1
|
Hew-Butler T, Kerr E, Martinez Perez G, Sabourin J, Smith-Hale V, Mendoza R. Evaluating lower limits of body fat percentage in athletes using DXA. J Clin Densitom 2025; 28:101564. [PMID: 39869984 DOI: 10.1016/j.jocd.2025.101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 01/29/2025]
Abstract
Body fat percentage (BF%) is routinely measured in athletes to monitor training and dietary interventions. Dual energy x-ray absorptiometry (DXA) is widely considered the gold standard body composition measurement technique, but DXA BF% values measure consistently higher than other techniques. Therefore, the main purpose of this study is to determine the lowest DXA-estimated whole-body fat mass in free-living athletes with unrestricted access to food. In this cross-sectional analyses, 732 participants across 18 competitive sports (643 athletes; 88 %) plus two (male and female) "non-athlete" male and female cohorts (89 non-athletes; 12 %) underwent a whole-body DXA scan using a Horizon A Hologic™ device (software version 13.6.0.5; TBAR 1209), performed and analyzed by a single operator. The average BF % in 454 males (20.9 ± 3.8 years) was 18.2 ± 4.9 % (range 10.3 - 37.2 %), with basketball players having the lowest BF% (15.3 ± 2.6 %) and non-athletes having the highest BF% (21.6 ± 5.4 %) (1-way ANOVA between 10 teams: F = 12.3; p < 0.0001). The average BF% in 278 females (21.3 ± 5.5 years) was 27.1 ± 5.1 % (range 16.2 - 45.3 %), with runners having the lowest BF% (23.5 ± 3.5 %) and non-athletes having the highest BF% (31.7 ± 6.3 %) (1-way ANOVA between 10 teams F = 12.9; p < 0.0001). In absolute values (kg), the average body fat for males was 19.9 ± 8.0 kg (range 6.7 - 62.0 kg) and 18.9 ± 6.4 kg (range 9.2 - 49.7 kg) for females. These data suggest that the lower limits of whole-body fat mass in free-living competitive athletes is approximately 10 % for males and 16 % for females. Whether these DXA-derived fat thresholds represent "healthy" levels, or how much of these DXA-derived fat depots represent essential fat stores located within lean soft tissue mass, remains unclear.
Collapse
Affiliation(s)
| | | | | | - Jordan Sabourin
- Wayne State University, Detroit, MI, USA; Detroit Pistons Organization, Detroit, MI, USA
| | - Valerie Smith-Hale
- Wayne State University, Detroit, MI, USA; University of Notre Dame Sports Performance, Notre Dame, IN, USA
| | | |
Collapse
|
2
|
Vazquez MJ, Daza-Dueñas S, Velasco I, Ruiz-Pino F, Sanchez-Tapia MJ, Manfredi-Lozano M, Torres-Granados C, Barroso A, Roa J, Sánchez-Garrido MA, Dieguez C, Lomniczi A, Nogueiras R, Tena-Sempere M. Hypothalamic SIRT1-mediated regulation of the hormonal trigger of ovulation and its repression in energy deficit. Metabolism 2025; 164:156125. [PMID: 39740742 DOI: 10.1016/j.metabol.2024.156125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Female reproduction is highly sensitive to body energy stores; persistent energy deficit, as seen in anorexia or strenuous exercise, is known to suppress ovulation via ill-defined mechanisms. We report herein that hypothalamic SIRT1, a key component of the epigenetic machinery that links nutritional status and puberty onset via modulation of Kiss1, plays a critical role in the control of the preovulatory surge of gonadotropins, i.e., the hormonal trigger of ovulation, and its repression by conditions of energy deficit. Kiss1 neurons in the preoptic area, with proven roles in the control of ovulation, express Sirt1 mRNA. Reciprocal changes in hypothalamic SIRT1 content and Kiss1 expression were observed during the pre-ovulatory phase in adult female rats. Central activation of SIRT1 reduced Kiss1 expression in the rostral hypothalamus, and attenuated the preovulatory surge, while blockade of central SIRT1 augmented it. Conditions of energy deficit enhanced hypothalamic SIRT1 activity and caused suppression of the pre-ovulatory surge and ovulation, which could be rescued by central SIRT1 inhibition. In turn, virogenetic induction of SIRT1 in rostral hypothalamic Kiss1 neurons in adult female mice disrupted ovarian cyclicity and suppressed reproductive indices, despite preserved body weight. Our data document the prominent function of hypothalamic SIRT1 as a key modulator of Kiss1 neurons and the hormonal surge driving ovulation in adulthood, with a major role in its inhibition during conditions of energy insufficiency.
