulosa and theca cells was investigated. When follicular cells were isolated from the early stage of follicular development, theca cells reduced progesterone and inhibin production by granulosa cells and augmented the growth of granulosa cells. When the cells were isolated from the late stage of follicular development, by contrast, theca cells augmented hormonal production by granulosa cells, and did not affect the growth of granulosa cells. The growth and androstenedione production by theca cells were increased by the presence of granulosa cells, irrespective of the origin of follicular cells. These results demonstrated that communication between two types of follicular cells results in reciprocal modulation of their morphology, structure, growth, and function. Cellular interactions seem to be one of the major factors controlling the differentiation and growth of the follicular cells during the follicular maturation process. In contrast to granulosa and theca cells cultured alone, cells in the coculture seemed to possess morphological and functional characteristics more similar to those of cells in the growing follicular wall in vivo. Thus, we speculate that the interaction between these two types of follicular cells is essential for the maintenance of original structure and function of the bovine follicular wall.
Collapse
Affiliation(s)
- Kimihisa Tajima
- Department of Obstetrics and Gynecology, Fukui Medical University, Yoshida-gun, Fukui 910-1193, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Wollenhaupt K, Welter H, Brüssow KP, Einspanier R. Regulation of endometrial fibroblast growth factor 7 (FGF-7) and its receptor FGFR2IIIb in gilts after sex steroid replacements, and during the estrous cycle and early gestation. J Reprod Dev 2005; 51:509-19. [PMID: 15976484 DOI: 10.1262/jrd.17013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to characterize the effect of ovarian steroids and early gestation on the expression of fibroblast growth factor 7 (FGF-7) and its receptor (FGFR2IIIb) in the porcine endometrium. In Experiment 1, gilts were ovariectomized (OVX) on day 10 of the estrous cycle and treated thereafter with vehicle (VEH), progesterone (P4), estradiol benzoate (EB), or P4+EB. Days 12 and 20 cyclic gilts (C12 and C20) were used to determine the influence of physiologically low and high plasma estradiol and progesterone concentrations on their expression. In Experiment 2, the expression of FGF-7 and FGFR2IIIB was characterized on days 1 (G 1) and 12 (G 12) of gestation. FGF-7 and FGFR2IIIb mRNA were quantified by quantitative real-time RT-PCR, and localization of FGF-7 protein in steroid-treated and early pregnant gilts was performed by immunohistochemistry. VEH-gilts expressed both FGF-7 and FGFR2IIIB mRNA. We found a significant effect of EB, but no effects of P4 or P4+EB on the mRNA expression of FGF-7. FGFR2IIIb mRNA significantly decreased after the EB and combined P4+EB treatments, compared to P4 only substituted animals. Day 12 cyclic gilts showed significantly higher FGF-7 and FGFR2IIIb mRNA expression compared with day 20 gilts. Between day 1 and 12 of gestation, FGF-7 mRNA expression differed highly while FGFR2IIIb transcripts only varied significantly. FGF-7 protein was localized in endometrial epithelia, vascular smooth muscle, and the endothelium of different types of blood vessels. Staining was weak in VEH and P4 treated gilts, whereas it was prominent following EB and P4+EB. FGF-7 antibody strongly stained the luminal epithelium on day 12 of gestation. In summary, FGF-7 and FGFR2IIIb mRNA expression is regulated differently by exogenous ovarian steroids, assuming progesterone in connection with a specific amount of 17beta-estradiol, whereas the receptor seems to be inhibited by estradiol. Both transcripts coordinately increased during the progesterone dominated phase on day 12 both in cyclic and early pregnant gilts. We conclude that estradiol and progesterone are involved in the regulation of this ligand-receptor system, which might have an important role in preparing endometrial tissue for implantation in gilts.
