1
|
Yamauchi I, Sugawa T, Hakata T, Yoshizawa A, Kita T, Kishimoto Y, Kimura S, Sakurai A, Kosugi D, Fujita H, Okamoto K, Ueda Y, Fujii T, Taura D, Sakane Y, Yasoda A, Inagaki N. Transcriptomic landscape of hyperthyroidism in mice overexpressing thyroid-stimulating hormone. iScience 2025; 28:111565. [PMID: 39811643 PMCID: PMC11730581 DOI: 10.1016/j.isci.2024.111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/06/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Activation of thyroid-stimulating hormone receptor (TSHR) fundamentally leads to hyperthyroidism. To elucidate TSHR signaling, we conducted transcriptome analyses for hyperthyroid mice that we generated by overexpressing TSH. TSH overexpression drastically changed their thyroid transcriptome. In particular, enrichment analyses identified the cell cycle, phosphatidylinositol 3-kinase/Akt pathway, and Ras-related protein 1 pathway as possibly associated with goiter development. Regarding hyperthyroidism, Slc26a4 was exclusively upregulated with TSH overexpression among genes crucial to thyroid hormone secretion. To verify its significance, we overexpressed TSH in Slc26a4 knockout mice. TSH overexpression caused hyperthyroidism in Slc26a4 knockout mice, equivalent to that in control mice. Thus, we did not observe significant changes in known genes and pathways involved in thyroid hormone secretion with TSH overexpression. Our datasets might include candidate genes that have not yet been identified as regulators of thyroid function. Our transcriptome datasets regarding hyperthyroidism can contribute to future research on TSHR signaling.
Collapse
Affiliation(s)
- Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taku Sugawa
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takuro Hakata
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Yoshizawa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoko Kita
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sadahito Kimura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Aya Sakurai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Daisuke Kosugi
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Haruka Fujita
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kentaro Okamoto
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Daisuke Taura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoriko Sakane
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- Sugawa Clinic, Nakagyo-ku, Kyoto 604-8105, Japan
| | - Akihiro Yasoda
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, Fushimi-ku, Kyoto 612-8555, Japan
| | - Nobuya Inagaki
- Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-kofukai, Kita-ku, Osaka 530-8480, Japan
| |
Collapse
|
2
|
Kim C, Park JH, Choi YJ, Jun HO, Chung JK, Park TK, Yoon JS, Yang JW, Jang SY. Impact of ibrutinib on inflammation in a mouse model of Graves' orbitopathy. Front Endocrinol (Lausanne) 2024; 15:1420024. [PMID: 39280007 PMCID: PMC11392736 DOI: 10.3389/fendo.2024.1420024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Bruton's tyrosine kinase (BTK) and interleukin (IL)-2 Inducible T-cell Kinase (ITK) inhibitors have anti-inflammatory properties. We investigated the therapeutic effect of ibrutinib, an orally bioavailable BTK/ITK inhibitor, in a mouse model of Graves' orbitopathy (GO). Methods Genetic immunization was performed through intramuscular administration of the recombinant plasmid, pCMV6-hTSHR cDNA, to 8-week-old female BALB/c mice. Serum levels of T3, T4, and thyroid-stimulating hormone receptor (TSHR) antibodies (TRAbs) were quantified using enzyme-linked immunosorbent assay. Histopathological changes in orbital tissues were examined using immunohistochemistry (IHC) staining for TSHR and various inflammatory markers. Following successful genetic immunization, ibrutinib was orally administered daily for 2 weeks in the GO model mice. After treatment, the mRNA and protein expression levels of BTK, ITK, IL-1β, and IL-6 in orbital tissues were evaluated using real-time PCR and Western blotting. Results In total, 20 mice were sacrificed to confirm successful genetic immunization. The GO mouse group exhibited significantly increased serum T3, T4, and TRAb levels. IHC revealed increased expression of TSHR, IL-1β, IL-6, transforming growth factor-β1, interferon-γ, CD40, CD4, BTK, and ITK in the GO mouse model. The orbital inflammation was significantly attenuated in ibrutinib-treated mice. The mRNA and protein expression levels of BTK, ITK, IL-1β, and IL-6 in orbital tissue were lower in ibrutinib-treated GO mouse group compared to the phosphate-buffered saline-treated GO mouse group. Conclusion The GO mouse model demonstrated enhanced BTK and ITK expression. Ibrutinib, a BTK/ITK inhibitor, suppressed the inflammatory cytokine production. These findings highlight the potential involvement of BTK/ITK in the inflammatory pathogenesis of GO, suggesting its role as a novel therapeutic target.
