1
|
Keller D, Tsuda MC, Usdin TB, Dobolyi A. Behavioural actions of tuberoinfundibular peptide 39 (parathyroid hormone 2). J Neuroendocrinol 2022; 34:e13130. [PMID: 35499975 PMCID: PMC9515240 DOI: 10.1111/jne.13130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 12/31/2022]
Abstract
Tuberoinfundibular peptide of 39 residues (TIP39) acts via its endogenous class B G-protein coupled receptorthe parathyroid hormone 2 receptor (PTH2R). Hence, it is also known as parathyroid hormone 2. The peptide is expressed in the brain by a small number of neurons with a highly restricted distribution, which in turn project to a large number of brain regions that contain PTH2R. This peptide neuromodulator system has been extensively investigated over the past 20 years including its behavioural actions, such as its role in the control of nociception, fear and fear incubation, anxiety and depression-like behaviours, and maternal and social behaviours. It also influences thermoregulation and potentially auditory responses. TIP39 probably exerts direct effect on the neuronal networks controlling these behaviours based on the localization of PTH2R and local TIP39 actions. In addition, TIP39 also affects the secretion of several hypothalamic hormones providing the basis for indirect behavioural actions. Recently developed experimental tools have stimulated further behavioural investigations, and novel results obtained are discussed in this review.
Collapse
Affiliation(s)
- Dávid Keller
- ELKH‐ELTE Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd Research Network and Eötvös Loránd UniversityBudapestHungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and EmbryologySemmelweis UniversityBudapestHungary
| | - Mumeko C. Tsuda
- Preclinical Behavior and Modeling Core, Uniformed Services UniversityBethesdaMarylandUSA
| | - Ted B. Usdin
- Systems Neuroscience Imaging Resource, National Institute of Mental Health, NIHBethesdaMarylandUSA
| | - Arpád Dobolyi
- ELKH‐ELTE Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd Research Network and Eötvös Loránd UniversityBudapestHungary
- Department of Physiology and NeurobiologyEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
2
|
Diskin J, Diskin CJ. Mental Effects of Excess Parathyroid Hormone in Hemodialysis Patients: A Possible Role for Parathyroid 2 Hormone Receptor? Ther Apher Dial 2019; 24:285-289. [PMID: 31423747 DOI: 10.1111/1744-9987.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Depression as measured by the kidney disease quality of life (KDQOL) form is known to be an independent risk factor for mortality dialysis patients. Excess parathyroid hormone (PTH) has long been associated with neuropsychiatric disturbances. Those psychiatric complications are currently attributed to hypercalcemia with very little evidence; however, with the discovery of the parathyroid hormone 2 receptor (PTH2R) in the brain which can be activated by PTH, PTH2R might indicate a direct effect of PTH. As secondary and tertiary hyperparathyroidism is common in dialysis patients where the serum calcium is low or normal, we chose to investigate a possible relationship between PTH levels and depression in dialysis patients. This was a matched pair observational study with 10 patients with intact PTH values above 1000 pg/mL who were matched with 10 patients who had PTH values less than 400 pg/mL for the presence of diabetes, years on dialysis, duration of dialysis time, Kt/V, hemoglobin, and 25 OH vitamin D levels, as well as intravenous iron and erythropoietin administration. The Kidney Disease Quality of Life questionnaire (KDQOL-36) scores and patient Health Questionnaire scores were analyzed during that time. All variables underwent tests for normality and matched pair t-test. All subscales of the KDQOL-36 were worse in the high PTH group with the effect on daily life reaching P = 0.01 and the burden of disease and symptoms both reaching P = 0.02. PTH and PTH2R may be appropriate targets for investigations to improve the quality of life in hemodialysis patients.
Collapse
Affiliation(s)
- James Diskin
- Hypertension, Nephrology, Dialysis & Transplantation, Edward Via School of Osteopathic Medicine at Auburn University, Opelika, AL, USA.,Chillicothe Veterans Affairs Medical Center, Chillicothe, OH, USA
| | - Charles J Diskin
- Hypertension, Nephrology, Dialysis & Transplantation, Edward Via School of Osteopathic Medicine at Auburn University, Opelika, AL, USA
| |
Collapse
|
3
|
Gustafson P, Bunn SJ, Grattan DR. The role of prolactin in the suppression of Crh mRNA expression during pregnancy and lactation in the mouse. J Neuroendocrinol 2017; 29. [PMID: 28744978 DOI: 10.1111/jne.12511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 11/28/2022]
Abstract
Maternal stress is associated with negative health consequences for both the mother and her offspring. To prevent these adverse outcomes, activity of the hypothalamic-pituitary-adrenal (HPA) axis is attenuated during pregnancy and lactation. Although the mechanisms generating this adaptive change have not been defined fully, the anterior pituitary hormone prolactin may play a significant role. The present study investigated the role of prolactin in regulating the basal activity of the HPA axis during pregnancy and lactation in the mouse, focussing upon the corticotrophin-releasing hormone (CRH) neurones. Using in situ hybridisation, a decrease in Crh mRNA-expressing cell number in pregnant (55.6±9.0 cells per section) and lactating (97.4±4.9) mice compared to virgin controls was characterised (186.8±18.7, P<.01 Tukey-Kramer test; n=6-7 per group). Removal of the pups (24 hours) and thus the associated suckling-induced prolactin secretion, restored CRH neurone number (180.1±19.7). To specifically test the role of prolactin in suppressing Crh mRNA expression in lactation, prolactin levels were selectively manipulated in lactating mice. Lactating mice were treated with ovine prolactin (1500 μg day-1 , osmotic minipump, s.c.; n=7) or vehicle (n=6) for 24 hours following pup removal. This was sufficient to suppress Crh mRNA expression from 108.0±13.5 to 53.7±16.7 cells per section (P<.05 Student's t-test). Additional cohorts of lactating mice were treated with bromocriptine (300 μg over 24 hours, s.c.; n=7) or vehicle (n=5) to suppress endogenous prolactin secretion; however, no change in Crh mRNA expression was detected. Thus, although prolactin was sufficient to suppress Crh mRNA expression in the paraventricular nucleus, it does not appear to be required for the ongoing regulation of the CRH neurones in lactation.
Collapse
Affiliation(s)
- P Gustafson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - S J Bunn
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - D R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Gardella TJ, Vilardaga JP. International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors--family B G protein-coupled receptors. Pharmacol Rev 2015; 67:310-37. [PMID: 25713287 PMCID: PMC4394688 DOI: 10.1124/pr.114.009464] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein-coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic "two-site" mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gα(s)/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors.