Collapse
Affiliation(s)
- Karin Wollenhaupt
- Research Institute for the Biology of Farm Animals, Reproductive Biology, Dummerstorf, Germany
| | | | | | | |
Collapse
|
43
|
Buratini J, Glapinski VF, Giometti IC, Teixeira AB, Costa IB, Avellar MCW, Barros CM, Price CA. Expression of fibroblast growth factor-8 and its cognate receptors, fibroblast growth factor receptor (FGFR)-3c and-4, in fetal bovine preantral follicles. Mol Reprod Dev 2005; 70:255-61. [PMID: 15625702 DOI: 10.1002/mrd.20205] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Paracrine cell signaling is thought to be important for ovarian follicle development, and a role for some members of the fibroblast growth factor (FGF) family have been suggested. In the present study, we tested the hypothesis that FGF-8 and its cognate receptors (FGFR-3c and FGFR-4) are expressed in bovine preantral follicles. Reverse transcription-polymerase chain reaction was used to amplify bovine FGF-8, FGFR-3c, and FGFR-4 from preantral follicle samples and a variety of fetal and adult tissues. All three genes were widely expressed in fetal tissues, with a restricted expression pattern in adult tissues. FGF-8 and FGFR-3c were expressed in secondary follicles in 70% of fetuses examined, whereas FGFR-4 expression was significantly less frequent (20%). FGFR-3c expression frequency was significantly lower in primordial compared to secondary follicles, and FGF-8 expression showed a similar trend. FGFR-4 was only observed when all follicle classes of an individual were expressing both FGF-8 and FGFR-3c. We conclude that FGF-8 and its receptors are expressed in preantral follicles in a developmentally regulated manner.
Collapse
Affiliation(s)
- J Buratini
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Sãao Paulo, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Perry GA, Smith MF, Lucy MC, Green JA, Parks TE, MacNeil MD, Roberts AJ, Geary TW. Relationship between follicle size at insemination and pregnancy success. Proc Natl Acad Sci U S A 2005; 102:5268-73. [PMID: 15795381 PMCID: PMC556005 DOI: 10.1073/pnas.0501700102] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Indexed: 11/18/2022] Open
Abstract
Administration of gonadotropin-releasing hormone (GnRH) induces a surge of luteinizing hormone and ovulation in a variety of species, including human beings. Our objectives were to determine the effect of follicle size at the time of ovulation on corpus luteum function and establishment and maintenance of pregnancy in cows in which ovulation was either spontaneous or induced with GnRH. GnRH-induced ovulation of follicles < or approximately = 11 mm in diameter resulted in decreased pregnancy rates and increased late embryonic mortality. This decrease in fertility was associated with lower circulating concentrations of estradiol on the day of insemination, a decreased rate of increase in progesterone after insemination, and, ultimately, decreased circulating concentrations of progesterone. In contrast, ovulatory follicle size had no apparent effect on fertility when ovulation occurred spontaneously. Follicles undergoing spontaneous ovulation do so at a wide range of sizes when they are physiologically mature. Therefore, administration of GnRH to induce ovulation likely initiates a preovulatory gonadotropin surge before some dominant follicles attain physiological maturity. GnRH-induced ovulation of follicles that are physiologically immature has a negative impact on pregnancy rates and late embryonic/fetal survival. These observations in cattle may have implications for assisted reproductive procedures in human beings.
Collapse
Affiliation(s)
- George A Perry
- Department of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Berisha B, Sinowatz F, Schams D. Expression and localization of fibroblast growth factor (FGF) family members during the final growth of bovine ovarian follicles. Mol Reprod Dev 2004; 67:162-71. [PMID: 14694431 DOI: 10.1002/mrd.10386] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to investigate the possible participation of fibroblast growth factor (FGF) family members: FGF1, FGF2, and FGF7, and their receptor variants: FGFR, FGFR2IIIb, and FGFR2IIIc in theca interna (TI) and granulosa cell (GC) compartments of bovine follicles during final growth. A classification of follicles into five groups (<0.5; >0.5-5; >5-20; >20-180; >180 ng/ml, respectively) was performed according to the follicular fluid (FF) oestradiol-17beta (E) content. The mRNA expression and protein localization was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. FGF1 mRNA expression was relatively high in TI and lower in GC, and without any regulatory change for both tissue compartments during final follicular growth. The FGF1 protein could be predominantly localized in the cytoplasm of GC, in smooth muscle cells of blood vessels, in the rete ovarii, and at a lesser degree in theca cells. FGF2 mRNA in TI increased significantly in large follicles and was low and without any regulatory change in GC. FGF7 mRNA expression was relatively high in TI and very low in GC. For FGF7 in mature follicles a marked staining of the TI and the basal layers of the GC could be demonstrated. The mRNA signal for the FGFR in TI increased significantly with beginning of E production (E > 0.5-5 ng/ml FF) and was without any regulatory change in GC. The mRNA expression of FGFR2IIIb was relatively high in GC and increased significantly during final growth of follicles in contrast to the TI with very low expression. The FGFR2IIIc mRNA expression in TI and GC was relatively high but without any clear change. Our results suggest that FGF growth factor family members are involved in process of folliculogenesis and especially during final growth of the preovulatory (dominant) follicle by stimulation of angiogenesis and GC survival and proliferation.
