1
|
Liu Y, Wang Y, Zhang Y, Liu T, Jia H, Zou H, Fu Q, Zhang Y, Lu L, Chao E, Parker H, Nguyen-Tran V, Shen W, Wang D, Schultz PG, Wang F. Rational Design of Dual Agonist-Antibody Fusions as Long-acting Therapeutic Hormones. ACS Chem Biol 2016; 11:2991-2995. [PMID: 27704775 DOI: 10.1021/acschembio.6b00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent studies have suggested that modulation of two or more signaling pathways can achieve substantial weight loss and glycemic stability. We have developed an approach to the generation of bifunctional antibody agonists that activate leptin receptor and GLP-1 receptor. Leptin was fused into the complementarity determining region 3 loop of the light chain alone, or in combination with exendin-4 (EX4) fused at the N-terminus of the heavy chain of Herceptin. The antibody fusions exhibit similar or increased in vitro activities on their cognate receptors, but 50-100-fold longer circulating half-lives in rodents compared to the corresponding native peptides/proteins. The efficacy of the leptin/EX4 dual antibody fusion on weight loss, especially fat mass loss, was enhanced in ob/ob mice and DIO mice compared to the antibody fusion of either EX4 or leptin alone. This work demonstrates the versatility of this combinatorial fusion strategy for generating dual antibody agonists with long half-lives.
Collapse
Affiliation(s)
- Yan Liu
- California Institute for Biomedical Research, La Jolla, California 92037, United States
| | - Ying Wang
- California Institute for Biomedical Research, La Jolla, California 92037, United States
| | - Yong Zhang
- California Institute for Biomedical Research, La Jolla, California 92037, United States
| | - Tao Liu
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Haiqun Jia
- California Institute for Biomedical Research, La Jolla, California 92037, United States
| | - Huafei Zou
- California Institute for Biomedical Research, La Jolla, California 92037, United States
| | - Qiangwei Fu
- California Institute for Biomedical Research, La Jolla, California 92037, United States
| | - Yuhan Zhang
- California Institute for Biomedical Research, La Jolla, California 92037, United States
| | - Lucy Lu
- California Institute for Biomedical Research, La Jolla, California 92037, United States
| | - Elizabeth Chao
- California Institute for Biomedical Research, La Jolla, California 92037, United States
| | - Holly Parker
- California Institute for Biomedical Research, La Jolla, California 92037, United States
| | - Van Nguyen-Tran
- California Institute for Biomedical Research, La Jolla, California 92037, United States
| | - Weijun Shen
- California Institute for Biomedical Research, La Jolla, California 92037, United States
| | - Danling Wang
- California Institute for Biomedical Research, La Jolla, California 92037, United States
| | - Peter G. Schultz
- California Institute for Biomedical Research, La Jolla, California 92037, United States
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Feng Wang
- California Institute for Biomedical Research, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Londraville RL, Macotela Y, Duff RJ, Easterling MR, Liu Q, Crespi EJ. Comparative endocrinology of leptin: assessing function in a phylogenetic context. Gen Comp Endocrinol 2014; 203:146-57. [PMID: 24525452 PMCID: PMC4128956 DOI: 10.1016/j.ygcen.2014.02.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/11/2022]
Abstract
As we approach the end of two decades of leptin research, the comparative biology of leptin is just beginning. We now have several leptin orthologs described from nearly every major clade among vertebrates, and are moving beyond gene descriptions to functional studies. Even at this early stage, it is clear that non-mammals display clear functional similarities and differences with their better-studied mammalian counterparts. This review assesses what we know about leptin function in mammals and non-mammals, and gives examples of how these data can inform leptin biology in humans.