Collapse
Affiliation(s)
- Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts (T.J.G.); and Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (J.-P.V.)
| | - Jean-Pierre Vilardaga
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts (T.J.G.); and Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (J.-P.V.)
| |
Collapse
|
5
|
Varga T, Mogyoródi B, Bagó AG, Cservenák M, Domokos D, Renner É, Gallatz K, Usdin TB, Palkovits M, Dobolyi A. Paralemniscal TIP39 is induced in rat dams and may participate in maternal functions. Brain Struct Funct 2012; 217:323-35. [PMID: 22081168 PMCID: PMC3294170 DOI: 10.1007/s00429-011-0357-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 10/17/2011] [Indexed: 12/19/2022]
Abstract
The paralemniscal area, situated between the pontine reticular formation and the lateral lemniscus in the pontomesencephalic tegmentum contains some tuberoinfundibular peptide of 39 residues (TIP39)-expressing neurons. In the present study, we measured a 4 times increase in the level of TIP39 mRNA in the paralemniscal area of lactating mothers as opposed to nulliparous females and mothers deprived of pups using real-time RT-PCR. In situ hybridization histochemistry and immunolabeling demonstrated that the induction of TIP39 in mothers takes place within the medial paralemniscal nucleus, a cytoarchitectonically distinct part of the paralemniscal area, and that the increase in TIP39 mRNA levels translates into elevated peptide levels in dams. The paralemniscal area has been implicated in maternal control as well as in pain perception. To establish the function of induced TIP39, we investigated the activation of TIP39 neurons in response to pup exposure as maternal, and formalin injection as noxious stimulus. Both stimuli elicited c-fos expression in the paralemniscal area. Subsequent double labeling demonstrated that 95% of neurons expressing Fos in response to pup exposure also contained TIP39 immunoreactivity and 91% of TIP39 neurons showed c-fos activation by pup exposure. In contrast, formalin-induced Fos does not co-localize with TIP39. Instead, most formalin-activated neurons are situated medial to the TIP39 cell group. Our data indicate that paralemniscal neurons may be involved in the processing of maternal and nociceptive information. However, two different groups of paralemniscal neurons participate in the two functions. In particular, TIP39 neurons may participate in the control of maternal functions.
Collapse
Affiliation(s)
- Tamás Varga
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| | - Bence Mogyoródi
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| | - Attila G. Bagó
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary, National Institute of Neurosurgery, Budapest, Hungary
| | - Melinda Cservenák
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| | - Dominika Domokos
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| | - Éva Renner
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| | - Katalin Gallatz
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| | - Ted B. Usdin
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Miklós Palkovits
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| | - Arpád Dobolyi
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| |
Collapse
|
6
|
Regulation of hypothalamic signaling by tuberoinfundibular peptide of 39 residues is critical for the response to cold: a novel peptidergic mechanism of thermoregulation. J Neurosci 2012; 31:18166-79. [PMID: 22159128 DOI: 10.1523/jneurosci.2619-11.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Euthermia is critical for mammalian homeostasis. Circuits within the preoptic hypothalamus regulate temperature, with fine control exerted via descending GABAergic inhibition of presympathetic motor neurons that control brown adipose tissue (BAT) thermogenesis and cutaneous vascular tone. The thermoregulatory role of hypothalamic excitatory neurons is less clear. Here we report peptidergic regulation of preoptic glutamatergic neurons that contributes to temperature regulation. Tuberoinfundibular peptide of 39 residues (TIP39) is a ligand for the parathyroid hormone 2 receptor (PTH2R). Both peptide and receptor are abundant in the preoptic hypothalamus. Based on PTH2R and vesicular glutamate transporter 2 (VGlut2) immunolabeling in animals with retrograde tracer injection, PTH2R-containing glutamatergic fibers are presynaptic to neurons projecting from the median preoptic nucleus (MnPO) to the dorsomedial hypothalamus. Transneuronal retrograde pathway tracing with pseudorabies virus revealed connectivity between MnPO VGlut2 and PTH2R neurons and BAT. MnPO injection of TIP39 increased body temperature by 2°C for several hours. Mice lacking TIP39 signaling, either because of PTH2R-null mutation or brain delivery of a PTH2R antagonist had impaired heat production upon cold exposure, but no change in basal temperature and no impairment in response to a hot environment. Thus, TIP39 appears to act on PTH2Rs present on MnPO glutamatergic terminals to regulate their activation of projection neurons and subsequent sympathetic BAT activation. This excitatory mechanism of heat production appears to be activated on demand, during cold exposure, and parallels the tonic inhibitory GABAergic control of body temperature.
Collapse
|
7
|
Dobolyi A, Dimitrov E, Palkovits M, Usdin TB. The neuroendocrine functions of the parathyroid hormone 2 receptor. Front Endocrinol (Lausanne) 2012; 3:121. [PMID: 23060860 PMCID: PMC3465808 DOI: 10.3389/fendo.2012.00121] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/20/2012] [Indexed: 01/25/2023] Open
Abstract
The G-protein coupled parathyroid hormone 2 receptor (PTH2R) is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand, tuberoinfundibular peptide of 39 residues (TIP39), is synthesized in only two brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine-vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control neuroendocrine disorders.
Collapse
Affiliation(s)
- Arpád Dobolyi
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Hungarian Academy of Sciences, Semmelweis UniversityBudapest, Hungary
- *Correspondence: Arpád Dobolyi, Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Hungarian Academy of Sciences, Semmelweis University, Tűzoltó u. 58, Budapest H-1094, Hungary. e-mail:
| | - Eugene Dimitrov
- Section on Fundamental Neuroscience, National Institute of Mental Health, National Institute of HealthBethesda, MD, USA
| | - Miklós Palkovits
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Hungarian Academy of Sciences, Semmelweis UniversityBudapest, Hungary
| | - Ted B. Usdin
- Section on Fundamental Neuroscience, National Institute of Mental Health, National Institute of HealthBethesda, MD, USA
| |
Collapse
|
8
|
|
9
|
Bhattacharya P, Yan YL, Postlethwait J, Rubin DA. Evolution of the vertebrate pth2 (tip39) gene family and the regulation of PTH type 2 receptor (pth2r) and its endogenous ligand pth2 by hedgehog signaling in zebrafish development. J Endocrinol 2011; 211:187-200. [PMID: 21880859 PMCID: PMC3192934 DOI: 10.1530/joe-10-0439] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, parathyroid hormone (PTH), secreted by parathyroid glands, increases calcium levels in the blood from reservoirs in bone. While mammals have two PTH receptor genes, PTH1R and PTH2R, zebrafish has three receptors, pth1r, pth2r, and pth3r. PTH can activate all three zebrafish Pthrs while PTH2 (alias tuberoinfundibular peptide 39, TIP39) preferentially activates zebrafish and mammalian PTH2Rs. We know little about the roles of the PTH2/PTH2R system in the development of any animal. To determine the roles of PTH2 and PTH2R during vertebrate development, we evaluated their expression patterns in developing zebrafish, observed their phylogenetic and conserved synteny relationships with humans, and described the genomic organization of pth2, pth2r, and pth2r splice variants. Expression studies showed that pth2 is expressed in cells adjacent to the ventral part of the posterior tuberculum in the diencephalon, whereas pth2r is robustly expressed throughout the central nervous system. Otic vesicles express both pth2 and pth2r, but heart expresses only pth2. Analysis of mutants showed that hedgehog (Hh) signaling regulates the expression of pth2 transcripts more than that of nearby gnrh2-expressing cells. Genomic analysis showed that a lizard, chicken, and zebra finch lack a PTH2 gene, which is associated with an inversion breakpoint. Likewise, chickens lack PTH2R, while humans lack PTH3R, a case of reciprocally missing ohnologs (paralogs derived from a genome duplication). The considerable evolutionary conservation in genomic structure, synteny relationships, and expression of zebrafish pth2 and pth2r provides a foundation for exploring the endocrine roles of this system in developing vertebrate embryos.
