1
|
Zhao R, Zhu J, Li S, Sun Z, Zhang T, Wang J, Zheng X, Kuang Y, Wang D. Comprehensive Evaluation of Growth Performance, Hematological Parameters, Antioxidant Capacity, Innate Immunity, and Disease Resistance in Crucian Carp ( Carassius auratus) Lacking Intermuscular Bones. Antioxidants (Basel) 2025; 14:443. [PMID: 40298788 PMCID: PMC12024226 DOI: 10.3390/antiox14040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
The presence of intermuscular bones severely affects the edibility and value-added processing of crucian carp (Carassius auratus), becoming a constraint to the high-quality development of its industry. Our previous study identified bmp6 as the key osteogenic regulator and successfully developed a new crucian carp strain lacking intermuscular bones (WUCI) using CRISPR/Cas9 technology. To accelerate its industrialization, we comprehensively assessed WUCI's growth performance, hematological parameters, antioxidant capacity, innate immunity, and disease resistance. The results demonstrated that the WUCI exhibited significant growth performance compared to the wild-type crucian carp (WT), with significantly higher weight gain (WG) and specific growth rate (SGR) (p < 0.05) from one month to four months of age. The α-amylase (α-AL) activity of the liver and intestines of WUCI was significantly higher than that of WT. WUCI also displayed enhanced intestinal antioxidant capacity, with superoxide dismutase (SOD) and catalase (CAT) activities significantly higher than those in WT (p < 0.05). The malondialdehyde (MDA) content in the spleen of WUCI was significantly lower than that of WT (p < 0.05); no differences were observed in the liver and intestines (p > 0.05). Additionally, hepatic acid phosphatase (ACP) activity in WUCI was significantly higher than that in WT (p < 0.05). In contrast, splenic ACP and intestinal alkaline phosphatase (ALP) activities were significantly lower than those in WT (p < 0.05). Notably, the iron concentration in the serum was significantly higher in WUCI than in the WT (p < 0.05). Meanwhile, WUCI exhibited significantly lower a expression of hepcidin, TF, and TFR1 mRNA in the liver compared to WT (p < 0.05), while FPN mRNA expression was significantly higher (p < 0.05). Routine blood tests revealed significantly lower WBC in WUCI compared to that of WT (p < 0.05). Following an Aeromonas hydrophila challenge, WT demonstrated a rapid transcriptional induction of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and immunoregulatory mediators (IL-10, TGF-β), with mRNA levels reaching maximal expression at 24 h post-infection (hpi) followed by progressive attenuation. In contrast, WUCI exhibited a delayed immune activation profile characterized by the peak expression of TNF-α, IL-1β, IL-6, and IL-10 transcripts after 72 hpi, with the maximum transcript abundance remaining lower than corresponding peak values observed in WT at 24 hpi. Finally, we observed that the mortality rate of WUCI was slightly higher post A. hydrophila infection when compared to WT, but was not significant (p > 0.05). In conclusion, this study provides a comprehensive evaluation of WUCI, revealing its distinct growth advantages, physiological adaptations, and immune function, presenting its potential for aquaculture breeding applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Youyi Kuang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (R.Z.); (J.Z.); (S.L.); (Z.S.); (T.Z.); (J.W.); (X.Z.)
| | - Di Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (R.Z.); (J.Z.); (S.L.); (Z.S.); (T.Z.); (J.W.); (X.Z.)
| |
Collapse
|
2
|
Karim MA, Park CG, Cho H, Sebastian AE, Ryu CS, Yoon J, Kim YJ. Leveraging AlphaFold models to predict androgenic effects of endocrine-disrupting chemicals through zebrafish androgen receptor analysis. Toxicol Mech Methods 2025:1-13. [PMID: 40059543 DOI: 10.1080/15376516.2025.2477036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
The androgen receptor (AR) activation by androgens is vital for tissue development, sexual differentiation, and reproductive attributes in zebrafish (Danio rerio). However, our understanding of the molecular mechanisms behind their activation remains limited. In this study, we employed both ab initio (AlphaFold) and homology (SWISS-MODEL) structure models of zebrafish androgen receptor ligand-binding domain (zAR-LBD) to explore the binding specificity, binding affinity, and molecular interactions of endogenous hormones (testosterone (T), 11-ketotestosterone (11-KT), and dihydrotestosterone (DHT)) in a computational simulation. Molecular docking analysis showed that both structures formed the same interactions and similar patterns of binding energy with androgens. Molecular Dynamics (MD) simulation analysis revealed that hydrogen bond occupancy aligned with in vitro findings related to androgenic effect. When comparing complexes modeled by SWISS-MODEL and AlphaFold, significant differences were observed in root mean square deviation (RMSD) and root mean square fluctuations (RMSF). The AlphaFold structures also exhibited a clear separation between ligands in principal component analysis. Further correlation analysis between in silico features and in vitro EC50 values identified MMPBSA energies as the most significant contributors to ligand-specific variance in the in silico complexes (p < 0.05). Overall, this integrative approach offers significant insights into the molecular mechanisms underlying zebrafish AR activity.
Collapse
Affiliation(s)
- Md Adnan Karim
- Korea Institute of Science and Technology (KIST) Europe, Environmental Safety Group, Saarbrucken, Germany
- Universität des Saarlandes, Saarbrücken, Germany
| | - Chang Gyun Park
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Hyunki Cho
- Korea Institute of Science and Technology (KIST) Europe, Environmental Safety Group, Saarbrucken, Germany
- Universität des Saarlandes, Saarbrücken, Germany
| | - Annmariya Elayanithottathil Sebastian
- Korea Institute of Science and Technology (KIST) Europe, Environmental Safety Group, Saarbrucken, Germany
- Universität des Saarlandes, Saarbrücken, Germany
| | - Chang Seon Ryu
- Korea Institute of Science and Technology (KIST) Europe, Environmental Safety Group, Saarbrucken, Germany
| | - Juyong Yoon
- Korea Institute of Science and Technology (KIST) Europe, Environmental Safety Group, Saarbrucken, Germany
| | - Young Jun Kim
- Korea Institute of Science and Technology (KIST) Europe, Environmental Safety Group, Saarbrucken, Germany
| |
Collapse
|
3
|
Wu K, Yue Y, Zhou L, Zhang Z, Shan H, He H, Ge W. Disrupting Amh and androgen signaling reveals their distinct roles in zebrafish gonadal differentiation and gametogenesis. Commun Biol 2025; 8:371. [PMID: 40044757 PMCID: PMC11882886 DOI: 10.1038/s42003-025-07719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
Sex determination and differentiation in zebrafish involve a complex interaction of male and female-promoting factors. While Dmrt1 has been established as a critical male-promoting factor, the roles of Anti-Müllerian hormone (Amh) and androgen signaling remain less clear. This study employed an estrogen-deficient zebrafish model (cyp19a1a-/-) to dissect individual and combined roles of Amh and androgen receptor (Ar) signaling in gonadal differentiation and gametogenesis. Loss of amh, but not ar, could rescue all-male phenotype of cyp19a1a-/-, leading to female or intersex, confirming the role of Amh in promoting male differentiation. This rescue was recapitulated in bmpr2a-/- but not bmpr2b-/-, supporting Bmpr2a as the type II receptor for Amh in zebrafish. Interestingly, while disruption of amh or ar had delayed spermatogenesis, the double mutant (amh-/-;ar-/-) exhibited severely impaired spermatogenesis, highlighting their compensatory roles. While Amh deficiency led to testis hypertrophy, likely involving a compensatory increase in Ar signaling, Ar deficiency resulted in reduced hypertrophy in double mutant males. Furthermore, phenotype analysis of triple mutant (amh-/-;ar-/-;cyp19a1a-/-) provided evidence that Ar participated in early follicle development. This study provides novel insights into complex interplay between Amh and androgen signaling in zebrafish sex differentiation and gametogenesis, highlighting their distinct but cooperative roles in male development.
Collapse
Affiliation(s)
- Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yiming Yue
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Lingling Zhou
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Zhiwei Zhang
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, China
| | - Huanhuan He
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China.
| |
Collapse
|
4
|
Chen Z, He M, Wang H, Li X, Qin R, Ye D, Zhai X, Zhu J, Zhang Q, Hu P, Shui G, Sun Y. Intestinal DHA-PA-PG axis promotes digestive organ expansion by mediating usage of maternally deposited yolk lipids. Nat Commun 2024; 15:9769. [PMID: 39528516 PMCID: PMC11555417 DOI: 10.1038/s41467-024-54258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Although the metabolism of yolk lipids such as docosahexaenoic acid (DHA) is pivotal for embryonic development, the underlying mechanism remains elusive. Here we find that the zebrafish hydroxysteroid (17-β) dehydrogenase 12a (hsd17b12a), which encodes an intestinal epithelial-specific enzyme, is essential for the biosynthesis of long-chain polyunsaturated fatty acids in primitive intestine of larval fish. The deficiency of hsd17b12a leads to severe developmental defects in the primitive intestine and exocrine pancreas. Mechanistically, hsd17b12a deficiency interrupts DHA synthesis from essential fatty acids derived from yolk-deposited triglycerides, and consequently disrupts the intestinal DHA-phosphatidic acid (PA)-phosphatidylglycerol (PG) axis. This ultimately results in developmental defects of digestive organs, primarily driven by ferroptosis. Our findings indicate that the DHA-PA-PG axis in the primitive intestine facilitates the uptake of yolk lipids and promotes the expansion of digestive organs, thereby uncovering a mechanism through which DHA regulates embryonic development.
Collapse
Affiliation(s)
- Zhengfang Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mudan He
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Houpeng Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xuehui Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ruirui Qin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ding Ye
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xue Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junwen Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Quanqing Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yonghua Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
5
|
Li L, Fan B, Zhang Y, Zhao M, Kong Z, Wang F, Li M. Cannabidiol exposure during embryonic period caused serious malformation in embryos and inhibited the development of reproductive system in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175315. [PMID: 39111451 DOI: 10.1016/j.scitotenv.2024.175315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
Cannabidiol (CBD) is a non-psychoactive component of cannabis with potential applications in biomedicine, food, and cosmetics due to its analgesic, anti-inflammatory, and anticonvulsant properties. However, increasing reports of adverse CBD exposure events underscore the necessity of evaluating its toxicity. In this study, we investigated the developmental toxicity of CBD in zebrafish during the embryonic (0-4 dpf, days post fertilization) and early larval stages (5-7 dpf). The median lethal concentration of CBD in embryos/larvae is 793.28 μg/L. CBD exhibited concentration-dependent manner (ranging from 250 to 1500 μg/L) in inducing serious malformed somatotypes, like shorter body length, pericardial cysts, vitelline cysts, spinal curvature, and smaller eyes. However, no singular deformity predominates. The 5-month-old zebrafish treated with 100 and 200 μg/L of CBD during the embryonic and early larval stages produced fewer offspring with higher natural mortality and malformation rate. Gonadal growth and gamete development were inhibited. Transcriptomic and metabolomic analyses conducted with 400 μg/L CBD on embryos/larvae from 0 to 5 dpf suggested that CBD promoted the formation and transportation of extracellular matrix components on 1 dpf, promoting abnormal cell division and migration, probably resulting in random malformed somatotypes. It inhibited optical vesicle development and photoreceptors formation on 2 and 3 dpf, resulting in damaged sight and smaller eye size. CBD also induced an integrated stress response on 4 and 5 dpf, disrupting redox, protein, and cholesterol homeostasis, contributing to cellular damage, physiological dysfunction, embryonic death, and inhibited reproductive system and ability in adult zebrafish. At the tested concentrations, CBD exhibited developmental toxicity, lethal toxicity, and reproductive inhibition in zebrafish. These findings demonstrate that CBD threatens the model aquatic animal, highlighting the need for additional toxicological evaluations of CBD before its inclusion in dietary supplements, edible food, and other products.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Bei Fan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China
| | - Yifan Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Mengying Zhao
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fengzhong Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Minmin Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China.
| |
Collapse
|
6
|
Sahoo AK, Chivukula N, Madgaonkar SR, Ramesh K, Marigoudar SR, Sharma KV, Samal A. Leveraging integrative toxicogenomic approach towards development of stressor-centric adverse outcome pathway networks for plastic additives. Arch Toxicol 2024; 98:3299-3321. [PMID: 39097536 PMCID: PMC11402864 DOI: 10.1007/s00204-024-03825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Plastics are widespread pollutants found in atmospheric, terrestrial and aquatic ecosystems due to their extensive usage and environmental persistence. Plastic additives, that are intentionally added to achieve specific functionality in plastics, leach into the environment upon plastic degradation and pose considerable risk to ecological and human health. Limited knowledge concerning the presence of plastic additives throughout plastic life cycle has hindered their effective regulation, thereby posing risks to product safety. In this study, we leveraged the adverse outcome pathway (AOP) framework to understand the mechanisms underlying plastic additives-induced toxicities. We first identified an exhaustive list of 6470 plastic additives from chemicals documented in plastics. Next, we leveraged heterogenous toxicogenomics and biological endpoints data from five exposome-relevant resources, and identified associations between 1287 plastic additives and 322 complete and high quality AOPs within AOP-Wiki. Based on these plastic additive-AOP associations, we constructed a stressor-centric AOP network, wherein the stressors are categorized into ten priority use sectors and AOPs are linked to 27 disease categories. We visualized the plastic additives-AOP network for each of the 1287 plastic additives and made them available in a dedicated website: https://cb.imsc.res.in/saopadditives/ . Finally, we showed the utility of the constructed plastic additives-AOP network by identifying highly relevant AOPs associated with benzo[a]pyrene (B[a]P), bisphenol A (BPA), and bis(2-ethylhexyl) phthalate (DEHP) and thereafter, explored the associated toxicity pathways in humans and aquatic species. Overall, the constructed plastic additives-AOP network will assist regulatory risk assessment of plastic additives, thereby contributing towards a toxic-free circular economy for plastics.