Collapse
Affiliation(s)
- Charm Kim
- Department of Ophthalmology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea
| | - Jin Hwan Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Yeon Jeong Choi
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Hyung Oh Jun
- Department of Ophthalmology, Asan Hospital, The Institute of Vision Research, Eulji University College of Medicine, Seoul, Republic of Korea
| | - Jin Kwon Chung
- Department of Ophthalmology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Wook Yang
- Department of Ophthalmology, Pusan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| |
Collapse
|
3
|
Martinez ME, Wu Z, Hernandez A. Paternal developmental thyrotoxicosis disrupts neonatal leptin leading to increased adiposity and altered physiology of the melanocortin system. Front Endocrinol (Lausanne) 2023; 14:1210414. [PMID: 37560296 PMCID: PMC10407661 DOI: 10.3389/fendo.2023.1210414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Background The genetic code does not fully explain individual variability and inheritance of susceptibility to endocrine conditions, suggesting the contribution of epigenetic factors acting across generations. Methods We used a mouse model of developmental thyrotoxicosis (Dio3-/- mouse) to analyze endocrine outcomes in the adult offspring of Dio3-/- males using standard methods for body composition, and baseline and fasting hormonal and gene expression determinations in serum and tissues of relevance to the control of energy balance. Results Compared to controls, adult females with an exposed father (EF females) exhibited higher body weight and fat mass, but not lean mass, a phenotype that was much milder in EF males. After fasting, both EF females and males exhibited a more pronounced decrease in body weight than controls. EF females also showed markedly elevated serum leptin, increased white adipose tissue mRNA expression of leptin and mesoderm-specific transcript but decreased expression of type 2 deiodinase. EF females exhibited decreased serum ghrelin, which showed more pronounced post-fasting changes in EF females than in control females. EF female hypothalami also revealed significant decreases in the expression of pro-opiomelanocortin, agouti-related peptide, neuropeptide Y and melanocortin receptor 4. These markers also showed larger changes in response to fasting in EF females than in control females. Adult EF females showed no abnormalities in serum thyroid hormones, but pituitary expression of thyrotropin-releasing hormone receptor 1 and thyroid gland expression of thyroid-stimulating hormone receptor, thyroid peroxidase and iodotyrosine deiodinase were increased at baseline and showed differential regulation after fasting, with no increase in Trhr1 expression and more pronounced reductions in Tshr, Tpo and Iyd. In EF males, these abnormalities were generally milder. In addition, postnatal day 14 (P14) serum leptin was markedly reduced in EF pups. Discussion A paternal excess of thyroid hormone during development modifies the endocrine programming and energy balance in the offspring in a sexually dimorphic manner, with baseline and dynamic range alterations in the leptin-melanocortin system and thyroid gland, and consequences for adiposity phenotypes. We conclude that thyroid hormone overexposure may have important implications for the non-genetic, inherited etiology of endocrine and metabolic pathologies.