Collapse
Affiliation(s)
| | - Yi Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| | | | - David A. Rubin
- Department of Biological Sciences, Illinois State University, Normal, IL 61701
- Author for correspondence and reprint requests: Fax: (309) 438-3722 Ph: (309) 438-7965
| |
Collapse
|
10
|
Palkovits M, Usdin TB, Makara GB, Dobolyi A. Tuberoinfundibular peptide of 39 residues- immunoreactive fibers in the zona incerta and the supraoptic decussations terminate in the neuroendocrine hypothalamus. Neurochem Res 2010; 35:2078-85. [PMID: 20972828 PMCID: PMC3388614 DOI: 10.1007/s11064-010-0292-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2010] [Indexed: 12/18/2022]
Abstract
Tuberoinfundibular peptide of 39 residues (TIP39) is expressed by neurons in the subparafascicular area, the posterior intralaminar complex of the thalamus and the pontine medial paralemniscal nucleus. TIP39-positive fibers from these areas do not form individual bundles or fascicles, they join other pathways to reach their innervated brain areas. Fibers arise from TIP39 perikarya located in the subparafascicular area and the posterior intralaminar complex of the thalamus could be followed to the hypothalamus. After uni- and bilateral posterolateral surgical deafferentations of the hypothalamus, accumulation of TIP39 immunoreactivity was observed in the fibers caudal to the knife cut, while it disappeared completely rostral to the transection. In serial sections of the forebrain, we could follow TIP39-ir fibers coursing within the zona incerta and the supraoptic decussations. TIP39-positive fibers that join the incerto-hypothalamic pathway reach the medio-dorsal part of the hypothalamus and form moderate to high density networks in the dorsomedial and paraventricular nuclei. The other set of TIP39-positive axons from the subthalamic area join the fibers of the supraoptic decussations and run in an antero-medial direction through the most ventral portion of the hypothalamus up to the retrochiasmatic area, where they crossover. A certain portion of these TIP39-positive fibers terminates in the territories of the arcuate and the medial preoptic nuclei, as well as in the retrochiasmatic area.
Collapse
Affiliation(s)
- M Palkovits
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and The Hungarian Academy of Sciences, Tüzoltó-utca 58, 1094 Budapest, Hungary.
| | | | | | | |
Collapse
|
11
|
Dimitrov EL, Petrus E, Usdin TB. Tuberoinfundibular peptide of 39 residues (TIP39) signaling modulates acute and tonic nociception. Exp Neurol 2010; 226:68-83. [PMID: 20696160 PMCID: PMC2955778 DOI: 10.1016/j.expneurol.2010.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/26/2010] [Accepted: 08/02/2010] [Indexed: 11/19/2022]
Abstract
Tuberoinfundibular peptide of 39 residues (TIP39) synthesizing neurons at the caudal border of the thalamus and in the lateral pons project to areas rich in its receptor, the parathyroid hormone 2 receptor (PTH2R). These areas include many involved in processing nociceptive information. Here we examined the potential role of TIP39 signaling in nociception using a PTH2R antagonist (HYWH) and mice with deletion of TIP39's coding sequence or PTH2R null mutation. Intracerebroventricular (icv) infusion of HYWH significantly inhibited nociceptive responses in tail-flick and hot-plate tests and attenuated the nociceptive response to hindpaw formalin injection. TIP39-KO and PTH2R-KO had increased response latency in the 55°C hot-plate test and reduced responses in the hindpaw formalin test. The tail-flick test was not affected in either KO line. Thermal hypoalgesia in KO mice was dose-dependently reversed by systemic administration of the cannabinoid receptor 1 (CB1) antagonist rimonabant, which did not affect nociception in wild-type (WT). Systemic administration of the cannabinoid agonist CP 55,940 did not affect nociception in KO mice at a dose effective in WT. WT mice administered HYWH icv, and both KOs, had significantly increased stress-induced analgesia (SIA). Rimonabant blocked the increased SIA in TIP39-KO, PTH2R-KO or after HYWH infusion. CB1 and FAAH mRNA were decreased and increased, respectively, in the basolateral amygdala of TIP39-KO mice. These data suggest that TIP39 signaling modulates nociception, very likely by inhibiting endocannabinoid circuitry at a supraspinal level. We infer a new central mechanism for endocannabinoid regulation, via TIP39 acting on the PTH2R in discrete brain regions.
Collapse
MESH Headings
- Amidohydrolases/metabolism
- Animals
- Cannabinoid Receptor Modulators/metabolism
- Formaldehyde
- In Situ Hybridization
- Injections, Intraventricular
- Injections, Spinal
- Male
- Mice
- Mice, Knockout
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Neuropeptides/administration & dosage
- Neuropeptides/pharmacology
- Nociceptors/drug effects
- Nociceptors/physiology
- Pain/pathology
- Pain/physiopathology
- Pain Measurement/drug effects
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/biosynthesis
- Receptor, Parathyroid Hormone, Type 2/biosynthesis
- Receptor, Parathyroid Hormone, Type 2/genetics
- Rimonabant
- Signal Transduction/physiology
- Stress, Psychological/psychology
- Synapses/physiology
- Vesicular Glutamate Transport Protein 2/biosynthesis
- Vesicular Glutamate Transport Protein 2/genetics
Collapse
Affiliation(s)
- Eugene L. Dimitrov
- Section on Fundamental Neuroscience, National Institute of Mental Health, 35 Convent Drive, Room 1B-213, Bethesda, MD 20892, USA
| | - Emily Petrus
- Section on Fundamental Neuroscience, National Institute of Mental Health, 35 Convent Drive, Room 1B-215, Bethesda, MD 20892, USA
| | - Ted B. Usdin
- Section on Fundamental Neuroscience, National Institute of Mental Health, 35 Convent Drive, Room 1B-215, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Dimitrov E, Usdin TB. Tuberoinfundibular peptide of 39 residues modulates the mouse hypothalamic-pituitary-adrenal axis via paraventricular glutamatergic neurons. J Comp Neurol 2010; 518:4375-94. [PMID: 20853513 PMCID: PMC3004125 DOI: 10.1002/cne.22462] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neurons in the subparafascicular area at the caudal border of the thalamus that contain the neuropeptide tuberoinfundibular peptide of 39 residues (TIP39) densely innervate several hypothalamic areas, including the paraventricular nucleus (PVN). These areas contain a matching distribution of TIP39's receptor, the parathyroid hormone receptor 2 (PTH2R). Frequent PTH2R coexpression with a vesicular glutamate transporter (VGlut2) suggests that TIP39 could presynaptically regulate glutamate release. By using immunohistochemistry we found CRH-ir neurons surrounded by PTH2R-ir fibers and TIP39-ir axonal projections in the PVN area of the mouse brain. Labeling hypothalamic neuroendocrine neurons by peripheral injection of fluorogold in PTH2R-lacZ knock-in mice showed that most PTH2Rs are on PVN and peri-PVN interneurons and not on neuroendocrine cells. Double fluorescent in situ hybridization revealed a high level of coexpression between PTH2R and VGlut2 mRNA by cells located in the PVN and nearby brain areas. Local TIP39 infusion (100 pmol) robustly increased pCREB-ir in the PVN and adjacent perinuclear zone. It also increased plasma corticosterone and decreased plasma prolactin. These effects of TIP39 on pCREB-ir, corticosterone, and prolactin were abolished by coinfusion of the ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and DL-2-amino-5-phosphonopentanoic acid (AP-5; 30 pmol each) and were absent in PTH2R knockout mice. Basal plasma corticosterone was slightly decreased in TIP39 knockout mice just before onset of their active phase. The present data indicate that the TIP39 ligand/PTH2 receptor system provides facilitatory regulation of the hypothalamic-pituitary-adrenal axis via hypothalamic glutamatergic neurons and that it may regulate other neuroendocrine systems by a similar mechanism.