Collapse
Affiliation(s)
- Bajram Berisha
- Physiology, Weihenstephan, Technical University of Munich, Freising, Germany
| | | | | |
Collapse
|
46
|
Nilsson EE, Doraiswamy V, Skinner MK. Transforming growth factor-beta isoform expression during bovine ovarian antral follicle development. Mol Reprod Dev 2004; 66:237-46. [PMID: 14502602 DOI: 10.1002/mrd.10350] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transforming growth factor-beta (TGF-beta) isoforms are important paracrine and autocrine signaling molecules for the regulation of ovarian follicle growth and physiology. Effective communication between the epithelial granulosa cells, the mesenchymal theca cells, and the oocyte is vital for ovarian function and reproductive success. The expression, localization, and regulation of TGF-beta isoforms in the developing bovine follicle was examined using both immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-PCR) procedures. TGF-beta1 protein was found to be present in the granulosa cells of early pre-antral, early antral, and 1-2 mm follicles. Interestingly, there was no visible staining of granulosa cells of 3-5 or 5-10 mm follicles. There was also no TGF-beta1 staining of theca cells. TGF-beta2 and TGF-beta3 staining were present in the granulosa and theca cells of all follicle stages examined. The levels of TGF-beta mRNA expression in granulosa and theca cells from antral follicles was measured using quantitative RT-PCR. For each isoform mRNA expression levels did not change in different sized antral follicles. TGF-beta3 mRNA levels were much higher than those of TGF-beta1 and TGF-beta2 in both granulosa and theca. Expression levels were higher in theca than in granulosa for TGF-beta2 and TGF-beta3. FSH was found to decrease TGF-beta1 mRNA expression in granulosa cells, but had no effect on TGF-beta2 and TGF-beta3. Bovine ovarian follicles were found to have a unique pattern of TGF-beta isoform expression and regulation when compared to other species (i.e., rodent, pig, quail, and human). The similarities and differences between the various species is discussed to help elucidate common functions of TGF-beta in the ovary. In summary, observations demonstrate that as antral follicles develop, TGF-beta3 is the most abundant TGF-beta isoform and TGF-beta1 protein levels decline in large follicles. Granulosa cell TGF-beta1 expression was decreased by FSH and this correlated with reduced levels in large antral follicles. TGF-betas involved in antral follicular growth and development appear to act as paracrine/autocrine signaling molecules having a species-specific pattern of expression.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4231, USA
| | | | | |
Collapse
|
47
|
Nilsson EE, Skinner MK. Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol Reprod 2003; 69:1265-72. [PMID: 12801979 DOI: 10.1095/biolreprod.103.018671] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The growth and development of follicles within the ovary are highly dependent on autocrine and paracrine signaling involving growth factors from granulosa cells, theca cells, stromal interstitial cells, and the oocytes. The growth factor bone morphogenetic protein-4 (BMP-4) and its receptor (BMPR-IB) have been detected in ovaries, and a mutation in BMPR-IB has been associated with abnormal ovulation rate. The objective of the current study was to examine the role that BMP-4 plays in the early stages of primordial follicle development. Ovaries from 4-day-old rats were placed into a whole-ovary organ culture system for 2 wk to investigate the effect that treatment with exogenous BMP-4 has on early