Collapse
Affiliation(s)
- Maria Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
| | - Zhaofei Wu
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
| | - Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
- Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Chen Y, Tang R, Xiong W, Zhang F, Wang N, Xie B, Cao J, Chen Z, Ma C. RNA aptamers with specific binding affinity to CD40 (CD40Apt) represents a promising antagonist of the CD40-CD40L signaling for thyroid-associated ophthalmopathy (TAO) treatment in mouse. J Transl Med 2023; 21:396. [PMID: 37331977 DOI: 10.1186/s12967-023-04217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/21/2023] [Indexed: 06/20/2023] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) is the most common autoimmune inflammatory diseases of the orbit. The CD40-CD40L pathway has been regarded as a potential molecular mechanism contributing to the development and progression of TAO, and RNA aptamers with specific binding affinity to CD40 (CD40Apt) represents a promising inhibitor of the CD40-CD40L signaling in TAO treatment. In this study, CD40Apt was confirmed to specifically recognize mouse CD40-positive ortibtal fibroblast. Mouse orbital fibroblasts were isolated from TAO mice model orbital tissues and validated. In TGF-β-induced orbital fibroblast activation model in vitro, CD40Apt administration inhibited TGF-β-induced cell viability, decreased TGF-β-induced α-SMA, Collagen I, Timp-1, and vimentin levels, and suppressed TGF-β-induced phosphorylation of Erk, p38, JNK, and NF-κB. In TAO mice model in vivo, CD40Apt caused no significant differences to the body weight of mice; furthermore, CD40Apt improved the eyelid broadening, ameliorated inflammatory infiltration and the hyperplasia in orbital muscle and adipose tissues in model mice. Concerning orbital fibroblast activation, CD40Apt reduced the levels of CD40, collagen I, TGF-β, and α-SMA in orbital muscle and adipose tissues of model mice. Finally, CD40Apt administration significantly suppressed Erk, p38, JNK, and NF-κB phosphorylation. In conclusion, CD40Apt, specifically binds to CD40 proteins in their natural state on the cell surface with high affinity, could suppress mouse orbital fibroblast activation, therefore improving TAO in mice model through the CD40 and downstream signaling pathways. CD40Apt represents a promising antagonist of the CD40-CD40L signaling for TAO treatment.
Collapse
Affiliation(s)
- Yizhi Chen
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Renhong Tang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Feng Zhang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Nuo Wang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Bingyu Xie
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiamin Cao
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhuokun Chen
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chen Ma
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Huang Y, Xue Q, Cheng C, Wang Y, Wang X, Chang J, Miao C. Circular RNA in autoimmune diseases: special emphasis on regulation mechanism in RA and SLE. J Pharm Pharmacol 2023; 75:370-384. [PMID: 36583516 DOI: 10.1093/jpp/rgac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/26/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Autoimmune diseases are diseases caused by tissue damage caused by the body's immune response to autoantibodies. Circular RNAs (CircRNAs) are a kind of special endogenous non-coding RNA that play a biological role by regulating gene transcription. METHODS In this work, we searched the PubMed, Web of Science (SCIE), National Science and Technology Library (NSTL), and ScienceDirect Online (SDOL) databases to summarize the impact of circRNAs on autoimmune diseases, especially the results of circRNAs in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). RESULTS The study on the function of circRNAs and autoimmune diseases further deepened our understanding of the development and pathogenesis of autoimmune diseases. CircRNAs may act as miRNA sponges to regulate biological processes and affect the occurrence and development of autoimmune diseases. CircRNAs are closely related to the pathogenesis of RA and SLE and may become potential biomarkers for the diagnosis and treatment of RA and SLE. CONCLUSION CircRNAs play an important role in the pathogenesis of RA, SLE and other autoimmune diseases, and are expected to provide new biomarkers for the diagnosis and treatment of autoimmune diseases. However, the function and mechanism of circRNAs in autoimmune diseases need more comprehensive research.
Collapse
Affiliation(s)
- Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, China.,Anhui Public Health Clinical Center, Hefei, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
6
|
Shen F, Liu J, Fang L, Fang Y, Zhou H. Development and application of animal models to study thyroid-associated ophthalmopathy. Exp Eye Res 2023; 230:109436. [PMID: 36914000 DOI: 10.1016/j.exer.2023.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/08/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Thyroid-associated ophthalmopathy (TAO), also known as Graves' ophthalmopathy, is an autoimmune disease that is usually accompanied by hyperthyroidism. Its pathogenesis involves the activation of autoimmune T lymphocytes by a cross-antigen reaction of thyroid and orbital tissues. The thyroid-stimulating hormone receptor (TSHR) is known to play an important role in the development of TAO. Because of the difficulty of orbital tissue biopsy, the establishment of an ideal animal model is important for developing novel clinical therapies of TAO. To date, TAO animal modeling methods are mainly based on inducing experimental animals to produce anti-thyroid-stimulating hormone receptor antibodies (TRAbs) and then recruit autoimmune T lymphocytes. Currently, the most common methods are hTSHR-A subunit plasmid electroporation and hTSHR-A subunit adenovirus transfection. These animal models provide a powerful tool for exploring the internal relationship between local and systemic immune microenvironment disorders of the TAO orbit, facilitating the development of new drugs. However, existing TAO modeling methods still have some defects, such as low modeling rate, long modeling cycles, low repetition rate, and considerable differences from human histology. Hence, the modeling methods require further innovation, improvement, and in-depth exploration.