Collapse
Affiliation(s)
- Eugene Dimitrov
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Ted Björn Usdin
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|
13
|
Dobolyi A, Palkovits M, Usdin TB. The TIP39-PTH2 receptor system: unique peptidergic cell groups in the brainstem and their interactions with central regulatory mechanisms. Prog Neurobiol 2010; 90:29-59. [PMID: 19857544 PMCID: PMC2815138 DOI: 10.1016/j.pneurobio.2009.10.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/11/2009] [Accepted: 10/14/2009] [Indexed: 01/01/2023]
Abstract
Tuberoinfundibular peptide of 39 residues (TIP39) is the recently purified endogenous ligand of the previously orphan G-protein coupled parathyroid hormone 2 receptor (PTH2R). The TIP39-PTH2R system is a unique neuropeptide-receptor system whose localization and functions in the central nervous system are different from any other neuropeptides. TIP39 is expressed in two brain regions, the subparafascicular area in the posterior thalamus, and the medial paralemniscal nucleus in the lateral pons. Subparafascicular TIP39 neurons seem to divide into a medial and a lateral cell population in the periventricular gray of the thalamus, and in the posterior intralaminar complex of the thalamus, respectively. Periventricular thalamic TIP39 neurons project mostly to limbic brain regions, the posterior intralaminar thalamic TIP39 neurons to neuroendocrine brain areas, and the medial paralemniscal TIP39 neurons to auditory and other brainstem regions, and the spinal cord. The widely distributed axon terminals of TIP39 neurons have a similar distribution as the PTH2R-containing neurons, and their fibers, providing the anatomical basis of a neuromodulatory action of TIP39. Initial functional studies implicated the TIP39-PTH2R system in nociceptive information processing in the spinal cord, in the regulation of different hypophysiotropic neurons in the hypothalamus, and in the modulation of affective behaviors. Recently developed novel experimental tools including mice with targeted mutations of the TIP39-PTH2R system and specific antagonists of the PTH2R will further facilitate the identification of the specific roles of TIP39 and the PTH2R.
Collapse
Affiliation(s)
- Arpád Dobolyi
- Department of Anatomy, Histology and Embryology, HAS-Semmelweis University, Budapest, Hungary.
| | | | | |
Collapse
|
14
|
Palkovits M, Helfferich F, Dobolyi A, Usdin TB. Acoustic stress activates tuberoinfundibular peptide of 39 residues neurons in the rat brain. Brain Struct Funct 2009; 214:15-23. [PMID: 19936783 DOI: 10.1007/s00429-009-0233-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 11/11/2009] [Indexed: 12/18/2022]
Abstract
Strong acoustic stimulation (105 dB SPL white noise) elicited c-fos expression in neurons in several acoustic system nuclei and in stress-sensitive hypothalamic nuclei and limbic areas in rats. In the present study, using this type of loud noise for 30 min, Fos-like immunoreactivity (Fos-ir) was investigated in neurons that synthesize tuberoinfundibular peptide of 39 residues (TIP39) in the rat brain: in the subparafascicular area of the thalamus, the posterior intralaminar complex of the thalamus and the medial paralemniscal nucleus in the lateral part of the pons. By double labeling, Fos-ir was shown in nearly 80% of TIP39-positive cells in the medial paralemniscal nucleus, 43% in the posterior intralaminar complex and 18.5% in the subparafascicular area 30 min after the end of a 30-min loud noise period. In control rats, only few neurons, including 0-4% of TIP39-positive neurons showed Fos-ir. While the majority of the Fos-ir neurons were TIP39-positive in the subparafascicular area and medial paralemniscal nucleus, a fairly high number of TIP39-immunonegative, chemically uncharacterized neurons expressed c-fos in the subparafascicular area and the posterior intralaminar complex of the thalamus. These observations clearly show that some TIP39 neurons in the so-called "acoustic thalamus" and the majority of TIP39 neurons in the medial paralemniscal nucleus are sensitive to loud noise and they may participate in the central organization of responses to acoustic stress. Furthermore, the present data suggest that non-TIP39-expressing neurons may play a prevalent role in the activity of the "acoustic thalamus".
Collapse
Affiliation(s)
- Miklós Palkovits
- Laboratory of Neuromorphology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| | | | | | | |
Collapse
|
15
|
Bagó AG, Dimitrov E, Saunders R, Seress L, Palkovits M, Usdin TB, Dobolyi A. Parathyroid hormone 2 receptor and its endogenous ligand tuberoinfundibular peptide of 39 residues are concentrated in endocrine, viscerosensory and auditory brain regions in macaque and human. Neuroscience 2009; 162:128-47. [PMID: 19401215 PMCID: PMC2703999 DOI: 10.1016/j.neuroscience.2009.04.054] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 12/18/2022]
Abstract
Parathyroid hormone receptor 2 (PTH2R) and its ligand, tuberoinfundibular peptide of 39 residues (TIP39) constitute a neuromodulator system implicated in endocrine and nociceptive regulation. We now describe the presence and distribution of the PTH2R and TIP39 in the brain of primates using a range of tissues and ages from macaque and human brain. In situ hybridization histochemistry of TIP39 mRNA, studied in young macaque brain, due to its possible decline beyond late postnatal ages, was present only in the thalamic subparafascicular area and the pontine medial paralemniscal nucleus. In contrast, in situ hybridization histochemistry in macaque identified high levels of PTH2R expression in the central amygdaloid nucleus, medial preoptic area, hypothalamic paraventricular and periventricular nuclei, medial geniculate, and the pontine tegmentum. PTH2R mRNA was also detected in several human brain areas by RT-PCR. The distribution of PTH2R-immunoreactive fibers in human, determined by immunocytochemistry, was similar to that in rodents, including dense fiber networks in the medial preoptic area, hypothalamic paraventricular, periventricular and infundibular (arcuate) nuclei, lateral hypothalamic area, median eminence, thalamic paraventricular nucleus, periaqueductal gray, lateral parabrachial nucleus, nucleus of the solitary tract, sensory trigeminal nuclei, medullary dorsal reticular nucleus, and dorsal horn of the spinal cord. Co-localization suggested that PTH2R fibers are glutamatergic, and that TIP39 may directly influence hypophysiotropic somatostatin containing and indirectly influence corticotropin releasing-hormone containing neurons. The results demonstrate that TIP39 and the PTH2R are expressed in the brain of primates in locations that suggest involvement in regulation of fear, anxiety, reproductive behaviors, release of pituitary hormones, and nociception.