Collapse
Affiliation(s)
- Ajaya Kumar Sahoo
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Nikhil Chivukula
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Shreyes Rajan Madgaonkar
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Kundhanathan Ramesh
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
| | | | - Krishna Venkatarama Sharma
- Ministry of Earth Sciences, National Centre for Coastal Research, Government of India, Pallikaranai, Chennai, 600100, India
| | - Areejit Samal
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India.
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
7
|
Liu Q, Hu S, Tang X, Wang C, Yang L, Xiao T, Xu B. Gonadal Development and Differentiation of Hybrid F 1 Line of Ctenopharyngodon idella (♀) × Squaliobarbus curriculus (♂). Int J Mol Sci 2024; 25:10566. [PMID: 39408892 PMCID: PMC11477168 DOI: 10.3390/ijms251910566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The hybrid F1 offspring of Ctenopharyngodon idella (♂) and Squaliobarbus curriculus (♀) exhibit heterosis in disease resistance and also show abnormal sex differentiation. To understand the mechanism behind gonadal differentiation in the hybrid F1, we analyzed the transcriptomes of C. idella, S. curriculus, and the hybrid F1; screened for genes related to gonad development in these samples; and measured their expression levels. Our results revealed that compared to either C. idella or S. curriculus, the gene expressions in most sub-pathways of the SNARE interactions in the vesicular transport pathway in the hypothalamus, pituitary, and gonadal tissues of their hybrid F1 offspring were significantly up-regulated. Furthermore, insufficient transcription of genes involved in oocyte meiosis may be the main reason for the insufficient reproductive ability of the hybrid F1 offspring. Through transcriptome screening, we identified key molecules involved in gonad development, including HSD3B7, HSD17B1, HSD17B3, HSD20B2, CYP17A2, CYP1B1, CYP2AA12, UGT2A1, UGT1A1, and FSHR, which showed significant differences in expression levels in the hypothalamus, pituitary, and gonads of these fish. Notably, the expression levels of UGT1A1 in the gonads of the hybrid F1 were significantly higher than those in C. idella and S. curriculus. These results provide a scientific basis for further research on the gonadal differentiation mechanism of hybrid F1 offspring.
Collapse
Affiliation(s)
- Qiaolin Liu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Q.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Shitao Hu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Q.L.)
| | - Xiangbei Tang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Q.L.)
| | - Chong Wang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Q.L.)
| | - Le Yang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Q.L.)
| | - Tiaoyi Xiao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Q.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Baohong Xu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Q.L.)
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
8
|
Ren Z, Ye D, Su N, Wang C, He L, Wang H, He M, Sun Y. foxl2l is a germ cell-intrinsic gatekeeper of oogenesis in zebrafish. Zool Res 2024; 45:1116-1130. [PMID: 39257375 PMCID: PMC11491788 DOI: 10.24272/j.issn.2095-8137.2024.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/20/2024] [Indexed: 09/12/2024] Open
Abstract
Zebrafish serve as a valuable model organism for studying germ cell biology and reproductive processes. The AB strain of zebrafish is proposed to exhibit a polygenic sex determination system, where most males initially develop juvenile ovaries before committing to male fate. In species with chromosomal sex determination, gonadal somatic cells are recognized as key determinants of germ cell fate. Notably, the loss of germ cells in zebrafish leads to masculinization, implying that germ cells harbor an intrinsic feminization signal. However, the specific signal triggering oogenesis in zebrafish remains unclear. In the present study, we identified foxl2l as an oocyte progenitor-specific gene essential for initiating oogenesis in germ cells. Results showed that foxl2l-knockout zebrafish bypassed the juvenile ovary stage and exclusively developed into fertile males. Further analysis revealed that loss of foxl2l hindered the initiation of oocyte-specific meiosis and prevented entry into oogenesis, leading to premature spermatogenesis during early gonadal development. Furthermore, while mutation of the pro-male gene dmrt1 led to fertile female differentiation, simultaneous disruption of foxl2l in dmrt1 mutants completely blocked oogenesis, with a large proportion of germ cells arrested as germline stem cells, highlighting the crucial role of foxl2l in oogenesis. Overall, this study highlights the unique function of foxl2l as a germ cell-intrinsic gatekeeper of oogenesis in zebrafish.
Collapse
Affiliation(s)
- Zhiqin Ren
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Ding Ye
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China. E-mail:
| | - Naike Su
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaofan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Lijia He
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houpeng Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Mudan He
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Zhu M, Sumana SL, Abdullateef MM, Falayi OC, Shui Y, Zhang C, Zhu J, Su S. CRISPR/Cas9 Technology for Enhancing Desirable Traits of Fish Species in Aquaculture. Int J Mol Sci 2024; 25:9299. [PMID: 39273247 PMCID: PMC11395652 DOI: 10.3390/ijms25179299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Aquaculture, the world's fastest-growing food production sector, is critical for addressing food security concerns because of its potential to deliver high-quality, nutrient-rich supplies by 2050. This review assesses the effectiveness of CRISPR/Cas9 genome editing technology in enhancing desirable traits in fish species, including growth rates, muscle quality, disease resistance, pigmentation, and more. It also focuses on the potential effectiveness of the technology in allowing precise and targeted modifications of fish DNA to improve desirable characteristics. Many studies have reported successful applications of CRISPR/Cas9, such as knocking out reproductive genes to control reproduction and sex determination, enhancing feed conversion efficiency, and reducing off-target effects. Additionally, this technology has contributed to environmental sustainability by reducing nitrogen-rich waste and improving the nutritional composition of fish. However, the acceptance of CRISPR/Cas9 modified fish by the public and consumers is hindered by concerns regarding public perception, potential ecological impacts, and regulatory frameworks. To gain public approval and consumer confidence, clear communication about the editing process, as well as data on the safety and environmental considerations of genetically modified fish, are essential. This review paper discusses these challenges, provides possible solutions, and recommends future research on the integration of CRISPR/Cas9 into sustainable aquaculture practices, focusing on the responsible management of genetically modified fish to enable the creation of growth and disease-resistant strains. In conclusion, this review highlights the transformative potential of CRISPR/Cas9 technology in improving fish traits, while also considering the challenges and ethical considerations associated with sustainable and responsible practices in aquaculture.
Collapse
Affiliation(s)
- Minli Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Sahr Lamin Sumana
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | | | | | - Yan Shui
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Chengfeng Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
10
|
Su Y, Wu Y, Ye M, Zhao C, Li L, Cai J, Chakraborty T, Yang L, Wang D, Zhou L. Star1 gene mutation reveals the essentiality of 11-ketotestosterone and glucocorticoids for male fertility in Nile Tilapia (Oreochromis niloticus). Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110985. [PMID: 38729293 DOI: 10.1016/j.cbpb.2024.110985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Steroidogenic acute regulatory protein (Star) plays an essential role in the biosynthesis of corticosteroids and sex steroids by mediating the transport of cholesterol from the outer to the inner membrane of mitochondria. Two duplicated Star genes, namely star1 and star2, have been identified in non-mammalian vertebrates. To investigate the roles of star genes in fish steriodogenesis, we generated two mutation lines of star1-/- and star1-/-/star2-/- in Nile tilapia (Oreochromis niloticus). Previous studies revealed that deficiency of star2 gene caused delayed spermatogenesis, sperm apoptosis and sterility in male tilapia. Our present data revealed that mutation of star genes impaired male fertility. Disordered seminiferous lobules and spermatic duct obstruction were found in the testis of both types of mutants. Moreover, significant decline in semen volume, sperm abnormality and impaired fertility were also detected in star1-/- and star1-/-/star2-/- males. In star1-/- male fish, lipid accumulation, up-regulation of steroidogenic enzymes, and significant decline of androgens were found. Additionally, hyperplasic interrenal cells, elevated steroidogenic gene expression level and decline of serum glucocorticoids were detected in star1 mutants. Intriguingly, either 11-KT or cortisol supplementation successfully rescued the impaired fertility of the star1-/- mutants. Taken together, these results further indicate that Star1 might play critical roles in the production of both 11-KT and glucocorticoids, which are indispensable for the maintenance of male fertility in fish.
Collapse
Affiliation(s)
- Yun Su
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, PR China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - You Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Maolin Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Chenhua Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Lu Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jing Cai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | | | - Lanying Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| | - Linyan Zhou
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, PR China.
| |
Collapse
|
11
|
Ding J, Wang H, He J, Jing C, Zhao H, Hu F. Elucidating the reproductive toxicity mechanisms in female zebrafish: A transcriptomic study of lifetime tris(2-chloroethyl) phosphate exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174831. [PMID: 39019278 DOI: 10.1016/j.scitotenv.2024.174831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/15/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Tris(2-chloroethyl) phosphate (TCEP), emerging as a predominant substitute for brominated flame retardants (BFRs), is now increasingly recognized as a prevalent contaminant in aquatic ecosystems. The extent of its reproductive toxicity in aquatic species, particularly in zebrafish (Danio rerio), remains insufficiently characterized. This study subjected zebrafish embryos to various concentrations of TCEP (0, 0.8, 4, 20, and 100 μg/L) over a period of 120 days, extending through sexual maturation, to assess its impact on female reproductive health. Notable reductions in body weight (0.59- and 0.76-fold) and length (0.71- and 0.77-fold) were observed at concentrations of 20 and 100 μg/L, with a concomitant decrease by 0.21- to 0.61-fold in the gonadal somatic index across all treatment groups. The reproductive output, as evidenced by egg production and hatchability, was adversely affected. Histopathological analysis suggested that TCEP exposure impedes ovarian development. Endocrine alterations were also evident, with testosterone and 11-ketotestosterone levels significantly diminished by 0.38- and 0.08-fold at the highest concentration tested, while 17β-estradiol was elevated by 0.09- to 0.14-fold in all exposed groups. Transcriptomic profiling illuminated numerous differentially expressed genes (DEGs) integral to reproductive processes, including hormone regulation, neuroactive ligand-receptor interactions, oocyte meiosis, and progesterone-mediated maturation pathways. Collectively, these findings indicate that lifelong exposure to TCEP disrupts ovarian development and maturation in female zebrafish, alters gene expression within the hypothalamic-pituitary-gonadal axis, and perturbs sex hormone synthesis, culminating in pronounced reproductive toxicity.