Collapse
Affiliation(s)
- Feiyang Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Jin Liu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Lianfei Fang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Yan Fang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Huifang Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
7
|
Li Y, Luo B, Tong B, Xie Z, Cao J, Bai X, Peng Y, Wu Y, Wang W, Qi X. The role and molecular mechanism of gut microbiota in Graves' orbitopathy. J Endocrinol Invest 2023; 46:305-317. [PMID: 35986869 DOI: 10.1007/s40618-022-01902-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Graves' orbitopathy (GO) is an autoimmune orbital disorder. Gut microbiota dysfunction plays a vital role in autoimmune diseases, including Graves' disease (GD) and GO. In the present study, we aimed to investigate the change of gut microbiota in GD/GO using mouse model. METHODS The murine model of GD/GO was established by the challenge of adenovirus expressing thyroid-stimulating hormone (TSH) receptor (TSHR) (Ad-TSHR). The histological changes of orbital and thyroid tissues were analyzed by hematoxylin and eosin (H&E), Masson staining, and immunohistochemistry (IHC) staining. The fecal samples were collected for 16S rRNA gene sequencing and bioinformatics analysis. RESULTS The GD/GO model was established successfully, as manifested as the broadened eyelid, exophthalmia and conjunctive redness, severe inflammatory infiltration among thyroid glands and between extraocular muscle space, hypertrophic extraocular muscles, elevated thyroxine (T4) and decreased TSH, and positive CD34, CD40, collagen I, and α-SMA staining. A total of 222 operational taxonomic units (OUTs) were overlapped between mice in the Ad-NC and Ad-TSHR groups. The microbial composition of the samples in the two groups was mainly Bacteroidia and Clostridia, and the Ad-NC group had a significantly lower content of Bacteroidia and higher content of Clostridia. KEGG orthology analysis results revealed differences in dehydrogenase, aspartic acid, bile acid, chalcone synthase, acetyltransferase, glutamylcyclotransferase, glycogenin, and 1-phosphatidylinositol-4-phosphate 5-kinase between two groups; enzyme commission (EC) analysis results revealed differences in several dehydrogenase, oxidase, thioxy/reductase between two groups; MetaCyc pathways analysis results revealed differences in isoleucine degradation, oxidation of C1 compounds, tricarboxylic acid (TCA) cycle IV, taurine degradation, and biosynthesis of paromamine, heme, colonic acid building blocks, butanediol, lysine/threonine/methionine, and histidine/purine/pyrimidine between two groups. CONCLUSION This study induced a mouse model of GD/GO by Ad-TSHR challenge, and gut microbiota characteristics were identified in the GD/GO mice. The Bacteroidia and Clostridia abundance was changed in the GD/GO mice. These findings may lay a solid experimental foundation for developing personalized treatment regimens for GD patients according to the individual gut microbiota. Given the potential impact of regional differences on intestinal microbiota, this study in China may provide a reference for the global overview of the gut-thyroid axis hypothesis.