Collapse
Affiliation(s)
- María J Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Daza-Dueñas
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Sanchez-Tapia
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain
| | - María Manfredi-Lozano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Torres-Granados
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexia Barroso
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Roa
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel A Sánchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Dieguez
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Physiology, Faculty of Medicine and CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alejandro Lomniczi
- Department of Physiology and Biophysics, Dalhousie Faculty of Medicine, Halifax, Canada
| | - Rubén Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Physiology, Faculty of Medicine and CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Pourhashemi N, Kortebi I, LeGood NLM, Fung HJW, Tinline-Goodfellow CT. Flex and flow: are we receptive to all females in muscle physiology research? J Physiol 2025; 603:1351-1352. [PMID: 40013557 DOI: 10.1113/jp288347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Affiliation(s)
- Nicki Pourhashemi
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Ines Kortebi
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nigel L M LeGood
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Hugo J W Fung
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
4
|
Isola V, Hulmi JJ, Mbay T, Kyröläinen H, Häkkinen K, Ahola V, Helms ER, Ahtiainen JP. Changes in hormonal profiles during competition preparation in physique athletes. Eur J Appl Physiol 2025; 125:393-408. [PMID: 39261323 PMCID: PMC11829922 DOI: 10.1007/s00421-024-05606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE Physique athletes engage in rigorous competition preparation involving intense energy restriction and physical training to enhance muscle definition. This study investigates hormonal changes and their physiological and performance impacts during such preparation. METHODS Participants included female (10 competing (COMP) and 10 non-dieting controls (CTRL)) and male (13 COMP and 10 CTRL) physique athletes. COMP participants were tested 23 weeks before (PRE), one week before (MID), and 23 weeks after the competition (POST). Non-dieting CTRL participants were tested at similar intervals. Measurements included body composition (DXA), muscle cross-sectional area (ultrasound), energy availability (EA) derived by subtracting exercise energy expenditure (EEE) from energy intake (EI) and dividing by fat-free mass (FFM), muscle strength, and various serum hormone concentrations (ACTH, cortisol, estradiol, FSH, IGF-1, IGFBP-3, insulin, and free and total testosterone and SHBG). RESULTS During the diet, EA (p < 0.001), IGF-1 (p < 0.001), IGFBP-3 (p < 0.01), and absolute muscle strength (p < 0.01-0.001) decreased significantly in both sexes in COMP. Decreases in IGF-1 were also associated with higher loss in FFM. In males, testosterone (p < 0.01) and free testosterone (p < 0.05) decreased, while SHBG (p < 0.001) and cortisol (p < 0.05) increased. Insulin decreased significantly only in males (p < 0.001). Mood disturbances, particularly increased fatigue in males (p < 0.05), highlighted the psychological strain of competition preparation. All these changes were restored by increased EA during the post-competition recovery period. CONCLUSION Significant reductions in IGF-1 and IGFBP-3 during competition preparation may serve as biomarkers for monitoring physiological stress. This study offers valuable insights into hormonal changes, muscle strength, and mood state during energy-restricted intense training.
Collapse
Affiliation(s)
- Ville Isola
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Theo Mbay
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland
| | - Heikki Kyröläinen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Keijo Häkkinen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Vilho Ahola
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eric R Helms
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
- Department of Exercise Science and Health Promotion, Muscle Physiology Research Laboratory, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| |
Collapse
|
5
|
Pierret ACS, Patel AH, Daniels E, Comninos AN, Dhillo WS, Abbara A. Kisspeptin as a test of hypothalamic dysfunction in pubertal and reproductive disorders. Andrology 2025. [PMID: 39834030 DOI: 10.1111/andr.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The hypothalamic-pituitary-gonadal axis is regulated by the gonadotropin-releasing hormone pulse generator in the hypothalamus. This is comprised of neurons that secrete kisspeptin in a pulsatile manner to stimulate the release of GnRH, and, in turn, downstream gonadotropins from the pituitary gland, and subsequently sex steroids and gametogenesis from the gonads. Many reproductive disorders in both males and females are characterized by hypothalamic dysfunction, including functional disorders (such as age-related hypogonadism, obesity-related secondary hypogonadism, hyperprolactinemia, functional hypothalamic amenorrhea and polycystic ovary syndrome), structural pathologies (such as craniopharyngiomas or radiation or surgery-related hypothalamic dysfunction), and pubertal disorders (constitutional delay of growth and puberty and congenital hypogonadotropic hypogonadism). However, in many of these conditions, the relative contribution of hypothalamic dysfunction to the observed hypogonadism is unclear; as to date, there is no direct method of evaluating hypothalamic reproductive function in humans. Indeed, it is not possible to directly measure gonadotropin-releasing hormone levels in the hypothalamo-pituitary portal vessels, such that secondary (i.e., pituitary dysfunction) and tertiary (i.e., hypothalamic dysfunction) hypogonadism are often conflated as one entity. In this review, we examine the evidence for the use of kisspeptin as a method of directly evaluating hypothalamic reproductive dysfunction, and deliberate its potential future role in the evaluation of pubertal and reproductive disorders.