Collapse
Affiliation(s)
- Jieyu Ding
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou 350001, China
| | - Hongkai Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiabo He
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Jing
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haocheng Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengxiao Hu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou 350001, China.
| |
Collapse
|
12
|
Huang J, Sun C, Huang Z, Zhu Y, Chen SX. Upregulation of coagulation factor V by glucocorticoid in the preovulatory follicles of zebrafish. J Steroid Biochem Mol Biol 2024; 241:106521. [PMID: 38631601 PMCID: PMC11140551 DOI: 10.1016/j.jsbmb.2024.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Increased cortisol levels in the preovulatory follicular fluid suggests a role of glucocorticoid in human ovulation. However, the mechanisms through which cortisol regulates the ovulatory process remain poorly understood. In this study, we examined the upregulation of f5 mRNA by glucocorticoid and its receptor (Gr) in the preovulatory follicles of zebrafish. Our findings demonstrate a significant increase in 11β-hydroxysteroid dehydrogenase type 2 (hsd11b2), a cortisol response gene, in preovulatory follicles. Additionally, hydrocortisone exerts a dose- and time-dependent upregulation of f5 mRNA in these follicles. Importantly, this stimulatory effect is Gr-dependent, as it was completely abolished in gr-/- mutants. Furthermore, site-directed mutagenesis identified a glucocorticoid response element (GRE) in the promoter of zebrafish f5. Interestingly, successive incubation of hydrocortisone and the native ovulation-inducing steroid, progestin (17α,20β-dihydroxy-4-pregnen-3-one, DHP), further enhanced f5 expression in preovulatory follicles. Overall, our results indicate that the dramatic increase of f5 expression in preovulatory follicles is partially attributable to the regulation of glucocorticoid and Gr.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chao Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhuo Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Biology, East Carolina University, 101 E. 10th Street, Greenville, NC 27858, USA
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
13
|
Orlova SY, Ruzina MN, Emelianova OR, Sergeev AA, Chikurova EA, Orlov AM, Mugue NS. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes (Basel) 2024; 15:726. [PMID: 38927661 PMCID: PMC11202958 DOI: 10.3390/genes15060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.
Collapse
Affiliation(s)
- Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Maria N. Ruzina
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Olga R. Emelianova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Sergeev
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Evgeniya A. Chikurova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
| | - Nikolai S. Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Laboratory of Genome Evolution and Speciation, Institute of Developmental Biology Russian Academy of Sciences, 117808 Moscow, Russia
| |
Collapse
|
14
|
Jia J, Shi S, Liu C, Shu T, Li T, Lou Q, Jin X, He J, Du Z, Zhai G, Yin Z. Use of All-Male cyp17a1-Deficient Zebrafish (Danio rerio) for Evaluation of Environmental Estrogens. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1062-1074. [PMID: 38477699 DOI: 10.1002/etc.5839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024]
Abstract
Natural and synthetic environmental estrogens (EEs) are widespread and have received extensive attention. Our previous studies demonstrated that depletion of the cytochrome P450 17a1 gene (cyp17a1) leads to all-testis differentiation phenotype in zebrafish and common carp. In the present study, cyp17a1-deficient zebrafish with defective estrogen biosynthesis were used for the evaluation of EEs, as assessed by monitoring vitellogenin (vtg) expression. A rapid and sensitive assessment procedure was established with the 3-day administration of estradiol (E2), followed by examination of the transcriptional expression of vtgs in our cyp17a1-deficient fish. Compared with the control fish, a higher E2-mediated vtg upregulation observed in cyp17a1-deficient zebrafish exposed to 0.1 μg/L E2 is known to be estrogen receptor-dependent and likely due to impaired in vivo estrogen biosynthesis. The more responsive vtg expression in cyp17a1-deficient zebrafish was observed when exposed to 200 and 2000 μg/L bisphenol A (BPA) and perfluoro-1-octanesulfonate (PFOS). The estrogenic potentials of E2, BPA, and PFOS were compared and assessed by the feminization effect on ovarian differentiation in cyp17a1-deficient zebrafish from 18 to 50 days postfertilization, based on which a higher sensitivity of E2 in ovarian differentiation than BPA and PFOS was concluded. Collectively, through the higher sensitivity to EEs and the capacity to distinguish chemicals with different estrogenic potentials exhibited by the all-male cyp17a1-deficient zebrafish with impaired estrogen biosynthesis, we demonstrated that they can be used as an excellent in vivo model for the evaluation of EEs. Environ Toxicol Chem 2024;43:1062-1074. © 2024 SETAC.
Collapse
Affiliation(s)
- Jingyi Jia
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Shengchi Shi
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Congying Liu
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Shu
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tianhui Li
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiyong Lou
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xia Jin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiangyan He
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhenyu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Gang Zhai
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhan Yin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
15
|
Zou H, Yu H, Huang Y, Guo Y, Ye M, Hou L. Chronic exposure to gestodene impairs reproductive system in adult female zebrafish (Daniarerio). CHEMOSPHERE 2024; 355:141876. [PMID: 38570043 DOI: 10.1016/j.chemosphere.2024.141876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Gestodene (GES) is widely used in human therapy and animal husbandry and is frequently detected in aquatic environments. Although GES adversely affects aquatic organisms at trace levels, its effects on the reproductive biology of fish remain inconclusive. In this study, female zebrafish (Danio rerio) were exposed to environmentally relevant levels of GES for the evaluation of the effects of GES on the reproductive system by using endpoints including gene expression, plasma steroid concentrations, histological and morphological analyses, copulatory behavior, and reproductive output. Adult female zebrafish exposed to environmentally relevant concentrations of GES (4.0, 40.2, and 372.7 ng/L) for 60 d demonstrated stagnant ovarian oocyte development, evidenced by an increase in the percentage of perinuclear and atretic oocytes and a decrease in the percentage of late vitellogenic oocytes. GES-exposed females were less attractive to males and had lower copulatory intimacy than females in control. Consequently, spawning (44.3-49.2 %) and egg fertilization rates (27.9-32.0 %) were decreased. The decreased survival of fertilized eggs and hatching rates were accompanied by increased malformations. These negative effects were associated with abnormal transcriptional levels of gonadal steroid hormones, which were regulated by genes (Hsd17β3, Hsd11β2, Hsd20β, Cyp19a1a, and Cyp11b). Overall, our findings suggest that GES impairs the reproductive system of zebrafish, which may threaten population stability.
Collapse
Affiliation(s)
- Hong Zou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - HongJun Yu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - YunYi Huang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - YanFang Guo
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - MeiXin Ye
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - LiPing Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China; Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
16
|
Yu M, Zhang S, Ma Z, Qiang J, Wei J, Sun L, Kocher TD, Wang D, Tao W. Disruption of Zar1 leads to arrested oogenesis by regulating polyadenylation via Cpeb1 in tilapia (Oreochromis niloticus). Int J Biol Macromol 2024; 260:129632. [PMID: 38253139 DOI: 10.1016/j.ijbiomac.2024.129632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Oogenesis is a complex process regulated by precise coordination of multiple factors, including maternal genes. Zygote arrest 1 (zar1) has been identified as an ovary-specific maternal gene that is vital for oocyte-to-embryo transition and oogenesis in mouse and zebrafish. However, its function in other species remains to be elucidated. In the present study, zar1 was identified with conserved C-terminal zinc finger domains in Nile tilapia. zar1 was highly expressed in the ovary and specifically expressed in phase I and II oocytes. Disruption of zar1 led to the failed transition from oogonia to phase I oocytes, with somatic cell apoptosis. Down-regulation and failed polyadenylation of figla, gdf9, bmp15 and wee2 mRNAs were observed in the ovaries of zar1-/- fish. Cpeb1, a gene essential for polyadenylation that interacts with Zar1, was down-regulated in zar1-/- fish. Moreover, decreased levels of serum estrogen and increased levels of androgen were observed in zar1-/- fish. Taken together, zar1 seems to be essential for tilapia oogenesis by regulating polyadenylation and estrogen synthesis. Our study shows that Zar1 has different molecular functions during gonadal development by the similar signaling pathway in different species.
Collapse
Affiliation(s)
- Miao Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shiyi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhisheng Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jing Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lina Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, United States of America
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Yazawa T, Imamichi Y, Sato T, Ida T, Umezawa A, Kitano T. Diversity of Androgens; Comparison of Their Significance and Characteristics in Vertebrate Species. Zoolog Sci 2024; 41:77-86. [PMID: 38587520 DOI: 10.2108/zs230064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/31/2023] [Indexed: 04/09/2024]
Abstract
Androgen(s) is one of the sex steroids that are involved in many physiological phenomena of vertebrate species. Although androgens were originally identified as male sex hormones, it is well known now that they are also essential in females. As in the case of other steroid hormones, androgen is produced from cholesterol through serial enzymatic reactions. Although testis is a major tissue to produce androgens in all species, androgens are also produced in ovary and adrenal (interrenal tissue). Testosterone is the most common and famous androgen. It represents a major androgen both in males and females of almost vertebrate species. In addition, testosterone is a precursor for producing significant androgens such as11-ketotestosterone, 5α-dihydrotestosterone, 11-ketodihydrotestosterones and 15α-hydroxytestosterone in a species- or sex-dependent manner for their homeostasis. In this article, we will review the significance and characteristics of these androgens, following a description of the history of testosterone discovery and its synthetic pathways.
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Hokkaido 078-8510, Japan,
| | - Yoshitaka Imamichi
- Faculty of Marine Science and Technology, Fukui Prefectural University, Fukui 917-0003, Japan,
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka 830-0011, Japan
| | - Takanori Ida
- Center for Animal Disease Control, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Akihiro Umezawa
- National Center for Child Health and Development Research Institute, Tokyo 157-8535, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
18
|
Li M, Sun L, Zhou L, Wang D. Tilapia, a good model for studying reproductive endocrinology. Gen Comp Endocrinol 2024; 345:114395. [PMID: 37879418 DOI: 10.1016/j.ygcen.2023.114395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/07/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
The Nile tilapia (Oreochromis niloticus), with a system of XX/XY sex determination, is a worldwide farmed fish with a shorter sexual maturation time than that of most cultured fish. Tilapia show a spawning cycle of approximately 14 days and can be artificially propagated in the laboratory all year round to obtain genetically all female (XX) and all male (XY) fry. Its genome sequence has been opened, and a perfect gene editing platform has been established. With a moderate body size, it is convenient for taking enough blood to measure hormone level. In recent years, using tilapia as animal model, we have confirmed that estrogen is crucial for female development because 1) mutation of star2, cyp17a1 or cyp19a1a (encoding aromatase, the key enzyme for estrogen synthesis) results in sex reversal (SR) due to estrogen deficiency in XX tilapia, while mutation of star1, cyp11a1, cyp17a2, cyp19a1b or cyp11c1 affects fertility due to abnormal androgen, cortisol and DHP levels in XY tilapia; 2) when the estrogen receptors (esr2a/esr2b) are mutated, the sex is reversed from female to male, while when the androgen receptors are mutated, the sex cannot be reversed; 3) the differentiated ovary can be transdifferentiated into functional testis by inhibition of estrogen synthesis, and the differentiated testis can be transdifferentiated into ovary by simultaneous addition of exogenous estrogen and androgen synthase inhibitor; 4) loss of male pathway genes amhy, dmrt1, gsdf causes SR with upregulation of cyp19a1a in XY tilapia. Disruption of estrogen synthesis rescues the male to female SR of amhy and gsdf but not dmrt1 mutants; 5) mutation of female pathway genes foxl2 and sf-1 causes SR with downregulation of cyp19a1a in XX tilapia; 6) the germ cell SR of foxl3 mutants fails to be rescued by estrogen treatment, indicating that estrogen determines female germ cell fate through foxl3. This review also summarized the effects of deficiency of other steroid hormones, such as androgen, DHP and cortisol, on fish reproduction. Overall, these studies demonstrate that tilapia is an excellent animal model for studying reproductive endocrinology of fish.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
19
|
Wu K, Zhai Y, Qin M, Zhao C, Ai N, He J, Ge W. Genetic evidence for differential functions of figla and nobox in zebrafish ovarian differentiation and folliculogenesis. Commun Biol 2023; 6:1185. [PMID: 37990081 PMCID: PMC10663522 DOI: 10.1038/s42003-023-05551-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
FIGLA and NOBOX are important oocyte-specific transcription factors. Both figla-/- and nobox-/- mutants showed all-male phenotype in zebrafish due to increased dominance of the male-promoting pathway. The early diversion towards males in these mutants has precluded analysis of their roles in folliculogenesis. In this study, we attenuated the male-promoting pathway by deleting dmrt1, a key male-promoting gene, in figla-/- and nobox-/- fish, which allows a sufficient display of defects in folliculogenesis. Germ cells in figla-/-;dmrt1-/- double mutant remained in cysts without forming follicles. In contrast, follicles could form well but exhibited deficient growth in nobox-/-;dmrt1-/- double mutants. Follicles in nobox-/-;dmrt1-/- ovary could progress to previtellogenic (PV) stage but failed to enter vitellogenic growth. Such arrest at PV stage suggested a possible deficiency in estrogen signaling. This was supported by lines of evidence in nobox-/-;dmrt1-/-, including reduced expression of ovarian aromatase (cyp19a1a) and level of serum estradiol (E2), regressed genital papilla (female secondary sex characteristics), and more importantly the resumption of vitellogenic growth by E2 treatment. Expression analysis suggested Nobox might regulate cyp19a1a by controlling Gdf9 and/or Bmp15. Our discoveries indicate that Figla is essential for ovarian differentiation and follicle formation whereas Nobox is important for driving subsequent follicle development.