Collapse
Affiliation(s)
- Y Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - B Luo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - B Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Z Xie
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - J Cao
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - X Bai
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Y Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Y Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - W Wang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - X Qi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
8
|
Merakchi K, Djerbib S, Soleimani M, Dumont JE, Miot F, De Deken X. Murine Thyroid IL-4 Expression Worsens Hypothyroidism on Iodine Restriction and Mitigates Graves Disease Development. Endocrinology 2022; 163:6650252. [PMID: 35881515 DOI: 10.1210/endocr/bqac107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/19/2022]
Abstract
Cytokines are known to perturb thyroid function and the role of interleukin-4 (IL-4) in the pathogenesis of Graves disease (GD) remains controversial. In our mouse model overexpressing IL-4 in thyrocytes (Thyr-IL4), we have reported that adult mice preserved normal serum thyroxine despite an iodide uptake defect. In the present work, we evaluated if iodine restriction could uncover the thyroid deficiency in Thyr-IL4 animals as well as the role of pendrin overexpression as a compensatory mechanism. Moreover, using an experimental model of GD we investigated the effect of a local expression of IL-4 on the incidence of hyperthyroidism. Thyr-IL4 mice developed more rapidly elevated serum thyrotropin under low-iodine supply with thyroid enlargement and classical histological modifications. These hallmarks of hypothyroidism were all enhanced in Thyr-IL4 mice with complete pendrin invalidation. Following immunization, a lower proportion of Thyr-IL4 animals developed hyperthyroidism. Surprisingly, immunized Thyr-IL4 animals presented numerous leukocyte infiltrates, associated with increased intrathyroidal expression of IFN-γ. We have demonstrated that thyroid deficiency in Thyr-IL4 mice is partially compensated for by the excessive iodide content of the standard chow and the overexpression of pendrin in these animals. Furthermore, we have shown that the local expression of IL-4 in the thyroid attenuates GD progression, which was associated with enhanced thyroid infiltration by immune cells that could negatively affect thyroid function.
Collapse
Affiliation(s)
- Karima Merakchi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sami Djerbib
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Manoocher Soleimani
- Department of Medicine, University of New Mexico, School of Medicine, Albuquerque, New Mexico 87106, USA
| | - Jacques-Emile Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Françoise Miot
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Xavier De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
9
|
Zheng H, Xu J, Chu Y, Jiang W, Yao W, Mo S, Song X, Zhou J. A Global Regulatory Network for Dysregulated Gene Expression and Abnormal Metabolic Signaling in Immune Cells in the Microenvironment of Graves' Disease and Hashimoto's Thyroiditis. Front Immunol 2022; 13:879824. [PMID: 35720300 PMCID: PMC9204353 DOI: 10.3389/fimmu.2022.879824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background Although the pathogenetic mechanisms of Hashimoto’s thyroiditis (HT) and Graves’ disease (GD) have been elucidated, the molecular mechanisms by which the abnormal immune function of cellular subpopulations trigger an autoimmune attack on thyroid tissue largely remains unexplained. Methods The study included 2 HT patients, 2 GD patients, and 1 control donor. The thyroid samples were extracted for single-cell RNA sequencing, whole transcriptome, full-length transcriptome (Oxford Nanopore Technologies), and metabolome sequencing. Identification of immune cells with dysregulated gene expression and abnormal metabolic signaling was performed in the microenvironment, both at the bulk and single-cell levels. Based on functional enrichment analysis, the biological processes and pathways involved in abnormal immune cells were further explored. Finally, according to cell communication analysis, the global regulatory network of immune cells was constructed. Results CD4+ T cells, CD8+ T cells, and macrophages were abnormally increased in patients with HT and GD. The differentially expressed genes of these cells were significantly involved in signaling pathways, including Th1 and Th2 cell differentiation, Th17 cell differentiation, cytokine–cytokine receptor interaction, and NF-kappa B signaling pathway. Moreover, in HT, CD4+ T cells interact with macrophages via the IL16-CCR5/FGF10-FGFR1/CXCL13-CXCR3 axis, and macrophages interact with CD8+ T cells via the CD70-CD27 axis, thereby activating the T-cell receptor signaling pathway and NF-kappa B signaling pathway. In GD, CD4+ T cells interact with macrophages via the CXCR3-CXCL10/PKM-CD44/MHCII-NFKBIE axis, and macrophages interact with CD8+ T cells via the IFNG-IFNGR1/CCR7-CCL21 axis, thereby activating T-cell receptor signaling pathway, Th1 and Th2 cell differentiation, and chemokine signaling pathway. Conclusion In HT and GD, immune dysregulated cells interact and activate relevant immune pathways and further aggravate the immune response. This may trigger the immune cells to target the thyroid tissue and influence the development of the disease.