Collapse
Affiliation(s)
- Attila G. Bagó
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, HAS - Semmelweis University, Budapest
- National Institute of Neurosurgery, Budapest, Hungary
| | - Eugene Dimitrov
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Richard Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland, USA
| | - László Seress
- Central Electron Microscopic Laboratory, University of Pécs, Pécs, Hungary. Section Editor: Dr. M. Witter
| | - Miklós Palkovits
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, HAS - Semmelweis University, Budapest
| | - Ted B. Usdin
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Arpád Dobolyi
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, HAS - Semmelweis University, Budapest
| |
Collapse
|
16
|
VARGA TAMÁS, PALKOVITS MIKLÓS, USDIN TEDBJÖRN, DOBOLYI ARPÁD. The medial paralemniscal nucleus and its afferent neuronal connections in rat. J Comp Neurol 2008; 511:221-37. [PMID: 18770870 PMCID: PMC2752428 DOI: 10.1002/cne.21829] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previously, we described a cell group expressing tuberoinfundibular peptide of 39 residues (TIP39) in the lateral pontomesencephalic tegmentum, and referred to it as the medial paralemniscal nucleus (MPL). To identify this nucleus further in rat, we have now characterized the MPL cytoarchitectonically on coronal, sagittal, and horizontal serial sections. Neurons in the MPL have a columnar arrangement distinct from adjacent areas. The MPL is bordered by the intermediate nucleus of the lateral lemniscus nucleus laterally, the oral pontine reticular formation medially, and the rubrospinal tract ventrally, whereas the A7 noradrenergic cell group is located immediately mediocaudal to the MPL. TIP39-immunoreactive neurons are distributed throughout the cytoarchitectonically defined MPL and constitute 75% of its neurons as assessed by double labeling of TIP39 with a fluorescent Nissl dye or NeuN. Furthermore, we investigated the neuronal inputs to the MPL by using the retrograde tracer cholera toxin B subunit. The MPL has afferent neuronal connections distinct from adjacent brain regions including major inputs from the auditory cortex, medial part of the medial geniculate body, superior colliculus, external and dorsal cortices of the inferior colliculus, periolivary area, lateral preoptic area, hypothalamic ventromedial nucleus, lateral and dorsal hypothalamic areas, subparafascicular and posterior intralaminar thalamic nuclei, periaqueductal gray, and cuneiform nucleus. In addition, injection of the anterograde tracer biotinylated dextran amine into the auditory cortex and the hypothalamic ventromedial nucleus confirmed projections from these areas to the distinct MPL. The afferent neuronal connections of the MPL suggest its involvement in auditory and reproductive functions.
Collapse
Affiliation(s)
- TAMÁS VARGA
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, H-1094, Hungary
| | - MIKLÓS PALKOVITS
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, H-1094, Hungary
| | - TED BJÖRN USDIN
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892
| | - ARPÁD DOBOLYI
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, H-1094, Hungary
| |
Collapse
|
17
|
Fegley DB, Holmes A, Riordan T, Faber CA, Weiss JR, Ma S, Batkai S, Pacher P, Dobolyi A, Murphy A, Sleeman MW, Usdin TB. Increased fear- and stress-related anxiety-like behavior in mice lacking tuberoinfundibular peptide of 39 residues. GENES, BRAIN, AND BEHAVIOR 2008; 7:933-42. [PMID: 18700839 PMCID: PMC2605196 DOI: 10.1111/j.1601-183x.2008.00432.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tuberoinfundibular peptide of 39 residues (TIP39) is synthesized by two groups of neurons, one in the subparafascicular area at the caudal end of the thalamus and the other in the medial paralemniscal nucleus within the lateral brainstem. The subparafascicular TIP39 neurons project to a number of brain regions involved in emotional responses, and these regions contain a matching distribution of a receptor for TIP39, the parathyroid hormone 2 receptor (PTH2-R). We have now evaluated the involvement of TIP39 in anxiety-related behaviors using mice with targeted null mutation of the TIP39 gene (Tifp39). Tifp39(-/-) mice (TIP39-KO) did not significantly differ from wild-type (WT) littermates in the open field, light/dark exploration and elevated plus-maze assays under standard test conditions. However, the TIP39-KO engaged in more active defensive burying in the shock-probe test. In addition, when tested under high illumination or after restraint, TIP39-KO displayed significantly greater anxiety-like behavior in the elevated plus-maze than WT. In a Pavlovian fear-conditioning paradigm, TIP39-KO froze more than WT during training and during tone and context recall but showed normal fear extinction. Disruption of TIP39 projections to the medial prefrontal cortex, lateral septum, bed nucleus of the stria terminalis, hypothalamus and amygdala likely account for the fear- and anxiety-related phenotype of TIP39-KO. Current data support the hypothesis that TIP39 modulates anxiety-related behaviors following environmental provocation.
Collapse
Affiliation(s)
- D. B. Fegley
- National Institute of Mental Health/National Institutes of Health, Bethesda, MD
| | - A. Holmes
- National Institute of Alcohol Abuse and Alcoholism/National Institutes of Health, Rockville, MD, USA
| | - T. Riordan
- National Institute of Mental Health/National Institutes of Health, Bethesda, MD
| | - C. A. Faber
- National Institute of Mental Health/National Institutes of Health, Bethesda, MD
| | - J. R. Weiss
- National Institute of Mental Health/National Institutes of Health, Bethesda, MD
| | - S. Ma
- National Institute of Mental Health/National Institutes of Health, Bethesda, MD
| | - S. Batkai
- National Institute of Alcohol Abuse and Alcoholism/National Institutes of Health, Rockville, MD, USA
| | - P. Pacher
- National Institute of Alcohol Abuse and Alcoholism/National Institutes of Health, Rockville, MD, USA
| | - A. Dobolyi
- Laboratory of Neuromorphology, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - A. Murphy
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | | | - T. B. Usdin
- National Institute of Mental Health/National Institutes of Health, Bethesda, MD
| |
Collapse
|
18
|
Brenner D, Bagó AG, Gallatz K, Palkovits M, Usdin TB, Dobolyi A. Tuberoinfundibular peptide of 39 residues in the embryonic and early postnatal rat brain. J Chem Neuroanat 2008; 36:59-68. [PMID: 18495420 PMCID: PMC2518913 DOI: 10.1016/j.jchemneu.2008.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/17/2008] [Accepted: 04/09/2008] [Indexed: 11/15/2022]
Abstract
Tuberoinfundibular peptide of 39 residues (TIP39) was identified as the endogenous ligand of parathyroid hormone 2 receptor. We have recently demonstrated that TIP39 expression in adult rat brain is confined to the subparafascicular area of the thalamus with a few cells extending laterally into the posterior intralaminar thalamic nucleus (PIL), and the medial paralemniscal nucleus (MPL) in the lateral pontomesencephalic tegmentum. During postnatal development, TIP39 expression increases until postnatal day 33 (PND-33), then decreases, and almost completely disappears by PND-125. Here, we report the expression of TIP39 during early brain development. TIP39-immunoreactive (TIP39-ir) neurons in the subparafascicular area first appeared at PND-1. In contrast, TIP39-ir neurons were detectable in the MPL at embryonic day 14.5 (ED-14.5), and the intensity of their labeling increased thereafter. We also identified TIP39-ir neurons between ED-16.5 and PND-5 in two additional brain areas, the PIL and the amygdalo-hippocampal transitional zone (AHi). We confirmed the specificity of TIP39 immunolabeling by demonstrating TIP39 mRNA using in situ hybridization histochemistry. In the PIL, TIP39 neurons are located medial to the CGRP group as demonstrated by double immunolabeling. All TIP39-ir neurons in the AHi and most TIP39-ir neurons in the PIL disappear during early postnatal development. The adult pattern of TIP39-ir fibers emerge during postnatal development. However, fibers emanating from PIL can be followed in the supraoptic decussations towards the hypothalamus at ED-18.5. These TIP39-ir fibers disappear by PND-1. The complex pattern of TIP39 expression during early brain development suggests the involvement of TIP39 in transient functions during ontogeny.