follicle development. BMP-4-treated ovaries had a significantly higher proportion of developing primary follicles and fewer arrested primordial follicles than did untreated controls. This indicates that BMP-4 promotes primordial follicle development and the primordial-to-primary follicle transition. Ovaries were also treated with neutralizing antibody against BMP-4 to determine effects of removing endogenously produced BMP-4. Interestingly, ovaries treated with BMP-4 antibody were markedly smaller than controls. This was associated with a progressive loss of oocytes and primordial follicles, a progressive increase in cellular apoptosis, and an accompanying loss of normal ovarian tissue morphology over time. Immunocytochemistry localized BMP-4 protein to isolated stromal cell populations, selected stromal cells (i.e., pretheca cells) associated with developing primordial follicles, and the basement membrane of follicles. Ovaries were treated with BMP-4 and RNA collected after organ culture to determine whether BMP-4 signaling affects expression of other growth factors. Kit ligand and basic fibroblast growth factor expression was unchanged, but TGFalpha expression was decreased in whole ovaries. Taken together, these data suggest that BMP-4 plays an important role in promoting the survival and development of primordial follicles in the neonatal ovary.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4231, USA
| | | |
Collapse
|
48
|
Ricci G, Catizone A, Galdieri M. Pleiotropic activity of hepatocyte growth factor during embryonic mouse testis development. Mech Dev 2002; 118:19-28. [PMID: 12351166 DOI: 10.1016/s0925-4773(02)00247-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hepatocyte growth factor (HGF) is a pleiotropic cytokine whose action is mediated by c-met, a glycoproteic receptor with tyrosine kinase activity which transduces its multiple biological activities including cell proliferation, motility and differentiation. During embryonic development HGF acts as a morphogenetic factor as previously demonstrated for metanephric and lung development. Recently, culturing male genital ridges, we demonstrated that HGF is able to support in vitro testicular cord formation. In the present paper we report the expression pattern of the HGF gene during embryonic testis development and the multiple roles exerted by this factor during the morphogenesis of this organ. Northern blot analysis reveals a positive signal in urogenital ridges isolated from 11.5 days post coitum (dpc) embryos and in testes isolated from 13.5 and 15.5 dpc male embryos. On the contrary HGF mRNA is undetectable in ovaries isolated from 13.5 and 15.5 dpc embryos. Moreover, we demonstrate that HGF is synthesized and secreted by the male gonad and is biologically active. These data indicate a male specific biological function of HGF during embryonic gonadal development. This hypothesis is supported by the in vitro demonstration that HGF acts as a migratory factor for male mesonephric cells which is a male specific event. In addition we demonstrate that during testicular development, HGF acts as a morphogenetic factor able to reorganize dissociated testicular cells which, under HGF stimulation, form a tridimensional network of cord-like structures. Finally, we demonstrate that HGF induces testicular cell proliferation in this way being responsible for the size increase of the testis. All together the data presented in this paper demonstrate that HGF is expressed during the embryonic development of the testis and clarify the multiple roles exerted by this factor during the morphogenesis of the male gonad.