Collapse
Affiliation(s)
- Haitao Zheng
- Department of Thyroid Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, China
| | - Jie Xu
- Department of Clinical Nutrition, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, China
| | - Yongli Chu
- Department of Scientific Research, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, China
| | - Wenzhou Jiang
- Department of Neurology, Longkou People's Hospital, Longkou, China
| | - Wenjie Yao
- Department of Endocrinology, BinZhou Medical University, Yantai, China
| | - Shaowen Mo
- Department of Basic Science, YuanDong International Academy of Life Sciences, Nanning, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, China
| | - Jin Zhou
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, China
| |
Collapse
|
10
|
Liu HY, Shi ZY, Fan D, Zhang SX, Wu LX, Lu KY, Yang SY, Li WT, kang JF, Li CH, Cheng ZH, Xue Y, Wu ZF, Li XF, Li SJ. Absolute reduction in peripheral regulatory T cells in patients with Graves’ disease and post-treatment recovery. Mol Immunol 2022; 144:49-57. [DOI: 10.1016/j.molimm.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 11/25/2022]
|
11
|
Zou J, Peng H, Liu Y. The Roles of Exosomes in Immunoregulation and Autoimmune Thyroid Diseases. Front Immunol 2021; 12:757674. [PMID: 34867996 PMCID: PMC8634671 DOI: 10.3389/fimmu.2021.757674] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Exosomes are extracellular microvesicles (30-150 nm) released from cells that contain proteins, lipids, RNA and DNA. They can deliver bioactive molecules and serve as carriers facilitating cell-cell communication, such as antigen presentation, inflammatory activation, autoimmune diseases (AIDs) and tumor metastasis. Recently, much attention has been attracted to the biology and functions of exosomes in immune regulation and AIDs, including autoimmune thyroid diseases (AITDs). Some studies have shown that exosomes are involved in the occurrence and development of AITDs, but they are still in the preliminary stage of exploration. This review mainly introduces the association of exosomes with immune regulation and emphasizes the potential role of exosomes in AITDs, aiming to provide new research strategies and directions for the pathogenesis and early diagnosis of AITDs.
Collapse
Affiliation(s)
- Junli Zou
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| |
Collapse
|
12
|
Degen H, Gavvovidis I, Blankenstein T, Uhland K, Ungerer M. Thyrotropin Receptor-Specific Lymphocytes in Adenovirus-TSHR-Immunized Native and Human Leukocyte Antigen-DR3-Transgenic Mice and in Graves' Disease Patient Blood. Thyroid 2021; 31:950-963. [PMID: 33208049 DOI: 10.1089/thy.2020.0338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Antigen-specific lymphocytes are increasingly investigated in autoimmune diseases and immune therapies. We sought to identify thyrotropin receptor (TSHR)-specific lymphocytes in mouse models of Graves' disease, including Graves' patient-specific immunotype human leukocyte antigen (HLA)-DR3, and in frozen and thawed Graves' patient blood samples. Methods and Results: Splenic lymphocytes of adenovirus (Ad)-TSHR-immunized BALB/c mice were stimulated with TSHR-specific peptides C, D, or J. Furthermore, CD154-expressing cells were enriched, expanded in vitro, and analyzed for binding of peptide-major histocompatibility complex (MHC) II multimers ("tetramers," immunotype H2-IAd). Only peptides C and J were able to elicit increased expression/secretion of CD154 and interferon-γ, and tetramers which were loaded with peptide C resulted in antigen-specific signals in splenic lymphocytes from Ad-TSHR-immunized mice. Accordingly, TSHR-specific HLA-DR3-MHC class II tetramers loaded with peptide p10 specifically bound to human HLA-DR3-(allele B1*03:01)-transgenic Bl/6 mouse splenic T lymphocytes. In addition, we fine-tuned a protocol to reliably measure thawed human peripheral blood mononuclear cells (PBMCs), which resulted in reliable recovery after freezing and thawing with regard to vitality and B and T cell subpopulation markers including regulatory T cells (CD3, CD4, CD25, FoxP3, CD25high, CD127low). TSHR-specific HLA-DR3-MHC class II tetramers loaded with peptide p10 identified antigen-specific T cells in HLA-DR3-positive Graves' patients' thawed PBMCs. Moreover, stimulation-dependent release of interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha from thawed PBMCs occurred at the expected levels. Conclusions: Novel MHC II tetramers identified TSHR-specific T lymphocytes in Ad-TSHR-immunized hyperthyroid BALB/c or HLA-DR3-transgenic mice and in thawed human PBMCs from patients with Graves' disease. These assays may contribute to measure both disease severity and effects of novel immune therapies in future animal studies and clinical investigations of Graves' disease.