Collapse
Affiliation(s)
- Dávid Brenner
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, H-1094, Hungary
| | - Attila G. Bagó
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, H-1094, Hungary
- National Institute of Neurosurgery, Budapest, Hungary
| | - Katalin Gallatz
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, H-1094, Hungary
| | - Miklós Palkovits
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, H-1094, Hungary
| | - Ted Björn Usdin
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, MD 20892
| | - Arpád Dobolyi
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, H-1094, Hungary
| |
Collapse
|
19
|
Usdin TB, Paciga M, Riordan T, Kuo J, Parmelee A, Petukova G, Camerini-Otero RD, Mezey E. Tuberoinfundibular Peptide of 39 residues is required for germ cell development. Endocrinology 2008; 149:4292-300. [PMID: 18483145 PMCID: PMC2553379 DOI: 10.1210/en.2008-0419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tuberoinfundibular peptide of 39 residues (TIP39) was identified as a PTH 2 receptor ligand. We report that mice with deletion of Tifp39, the gene encoding TIP39, are sterile. Testes contained Leydig and Sertoli cells and spermatogonia but no spermatids. Labeling chromosome spreads with antibodies to proteins involved in recombination showed that spermatogonia do not complete prophase of meiosis I. Chromosomes were observed at different stages of recombination in single nuclei, a defect not previously described with mutations in genes known to be specifically involved in DNA replication and recombination. TIP39 was previously shown to be expressed in neurons projecting to the hypothalamus and within the testes. LH and FSH were slightly elevated in Tifp39(-/-) mice, suggesting intact hypothalamic function. We found using in situ hybridization that the genes encoding TIP39 and the PTH 2 receptor are expressed in a stage-specific manner within seminiferous tubules. Using immunohistochemistry and quantitative RT-PCR, TIP39 expression is greatest in mature testes, and appears most abundant in postmeiotic spermatids, but TIP39 protein and mRNA can be detected before any cells have completed meiosis. We used mice that express Cre recombinase under control of a spermatid-specific promoter to express selectively a cDNA encoding TIP39 in the testes of Tifp39(-/-) mice. Spermatid production and fertility were rescued, demonstrating that the defect in Tifp39(-/-) mice was due to the loss of TIP39. These results show that TIP39 is essential for germ cell development and suggest that it may act as an autocrine or paracrine agent within the gonads.
Collapse
Affiliation(s)
- Ted B Usdin
- National Institute of Mental Health/National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
FABER CATHERINEA, DOBOLYI ARPÁD, SLEEMAN MARK, USDIN TEDB. Distribution of tuberoinfundibular peptide of 39 residues and its receptor, parathyroid hormone 2 receptor, in the mouse brain. J Comp Neurol 2007; 502:563-83. [PMID: 17394159 PMCID: PMC2923585 DOI: 10.1002/cne.21330] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tuberoinfundibular peptide of 39 residues (TIP39) was identified as a potent parathyroid hormone 2 receptor (PTH2R) agonist. Existing anatomical data also support the suggestion that TIP39 is the PTH2R's endogenous ligand, but a comprehensive comparison of TIP39 and PTH2R distributions has not been performed. In the present study, we compared the distributions of TIP39 and PTH2R on adjacent mouse brain sections. In addition, we determined the locations of PTH2R-expressing cell bodies by in situ hybridization histochemistry and by labeling beta-galactosidase driven by the PTH2R promoter in knockin mice. An excellent correlation was found between the distributions of TIP39-containing fibers and PTH2R-containing cell bodies and fibers throughout the brain. TIP39 and the PTH2R are abundant in medial prefrontal, insular, and ectorhinal cortices, the lateral septal nucleus, the bed nucleus of the stria terminalis, the fundus striati, the amygdala, the ventral subiculum, the hypothalamus, midline and intralaminar thalamic nuclei, the medial geniculate body, the periaqueductal gray, the ventral tegmental area, the superior and inferior colliculi, the parabrachial nuclei, the locus coeruleus, subcoeruleus and periolivary areas, and the nucleus of the solitary tract. Furthermore, even the subregional distribution of TIP39- and PTH2R-immunoreactive fibers in these regions showed remarkable similarities, providing anatomical evidence that TIP39 may act on the PTH2R. Based on these observations and on previous pharmacological data, we propose that TIP39 is an endogenous ligand of the PTH2R and that they form a neuromodulator system, which is optimally positioned to regulate limbic, endocrine, and auditory brain functions. Published 2007 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- CATHERINE A. FABER
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892
| | - ARPÁD DOBOLYI
- Neuromorphological and Neuroendocrinological Research Laboratory, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary, 1094
| | - MARK SLEEMAN
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591
| | - TED B. USDIN
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|
21
|
Kuo J, Usdin TB. Development of a rat parathyroid hormone 2 receptor antagonist. Peptides 2007; 28:887-92. [PMID: 17207559 PMCID: PMC1894913 DOI: 10.1016/j.peptides.2006.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 12/01/2006] [Accepted: 12/01/2006] [Indexed: 11/26/2022]
Abstract
The parathyroid hormone 2 (PTH2) receptor is a Family B G-protein coupled receptor most highly expressed within the brain. Current evidence suggests that tuberoinfundibular peptide of 39 residues (TIP39) is the PTH2 receptor's endogenous ligand. To facilitate investigation of the physiological function of the PTH2 receptor/TIP39 system, we have developed a novel PTH2 receptor antagonist, by changing several residues within the amino terminal domain of TIP39. Histidine(4), tyrosine(5), tryptophan(6), histidine(7)-TIP39 binds the PTH2 receptor with high affinity, has over 30-fold selectivity for the rat PTH2 receptor over the rat PTH1 receptor and displays no detectable agonist activity. This ligand should be useful for in vivo investigation of PTH2 receptor function.