Collapse
Affiliation(s)
- Aureliane C S Pierret
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Aaran H Patel
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Elisabeth Daniels
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare Trust, London, UK
| |
Collapse
|
6
|
Kokkorakis M, Chakhtoura M, Rhayem C, Al Rifai J, Ghezzawi M, Valenzuela-Vallejo L, Mantzoros CS. Emerging pharmacotherapies for obesity: A systematic review. Pharmacol Rev 2025; 77:100002. [PMID: 39952695 DOI: 10.1124/pharmrev.123.001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The history of antiobesity pharmacotherapies is marked by disappointments, often entangled with societal pressure promoting weight loss and the prevailing conviction that excess body weight signifies a lack of willpower. However, categories of emerging pharmacotherapies generate hope to reduce obesity rates. This systematic review of phase 2 and phase 3 trials in adults with overweight/obesity investigates the effect of novel weight loss pharmacotherapies, compared to placebo/control or US Food and Drug Administration-approved weight loss medication, through searching Medline, Embase, and ClinicalTrials.gov (2012-2024). We identified 53 phase 3 and phase 2 trials, with 36 emerging antiobesity drugs or combinations thereof and 4 withdrawn or terminated trials. Oral semaglutide 50 mg is the only medication that has completed a phase 3 trial. There are 14 ongoing phase 3 trials on glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) (ecnoglutide, orforglipron, and TG103), GLP-1 RA/amylin agonist (CagriSema), GLP-1/glucagon RAs (mazdutide and survodutide), GLP-1/glucose-dependent insulinotropic polypeptide and glucagon RA (retatrutide), dapagliflozin, and the combination sibutramine/topiramate. Completed phase 2 trials on incretin-based therapies showed a mean percent weight loss of 7.4% to 24.2%. Almost half of the drugs undergoing phase 2 trials are incretin analogs. The obesity drug pipeline is expanding rapidly, with the most promising results reported with incretin analogs. Data on mortality and obesity-related complications, such as cardio-renal-metabolic events, are needed. Moreover, long-term follow-up data on the safety and efficacy of weight maintenance with novel obesity pharmacotherapies, along with studies focused on underrepresented populations, cost-effectiveness assessments, and drug availability, are needed to bridge the care gap for patients with obesity. SIGNIFICANCE STATEMENT: Obesity is the epidemic of the 21st century. Except for the newer injectable medications, drugs with suboptimal efficacy have been available in the clinician's armamentarium for weight management. However, emerging alternatives of novel agents and combinations populate the current obesity therapeutic pipeline. This systematic review identifies the state and mechanism of action of emerging pharmacotherapies undergoing or having completed phase 2 and phase 3 clinical trials. The information provided herein furthers the understanding of obesity management, implying direct clinical implications and stimulating research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marlene Chakhtoura
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Caline Rhayem
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jana Al Rifai
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Malak Ghezzawi
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Jindal J, Hill J, Harte J, Dunachie SJ, Kronsteiner B. Starvation and infection: The role of sickness-associated anorexia in metabolic adaptation during acute infection. Metabolism 2024; 161:156035. [PMID: 39326837 DOI: 10.1016/j.metabol.2024.156035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Sickness-associated anorexia, the reduction in appetite seen during infection, is a widely conserved and well-recognized symptom of acute infection, yet there is very little understanding of its functional role in recovery. Anorexic sickness behaviours can be understood as an evolutionary strategy to increase tolerance to pathogen-mediated illness. In this review we explore the evidence for mechanisms and potential metabolic benefits of sickness-associated anorexia. Energy intake can impact on the immune response, control of inflammation and tissue stress, and on pathogen fitness. Fasting mediators including hormone-sensitive lipase, peroxisome proliferator-activated receptor-alpha (PPAR-α) and ketone bodies are potential facilitators of infection recovery through multiple pathways including suppression of inflammation, adaptation to lipid utilising pathways, and resistance to pathogen-induced cellular stress. However, the effect and benefit of calorie restriction is highly heterogeneous depending on both the infection and the metabolic status of the host, which has implications regarding clinical recommendations for feeding during different infections.