Collapse
Affiliation(s)
- Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
- School of Marine Sciences, Sun Yat-sen University, 519082, Zhuhai, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, China
| | - Yue Zhai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Mingming Qin
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Cheng Zhao
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Jianguo He
- School of Marine Sciences, Sun Yat-sen University, 519082, Zhuhai, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China.
| |
Collapse
|
20
|
Valdivieso A, Caballero-Huertas M, Moraleda-Prados J, Piferrer F, Ribas L. Exploring the Effects of Rearing Densities on Epigenetic Modifications in the Zebrafish Gonads. Int J Mol Sci 2023; 24:16002. [PMID: 37958987 PMCID: PMC10647740 DOI: 10.3390/ijms242116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Rearing density directly impacts fish welfare, which, in turn, affects productivity in aquaculture. Previous studies have indicated that high-density rearing during sexual development in fish can induce stress, resulting in a tendency towards male-biased sex ratios in the populations. In recent years, research has defined the relevance of the interactions between the environment and epigenetics playing a key role in the final phenotype. However, the underlying epigenetic mechanisms of individuals exposed to confinement remain elucidated. By using zebrafish (Danio rerio), the DNA methylation promotor region and the gene expression patterns of six genes, namely dnmt1, cyp19a1a, dmrt1, cyp11c1, hsd17b1, and hsd11b2, involved in the DNA maintenance methylation, reproduction, and stress were assessed. Zebrafish larvae were subjected to two high-density conditions (9 and 66 fish/L) during two periods of overlapping sex differentiation of this species (7 to 18 and 18 to 45 days post-fertilization, dpf). Results showed a significant masculinization in the populations of fish subjected to high densities from 18 to 45 dpf. In adulthood, the dnmt1 gene was differentially hypomethylated in ovaries and its expression was significantly downregulated in the testes of fish exposed to high-density. Further, the cyp19a1a gene showed downregulation of gene expression in the ovaries of fish subjected to elevated density, as previously observed in other studies. We proposed dnmt1 as a potential testicular epimarker and the expression of ovarian cyp19a1a as a potential biomarker for predicting stress originated from high densities during the early stages of development. These findings highlight the importance of rearing densities by long-lasting effects in adulthood conveying cautions for stocking protocols in fish hatcheries.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, 34090 Montpellier, France
| | - Marta Caballero-Huertas
- CIRAD, UMR ISEM, 34398 Montpellier, France;
- ISEM, Université de Montpellier, CIRAD, CNRS, IRD, EPHE, 34090 Montpellier, France
| | - Javier Moraleda-Prados
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003 Barcelona, Spain; (J.M.-P.); (F.P.)
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003 Barcelona, Spain; (J.M.-P.); (F.P.)
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003 Barcelona, Spain; (J.M.-P.); (F.P.)
| |
Collapse
|
21
|
Xiang X, Huang X, Wang J, Zhang H, Zhou W, Xu C, Huang Y, Tan Y, Yin Z. Transcriptomic and metabolomic analyses of the ovaries of Taihe black-bone silky fowls at the peak egg-laying and nesting period. Front Genet 2023; 14:1222087. [PMID: 37876591 PMCID: PMC10591096 DOI: 10.3389/fgene.2023.1222087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
The poor reproductive performance of most local Chinese chickens limits the economic benefits and output of related enterprises. As an excellent local breed in China, Taihe black-bone silky fowl is in urgent need of our development and utilization. In this study, we performed transcriptomic and metabolomic analyses of the ovaries of Taihe black-bone silky fowls at the peak egg-laying period (PP) and nesting period (NP) to reveal the molecular mechanisms affecting reproductive performance. In the transcriptome, we identified five key differentially expressed genes (DEGs) that may affect the reproductive performance of Taihe black-bone silky fowl: BCHE, CCL5, SMOC1, CYTL1, and SCIN, as well as three important pathways: the extracellular region, Neuroactive ligand-receptor interaction and Cytokine-cytokine receptor interaction. In the metabolome, we predicted three important ovarian significantly differential metabolites (SDMs): LPC 20:4, Bisphenol A, and Cortisol. By integration analysis of transcriptome and metabolome, we identified three important metabolite-gene pairs: "LPC 20:4-BCHE", "Bisphenol A-SMOC1", and "Cortisol- SCIN". In summary, this study contributes to a deeper understanding of the regulatory mechanism of egg production in Taihe black-bone silky fowl and provides a scientific basis for improving the reproductive performance of Chinese local chickens.
Collapse
Affiliation(s)
- Xin Xiang
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Xuan Huang
- Animal Science College, Zhejiang University, Hangzhou, China
| | | | - Haiyang Zhang
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Wei Zhou
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Chunhui Xu
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Yunyan Huang
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Yuting Tan
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Zhaozheng Yin
- Animal Science College, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Liao X, Tao B, Zhang X, Chen L, Chen J, Song Y, Hu W. Loss of gdnfa disrupts spermiogenesis and male courtship behavior in zebrafish. Mol Cell Endocrinol 2023; 576:112010. [PMID: 37419437 DOI: 10.1016/j.mce.2023.112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Spermatogenesis is essential for establishment and maintenance of reproduction in male vertebrates. Spermatogenesis, which is mainly regulated by the combined action of hormones, growth factors, and epigenetic factors, is highly conserved. Glial cell line-derived neurotrophic factor (GDNF) is a member of the transforming growth factor-β superfamily. In this study, global gdnfa knockout and Tg (gdnfa: mcherry) transgenic zebrafish lines were generated. Loss of gdnfa resulted in disorganized testes, decreased gonadosomatic index, and low percentage of mature spermatozoa. In the Tg (gdnfa: mcherry) zebrafish line, we found that gdnfa was expressed in Leydig cells. The mutation in gdnfa significantly decreased Leydig cell marker gene expression and androgen secretion in Leydig cells. In addition, courtship behavior was disrupted in the male mutants. We present in vivo data showing that global knockout of gdnfa disrupts spermiogenesis and male courtship behavior in zebrafish. The first viable vertebrate model with a global gdnfa knockout may be valuable for studying the role of GDNF in animal reproduction.
Collapse
Affiliation(s)
- Xianyao Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China.
| | - Xiya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China; Guangdong Laboratory for Lingnan Modem Agriculture, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Dai X, Pradhan A, Liu J, Liu R, Zhai G, Zhou L, Dai J, Shao F, Yuan Z, Wang Z, Yin Z. Zebrafish gonad mutant models reveal neuroendocrine mechanisms of brain sexual dimorphism and male mating behaviors of different brain regions. Biol Sex Differ 2023; 14:53. [PMID: 37605245 PMCID: PMC10440941 DOI: 10.1186/s13293-023-00534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/16/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Sexually dimorphic mating behaviors differ between sexes and involve gonadal hormones and possibly sexually dimorphic gene expression in the brain. However, the associations among the brain, gonad, and sexual behavior in teleosts are still unclear. Here, we utilized germ cells-free tdrd12 knockout (KO) zebrafish, and steroid synthesis enzyme cyp17a1-deficient zebrafish to investigate the differences and interplays in the brain-gonad-behavior axis, and the molecular control of brain dimorphism and male mating behaviors. METHODS Tdrd12+/-; cyp17a1+/- double heterozygous parents were crossed to obtain tdrd12-/-; cyp17a1+/+ (tdrd12 KO), tdrd12+/+; cyp17a1-/- (cyp17a1 KO), and tdrd12-/-; cyp17a1-/- (double KO) homozygous progenies. Comparative analysis of mating behaviors were evaluated using Viewpoint zebrafish tracking software and sexual traits were thoroughly characterized based on anatomical and histological experiments in these KOs and wild types. The steroid hormone levels (testosterone, 11-ketotestosterone and 17β-estradiol) in the brains, gonads, and serum were measured using ELISA kits. To achieve a higher resolution view of the differences in region-specific expression patterns of the brain, the brains of these KOs, and control male and female fish were dissected into three regions: the forebrain, midbrain, and hindbrain for transcriptomic analysis. RESULTS Qualitative analysis of mating behaviors demonstrated that tdrd12-/- fish behaved in the same manner as wild-type males to trigger oviposition behavior, while cyp17a1-/- and double knockout (KO) fish did not exhibit these behaviors. Based on the observation of sex characteristics, mating behaviors and hormone levels in these mutants, we found that the maintenance of secondary sex characteristics and male mating behavior did not depend on the presence of germ cells; rather, they depended mainly on the 11-ketotestosterone and testosterone levels secreted into the brain-gonad regulatory axis. RNA-seq analysis of different brain regions revealed that the brain transcript profile of tdrd12-/- fish was similar to that of wild-type males, especially in the forebrain and midbrain. However, the brain transcript profiles of cyp17a1-/- and double KO fish were distinct from those of wild-type males and were partially biased towards the expression pattern of the female brain. Our results revealed important candidate genes and signaling pathways, such as synaptic signaling/neurotransmission, MAPK signaling, and steroid hormone pathways, that shape brain dimorphism and modulate male mating behavior in zebrafish. CONCLUSIONS Our results provide comprehensive analyses and new insights regarding the endogenous interactions in the brain-gonad-behavior axis. Moreover, this study revealed the crucial candidate genes and neural signaling pathways of different brain regions that are involved in modulating brain dimorphism and male mating behavior in zebrafish, which would significantly light up the understanding the neuroendocrine and molecular mechanisms modulating brain dimorphism and male mating behavior in zebrafish and other teleost fish.
Collapse
Affiliation(s)
- Xiangyan Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebrorebro University, 70182, Örebro, Sweden
| | - Jiao Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ruolan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiyan Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhiyong Yuan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhijian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
24
|
Tam N, Kong RYC, Lai KP. Reproductive toxicity in marine medaka (Oryzias melastigma) due to embryonic exposure to PCB 28 or 4'-OH-PCB 65. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162401. [PMID: 36842578 DOI: 10.1016/j.scitotenv.2023.162401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have shown that juvenile or adult exposure to polychlorinated biphenyls (PCBs) induces alterations in reproductive functions (e.g., reduced fertilization rate) and behavior (e.g., reduced nest maintenance) in fish. Embryonic exposures to other endocrine disrupting chemicals have been reported to induce long-term reproductive toxicity in fish. However, the effects of embryonic exposure to PCBs or their metabolites, OH-PCBs, on long-term reproductive function in fish are unknown. In the present study, we used the marine medaka fish (Oryzias melastigma) as a model to assess the reproductive endpoints in response to embryonic exposure to either PCB 28 or 4'-OH-PCB 65. Our results showed that the sex ratio of marine medaka was feminized by exposure to 4'-OH-PCB 65. Fecundity was decreased in the medaka treated with either PCB 28 or 4'-OH-PCB 65, whereas the medaka from embryonic exposure to 4'-OH-PCB 65 additionally exhibited reduced fertilization and a reduction in the hatching success rate of offspring, as well as decreased sperm motility. Serum 11-KT concentrations were reduced in the PCB 28-treated medaka, and serum estradiol (E2)/testosterone (T) and E2/11-ketotestosterone (11-KT) ratios were decreased in the 4'-OH-PCB 65-treated medaka. To explain these observations at the molecular level, transcriptomic analysis of the gonads was performed. Bioinformatic analysis using Gene Ontology and Ingenuity Pathway Analysis revealed that genes involved in various pathways potentially involved in reproductive functions (e.g., steroid metabolism and cholesterol homeostasis) were differentially expressed in the testes and ovaries of either PCB- or OH-PCB-treated medaka. Thus, the long-term reproductive toxicity in fish due to embryonic exposure to PCB or OH-PCB should be considered for environmental risk assessment.