Collapse
Affiliation(s)
- Richard L Londraville
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA.
| | - Yazmin Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Robert J Duff
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA
| | - Marietta R Easterling
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Qin Liu
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA
| | - Erica J Crespi
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
3
|
Zhou X, Chai Y, Chen K, Yang Y, Liu Z. A meta-analysis of reference values of leptin concentration in healthy postmenopausal women. PLoS One 2013; 8:e72734. [PMID: 24023638 PMCID: PMC3758328 DOI: 10.1371/journal.pone.0072734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/12/2013] [Indexed: 02/07/2023] Open
Abstract
Objective There are numerous reports about the leptin concentration (LC) in postmenopausal women (PW). Changes in LC can elicit different clinical outcomes. We systematically analyzed the LC in PW. Methods A search was conducted in original English-language studies published from 1994 to October 2012 in the following databases: Medline (78), Cochrane Center (123) Embase (505), Biological abstracts (108), Cochrane (53) and Science Finder Scholar (0). A meta-analysis was undertaken on the correction coefficient (r) between the serum LC and body mass index (BMI) for healthy PW across studies containing a dataset and sample size. Pre-analytical and analytical variations were examined. Pre-analytical variables included fasting status (FS) and sampling timing. Analytical variation comprised assay methodology, LC in those undertaking hormone replacement therapy (HRT) and those not having HRT as well as LC change according to age. Results Twenty-seven studies met the inclusion criteria. Eighteen studies detected LC in the morning in a FS, 15 studies denoted the r between leptin and the BMI. A combined r was counted for the 15 studies (r = 0.51 [95% confidence interval (CI), 0.46–0.54], P = 0.025), and if sampling collection was in the FSat morning, a combined r was form 10 studies (r = 0.54 [95% CI, 0.45–0.54], P = 0.299) and heterogeneity was diminished. LC did not change between HRT users and non-users in 7 studies. Five studies analyzed changes in LC according to age. Conclusion Based on all studies that investigated both LC and BMI, LC was positively correlated with the BMI. No studies established reference ranges according to the Clinical and Laboratory Standards Institute (CLSI) in healthy PW, and there was a wide variation in LC values. These differences suggest that caution should be used in the interpretation and comparison between studies.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, China
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - YanLan Chai
- Department of Radiation Oncology, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, China
| | - Ke Chen
- Department of Physiology and Pathophysiology, Health Science Center, Xi'an Jiaotong University, China
| | - YunYi Yang
- Department of Radiation Oncology, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, China
| | - Zi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, China
- * E-mail:
| |
Collapse
|
4
|
Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, Hamnvik OPR, Koniaris A. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 2011; 301:E567-84. [PMID: 21791620 PMCID: PMC3191548 DOI: 10.1152/ajpendo.00315.2011] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leptin, discovered through positional cloning 15 years ago, is an adipocyte-secreted hormone with pleiotropic effects in the physiology and pathophysiology of energy homeostasis, endocrinology, and metabolism. Studies in vitro and in animal models highlight the potential for leptin to regulate a number of physiological functions. Available evidence from human studies indicates that leptin has a mainly permissive role, with leptin administration being effective in states of leptin deficiency, less effective in states of leptin adequacy, and largely ineffective in states of leptin excess. Results from interventional studies in humans demonstrate that leptin administration in subjects with congenital complete leptin deficiency or subjects with partial leptin deficiency (subjects with lipoatrophy, congenital or related to HIV infection, and women with hypothalamic amenorrhea) reverses the energy homeostasis and neuroendocrine and metabolic abnormalities associated with these conditions. More specifically, in women with hypothalamic amenorrhea, leptin helps restore abnormalities in hypothalamic-pituitary-peripheral axes including the gonadal, thyroid, growth hormone, and to a lesser extent adrenal axes. Furthermore, leptin results in resumption of menses in the majority of these subjects and, in the long term, may increase bone mineral content and density, especially at the lumbar spine. In patients with congenital or HIV-related lipoatrophy, leptin treatment is also associated with improvements in insulin sensitivity and lipid profile, concomitant with reduced visceral and ectopic fat deposition. In contrast, leptin's effects are largely absent in the obese hyperleptinemic state, probably due to leptin resistance or tolerance. Hence, another emerging area of research pertains to the discovery and/or usefulness of leptin sensitizers. Results from ongoing studies are expected to further increase our understanding of the role of leptin and the potential clinical applications of leptin or its analogs in human therapeutics.