Collapse
Affiliation(s)
- Jonathan Kuo
- National Institute of Mental Health, Laboratory of Genetics, Building 35, Room 1B-415, Convent Drive, MSC 3728, Bethesda, MD 20892, U. S. A. e-mail:
| | - Ted B. Usdin
- National Institute of Mental Health, Laboratory of Genetics, Building 35, Room 1B-215, Convent Drive, MSC 3728, Bethesda, MD 20892, U. S. A. e-mail:
| |
Collapse
|
22
|
Dobolyi A, Wang J, Irwin S, Usdin TB. Postnatal development and gender-dependent expression of TIP39 in the rat brain. J Comp Neurol 2006; 498:375-89. [PMID: 16871538 PMCID: PMC2579259 DOI: 10.1002/cne.21063] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tuberoinfundibular peptide of 39 residues (TIP39) is a selective agonist of the parathyroid hormone 2 (PTH2) receptor. The topographical distributions of TIP39 and the PTH2 receptor in the brain, described for young male rats, suggested that TIP39 has limbic and endocrine functions. In the present study, we investigated the expression of TIP39 and the PTH2 receptor in male and female rat brain during postnatal development by means of in situ hybridization histochemistry, quantitative RT-PCR, and immunocytochemistry. TIP39's distribution and expression levels are similar in young female and male brains. TIP39 mRNA levels peak at postnatal day 14 and subsequently decline both in the subparafascicular area and in the medial paralemniscal nucleus, the two major sites where TIP39 is synthesized. A greater developmental decrease in TIP39 expression in males leads to greater levels in older females than older males. The decrease is partially reversed by prepubertal but not postpubertal gonadectomy. TIP39 peptide levels in cell bodies change in parallel with mRNA levels, whereas TIP39 appears and disappears somewhat later in nerve fibers. In addition, TIP39 peptide levels are also sexually dimorphic in older rats. In contrast, PTH2 receptor expression in the brain does not decrease during puberty and is not sexually dimorphic even in old animals. The appearance of TIP39 during early, and decline during late, postnatal development together with the gender-dependent levels in mature animals suggests that TIP39 may play a role in sexual maturation or gender-specific functions.
Collapse
Affiliation(s)
- Arpád Dobolyi
- Laboratory of Genetics, National Institute of Mental Health, Bethesda, MD 20892
- Laboratory of Neuromorphology, Semmelweis University and Hungarian Academy of Sciences, Budapest, 1094, Hungary
| | - Jing Wang
- Laboratory of Genetics, National Institute of Mental Health, Bethesda, MD 20892
| | - Sarah Irwin
- Laboratory of Genetics, National Institute of Mental Health, Bethesda, MD 20892
| | - Ted Björn Usdin
- Laboratory of Genetics, National Institute of Mental Health, Bethesda, MD 20892
| |
Collapse
|
23
|
Dobolyi A, Irwin S, Wang J, Usdin TB. The distribution and neurochemistry of the parathyroid hormone 2 receptor in the rat hypothalamus. Neurochem Res 2006; 31:227-36. [PMID: 16570212 DOI: 10.1007/s11064-005-9011-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2005] [Indexed: 10/24/2022]
Abstract
This study reports the distribution of parathyroid hormone 2 receptor (PTH2R)-immunoreactive fibers in the hypothalamus using fluorescent amplification immunocytochemistry. The pattern of immunolabeling is strikingly similar to that of tuberoinfundibular peptide of 39 residues (TIP39), a peptide recently purified from bovine hypothalamus and proposed to be a ligand of the PTH2R based on pharmacological data. To investigate the anatomical basis of suggestions that TIP39 affects the secretion of several hypophysiotropic hormones we performed double-labeling studies and found that only somatostatin fibers contain PTH2R in the median eminence, which suggests that somatostatin release could be directly regulated via the PTH2R. However, several hypothalamic nuclei projecting to the median eminence contain a high density of both TIP39 and PTH2R fibers and terminals. We report here, that the PTH2R terminals also contain vesicular glutamate transporter-2, and suggest that TIP39 terminals are ideally positioned to modulate glutamatergic influences on hypophysiotropic neurons.
Collapse
Affiliation(s)
- Arpád Dobolyi
- Laboratory of Genetics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
24
|
Papasani MR, Gensure RC, Yan YL, Gunes Y, Postlethwait JH, Ponugoti B, John MR, Jüppner H, Rubin DA. Identification and characterization of the zebrafish and fugu genes encoding tuberoinfundibular peptide 39. Endocrinology 2004; 145:5294-304. [PMID: 15297442 DOI: 10.1210/en.2004-0159] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the PTH type 2 receptor (PTH2R) has been isolated from mammals and zebrafish, only its mammalian agonist, tuberoinfundibular peptide 39 (TIP39), has been characterized thus far. To determine whether zebrafish TIP39 (zTIP39) functions similarly with the zebrafish PTHR (zPTH2R) and human PTH2Rs and to determine its tissue-specific expression, fugu (Takifugu rubripes) and zebrafish (Danio rerio) genomic databases were screened with human TIP39 (hTIP39) sequences. A single TIP39 gene was identified for each fish species, which showed significant homology to mammalian TIP39. Using standard molecular techniques, we isolated cDNA sequences encoding zTIP39. The fugu TIP39 precursor was encoded by a gene comprising at least three exons. It contained a hydrophobic signal sequence and a predicted prosequence with a dibasic cleavage site, similar to that found in mammalian TIP39 ligands. Phylogenetic analyses suggested that TIP39 forms the basal group from which PTH and PTHrP have been derived. Functionally, subtle differences in potency could be discerned between hTIP39 and zTIP39. The human PTH2R and zPTH2R were stimulated slightly better by both hTIP39 and zTIP39, whereas zTIP39 had a higher potency at a previously isolated zPTH2R splice variant. Whole-mount in situ hybridization of zebrafish revealed strong zTIP39 expression in the region of the hypothalamus and in the heart of 24- and 48-h-old embryos. Similarly, zPTH2R expression was highly expressed throughout the brain of 48- and 72-h-old embryos. Because the mammalian PTH2R was also most abundantly expressed in these tissues, the TIP39-PTH2R system may serve conserved physiological roles in mammals and fishes.
Collapse
Affiliation(s)
- Madhusudhan R Papasani
- Department of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
LaBuda CJ, Dobolyi A, Usdin TB. Tuberoinfundibular peptide of 39 residues produces anxiolytic and antidepressant actions. Neuroreport 2004; 15:881-5. [PMID: 15073536 DOI: 10.1097/00001756-200404090-00030] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tuberoinfundibular peptide of 39 residues (TIP39) potently activates the parathyroid hormone-2 receptor (PTH2-R). A group of neurons in the posterior thalamus and one in the lateral pons synthesize TIP39. TIP39 projections reach most areas of PTH2-R density, including many within the limbic system and hypothalamus. We report that TIP39 induces Fos in the infralimbic cortex, lateral hypothalamus, preoptic area, lateral septum and paraventricular thalamic nucleus, areas believed to be important in anxiety and depression. TIP39 caused anxiolytic-like effects in the elevated plus-maze test and antidepressant-like effects in the forced-swim test. TIP39 did not change activity in the open field test. These findings point to a previously unknown role of the PTH2-R in the regulation of anxiety and depression.