Collapse
Affiliation(s)
- Nathan Tam
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Richard Yuen Chong Kong
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China; Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
25
|
Xu SS, Li Y, Wang HP, Chen WB, Wang YQ, Song ZW, Liu H, Zhong S, Sun YH, Zhong S, Sun YH. Depletion of stearoyl-CoA desaturase ( scd) leads to fatty liver disease and defective mating behavior in zebrafish. Zool Res 2023; 44:63-77. [PMID: 36317480 PMCID: PMC9841191 DOI: 10.24272/j.issn.2095-8137.2022.167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Stearyl coenzyme A desaturase (SCD), also known as delta-9 desaturase, catalyzes the rate-limiting step in the formation of monounsaturated fatty acids. In mammals, depletion or inhibition of SCD activity generally leads to a decrease in triglycerides and cholesteryl esters. However, the endogenous role of scd in teleost fish remains unknown. Here, we generated a zebrafish scd mutant (scd-/-) to elucidate the role of scd in lipid metabolism and sexual development. Gas chromatography-mass spectrometry (GC-MS) showed that the scd-/- mutants had increased levels of saturated fatty acids C16:0 and C18:0, and decreased levels of monounsaturated fatty acids C16:1 and C18:1. The mutant fish displayed a short stature and an enlarged abdomen during development. Unlike Scd-/- mammals, the scd-/- zebrafish showed significantly increased fat accumulation in the whole body, especially in the liver, leading to hepatic mitochondrial dysfunction and severe cell apoptosis. Mechanistically, srebf1, a gene encoding a transcriptional activator related to adipogenesis, acc1 and acaca, genes involved in fatty acid synthesis, and dgat2, a key gene involved in triglyceride synthesis, were significantly upregulated in mutant livers to activate fatty acid biosynthesis and adipogenesis. The scd-/- males exhibited defective natural mating behavior due to defective genital papillae but possessed functional mature sperm. All defects in the scd-/- mutants could be rescued by ubiquitous transgenic overexpression of scd. In conclusion, our study demonstrates that scd is indispensable for maintaining lipid homeostasis and development of secondary sexual characteristics in zebrafish.
Collapse
Affiliation(s)
- Shan-Shan Xu
- Department of Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China,State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Hou-Peng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Wen-Bo Chen
- Department of Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Ya-Qing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Zi-Wei Song
- Department of Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Hui Liu
- Department of Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Shan Zhong
- Department of Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China,E-mail:
| | - Yong-Hua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ye D, Liu T, Li Y, Wang Y, Hu W, Zhu Z, Sun Y. Identification of fish spermatogenic cells through high-throughput immunofluorescence against testis with an antibody set. Front Endocrinol (Lausanne) 2023; 14:1044318. [PMID: 37077350 PMCID: PMC10106697 DOI: 10.3389/fendo.2023.1044318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Image-based identification and quantification of different types of spermatogenic cells is of great importance, not only for reproductive studies but also for genetic breeding. Here, we have developed antibodies against spermatogenesis-related proteins in zebrafish (Danio rerio), including Ddx4, Piwil1, Sycp3, and Pcna, and a high-throughput method for immunofluorescence analysis of zebrafish testicular sections. By immunofluorescence analysis of zebrafish testes, our results demonstrate that the expression of Ddx4 decreases progressively during spermatogenesis, Piwil1 is strongly expressed in type A spermatogonia and moderately expressed in type B spermatogonia, and Sycp3 has distinct expression patterns in different subtypes of spermatocytes. Additionally, we observed polar expression of Sycp3 and Pcna in primary spermatocytes at the leptotene stage. By a triple staining of Ddx4, Sycp3, and Pcna, different types/subtypes of spermatogenic cells were easily characterized. We further demonstrated the practicality of our antibodies in other fish species, including Chinese rare minnow (Gobiocypris rarus), common carp (Cyprinus carpio), blunt snout bream (Megalobrama amblycephala), rice field eel (Monopterus albus) and grass carp (Ctenopharyngodon idella). Finally, we proposed an integrated criterion for identifying different types/subtypes of spermatogenic cells in zebrafish and other fishes using this high-throughput immunofluorescence approach based on these antibodies. Therefore, our study provides a simple, practical, and efficient tool for the study of spermatogenesis in fish species.
Collapse
Affiliation(s)
- Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Tao Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
27
|
He M, Jiao S, Zhang R, Ye D, Wang H, Sun Y. Translational control by maternal Nanog promotes oogenesis and early embryonic development. Development 2022; 149:286111. [PMID: 36533583 DOI: 10.1242/dev.201213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022]
Abstract
Many maternal mRNAs are translationally repressed during oocyte development and spatio-temporally activated during early embryogenesis, which is crucial for oocyte and early embryo development. By analyzing maternal mutants of nanog (Mnanog) in zebrafish, we demonstrated that Nanog tightly controls translation of maternal mRNA during oogenesis via transcriptional repression of eukaryotic translation elongation factor 1 alpha 1, like 2 (eef1a1l2). Loss of maternal Nanog led to defects of egg maturation, increased endoplasmic reticulum stress, and an activated unfold protein response, which was caused by elevated translational activity. We further demonstrated that Nanog, as a transcriptional repressor, represses the transcription of eefl1a1l2 by directly binding to the eef1a1l2 promoter in oocytes. More importantly, depletion of eef1a1l2 in nanog mutant females effectively rescued the elevated translational activity in oocytes, oogenesis defects and embryonic defects of Mnanog embryos. Thus, our study demonstrates that maternal Nanog regulates oogenesis and early embryogenesis through translational control of maternal mRNA via a mechanism whereby Nanog acts as a transcriptional repressor to suppress transcription of eef1a1l2.
Collapse
Affiliation(s)
- Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengbo Jiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
28
|
Zhang R, Tu Y, Ye D, Gu Z, Chen Z, Sun Y. A Germline-Specific Regulator of Mitochondrial Fusion is Required for Maintenance and Differentiation of Germline Stem and Progenitor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203631. [PMID: 36257818 PMCID: PMC9798980 DOI: 10.1002/advs.202203631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/28/2022] [Indexed: 06/01/2023]
Abstract
Maintenance and differentiation of germline stem and progenitor cells (GSPCs) is important for sexual reproduction. Here, the authors identify zebrafish pld6 as a novel germline-specific gene by cross-analyzing different RNA sequencing results, and find that pld6 knockout mutants develop exclusively into infertile males. In pld6 mutants, GSPCs fail to differentiate and undergo apoptosis, leading to masculinization and infertility. Mitochondrial fusion in pld6-depleted GSPCs is severely impaired, and the mutants exhibit defects in piRNA biogenesis and transposon suppression. Overall, this work uncovers zebrafish Pld6 as a novel germline-specific regulator of mitochondrial fusion, and highlights its essential role in the maintenance and differentiation of GSPCs as well as gonadal development and gametogenesis.
Collapse
Affiliation(s)
- Ru Zhang
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyInnovation Academy for Seed DesignChinese Academy of SciencesWuhan430072China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyCollege of Biomedicine and HealthInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Yi‐Xuan Tu
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyCollege of Biomedicine and HealthInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyInnovation Academy for Seed DesignChinese Academy of SciencesWuhan430072China
| | - Zhenglong Gu
- Division of Nutritional SciencesCornell UniversityIthacaNY14853USA
- Center for Mitochondrial Genetics and HealthGreater Bay Area Institute of Precision Medicine (Guangzhou)Fudan UniversityNansha DistrictGuangzhou511400China
| | - Zhen‐Xia Chen
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyCollege of Biomedicine and HealthInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhen518000China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyInnovation Academy for Seed DesignChinese Academy of SciencesWuhan430072China
- Hubei Hongshan LaboratoryWuhan430070China
| |
Collapse
|
29
|
Hu Y, Ma X, Liu R, Mushtaq I, Qi Y, Yuan C, Huang D. 2,4-Dichlorophenol Increases Primordial Germ Cell Numbers via ESR2a-Dependent Pathway in Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13878-13887. [PMID: 36106461 DOI: 10.1021/acs.est.2c05212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Previous studies have reported the feminizing effects of 2,4-dichlorophenol (2,4-DCP) on zebrafish (Danio rerio). However, the effect of 2,4-DCP on the number of primordial germ cells (PGCs), an indicator for early sex differentiation, remains elusive. In the present study, Tg (piwil1:egfp-UTR nanos3) zebrafish (GFP-labeled PGCs) were treated with 2,4-DCP (10, 20, and 40 μg/L) from 5 to 15 days postfertilization to explore the effect on PGC numbers and to elucidate associated molecular mechanisms. The results showed that 2,4-DCP exposure increased PGC numbers, as evidenced by larger GFP fluorescent areas, upregulated expressions of PGC marker genes (vasa and dnd), and raised the female ratio. Notably, the mRNA level of estrogen receptor 2a (esr2a) was also increased subsequently. Moreover, docking studies revealed stable 2,4-DCP interactions with ESR2a, speculating a role of ESR2a signaling pathway in 2,4-DCP toxicity. Furthermore, in esr2a knockout (esr2a-/-) zebrafish, the effects of 2,4-DCP were considerably minimized, proving the involvement of the ESR2a signaling pathway in the 2,4-DCP-mediated increase in PGC numbers. Dual-luciferase reporter gene assay and point mutation studies demonstrated that 2,4-DCP-stimulated promoter activity was mediated by estrogen response element (ERE) located in -686/-674 of the vasa promoter and -731/-719 of the dnd promoter. Overall, 2,4-DCP can potentially enhance the expression of vasa and dnd by binding to zebrafish ESR2a, thus leading to increased PGC numbers and subsequent female-biased sex differentiation.
Collapse
Affiliation(s)
- Yan Hu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xuan Ma
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Rongjian Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Iqra Mushtaq
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
30
|
Establishment of a Spermatogonial Stem Cell Line with Potential of Meiosis in a Hermaphroditic Fish, Epinephelus coioides. Cells 2022; 11:cells11182868. [PMID: 36139441 PMCID: PMC9496998 DOI: 10.3390/cells11182868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are unique adult stem cells capable of self-renewal and differentiation into sperm. Grouper is a protogynous hermaphroditic fish farmed widely in the tropical and subtropical seas. In this study, we established an SSC line derived from adult testis of orange-spotted grouper, Epinephelus coioides. In the presence of basic fibroblast growth factor (bFGF) and leukemia inhibitory factor (LIF), the cells could be maintained with proliferation and self-renewal over 20 months and 120 passages under in vitro culture conditions. The cells exhibited strong alkaline phosphatase activity and the characteristics of SSCs with the expression of germ cell markers, including Vasa, Dazl, and Plzf, as well as the stem cell markers Nanog, Oct4, and Ssea1. Furthermore, the cultured cells could be induced by 11-ketotestosterone treatment to highly express the meiotic markers Rec8, Sycp3, and Dmc1, and produce some spherical cells, and even sperm-like cells with a tail. The findings of this study suggested that the cultured grouper SSC line would serve as an excellent tool to study the molecular mechanisms behind SSCs self-renewal and differentiation, meiosis during spermatogenesis, and sex reversal in hermaphroditic vertebrates. Moreover, this SSC line has great application value in grouper fish aquaculture, such as germ cell transplantation, genetic manipulation, and disease research.