Collapse
Affiliation(s)
| | - Ioannis Gavvovidis
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany
- Department of Immunology, Charite - Universitätsmedizin, Berlin, Germany
| | - Thomas Blankenstein
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany
- Department of Immunology, Charite - Universitätsmedizin, Berlin, Germany
| | | | | |
Collapse
|
13
|
Zhang M, Ding X, Wu LP, He MQ, Chen ZY, Shi BY, Wang Y. A Promising Mouse Model of Graves' Orbitopathy Induced by Adenovirus Expressing Thyrotropin Receptor A Subunit. Thyroid 2021; 31:638-648. [PMID: 33076782 DOI: 10.1089/thy.2020.0088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Graves' orbitopathy (GO) is the most common and serious manifestation of Graves' disease (GD). It is characterized by orbital inflammation and tissue remodeling. Although several GO models have been reported, most lack a full assessment or mechanistic evaluation. Here, we established a promising mouse model mimicking many aspects of human GO with a frequency of 70% and characterized the key role of T cells in the progression of GO. Methods: An adenovirus expressing the human thyrotropin (TSH) receptor A subunit (Ad-TSHRA) was injected in the muscles of female BALB/C mice nine times to induce GO. At predetermined time points, histological examinations of retrobulbar tissues and thyroid glands were performed to dynamically monitor changes; serum autoantibodies and total thyroxine levels were examined to evaluate thyroid function. Flow cytometry of CD4+ T cell subgroups and RNA sequencing (RNA-Seq) of splenocytes were also performed to explore the underlying mechanism. Results: After nine injections, 7 of 10 mice challenged with Ad-TSHRA developed the orbital changes associated with GO. Seven mice manifested retrobulbar fibrosis, and four mice showed adipogenesis. Exophthalmia, conjunctival redness, and orbital lymphocyte infiltration were also observed in a subset of mice. The orbitopathy was first detected after seven injections and followed the hyperplastic change observed in thyroids after four injections. Flow cytometry revealed increased proportions of Th1 cells and decreased proportions of Th2 cells and regulatory T (Treg) cells in the splenocytes of GO mice. This change in CD4+ T cell subgroups was confirmed by orbital immunohistochemical staining. Genes involved in T cell receptor signaling, proliferation, adhesion, inflammation, and cytotoxicity were upregulated in GO mice according to the RNA-Seq; a trend of upregulation of these GO-specific genes was observed in mice with hyperthyroidism without orbitopathy after four injections. Conclusions: A GO mouse model was successfully established by administering nine injections of Ad-TSHRA. The model was achieved with a frequency of 70% and revealed the importance of T cell immunity. A potential time window from Graves' hyperthyroidism to GO was presented for the first time. Therefore, this model could be used to study the pathogenesis and novel treatments for GO.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Ding
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li-Ping Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming-Qian He
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zi-Yi Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bing-Yin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Sun Y, Wang W, Tang Y, Wang D, Li L, Na M, Jiang G, Li Q, Chen S, Zhou J. Microarray profiling and functional analysis of differentially expressed plasma exosomal circular RNAs in Graves' disease. Biol Res 2020; 53:32. [PMID: 32727578 PMCID: PMC7388456 DOI: 10.1186/s40659-020-00299-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Circulating RNA (circRNA) regulates various bioactivities in cells. A better understanding of the exosomal circRNA can provide novel insights into the pathogenesis and treatment of Graves’ disease (GD). We aimed to profile the differentially expressed circRNAs (DEcRs) in plasma exosomes of patients with GD and speculate and probe the functions of the DEcR by comprehensive bioinformatics analyses. Methods Serum exosomes were isolated from five primary GD patients and five healthy controls via ultracentrifugation. After verification with transmission electron microscopy, exosome samples were subjected to microarray profiling