Collapse
Affiliation(s)
- Christopher J LaBuda
- Laboratory of Genetics, National Institute of Mental Health, Bldg. 36/Rm. 3D06, 36 Convent Dr. MSC 4094, Bethesda, MD 20892-4094, USA
| | | | | |
Collapse
|
26
|
Sugimura Y, Murase T, Ishizaki S, Tachikawa K, Arima H, Miura Y, Usdin TB, Oiso Y. Centrally administered tuberoinfundibular peptide of 39 residues inhibits arginine vasopressin release in conscious rats. Endocrinology 2003; 144:2791-6. [PMID: 12810532 DOI: 10.1210/en.2002-0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tuberoinfundibular peptide of 39 residues (TIP39) is a recently discovered neuropeptide identified on the basis of its ability to activate the PTH2 receptor, and it is thought to be the brain PTH2 receptor's endogenous ligand. The PTH2 receptor is highly expressed in the hypothalamus, suggesting a role in the modulation of neuroendocrinological functions. PTHrP, which also belongs to the PTH-related peptides family, stimulates arginine vasopressin (AVP) release. In the present study, therefore, we investigated the effect of centrally administered TIP39 on AVP release in conscious rats. Intracerebroventricular administration of TIP39 (10-500 pmol/rat) significantly suppressed the plasma AVP concentration in dehydrated rats, and the maximum effect was obtained 5 min after administration (dehydration with 100 pmol/rat TIP39, 4.32 +/- 1.17 pg/ml; vs. control, 8.21 +/- 0.70 pg/ml). The plasma AVP increase in response to either hyperosmolality [ip injection of hypertonic saline (HS), 600 mosmol/kg] or hypovolemia [ip injection of polyethylene glycol (PEG)] was also significantly attenuated by an intracerebroventricular injection of TIP39 (HS with 100 pmol/rat TIP39, 2.65 +/- 0.52 pg/ml; vs. HS alone, 4.69 +/- 0.80 pg/ml; PEG with 100 pmol/rat TIP39, 4.10 +/- 0.79 pg/ml; vs. PEG alone, 6.19 +/- 0.34 pg/ml). Treatment with naloxone [1.5 mg/rat, sc injection], a nonselective opioid receptor antagonist, significantly reversed the inhibitory effects of TIP39 on AVP release. These results suggest that central TIP39 plays an inhibitory role in the osmoregulation and baroregulation of AVP release and that intrinsic opioid systems are involved in its mechanism.
Collapse
Affiliation(s)
- Yoshihisa Sugimura
- Department of Internal Medicine, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kennedy AR, Todd JF, Dhillo WS, Seal LJ, Ghatei MA, O'Toole CP, Jones M, Witty D, Winborne K, Riley G, Hervieu G, Wilson S, Bloom SR. Effect of direct injection of melanin-concentrating hormone into the paraventricular nucleus: further evidence for a stimulatory role in the adrenal axis via SLC-1. J Neuroendocrinol 2003; 15:268-72. [PMID: 12588515 DOI: 10.1046/j.1365-2826.2003.00997.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Melanin-concentrating hormone (MCH) is implicated in the control of a number of hormonal axes including the hypothalamic-pituitary adrenal (HPA) axis. Previous studies have shown that there is evidence for both a stimulatory and an inhibitory action on the HPA axis; therefore, we attempted to further characterize the effects of MCH on this axis. Intracerebroventricular injection of MCH increased circulating adrenocorticotropic hormone (ACTH) at 10 min post injection. Injection of MCH directly into the paraventricular nucleus (PVN) was found to increase both circulating ACTH and corticosterone 10 min after injection. Additionally, MCH was found to increase corticotropin-releasing factor (CRF) release from hypothalamic explants, and this effect was abolished by the specific SLC-1 antagonist SB-568849. Neuropeptide EI, a peptide from the same precursor as MCH was also found to increase CRF release from explants. These results suggest that MCH has a stimulatory role in the HPA axis via SLC-1, and that MCH exerts its effects predominantly through the PVN CRF neuronal populations
Collapse
Affiliation(s)
- A R Kennedy
- Imperial Centre for Obesity Research, Faculty of Medicine, Imperial College, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dobolyi A, Palkovits M, Usdin TB. Expression and distribution of tuberoinfundibular peptide of 39 residues in the rat central nervous system. J Comp Neurol 2003; 455:547-66. [PMID: 12508326 DOI: 10.1002/cne.10515] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tuberoinfundibular peptide of 39 residues (TIP39) has been recently purified and identified as a selective ligand for the parathyroid hormone 2 receptor. As a next step toward understanding its functions, we report the expression and distribution of TIP39 in the rat central nervous system. In situ hybridization histochemistry and immunocytochemistry revealed TIP39-containing cell bodies in three distinct areas. The major one comprises the subparafascicular area posterior through the intralaminar nucleus of the thalamus; a second is the medial paralemniscal nucleus at the pontomesencephalic junction; and a third is in the dorsal and dorsolateral hypothalamic areas, which contained a few, scattered cell bodies. We found, in contrast to the highly restricted localization of TIP39-containing cell bodies, a much more widespread localization of TIP39-containing fibers. The highest density of fibers was observed in limbic areas such as the septum, the amygdala, and the bed nucleus of the stria terminalis; in areas involved in endocrine regulation, such as the hypothalamic dorsomedial, paraventricular, periventricular, and arcuate nuclei; in auditory areas, such as the ectorhinal and temporal cortices, inferior colliculus, medial geniculate body, and some of the nuclei of the superior olivary complex; and in the dorsolateral funiculus of the spinal cord. The localization of TIP39-containing nuclei and fibers provides an anatomical basis for previously demonstrated endocrine and nociceptive effects of TIP39 and suggests additional functions for TIP39, one apparent candidate being the regulation of auditory information processing.
Collapse
Affiliation(s)
- Arpad Dobolyi
- Laboratory of Genetics, National Institute of Mental Health, Bethesda, Maryland 20892-4094, USA
| | | | | |
Collapse
|
29
|
Dobolyi A, Ueda H, Uchida H, Palkovits M, Usdin TB. Anatomical and physiological evidence for involvement of tuberoinfundibular peptide of 39 residues in nociception. Proc Natl Acad Sci U S A 2002; 99:1651-6. [PMID: 11818570 PMCID: PMC122245 DOI: 10.1073/pnas.042416199] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The parathyroid hormone 2 (PTH2) receptor's anatomical distribution suggests that, among other functions, it may be involved in modulation of nociception. We localized PTH2 receptor protein to spinal cord lamina II and showed that it is synthesized by subpopulations of primary sensory neurons and intrinsic spinal cord dorsal horn neurons. Tuberoinfundibular peptide of 39 residues (TIP39) selectively activates the PTH2 receptor. Intraplantar microinjection of TIP39 caused a paw-withdrawal response and intrathecal injection caused scratching, biting, and licking, a nocifensive response. Intrathecal administration of a TIP39 antibody decreased sensitivity in tail-flick and paw-pressure assays. Intrathecal administration of TIP39 potentiated responses in these assays. We determined the sequence of TIP39's precursor and found that mRNA encoding TIP39 and TIP39-like immunoreactivity is concentrated in two brainstem areas, the subparafascicular area and the caudal paralemniscal nucleus. Cells in these areas project to the superficial dorsal horn of the spinal cord. Our data suggest that TIP39 released from supraspinal fibers potentiates aspects of nociception within the spinal cord.
Collapse
Affiliation(s)
- Arpad Dobolyi
- Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|