Collapse
Affiliation(s)
- G Ricci
- Department of Histology and Medical Embryology, University of Rome La Sapienza, Via A. Scarpa 14, Rome 00161, Italy
| | | | | |
Collapse
|
49
|
Doraiswamy V, Parrott JA, Skinner MK. Expression and action of transforming growth factor alpha in normal ovarian surface epithelium and ovarian cancer. Biol Reprod 2000; 63:789-96. [PMID: 10952922 DOI: 10.1095/biolreprod63.3.789] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Greater than 95% of ovarian cancers originate in the epithelial cells on the surface of the ovary. The current study investigates the expression and action of transforming growth factor alpha (TGFalpha) in ovarian surface epithelium (OSE) and the underlying stroma in both normal and tumorigenic ovarian tissues. Normal bovine ovaries are used in the current study as a model system to investigate normal OSE functions. Transforming growth factor alpha and its receptor, the epidermal growth factor receptor (EGFR), were detected in the OSE from normal ovaries by immunocytochemistry (ICC). Ovarian stromal tissue also contained reduced but positive TGFalpha and EGFR immunostaining. To examine TGFalpha and EGFR gene expression, RNA was collected from normal bovine OSE and ovarian stromal cells. The TGFalpha and EGFR transcripts were detected in both fresh and cultured OSE and stromal cells by a sensitive quantitative reverse transcription polymerase chain reaction (QRT-PCR) assay. Transforming growth factor alpha gene expression was found to be high in freshly isolated OSE, but low in freshly isolated stroma. In contrast, EGFR expression was higher in the stroma compared to the OSE. Both the ICC and QRT-PCR indicate that normal OSE express high levels of TGFalpha in vivo and in vitro. In vitro, normal ovarian stromal cells develop the capacity to express high levels of EGFR. Human ovarian tumors from stage II, stage III, and stage IV ovarian cancer cases were found to express TGFalpha and EGFR protein in the epithelial cell component of the tumor by ICC analysis. The stromal cell component of human ovarian tumors contained little or no TGFalpha/EGFR immunostaining. Observations suggest that tumor progression may in part require autocrine stimulation of the epithelia. Transforming growth factor alpha was found to stimulate the growth of normal bovine OSE and stroma cells to the same level as epidermal growth factor. Two ovarian cancer cell lines, SKOV3 and OCC1, were also stimulated to proliferate in response to TGFalpha. Transforming growth factor alpha was also found to stimulate the expression of two growth factors previously shown to be produced by OSE. Transforming growth factor alpha stimulates both kit ligand/stem cell factor and keratinocyte growth factor production by OSE. The effect of hormones on TGFalpha and EGFR expression by the OSE was also examined. Human chorionic gonadotropin stimulated TGFalpha expression, but not FSH. Both hCG and FSH stimulated EGFR expression by OSE. Combined observations suggest a role of systemic hormones and a locally produced growth factor, TGFalpha, in OSE biology. Insight is also provided into how the OSE may develop abnormal growth characteristics involved in the onset and progression of ovarian cancer.
Collapse
Affiliation(s)
- V Doraiswamy
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163-4231, USA
| | | | | |
Collapse
|
50
|
Parrott JA, Mosher R, Kim G, Skinner MK. Autocrine interactions of keratinocyte growth factor, hepatocyte growth factor, and kit-ligand in the regulation of normal ovarian surface epithelial cells. Endocrinology 2000; 141:2532-9. [PMID: 10875255 DOI: 10.1210/endo.141.7.7581] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ovarian tumors are primarily derived from the layer of epithelium surrounding the ovary termed the ovarian surface epithelium (OSE). Although extensive research has focused on established ovarian tumors, relatively little is known about the normal biology of the OSE that gives rise to ovarian cancer. The local expression and actions of growth factors are likely involved in both normal and tumorigenic OSE biology. The current study investigates the expression and action of keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), and kit-ligand (KL) in normal ovarian surface epithelium (OSE). The actions of various growth factors on KGF, HGF, and KL expression are examined. Observations indicate that freshly isolated normal OSE express the genes for KGF, HGF, and KL and expression is maintained in vitro. KGF messenger RNA expression in OSE was found to be stimulated by KGF and HGF, but not KL. HGF expression in OSE was found to be stimulated by KGF, HGF, and KL. KL expression in OSE was also found to be stimulated by KGF, HGF, and KL. Therefore, the various growth factors can regulate the mRNA expression of each other in OSE. Effects of growth factors on OSE growth were examined. KGF, HGF, and KL stimulated OSE growth to similar levels as the positive control epidermal growth factor. Observations suggest that KGF, HGF, and KL interact to promote OSE growth and growth factor expression. The ability of these growth factors to interact in a positive autocrine feedback loop is postulated to be important for normal OSE biology. Paracrine interactions with the adjacent stromal cells will also be a factor in OSE biology. Abnormal interactions of these growth factors may be involved in the onset and progression of ovarian cancer.
Collapse
Affiliation(s)
- J A Parrott
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman 99163-4231, USA
| | | | | | | |
Collapse
|