Collapse
Affiliation(s)
- Jessy Jindal
- The Medical School, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Jennifer Hill
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jodie Harte
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
| | - Barbara Kronsteiner
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Perakakis N, Mantzoros CS. Evidence from clinical studies of leptin: current and future clinical applications in humans. Metabolism 2024; 161:156053. [PMID: 39490439 DOI: 10.1016/j.metabol.2024.156053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Leptin has been established as the prototype adipose tissue secreted hormone and as a major regulator of several human physiology functions. Here, we are primarily reviewing the findings from studies in humans involving leptin administration. We are describing the metabolic, endocrine and immunologic effects of leptin replacement in conditions of leptin deficiency, such as short-term fasting in healthy individuals, relative energy deficiency in sports (REDS), congenital leptin deficiency (CLD), generalized (GL) and partial lipodystrophy (PL), HIV-associated lipodystrophy (HIV-L) and of leptin treatment in conditions of leptin excess (common obesity, type 2 diabetes, steatotic liver disease). We are comparing the results with the findings from preclinical models and present the main conclusions regarding the role of leptin in human physiology, pathophysiology and therapeutics. We conclude that, in conditions of energy deficiency, leptin substitution effectively reduces body weight and fat mass through reduction of appetite, it improves hypertriglyceridemia, insulin resistance and hepatic steatosis (especially in GL and PL), it restores neuroendocrine function (especially the gonadotropic axis), it regulates adaptive immune system cell populations and it improves bone health. On the contrary, leptin treatment in conditions of leptin excess, such as common obesity and type 2 diabetes, does not improve any metabolic abnormalities. Strategies to overcome leptin tolerance/resistance in obesity and type 2 diabetes have provided promising results in animal studies, which should though be tested in humans in randomized clinical trials.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Metabolic and Vascular Medicine, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| | - Christos S Mantzoros
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Münzberg H, Heymsfield SB, Berthoud HR, Morrison CD. History and future of leptin: Discovery, regulation and signaling. Metabolism 2024; 161:156026. [PMID: 39245434 PMCID: PMC11570342 DOI: 10.1016/j.metabol.2024.156026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The cloning of leptin 30 years ago in 1994 was an important milestone in obesity research. Prior to the discovery of leptin, obesity was stigmatized as a condition caused by lack of character and self-control. Mutations in either leptin or its receptor were the first single gene mutations found to cause severe obesity, and it is now recognized that obesity is caused mostly by a dysregulation of central neuronal circuits. Since the discovery of the leptin-deficient obese mouse (ob/ob) the cloning of leptin (ob aka lep) and leptin receptor (db aka lepr) genes, we have learned much about leptin and its action in the central nervous system. The first hope that leptin would cure obesity was quickly dampened because humans with obesity have increased leptin levels and develop leptin resistance. Nevertheless, leptin target sites in the brain represent an excellent blueprint to understand how neuronal circuits control energy homeostasis. Our expanding understanding of leptin function, interconnection of leptin signaling with other systems and impact on distinct physiological functions continues to guide and improve the development of safe and effective interventions to treat metabolic illnesses. This review highlights past concepts and current emerging concepts of the hormone leptin, leptin receptor signaling pathways and central targets to mediate distinct physiological functions.
Collapse
Affiliation(s)
- Heike Münzberg
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America.