Collapse
Affiliation(s)
- Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Dardeno TA, Chou SH, Moon HS, Chamberland JP, Fiorenza CG, Mantzoros CS. Leptin in human physiology and therapeutics. Front Neuroendocrinol 2010; 31:377-93. [PMID: 20600241 PMCID: PMC2916735 DOI: 10.1016/j.yfrne.2010.06.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 12/25/2022]
Abstract
Leptin regulates energy homeostasis and reproductive, neuroendocrine, immune, and metabolic functions. In this review, we describe the role of leptin in human physiology and review evidence from recent "proof of concept" clinical trials using recombinant human leptin in subjects with congenital leptin deficiency, hypoleptinemia associated with energy-deficient states, and hyperleptinemia associated with garden-variety obesity. Since most obese individuals are largely leptin-tolerant or -resistant, therapeutic uses of leptin are currently limited to patients with complete or partial leptin deficiency, including hypothalamic amenorrhea and lipoatrophy. Leptin administration in these energy-deficient states may help restore associated neuroendocrine, metabolic, and immune function and bone metabolism. Leptin treatment is currently available for individuals with congenital leptin deficiency and congenital lipoatrophy. The long-term efficacy and safety of leptin treatment in hypothalamic amenorrhea and acquired lipoatrophy are currently under investigation. Whether combination therapy with leptin and potential leptin sensitizers will prove effective in the treatment of garden-variety obesity and whether leptin may have a role in weight loss maintenance is being greatly anticipated.
Collapse
Affiliation(s)
- Tina A Dardeno
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | | | | | | | | | | |
Collapse
|
6
|
Price TO, Farr SA, Yi X, Vinogradov S, Batrakova E, Banks WA, Kabanov AV. Transport across the blood-brain barrier of pluronic leptin. J Pharmacol Exp Ther 2010; 333:253-63. [PMID: 20053933 PMCID: PMC2846026 DOI: 10.1124/jpet.109.158147] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 11/16/2009] [Indexed: 11/22/2022] Open
Abstract
Leptin is a peptide hormone produced primarily by adipose tissue that acts as a major regulator of food intake and energy homeostasis. Impaired transport of leptin across the blood-brain barrier (BBB) contributes to leptin resistance, which is a cause of obesity. Leptin as a candidate for the treatment of this obesity is limited because of the short half-life in circulation and the decreased BBB transport that arises in obesity. Chemical modification of polypeptides with amphiphilic poly(ethylene oxide)-poly(propylene oxide) block copolymers (Pluronic) is a promising technology to improve efficiency of delivery of polypeptides to the brain. In the present study, we determined the effects of Pluronic P85 (P85) with intermediate hydrophilic-lipophilic balance conjugated with leptin via a degradable SS bond [leptin(ss)-P85] on food intake, clearance, stability, and BBB uptake. The leptin(ss)-P85 exhibited biological activity when injected intracerebroventricularly after overnight food deprivation and 125I-leptin(ss)-P85 was stable in blood, with a half-time clearance of 32.3 min (versus 5.46 min for leptin). 125I-Leptin(ss)-P85 crossed the BBB [blood-to-brain unidirectional influx rate (K(i)) = 0.272 +/- 0.037 microl/g x min] by a nonsaturable mechanism unrelated to the leptin transporter. Capillary depletion showed that most of the 125I-leptin(ss)-P85 taken up by the brain reached the brain parenchyma. Food intake was reduced when 3 mg of leptin(ss)-P85 was administered via tail vein in normal body weight mice [0-30 min, p < 0.0005; 0-2 h, p < 0.001]. These studies show that the structure based Pluronic modification of leptin increased metabolic stability, reduced food intake, and allowed BBB penetration by a mechanism-independent BBB leptin transporter.