Collapse
|
31
|
Transgenic Overexpression of Myocilin Leads to Variable Ocular Anterior Segment and Retinal Alterations Associated with Extracellular Matrix Abnormalities in Adult Zebrafish. Int J Mol Sci 2022; 23:ijms23179989. [PMID: 36077382 PMCID: PMC9456529 DOI: 10.3390/ijms23179989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Myocilin is an enigmatic glaucoma-associated glycoprotein whose biological role remains incompletely understood. To gain novel insight into its normal function, we used transposon-mediated transgenesis to generate the first zebrafish line stably overexpressing myocilin [Tg(actb1:myoc-2A-mCherry)]. qPCR showed an approximately four-fold increased myocilin expression in transgenic zebrafish embryos (144 hpf). Adult (13 months old) transgenic animals displayed variable and age-dependent ocular anterior segment alterations. Almost 60% of two-year-old male, but not female, transgenic zebrafish developed enlarged eyes with severe asymmetrical and variable abnormalities in the anterior segment, characterized by corneal limbus hypertrophy, and thickening of the cornea, iris, annular ligament and lens capsule. The most severe phenotype presented small or absent ocular anterior chamber and pupils, due to iris overgrowth along with dysplastic retinal growth and optic nerve hypertrophy. Immunohistochemistry revealed increased presence of myocilin in most altered ocular tissues of adult transgenic animals, as well as signs of retinal gliosis and expanded ganglion cells and nerve fibers. The preliminary results indicate that these cells contributed to retinal dysplasia. Visual impairment was demonstrated in all old male transgenic zebrafish. Transcriptomic analysis of the abnormal transgenic eyes identified disrupted expression of genes involved in lens, muscular and extracellular matrix activities, among other processes. In summary, the developed transgenic zebrafish provides a new tool to investigate this puzzling protein and provides evidence for the role of zebrafish myocilin in ocular anterior segment and retinal biology, through the influence of extracellular matrix organization and cellular proliferation.
Collapse
|
32
|
Cantabella E, Camilleri V, Cavalie I, Dubourg N, Gagnaire B, Charlier TD, Adam-Guillermin C, Cousin X, Armant O. Revealing the Increased Stress Response Behavior through Transcriptomic Analysis of Adult Zebrafish Brain after Chronic Low to Moderate Dose Rates of Ionizing Radiation. Cancers (Basel) 2022; 14:cancers14153793. [PMID: 35954455 PMCID: PMC9367516 DOI: 10.3390/cancers14153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The increasing use of radiopharmaceuticals for medical diagnostics and radiotherapy raises concerns regarding health risks for both humans and the environment. Additionally, in the context of major nuclear accidents like in Chernobyl and Fukushima, very little is known about the effects of chronic exposure to low and moderate dose rates of ionizing radiation (IR). Many studies demonstrated the sensibility of the developmental brain, but little data exists for IR at low dose rates and their impact on adults. In this study, we characterized the molecular mechanisms that orchestrate stress behavior caused by chronic exposure to low to moderate dose rates of IR using the adult zebrafish model. We observed the establishment of a congruent stress response at both the molecular and individual levels. Abstract High levels of ionizing radiation (IR) are known to induce neurogenesis defects with harmful consequences on brain morphogenesis and cognitive functions, but the effects of chronic low to moderate dose rates of IR remain largely unknown. In this study, we aim at defining the main molecular pathways impacted by IR and how these effects can translate to higher organizational levels such as behavior. Adult zebrafish were exposed to gamma radiation for 36 days at 0.05 mGy/h, 0.5 mGy/h and 5 mGy/h. RNA sequencing was performed on the telencephalon and completed by RNA in situ hybridization that confirmed the upregulation of oxytocin and cone rod homeobox in the parvocellular preoptic nucleus. A dose rate-dependent increase in differentially expressed genes (DEG) was observed with 27 DEG at 0.05 mGy/h, 200 DEG at 0.5 mGy/h and 530 DEG at 5 mGy/h. Genes involved in neurotransmission, neurohormones and hypothalamic-pituitary-interrenal axis functions were specifically affected, strongly suggesting their involvement in the stress response behavior observed after exposure to dose rates superior or equal to 0.5 mGy/h. At the individual scale, hypolocomotion, increased freezing and social stress were detected. Together, these data highlight the intricate interaction between neurohormones (and particularly oxytocin), neurotransmission and neurogenesis in response to chronic exposure to IR and the establishment of anxiety-like behavior.
Collapse
Affiliation(s)
- Elsa Cantabella
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
- Correspondence: (E.C.); (O.A.)
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Isabelle Cavalie
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Nicolas Dubourg
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Béatrice Gagnaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Thierry D. Charlier
- Univ. Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, 35000 Rennes, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Santé (PSE-Santé)/Service de Recherche en Dosimétrie (SDOS)/Laboratoire de Micro-Irradiation, de Métrologie et de Dosimétrie des Neutrons (LMDN), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, 34250 Palavas Les Flots, France
| | - Oliver Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
- Correspondence: (E.C.); (O.A.)
| |
Collapse
|
33
|
Xiao H, Xu Z, Zhu X, Wang J, Zheng Q, Zhang Q, Xu C, Tao W, Wang D. Cortisol safeguards oogenesis by promoting follicular cell survival. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1563-1577. [PMID: 35167018 DOI: 10.1007/s11427-021-2051-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The role of glucocorticoids in oogenesis remains to be elucidated. cyp11c1 encodes the key enzyme involved in the synthesis of cortisol, the major glucocorticoid in teleosts. In our previous study, we mutated cyp11c1 in tilapia and analyzed its role in spermatogenesis. In this study, we analyzed its role in oogenesis. cyp11c1+/- XX tilapia showed normal ovarian morphology but poor egg quality, as indicated by the mortality of embryos before 3 d post fertilization, which could be partially rescued by the supplement of exogenous cortisol to the mother fish. Transcriptome analyses revealed reduced expression of maternal genes in the eggs of the cyp11c1+/- XX fish. The cyp11c1-/- females showed impaired vitellogenesis and arrested oogenesis due to significantly decreased serum cortisol. Further analyses revealed decreased serum E2 level and expression of amh, an important regulator of follicular cell development, and increased follicular cell apoptosis in the ovaries of cyp11c1-/- XX fish, which could be rescued by supplement of either exogenous cortisol or E2. Luciferase assays revealed a direct regulation of cortisol and E2 on amh transcription via GRs or ESRs. Taken together, our results demonstrate that cortisol safeguards oogenesis by promoting follicular cell survival probably via Amh signaling.
Collapse
Affiliation(s)
- Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhen Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xi Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jingrong Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qiaoyuan Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qingqing Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunmei Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
34
|
Pan YJ, Tong SK, Hsu CW, Weng JH, Chung BC. Zebrafish Establish Female Germ Cell Identity by Advancing Cell Proliferation and Meiosis. Front Cell Dev Biol 2022; 10:866267. [PMID: 35445010 PMCID: PMC9013747 DOI: 10.3389/fcell.2022.866267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 01/05/2023] Open
Abstract
Zebrafish is a popular research model; but its mechanism of sex determination is unclear and the sex of juvenile fish cannot be distinguished. To obtain fish with defined sex, we crossed domesticated zebrafish with the Nadia strain that has a female-dominant W segment. These fish were placed on a ziwi:GFP background to facilitate sorting of fluorescent germ cells for transcriptomic analysis. We analyzed the transcriptomes of germ cells at 10–14 days postfertilization (dpf), when sex dimorphic changes started to appear. Gene ontology showed that genes upregulated in the 10-dpf presumptive females are involved in cell cycles. This correlates with our detection of increased germ cell numbers and proliferation. We also detected upregulation of meiotic genes in the presumptive females at 14 dpf. Disruption of a meiotic gene, sycp3, resulted in sex reversal to infertile males. The germ cells of sycp3 mutants could not reach diplotene and underwent apoptosis. Preventing apoptosis by disrupting tp53 restored female characteristics in sycp3 mutants, demonstrating that adequate germ cells are required for female development. Thus, our transcriptome and gene mutation demonstrate that initial germ cell proliferation followed by meiosis is the hallmark of female differentiation in zebrafish.
Collapse
Affiliation(s)
- You-Jiun Pan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institue of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sok-Keng Tong
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chen-wei Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jui-Hsia Weng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Bon-chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Bon-chu Chung,
| |
Collapse
|
35
|
Zhai G, Shu T, Yu G, Tang H, Shi C, Jia J, Lou Q, Dai X, Jin X, He J, Xiao W, Liu X, Yin Z. Augmentation of progestin signaling rescues testis organization and spermatogenesis in zebrafish with the depletion of androgen signaling. eLife 2022; 11:e66118. [PMID: 35225789 PMCID: PMC8912926 DOI: 10.7554/elife.66118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
Disruption of androgen signaling is known to cause testicular malformation and defective spermatogenesis in zebrafish. However, knockout of cyp17a1, a key enzyme responsible for the androgen synthesis, in ar-/- male zebrafish paradoxically causes testicular hypertrophy and enhanced spermatogenesis. Because Cyp17a1 plays key roles in hydroxylation of pregnenolone and progesterone (P4), and converts 17α-hydroxypregnenolone to dehydroepiandrosterone and 17α-hydroxyprogesterone to androstenedione, we hypothesize that the unexpected phenotype in cyp17a1-/-;androgen receptor (ar)-/- zebrafish may be mediated through an augmentation of progestin/nuclear progestin receptor (nPgr) signaling. In support of this hypothesis, we show that knockout of cyp17a1 leads to accumulation of 17α,20β-dihydroxy-4-pregnen-3-one (DHP) and P4. Further, administration of progestin, a synthetic DHP mimetic, is sufficient to rescue testicular development and spermatogenesis in ar-/- zebrafish, whereas knockout of npgr abolishes the rescue effect of cyp17a1-/- in the cyp17a1-/-;ar-/- double mutant. Analyses of the transcriptomes among the mutants with defective testicular organization and spermatogenesis (ar-/-, ar-/-;npgr-/- and cyp17a-/-;ar-/-;npgr-/-), those with normal phenotype (control and cyp17a1-/-), and rescued phenotype (cyp17a1-/-;ar-/-) reveal a common link between a downregulated expression of insl3 and its related downstream genes in cyp17a-/-;ar-/-;npgr-/- zebrafish. Taken together, our data suggest that genetic or pharmacological augmentation of the progestin/nPgr pathway is sufficient to restore testis organization and spermatogenesis in zebrafish with the depletion of androgen signaling.
Collapse
Affiliation(s)
- Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
- College of Advanced Agricultural Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Tingting Shu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
- College of Advanced Agricultural Sciences, University of Chinese Academy of SciencesBeijingChina
- Chinese Sturgeon Research Institute, China Three Gorges CorporationHubeiChina
| | - Guangqing Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
- College of Advanced Agricultural Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Haipei Tang
- 5State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen UniversityGuangzhouChina
| | - Chuang Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
- College of Advanced Agricultural Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Jingyi Jia
- College of Fisheries, Huazhong Agriculture UniversityWuhanChina
| | - Qiyong Lou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
| | - Xiangyan Dai
- Key Laboratory of Freshwater Fish Reproduction and Development and Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest UniversityChongqingChina
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
- College of Advanced Agricultural Sciences, University of Chinese Academy of SciencesBeijingChina
- The Innovative Academy of Seed Design, Chinese Academy of SciencesWuhanChina
| | - Xiaochun Liu
- 5State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen UniversityGuangzhouChina
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
- College of Advanced Agricultural Sciences, University of Chinese Academy of SciencesBeijingChina
- The Innovative Academy of Seed Design, Chinese Academy of SciencesWuhanChina
| |
Collapse
|
36
|
Divergent Evolution of Progesterone and Mineralocorticoid Receptors in Terrestrial Vertebrates and Fish Influences Endocrine Disruption. Biochem Pharmacol 2022; 198:114951. [PMID: 35149051 DOI: 10.1016/j.bcp.2022.114951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/20/2022]
Abstract
There is much concern about disruption of endocrine physiology regulated by steroid hormones in humans, other terrestrial vertebrates and fish by industrial chemicals, such as bisphenol A, and pesticides, such as DDT. These endocrine-disrupting chemicals influence steroid-mediated physiology in humans and other vertebrates by competing with steroids for receptor binding sites, disrupting diverse responses involved in reproduction, development and differentiation. Here I discuss that due to evolution of the progesterone receptor (PR) and mineralocorticoid receptor (MR) after ray-finned fish and terrestrial vertebrates diverged from a common ancestor, each receptor evolved to respond to different steroids in ray-finned fish and terrestrial vertebrates. In elephant shark, a cartilaginous fish that diverged before the separation between ray-finned fish and terrestrial vertebrates, both progesterone and 17,20β-dihydroxy-progesterone activate the PR. During the evolution of ray-finned fish and terrestrial vertebrates, the PR in terrestrial vertebrates continued responding to progesterone and evolved to weakly respond to 17,20β-dihydroxy-progesterone. In contrast, the physiological progestin for the PR in zebrafish and other ray-finned fish is 17,20β-dihydroxy-progesterone, and ray-finned fish PR responds weakly to progesterone. The MR in fish and terrestrial vertebrates also diverged to have different responses to progesterone. Progesterone is a potent agonist for elephant shark MR, zebrafish MR and other fish MRs, in contrast to progesterone's opposite activity as an antagonist for aldosterone, the physiological mineralocorticoid for human MR. These different physiological ligands for fish and terrestrial vertebrate PR and MR need to be considered in applying data for their disruption by chemicals in fish and terrestrial vertebrates to each other.