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Christopher D Morrison
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| |
Collapse
|
10
|
Stefanakis K, Kokkorakis M, Mantzoros CS. The impact of weight loss on fat-free mass, muscle, bone and hematopoiesis health: Implications for emerging pharmacotherapies aiming at fat reduction and lean mass preservation. Metabolism 2024; 161:156057. [PMID: 39481534 DOI: 10.1016/j.metabol.2024.156057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Similar to bariatric surgery, incretin receptor agonists have revolutionized the treatment of obesity, achieving up to 15-25 % weight loss in many patients, i.e., at a rate approaching that achieved with bariatric surgery. However, over 25 % of total weight lost from both surgery and pharmacotherapy typically comes from fat-free mass, including skeletal muscle mass, which is often overlooked and can impair metabolic health and increase the risk of subsequent sarcopenic obesity. Loss of muscle and bone as well as anemia can compromise physical function, metabolic rate, and overall health, especially in older adults. The myostatin-activin-follistatin-inhibin system, originally implicated in reproductive function and subsequently muscle regulation, appears to be crucial for muscle and bone maintenance during weight loss. Activins and myostatin promote muscle degradation, while follistatins inhibit their activity in states of negative energy balance, thereby preserving lean mass. Novel compounds in the pipeline, such as Bimagrumab, Trevogrumab, and Garetosmab-which inhibit activin and myostatin signaling-have demonstrated promise in preventing muscle loss while promoting fat loss. Either alone or combined with incretin receptor agonists, these medications may enhance fat loss while preserving or even increasing muscle and bone mass, offering a potential solution for improving body composition and metabolic health during significant weight loss. Since this dual therapeutic approach could help address the challenges of muscle and bone loss during weight loss, well-designed studies are needed to optimize these strategies and assess long-term benefits. For the time being, considerations like advanced age and prefrailty may affect the choice of suitable candidates in clinical practice for current and emerging anti-obesity medications due to the associated risk of sarcopenia.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Stefanakis K, Upadhyay J, Ramirez-Cisneros A, Patel N, Sahai A, Mantzoros CS. Leptin physiology and pathophysiology in energy homeostasis, immune function, neuroendocrine regulation and bone health. Metabolism 2024; 161:156056. [PMID: 39481533 DOI: 10.1016/j.metabol.2024.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Since its discovery and over the past thirty years, extensive research has significantly expanded our understanding of leptin and its diverse roles in human physiology, pathophysiology and therapeutics. A prototypical adipokine initially identified for its critical function in appetite regulation and energy homeostasis, leptin has been revealed to also exert profound effects on the hypothalamic-pituitary-gonadal, thyroid, adrenal and growth hormone axis, differentially between animals and humans, as well as in regulating immune function. Beyond these roles, leptin plays a pivotal role in significantly affecting bone health by promoting bone formation and regulating bone metabolism both directly and indirectly through its neuroendocrine actions. The diverse actions of leptin are particularly notable in leptin-deficient animal models and in conditions characterized by low circulating leptin levels, such as lipodystrophies and relative energy deficiency. Conversely, the effectiveness of leptin is attenuated in leptin-sufficient states, such as obesity and other high-adiposity conditions associated with hyperleptinemia and leptin tolerance. This review attempts to consolidate 30 years of leptin research with an emphasis on its physiology and pathophysiology in humans, including its promising therapeutic potential. We discuss preclinical and human studies describing the pathophysiology of energy deficiency across organ systems and the significant role of leptin in regulating neuroendocrine, immune, reproductive and bone health. We finally present past proof of concept clinical trials of leptin administration in leptin-deficient subjects that have demonstrated positive neuroendocrine, reproductive, and bone health outcomes, setting the stage for future phase IIb and III randomized clinical trials in these conditions.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jagriti Upadhyay
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Arantxa Ramirez-Cisneros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nihar Patel
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Akshat Sahai
- Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
12
|
Moore EM, Drenowatz C, Williams BT, Brodrick TC, Stodden DF, Torres-McGehee TM. Male Endurance Athletes: Examination of Energy and Carbohydrate Availability and Hormone Responses. Nutrients 2024; 16:3729. [PMID: 39519562 PMCID: PMC11547639 DOI: 10.3390/nu16213729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND This study investigated the effects of decreased energy availability (EA) and carbohydrate availability (CA) on reproductive and metabolic hormones in male endurance-trained athletes. METHODS Thirteen athletes (age: 26.08 ± 4.3 years; weight: 70.9 ± 6.5 kg; height: 179.9 ± 4.2 cm) participated in two training weeks with varying training volumes (low [LV] and high [HV]). The participants logged their diet and exercise for seven days and provided blood samples to measure hormone levels (Testosterone [T], insulin, leptin, cortisol, and interleukin-6 [IL-6]). RESULTS Results showed that 46.2% (HV) and 38.5% (LV) of participants were at risk for low EA (≤25 kcal/kg FFM·d-1), while 53.8% (HV) and 69.2% (LV) had low CA (<6 g/kg). Strong positive correlations were found between leptin and body fat percentage (DXABFP) in both weeks (HV: r(11) = 0.88, p < 0.001; LV: r(11) = 0.93, p < 0.001). Moderate correlations were observed between T and DXABFP (r(11) = 0.56, p = 0.05) and negative correlations between leptin and fat intake (r(11) = -0.60, p = 0.03). Regression analyses indicated significant relationships between DXABFP and T (F(1,11) = 4.91, p = 0.049), leptin (HV: F(1,11) = 40.56, p < 0.001; LV: F(1,11) = 74.67, p < 0.001), and cortisol (F(1,11) = 6.69, p = 0.025). CONCLUSIONS These findings suggest that monitoring body composition and macronutrients can be clinically useful for male athletes, especially those without access to blood testing. Ultimately, a greater understanding of health and performance outcomes for male athletes is needed.