Collapse
Affiliation(s)
- Tulin O Price
- Geriatric Research, Education, and Clinical Center, VA Medical Center, John Cochran Division, 915 N. Grand Blvd., St. Louis, MO 63106, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Ceccarini G, Flavell RR, Butelman ER, Synan M, Willnow TE, Bar-Dagan M, Goldsmith SJ, Kreek MJ, Kothari P, Vallabhajosula S, Muir TW, Friedman JM. PET imaging of leptin biodistribution and metabolism in rodents and primates. Cell Metab 2009; 10:148-59. [PMID: 19656493 PMCID: PMC2867490 DOI: 10.1016/j.cmet.2009.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 05/26/2009] [Accepted: 07/03/2009] [Indexed: 12/21/2022]
Abstract
We have determined the systemic biodistribution of the hormone leptin by PET imaging. PET imaging using (18)F- and (68)Ga-labeled leptin revealed that, in mouse, the hormone was rapidly taken up by megalin (gp330/LRP2), a multiligand endocytic receptor localized in renal tubules. In addition, in rhesus monkeys, 15% of labeled leptin localized to red bone marrow, which was consistent with hormone uptake in rodent tissues. These data confirm a megalin-dependent mechanism for renal uptake in vivo. The significant binding to immune cells and blood cell precursors in bone marrow is also consistent with prior evidence showing that leptin modulates immune function. These experiments set the stage for similar studies in humans to assess the extent to which alterations of leptin's biodistribution might contribute to obesity; they also provide a general chemical strategy for (18)F labeling of proteins for PET imaging of other polypeptide hormones.
Collapse
Affiliation(s)
- Giovanni Ceccarini
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Robert R Flavell
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University
| | - Eduardo R Butelman
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University
| | - Michael Synan
- Citigroup Biomedical Imaging Center Weill Cornell Medical College, Cornell University, New York, NY 10065
| | | | - Maya Bar-Dagan
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University
| | - Stanley J Goldsmith
- Citigroup Biomedical Imaging Center Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Mary J Kreek
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University
| | - Paresh Kothari
- Citigroup Biomedical Imaging Center Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Shankar Vallabhajosula
- Citigroup Biomedical Imaging Center Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Tom W Muir
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| |
Collapse
|
8
|
Kurrimbux D, Gaffen Z, Farrell CL, Martin D, Thomas SA. The involvement of the blood–brain and the blood–cerebrospinal fluid barriers in the distribution of leptin into and out of the rat brain. Neuroscience 2004; 123:527-36. [PMID: 14698759 DOI: 10.1016/j.neuroscience.2003.08.061] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Leptin is a 16 kDa hormone that is produced by adipose tissue and has a central effect on food intake and energy homeostasis. The ability of leptin to cross the blood-brain and blood-cerebrospinal fluid (CSF) barriers and reach or leave the CNS was studied by the bilateral in situ brain perfusion and isolated incubated choroid plexus techniques in the rat. Brain perfusion results indicated that [(125)I]leptin reached the CNS at higher concentrations than the vascular marker, confirming that [(125)I]leptin crossed the brain barriers. Leptin distribution varied between CNS regions and indicated that the blood-brain barrier, in contrast to the blood-CSF route, was the key pathway for [(125)I]leptin to reach the brain. Further perfusion studies revealed that [(125)I]leptin movement into the arcuate nucleus, thalamus, frontal cortex, choroid plexuses and CSF was unaffected by unlabelled human or murine leptin at a concentration that reflects the upper human and rat plasma leptin concentration (2.5 nM). In contrast, the cerebellum uptake of [(125)I]leptin was decreased by 73% with 2.5 nM human leptin. Thus, this site of dense leptin receptor expression would be sensitive to physiological changes in leptin plasma concentrations. The highest rate (K(in)) of [(125)I]leptin uptake was into the choroid plexuses (307.7+/-68.0 microl/min/g); however, this was not reflected in the CSF (8.9+/-4.1 microl/min/g) and indicates that this tissue tightly regulates leptin distribution. The multiple-time brain uptake of [(125)I]leptin was non-linear and suggested leptin could also be removed from the CNS. Studies using the incubated rat choroid plexus model found that [(125)I]leptin could cross the apical membrane of the choroid plexus to leave the CSF. However, this movement was not sensitive to unlabelled human leptin or specific transport inhibitors/modulators (including probenecid, digoxin, deltorphin II, progesterone and indomethacin).This study supports the concept of brain-barrier regulation of leptin distribution to the CNS, and highlights an important link between leptin and the cerebellum.