Collapse
|
37
|
Wang Y, Ye D, Zhang F, Zhang R, Zhu J, Wang H, He M, Sun Y. Cyp11a2 Is Essential for Oocyte Development and Spermatogonial Stem Cell Differentiation in Zebrafish. Endocrinology 2022; 163:6473198. [PMID: 34932120 DOI: 10.1210/endocr/bqab258] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 11/19/2022]
Abstract
Cytochrome P45011A1, encoded by Cyp11a1, converts cholesterol to pregnenolone (P5), the first and rate-limiting step in steroidogenesis. In zebrafish, cyp11a1 is maternally expressed and cyp11a2 is considered the ortholog of Cyp11a1 in mammals. A recent study has shown that depletion of cyp11a2 resulted in steroidogenic deficiencies and the mutants developed into males with feminized secondary sexual characteristics. Here, we independently generated cyp11a2 mutants in zebrafish and showed that the mutants can develop into males and females in the juvenile stage, but finally into infertile males with defective mating behavior in the adult stage. In the developing ovaries, the cyp11a2 mutation led to stage I oocyte apoptosis and final sex reversal, which could be partially rescued by treatment with P5 but not estradiol. In the developing testes, depletion of cyp11a2 resulted in dysfunction of Sertoli cells and lack of functional Leydig cells. Spermatogonial stem cells (SSCs) in the mutant testes underwent active self-renewal but no differentiation, resulting in a high abundance of SSCs in the testis, as revealed by immunofluorescence staining with Nanos2 antibody. The high abundance and differentiation competence of SSCs in the mutant testes were verified by a novel testicular cell transplantation method developed in this study, by transplanting mutant testicular cells into germline-depleted wild-type (WT) fish. The transplanted mutant SSCs efficiently differentiated into functional spermatids in WT hosts. Overall, our study demonstrates the functional importance of cyp11a2 in early oogenesis and differentiation of SSCs.
Collapse
Affiliation(s)
- Yaqing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fenghua Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwen Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Wang X, Meng W, Qi X, Li Y, Li J, Lyu L, Li J, Yao Y, Yan S, Zuo C, Xie S, Wen H. Molecular characterization and expression patterns of glucocorticoid receptors in the viviparous black rockfish Sebastes schlegelii. Gen Comp Endocrinol 2022; 316:113947. [PMID: 34848189 DOI: 10.1016/j.ygcen.2021.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Glucocorticoid receptors (GRs) are ligand-activated transcription factors associated with anti-inflammation, stress, metabolism and gonadal development. In this study, two gr genes (gr1 and gr2) were cloned and analyzed from a viviparous teleost, black rockfish (Sebastes schlegelii). The phylogenetic analysis of GRs showed that GR1 and GR2 clustered into teleost GR1 and GR2 separately and differed from the GRs of tetrapods or basal ray-finned fishes. Black rockfish GRs possess four modular domains of the nuclear receptor superfamily: an N-terminal domain (NTD), a DNA-binding domain (DBD), a hinge region (HR) and a ligand-binding domain (LBD). Nine conserved amino acid inserts were found in the GR1 DBD, and the ligand cavity-related amino acids of GR1 and GR2 LBD were slightly different. Tissue distribution analysis revealed that grs was widely expressed in various tissues, while cyp11b was mainly expressed in the testis and head kidney. The cyp11b transcripts were localized in the interrenal glands of the head kidney, the main source of cortisol; grs transcripts were detected in oocytes, the follicle layer and the ovarian wall. Histologically, significant blood vessel dilation was observed in the fetal membrane during or after parturition of black rockfish. The highest levels of serum cortisol and ovarian cyp11b mRNA were detected in parturition. In addition, the relative expression level of gr1 was upregulated significantly after delivery, while the levels of gr2 showed no significant change. In addition, in vitro GC treatment inhibited the expression of il1b but significantly upregulated the transcription of il1r1. These data provide evidence that GRs are likely to work as anti-inflammatory factors by inhibiting the functions of pro-inflammatory factors in the parturition of black rockfish.
Collapse
Affiliation(s)
- Xiaojie Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Wei Meng
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jifang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Likang Lyu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jianshuang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yijia Yao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Shaojing Yan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Chenpeng Zuo
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Songyang Xie
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
39
|
Shi S, Shu T, Li X, Lou Q, Jin X, He J, Yin Z, Zhai G. Characterization of the Interrenal Gland and Sexual Traits Development in cyp17a2-Deficient Zebrafish. Front Endocrinol (Lausanne) 2022; 13:910639. [PMID: 35733778 PMCID: PMC9207535 DOI: 10.3389/fendo.2022.910639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike the Cytochrome P450, family 17, subfamily A, member 1 (Cyp17a1), which possesses both 17α-hydroxylase and 17,20-lyase activities involved in the steroidogenic pathway that produces androgens and estrogens, Cytochrome P450, family 17, subfamily A, polypeptide 2 (Cyp17a2) possesses only 17α-hydroxylase activity and is known essential for the synthesis of cortisol. Besides with expressed in testes and ovaries, where the cyp17a1 is mainly expressed, cyp17a2 is also expressed in the interrenal gland in fish. Until now, the roles of cyp17a2 in fish, especially in sexual traits development and hypothalamic-pituitary-interrenal (HPI) axis, are poorly studied. To investigate the roles of Cyp17a2 in teleosts, the cyp17a2-null zebrafish was generated and analyzed by us. The significantly decreased cortisol concentration was observed both in the cyp17a2-deficient males and females at adult stage. The interrenal gland enlargement, increased pituitary proopiomelanocortin a (pomca) expression, decreased locomotion activity and response to light-stimulated stress were observed in cyp17a2-deficient fish. Intriguingly, the cyp17a2-deficient males were fertile and with normal breeding tubercles on the pectoral fin, but females were infertile, deficient in genital papilla and with decreased gonadosomatic index (GSI). The increased progesterone (P4), 17α,20β-dihydroxy-4-pregnen-3-one (DHP) and 11-ketotestosterone (11-KT) in the cyp17a2-deficient males and females were observed. The increased concentration of testosterone (T) and estradiol (E2) was observed in cyp17a2-/- females and cyp17a2-/- males, respectively. By examining the ovaries development of cyp17a2-deficient fish at 3 months postfertilization (mpf), we observed that the oocytes were over-activated. Taken together, our findings demonstrate that Cyp17a2 is indispensable for production and physiology of cortisol, and cyp17a2-deficiency resulted in diminished cortisol but accumulated P4 and DHP, which may result in the over-activated oocytes in cyp17a2-deficient females.
Collapse
Affiliation(s)
- Shengchi Shi
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Shu
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
| | - Xi Li
- Center of Clinical Research, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyong Lou
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xia Jin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhan Yin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Gang Zhai
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Gang Zhai,
| |
Collapse
|
40
|
Yang L, Wu Y, Su Y, Zhang X, Chakraborty T, Wang D, Zhou L. Cyp17a2 is involved in testicular development and fertility in male Nile tilapia, Oreochromis niloticus. Front Endocrinol (Lausanne) 2022; 13:1074921. [PMID: 36523590 PMCID: PMC9744770 DOI: 10.3389/fendo.2022.1074921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Steroid hormones play an essential role in many reproductive processes of vertebrates. Previous studies revealed that teleost-specific Cyp17a2 (cytochrome P450 family 17 subfamily a 2) might be required for the production of cortisol in the head-kidney and 17α,20β-dihydroxy-4-pregnen-3-one (DHP) in ovary during oocyte maturation. However, the role of Cyp17a2 in male reproduction remains to be largely unknown. The aim of this study was to explore the essentiality of cyp17a2 gene in male steroidogenesis, spermatogenesis, and male fertility. METHODS A homozygous mutation line of cyp17a2 gene was constructed in tilapia by CRISPR/Cas9 gene editing technology. The expression level of germ cell and meiosis-related genes and steroidogenic enzymes were detected by qRT-PCR, IHC, and Western blotting. EIA and LC-MS/MS assays were used to measure the steroid production levels. And sperm quality was examined by Sperm Quality Analyzer software. RESULTS In this study, cyp17a2 gene mutation resulted in the significant decline of serum DHP and cortisol levels. On the contrary, significant increases in intermediate products of cortisol and DHP were found in cyp17a2-/- male fish. The deficiency of cyp17a2 led to the arrest of meiotic initiation in male fish revealing as the reduction of the expression of germ cell-related genes (vasa, piwil, oct4) and meiosis-related genes (spo11 and sycp3) by 90 dah. Afterwards, spermatogenesis was gradually recovered with the development of testis in cyp17a2-/- males, but it showed a lower sperm motility and reduced fertility compared to cyp17a2+/+ XY fish. Deletion of cyp17a2 led to the abnormal upregulation of steroidogenic enzymes for cortisol production in the head-kidney. Moreover, unaltered serum androgens and estrogens, as well as unchanged related steroidogenic enzymes were found in the testis of cyp17a2-/- male fish. CONCLUSION This study proved that, for the fist time, Cyp17a2 is indispensable for cortisol and DHP production, and cyp17a2 deficiency associated curtailed meiotic initiation and subfertility suggesting the essentiality of DHP and cortisol in the male fertility of fish.
Collapse
Affiliation(s)
- Lanying Yang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, China; Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries, Southwest University, Chongqing, China
| | - You Wu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, China; Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries, Southwest University, Chongqing, China
| | - Yun Su
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, China; Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries, Southwest University, Chongqing, China
| | - Xuefeng Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, China; Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries, Southwest University, Chongqing, China
| | | | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, China; Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries, Southwest University, Chongqing, China
- *Correspondence: Linyan Zhou, ; Deshou Wang,
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, China; Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries, Southwest University, Chongqing, China
- *Correspondence: Linyan Zhou, ; Deshou Wang,
| |
Collapse
|
41
|
Yang L, Zhang X, Liu S, Zhao C, Miao Y, Jin L, Wang D, Zhou L. Cyp17a1 is Required for Female Sex Determination and Male Fertility by Regulating Sex Steroid Biosynthesis in Fish. Endocrinology 2021; 162:6377406. [PMID: 34581801 DOI: 10.1210/endocr/bqab205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 12/29/2022]
Abstract
In teleost fish, sex steroids are involved in sex determination, sex differentiation, and fertility. Cyp17a1 (Cytochrome P450 family 17 subfamily A member 1) is thought to play essential roles in fish steroidogenesis. Therefore, to further understand its roles in steroidogenesis, sex determination, and fertility in fish, we constructed a cyp17a1 gene mutant in Nile tilapia (Oreochromis niloticus). In XX fish, mutation of the cyp17a1 gene led to a female-to-male sex reversal with a significant decline in 17β-estradiol (E2) and testosterone (T) production, and ectopic expression of male-biased markers (Dmrt1 and Gsdf) in gonads from the critical window of sex determination. Sex reversal was successfully rescued via T or E2 administration, and ovarian characteristics were maintained after termination of E2 supplementation in the absence of endogenous estrogen production in cyp17a1-/- XX fish. Likewise, deficiencies in T and 11-ketotestosterone (11-KT) production in both cyp17a1-/- XX sex-reversed males and cyp17a1-/- XY mutants resulted in meiotic initiation delays, vas deferens obstruction and sterility due to excessive apoptosis and abnormal mitochondrial morphology. However, 11-KT treatment successfully rescued the dysspermia to produce normal sperm in cyp17a1-/- male fish. Significant increases in gonadotropic hormone (gth) and gth receptors in cyp17a1-/- mutants may excessively upregulate steroidogenic gene expression in Leydig cells through a feedback loop. Taken together, our findings demonstrate that Cyp17a1 is indispensable for E2 production, which is fundamental for female sex determination and differentiation in XX tilapia. Additionally, Cyp17a1 is essential for T and 11-KT production, which further promotes spermatogenesis and fertility in XY males.