Collapse
Affiliation(s)
- Erin M. Moore
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA 22904, USA
| | - Clemens Drenowatz
- Department of Teacher Education, University of Education Upper Austria, 4020 Linz, Austria;
| | - Brittany T. Williams
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Thaddeus C. Brodrick
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - David F. Stodden
- Department of Educational and Developmental Science, College of Education, University of South Carolina, Columbia, SC 29208, USA;
| | - Toni M. Torres-McGehee
- Office of Access and Collective Engagement, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
13
|
Stefanakis K, Samiotaki M, Papaevangelou V, Valenzuela-Vallejo L, Giannoukakis N, Mantzoros CS. Longitudinal proteomics of leptin treatment in humans with acute and chronic energy deficiency-induced hypoleptinemia reveal novel, mainly immune-related, pleiotropic effects. Metabolism 2024; 159:155984. [PMID: 39097160 DOI: 10.1016/j.metabol.2024.155984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Leptin is known for its metabolic, immunomodulatory and neuroendocrine properties, but the full spectrum of molecules downstream of leptin and relevant underlying mechanisms remain to be fully clarified. Our objective was to identify proteins and pathways influenced by leptin through untargeted proteomics in two clinical trials involving leptin administration in lean individuals. METHODS We performed untargeted liquid chromatography-tandem mass spectrometry serum proteomics across two studies a) Short-term randomized controlled crossover study of lean male and female humans undergoing a 72-h fast with concurrent administration of either placebo or high-dose leptin; b) Long-term (36-week) randomized controlled trial of leptin replacement therapy in human females with acquired relative energy deficiency and hypoleptinemia. We explored longitudinal proteomic changes and run adjusted mixed models followed by post-hoc tests. We further attempted to identify ontological pathways modulated during each experimental condition and/or comparison, through integrated qualitative pathway and enrichment analyses. We also explored dynamic longitudinal relationships between the circulating proteome with clinical and hormonal outcomes. RESULTS 289 and 357 unique proteins were identified per each respective study. Short-term leptin administration during fasting markedly upregulated several proinflammatory molecules, notably C-reactive protein (CRP) and cluster of differentiation (CD) 14, and downregulated lecithin cholesterol acyltransferase and several immunoglobulin variable chains, in contrast with placebo, which produced minimal changes. Quantitative pathway enrichment further indicated an upregulation of the acute phase response and downregulation of immunoglobulin- and B cell-mediated immunity by leptin. These changes were independent of participants' biological sex. In the long term study, leptin likewise robustly and persistently upregulated proteins of the acute phase response, and downregulated immunoglobulin-mediated immunity. Leptin also significantly and differentially affected a wide array of proteins related to immune function, defense response, coagulation, and inflammation compared with placebo. These changes were more notable at the 24-week visit, coinciding with the highest measured levels of serum leptin. We further identified distinct co-regulated clusters of proteins and clinical features during leptin administration indicating robust longitudinal correlations between the regulation of immunoglobulins, immune-related molecules, serpins (including cortisol and thyroxine-binding globulins), lipid transport molecules and growth factors, in contrast with placebo, which did not produce similar associations. CONCLUSIONS These high-throughput longitudinal results provide unique functional insights into leptin physiology, and pave the way for affinity-based proteomic analyses measuring several thousands of molecules, that will confirm these data and may fully delineate underlying mechanisms.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Fleming 34, 166 72 Vari, Greece
| | - Vassiliki Papaevangelou
- Third Department of Paediatrics, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| | - Laura Valenzuela-Vallejo
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nick Giannoukakis