Collapse
Affiliation(s)
- D Kurrimbux
- Centre for Neuroscience, Guy's, King's and St. Thomas School of Biomedical Sciences, King's College London, Hodgkin Building, Guy's Hospital Campus, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
9
|
Abstract
OBJECTIVE The pharmacokinetic characteristics of human leptin were examined in rhesus monkeys and in C57BL/6J mice fed a normal chow or a high-fat diet. DESIGN For the monkey study, in nine rhesus monkeys (body weight 12.4 +/- 2.4 kg; mean +/- s.d.), recombinant met-human leptin was injected intravenously or subcutaneously (1 mg/kg). For the mouse study, after 6 months of feeding C57BL/6J mice a high-fat diet (body weight 32.9 +/- 3.6 g; n = 8) or a control diet (24.5 +/- 1.2 g; n = 6), recombinant met-human leptin was administered intraperitoneally (10 microg/g). Blood samples were collected for leptin measurement at specific time points after leptin administration. MEASUREMENTS Plasma leptin concentrations were determined by radioimmunoassay and pharmacokinetic analysis was performed. RESULTS Disposition of human leptin in rhesus monkeys was biphasic following intravenous administration, with a terminal phase half-life of 96.4 +/- 16.5 min and clearance of 1.8 +/- 0.2 ml/min/kg. Subcutaneously administered leptin was absorbed slowly, perhaps by a zero-order process as leptin levels appeared to plateau and remained elevated throughout the 8 h sampling period. In C57BL/6J mice, the absorption and elimination of human leptin were both first-order following intraperitoneal administration. Pharmacokinetic parameters did not differ between normal-weight mice fed a chow diet and obese mice fed a high-fat diet. The elimination half-life was 47.0 +/- 26.4 min in mice fed a high-fat diet and 49.5 +/- 12.0 min in mice fed a control diet. CONCLUSION The kinetics of leptin in rhesus monkeys were biphasic and clearance was similar to values previously reported in humans. The estimated half-life was 96.4 min in rhesus monkeys and 49.5 min in normal weight mice. The was no difference in leptin kinetics between high-fat fed and control mice, suggesting that the increased baseline leptin levels in the obese mice are due to increased leptin production and secretion.
Collapse
Affiliation(s)
- B Ahrén
- Department of Medicine, Lund University, Malmö, Sweden.
| | | | | |
Collapse
|
10
|
Himms-Hagen J. Physiological roles of the leptin endocrine system: differences between mice and humans. Crit Rev Clin Lab Sci 1999; 36:575-655. [PMID: 10656540 DOI: 10.1080/10408369991239259] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Leptin is a 16-kDa cytokine secreted in humans primarily but not exclusively by adipose tissues. Its concentration in blood is usually proportional to body fat mass, but is higher in women than in men not only because of a different distribution of and greater fat mass in women, but also because testosterone reduces its level in men. Leptin features in different ways during the life span. It is synthesized in the ovary, transported in the oocyte, and made by both fetus and placenta, particularly during the last month of gestation. It is made by the lactating mammary gland and ingested by the newborn infant in its milk. The prime importance of leptin is realized at puberty when it is necessary for progression to a normal adult reproductive status in females. Fasting and chronic undernutrition result in a lower level of leptin in the blood. Lack of leptin results in hunger, ensuring that the individual eat to survive, and also inhibition of reproduction, until such time as food and fat stores are adequate to supply energy for pregnancy and lactation. Thus, leptin is important for survival of the individual and survival of the species. Although an extremely rare genetic absence of leptin induces hyperphagia and obesity in humans, as it does in mice, there appears to be little role for leptin in humans in ensuring that fat stores are not in excess of adequate, that is, in preventing obesity. The mouse differs from humans in many respects, in particular in the far more drastic ways it conserves energy when it very rapidly adapts to lack of food. These include not only suppression of reproduction but also lowering of its body temperature (torpor), suppressing its thyroid function, suppressing its growth, and increasing secretion of stress hormones (from the adrenal). This review concentrates on roles of leptin in human physiology and pathophysiology but also discusses why some observations on actions of leptin in mice are not applicable to humans.
Collapse
Affiliation(s)
- J Himms-Hagen
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, ON.
| |
Collapse
|