Collapse
Affiliation(s)
- Lanying Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xuefeng Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shujun Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chenhua Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yiyang Miao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
42
|
Knockout of the hsd11b2 Gene Extends the Cortisol Stress Response in Both Zebrafish Larvae and Adults. Int J Mol Sci 2021; 22:ijms222212525. [PMID: 34830405 PMCID: PMC8619348 DOI: 10.3390/ijms222212525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022] Open
Abstract
The Hsd11b2 enzyme converts cortisol into its inactive form, cortisone and regulates cortisol levels, in particular in response to stress. Taking advantage of CRISPR/Cas9 technology, we generated a hsd11b2 zebrafish mutant line to evaluate the involvement of this gene in stress response regulation. The absence of a functional Hsd11b2 affects survival of zebrafish, although homozygous hsd11b2−/− mutants can reach adulthood. Reproductive capability of hsd11b2−/− homozygous adult males is almost completely abrogated, while that of females is reduced. Interestingly, basal cortisol levels and glucocorticoid-dependent transcriptional activities are not affected by the mutation. In agreement with basal cortisol results, we also demonstrated that basal response to light (LMR-L/D) or mechanical (VSRA) stimuli is not significantly different in wild-type (hsd11b2+/+) compared to mutant larvae. However, after exposure to an acute stressor, the cortisol temporal patterns of synthesis and release are prolonged in both 5 days post fertilization larvae and one-year-old adult hsd11b2−/− zebrafish compared to wild-type siblings, showing at the same time, at 5 dpf, a higher magnitude in the stress response at 10 min post stress. All in all, this new zebrafish model represents a good tool for studying response to different stressors and to identify mechanisms that are induced by cortisol during stress response.
Collapse
|
43
|
Wei L, Tang Y, Zeng X, Li Y, Zhang S, Deng L, Wang L, Wang D. The transcription factor Sox30 is involved in Nile tilapia spermatogenesis. J Genet Genomics 2021; 49:666-676. [PMID: 34801758 DOI: 10.1016/j.jgg.2021.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 12/30/2022]
Abstract
Spermatogenesis is a complex process in which spermatogonial stem cells differentiate and develop into mature spermatozoa. The transcriptional regulatory network involved in fish spermatogenesis remains poorly understood. Here, we demonstrate in Nile tilapia that the Sox transcription factor family member Sox30 is specifically expressed in the testes and mainly localizes to spermatocytes and spermatids. CRISPR/Cas9-mediated sox30 mutation results in abnormal spermiogenesis, reduction of sperm motility, and male subfertility. Comparative transcriptome analysis shows that sox30 mutation alters the expression of genes involved in spermatogenesis. Further chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), ChIP-PCR, and luciferase reporter assays reveal that Sox30 positively regulates the transcription of ift140 and ptprb, two genes involved in spermiogenesis, by directly binding to their promoters. Taken together, our data indicate that Sox30 plays essential roles in Nile tilapia spermatogenesis by directly regulating the transcription of the spermiogenesis-related genes ift140 and ptprb.
Collapse
Affiliation(s)
- Ling Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Yaohao Tang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xianhai Zeng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yueqin Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Song Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Deng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lingsong Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
44
|
Zhou L, Li M, Wang D. Role of sex steroids in fish sex determination and differentiation as revealed by gene editing. Gen Comp Endocrinol 2021; 313:113893. [PMID: 34454946 DOI: 10.1016/j.ygcen.2021.113893] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
The involvement of sex steroids in sex determination and differentiation is relatively conserved among non-mammalian vertebrates, especially in fish. Thanks to the advances in genome sequencing and genome editing, significant progresses have been made in the understanding of steroidogenic pathway and hormonal regulation of sex determination and differentiation in fish. It seems that loss of function study of single gene challenges the traditional views that estrogen is required for ovarian differentiation and androgen is needed for testicular development, but it is not so in essence. Steroidogenic enzymes can be classified into two categories based on expression and enzyme activities in fish. One type, encoded by star2, cyp17a1 and cyp19a1a, is involved in estrogen production and exclusively expressed in the gonads. Mutation of these genes results in the up-regulation of male pathway genes and sex reversal from genetic female to male. The other type, encoded by the duplicated paralogs of the above genes, including star1, cyp11a1, cyp17a2 and cyp19a1b, as well as cyp11c1 gene, is dominantly expressed both in gonads and extra-gonadal tissues. Mutation of these genes alters the steroids (androgen, DHP and cortisol) production and spermatogenesis, fertility, secondary sexual characteristics and sexual behavior, but usually does not affect the sex differentiation. For the estrogen receptors (esr1, esr2a and esr2b), single mutation failed to, but double and triple mutation leads to sex reversal from female to male, indicating that at least Esr2a and Esr2b are required to mediate the role of estrogen in sex determination proved by gene editing experiments. Taken together, results from gene editing enrich our understanding of steroid synthesis pathways and further confirm the critical role of estrogen in female sex determination by antagonizing the male pathway in fish.
Collapse
Affiliation(s)
- Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
45
|
Bacila I, Cunliffe VT, Krone NP. Interrenal development and function in zebrafish. Mol Cell Endocrinol 2021; 535:111372. [PMID: 34175410 DOI: 10.1016/j.mce.2021.111372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
In this article we aim to provide an overview of the zebrafish interrenal development and function, as well as a review of its contribution to basic and translational research. A search of the PubMed database identified 41 relevant papers published over the last 20 years. Based on the common themes identified, we discuss the organogenesis of the interrenal gland and its functional development and we review what is known about the genes involved in zebrafish steroidogenesis. We also outline the consequences of specific defects in steroid biosynthesis, as revealed by evidence from genetically engineered zebrafish models, including cyp11a2, cyp21a2, hsd3b1, cyp11c1 and fdx1b deficiency. Finally, we summarise the impact of different chemicals and environmental factors on steroidogenesis. Our review highlights the utility of zebrafish as a research model for exploring important areas of basic science and human disease, especially in the current context of rapid technological progress in the field of Molecular Biology.
Collapse
Affiliation(s)
- Irina Bacila
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom; The Bateson Centre, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Vincent T Cunliffe
- The Bateson Centre, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom; Department of Biomedical Science, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Nils P Krone
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom; The Bateson Centre, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom; Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
46
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
47
|
Hu Y, Li D, Ma X, Liu R, Qi Y, Yuan C, Huang D. Effects of 2,4-dichlorophenol exposure on zebrafish: Implications for the sex hormone synthesis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105868. [PMID: 34051627 DOI: 10.1016/j.aquatox.2021.105868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP), an estrogenic endocrine disruptor, is widely spread in aquatic environments and may interfere with normal physiological functions in fish. However, the influence of this chemical on the synthesis of sex hormones is not well understood. In the present study, zebrafish (Danio rerio) were exposed to 2,4-DCP (80 and 160 μg/L) with or without fadrozole (an aromatase inhibitor which inhibits the synthesis of estradiol) from 20 to 40 days post fertilization. Then, the sex ratio, the content of vitellogenin (VTG) and sex hormones (androstenedione (ASD), estrone (E1), 17β-estradiol (E2), estriol (E3), testosterone (T) and 11-ketotestosterone (11-KT)) were studied. Furthermore, the expression of genes involved in synthesis of sex hormones (cyp19a1a, cyp19a1b, 17β-hsd, 11β-hsd and cyp11b) along with the DNA methylation in cyp19a1a and cyp19a1b promoters was analyzed. The results showed that 2,4-DCP exposure led to female-biased ratio, increased the content of ASD, E2 and VTG, as well as the ratio of E2/11-KT, while decreased the levels of androgens (T and 11-KT). The sex hormonal change can be explained by the significant up-regulation of cyp19a1a, cyp19a1b, 17β-hsd and 11β-hsd genes. In addition, hypomethylation of cyp19a1a promoter was involved in this process. Notably, fadrozole can partly attenuate 2,4-DCP-induced feminization, and recover the levels of ASD, E2 and 11-KT. Thus, these results demonstrate that 2,4-DCP induces feminization in fish by disrupting the synthesis of sex hormones.
Collapse
Affiliation(s)
- Yan Hu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Dong Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Xuan Ma
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Rongjian Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China.
| |
Collapse
|
48
|
Tenugu S, Pranoty A, Mamta SK, Senthilkumaran B. Development and organisation of gonadal steroidogenesis in bony fishes - A review. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Lin X, Zhou D, Zhang X, Li G, Zhang Y, Huang C, Zhang Z, Tian C. A First Insight into the Gonad Transcriptome of Hong Kong Catfish ( Clarias fuscus). Animals (Basel) 2021; 11:1131. [PMID: 33920938 PMCID: PMC8071282 DOI: 10.3390/ani11041131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Hong Kong catfish (Clarias fuscus) exhibit sexual dimorphism, particularly in body size. Due to the fast growth rate of males, the sexual size dimorphism of Hong Kong catfish has become an economically important trait. However, limited knowledge is known about the molecular mechanisms of sex determination and sex differentiation in this species. In this study, a first de novo transcriptome sequencing analysis of testes and ovaries was performed to identify sex-biased genes in Hong Kong catfish. The results showed that a total of 290,291 circular consensus sequences (CCSs) were obtained, from which 248,408 full-length non-chimeric (FLNC) reads were generated. After non-redundant analysis, a total of 37,305 unigenes were predicted, in which 34,342 unigenes were annotated with multiple public databases. Comparative transcriptomic analysis identified 5750 testis-biased differentially expressed genes (DEGs) and 6991 ovary-biased DEGs. The enrichment analysis showed that DEGs were classified into 783 Gene Ontology (GO) terms and 16 Kyoto Encyclopedia of Gene and Genome (KEGG) pathways. Many DEGs were involved with sex-related GO terms and KEGG pathways, such as oocyte maturation, androgen secretion, gonadal development and steroid biosynthesis pathways. In addition, the expression levels of 23 unigenes were confirmed to validate the transcriptomic data by quantitative real-time polymerase chain reaction (qRT-PCR). This is the first investigation into the transcriptome of Hong Kong catfish testes and ovaries. This study provides an important molecular basis for the sex determination and sex control breeding of Hong Kong catfish.
Collapse
Affiliation(s)
- Xinghua Lin
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (X.Z.); (G.L.); (Y.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dayan Zhou
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China; (D.Z.); (C.H.); (Z.Z.)
| | - Xiaomin Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (X.Z.); (G.L.); (Y.Z.)
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (X.Z.); (G.L.); (Y.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Yulei Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (X.Z.); (G.L.); (Y.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
| | - Cailin Huang
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China; (D.Z.); (C.H.); (Z.Z.)
| | - Zhixin Zhang
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China; (D.Z.); (C.H.); (Z.Z.)
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (X.Z.); (G.L.); (Y.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| |
Collapse
|
50
|
Bosse GD, Cadeddu R, Floris G, Farero RD, Vigato E, Lee SJ, Zhang T, Gaikwad NW, Keefe KA, Phillips PE, Bortolato M, Peterson RT. The 5α-reductase inhibitor finasteride reduces opioid self-administration in animal models of opioid use disorder. J Clin Invest 2021; 131:143990. [PMID: 33848264 DOI: 10.1172/jci143990] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Opioid use disorder (OUD) has become a leading cause of death in the United States, yet current therapeutic strategies remain highly inadequate. To identify potential treatments for OUD, we screened a targeted selection of over 100 drugs using a recently developed opioid self-administration assay in zebrafish. This paradigm showed that finasteride, a steroidogenesis inhibitor approved for the treatment of benign prostatic hyperplasia and androgenetic alopecia, reduced self-administration of multiple opioids without affecting locomotion or feeding behavior. These findings were confirmed in rats; furthermore, finasteride reduced the physical signs associated with opioid withdrawal. In rat models of neuropathic pain, finasteride did not alter the antinociceptive effect of opioids and reduced withdrawal-induced hyperalgesia. Steroidomic analyses of the brains of fish treated with finasteride revealed a significant increase in dehydroepiandrosterone sulfate (DHEAS). Treatment with precursors of DHEAS reduced opioid self-administration in zebrafish in a fashion akin to the effects of finasteride. These results highlight the importance of steroidogenic pathways as a rich source of therapeutic targets for OUD and point to the potential of finasteride as a new treatment option for this disorder.
Collapse
Affiliation(s)
- Gabriel D Bosse
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Ryan D Farero
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Eva Vigato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Suhjung J Lee
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Tejia Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | | | - Kristen A Keefe
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Paul Em Phillips
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|