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christos S Mantzoros
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
14
|
Burén J, Svensson M, Liv P, Sjödin A. Effects of a Ketogenic Diet on Body Composition in Healthy, Young, Normal-Weight Women: A Randomized Controlled Feeding Trial. Nutrients 2024; 16:2030. [PMID: 38999778 PMCID: PMC11243114 DOI: 10.3390/nu16132030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
This study investigates the effects of a ketogenic low-carbohydrate high-fat (LCHF) diet on body composition in healthy, young, normal-weight women. With the increasing interest in ketogenic diets for their various health benefits, this research aims to understand their impact on body composition, focusing on women who are often underrepresented in such studies. Conducting a randomized controlled feeding trial with a crossover design, this study compares a ketogenic LCHF diet to a Swedish National Food Agency (NFA)-recommended control diet over four weeks. Seventeen healthy, young, normal-weight women adhered strictly to the provided diets, with ketosis confirmed through blood β-hydroxybutyrate concentrations. Dual-energy X-ray absorptiometry (DXA) was utilized for precise body composition measurements. To avoid bias, all statistical analyses were performed blind. The findings reveal that the ketogenic LCHF diet led to a significant reduction in both lean mass (-1.45 kg 95% CI: [-1.90;-1.00]; p < 0.001) and fat mass (-0.66 kg 95% CI: [-1.00;-0.32]; p < 0.001) compared to the control diet, despite similar energy intake and physical activity levels. This study concludes that while the ketogenic LCHF diet is effective for weight loss, it disproportionately reduces lean mass over fat mass, suggesting the need for concurrent strength training to mitigate muscle loss in women following this diet.
Collapse
Affiliation(s)
- Jonas Burén
- Department of Food, Nutrition and Culinary Science, Umeå University, 90187 Umeå, Sweden;
- Umeå School of Sport Sciences, Umeå University, 90187 Umeå, Sweden;
| | - Michael Svensson
- Umeå School of Sport Sciences, Umeå University, 90187 Umeå, Sweden;
- Department of Community Medicine and Rehabilitation, Section of Sports Medicine, Umeå University, 90187 Umeå, Sweden
| | - Per Liv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, 90187 Umeå, Sweden;
| | - Anna Sjödin
- Department of Food, Nutrition and Culinary Science, Umeå University, 90187 Umeå, Sweden;
- Umeå School of Sport Sciences, Umeå University, 90187 Umeå, Sweden;
| |
Collapse
|
15
|
Chrysafi P, Valenzuela-Vallejo L, Stefanakis K, Kelesidis T, Connelly MA, Mantzoros CS. Total and H-specific GDF-15 levels increase in caloric deprivation independently of leptin in humans. Nat Commun 2024; 15:5190. [PMID: 38890300 PMCID: PMC11189399 DOI: 10.1038/s41467-024-49366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Mitochondrial-secreted growth differentiation factor-15 (GDF-15) promotes weight loss in animals. Its effects in humans remain unclear, due to limited research and potential measurement interference from the H202D-variant. Our post-hoc analysis investigates total (irrespective of genetic variants) and H-specific GDF-15 (detected only in H202D-variant absence) in humans under acute and chronic energy deprivation, examining GDF-15 interaction with leptin (energy homeostasis regulator) and GDF-15 biologic activity modulation by the H202D-variant. Total and H-specific GDF-15 increased with acute starvation, and total GDF-15 increased with chronic energy deprivation, compared with healthy subjects and regardless of leptin repletion. Baseline GDF-15 positively correlated with triglyceride-rich particles and lipoproteins. During acute metabolic stress, GDF-15 associations with metabolites/lipids appeared to differ in subjects with the H202D-variant. Our findings suggest GDF-15 increases with energy deprivation in humans, questioning its proposed weight loss and suggesting its function as a mitokine, reflecting or mediating metabolic stress response.
Collapse
Affiliation(s)
- Pavlina Chrysafi
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Konstantinos Stefanakis
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Theodoros Kelesidis
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 02215, USA
| | | | - Christos S Mantzoros
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Medicine, Boston VA Healthcare System, Boston, MA, 90095, USA.
| |
Collapse
|