using human circRNA microarrays. Two up-regulated and two down-regulated DEcRs were selected for validation in plasma exosomes from 20 GD and 20 healthy control participants using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). The circRNA/microRNA/mRNA interaction network was then assembled and the analysis of the Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways was utilized to predict the potential functions of the DEcR associated genes. Results There were 15 DEcRs revealed in primary GD cases. The intronic circRNA hsa_circRNA_000102 was confirmed as an up-regulated component in plasma exosomes from patients with GD. The circRNA/microRNA/mRNA interaction network unveiled the most potential targeting microRNAs of hsa_circRNA_000102 and its associated genes. The functional analyses predicted involvement of hsa_circRNA_000102 associated genes in pathways of immune system activation, such as viral infection and interferon-beta signaling. Conclusions hsa_circRNA_000102 is a differentially up-regulated plasma exosomal circRNA in patients with GD. Our study highlights multiple pathways, particularly virus infection and interferon-beta signaling, for mediating immune activation in Graves’ disease.
Collapse
Affiliation(s)
- Ying Sun
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Wei Wang
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Yuxiao Tang
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Daping Wang
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Liang Li
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Min Na
- Department of Radiology, Dalian Sixth People's Hospital, Dalian, Liaoning, China
| | - Guantong Jiang
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qian Li
- Department of Scientific Research, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China.
| | - Shulin Chen
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Jin Zhou
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China.
| |
Collapse
|
15
|
Davies TF, Andersen S, Latif R, Nagayama Y, Barbesino G, Brito M, Eckstein AK, Stagnaro-Green A, Kahaly GJ. Graves' disease. Nat Rev Dis Primers 2020; 6:52. [PMID: 32616746 DOI: 10.1038/s41572-020-0184-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
Abstract
Graves' disease (GD) is an autoimmune disease that primarily affects the thyroid gland. It is the most common cause of hyperthyroidism and occurs at all ages but especially in women of reproductive age. Graves' hyperthyroidism is caused by autoantibodies to the thyroid-stimulating hormone receptor (TSHR) that act as agonists and induce excessive thyroid hormone secretion, releasing the thyroid gland from pituitary control. TSHR autoantibodies also underlie Graves' orbitopathy (GO) and pretibial myxoedema. Additionally, the pathophysiology of GO (and likely pretibial myxoedema) involves the synergism of insulin-like growth factor 1 receptor (IGF1R) with TSHR autoantibodies, causing retro-orbital tissue expansion and inflammation. Although the aetiology of GD remains unknown, evidence indicates a strong genetic component combined with random potential environmental insults in an immunologically susceptible individual. The treatment of GD has not changed substantially for many years and remains a choice between antithyroid drugs, radioiodine or surgery. However, antithyroid drug use can cause drug-induced embryopathy in pregnancy, radioiodine therapy can exacerbate GO and surgery can result in hypoparathyroidism or laryngeal nerve damage. Therefore, future studies should focus on improved drug management, and a number of important advances are on the horizon.
Collapse
Affiliation(s)
- Terry F Davies
- Thyroid Research Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,James J. Peters VA Medical Center, New York, NY, USA. .,Mount Sinai Thyroid Center, Mount Sinai Downtown at Union Sq, New York, NY, USA.
| | - Stig Andersen
- Department of Geriatric and Internal Medicine and Arctic Health Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Rauf Latif
- Thyroid Research Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,James J. Peters VA Medical Center, New York, NY, USA
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Giuseppe Barbesino
- Thyroid Unit, Division of Endocrinology, Massachusetts General Hospital, Boston, MA, USA
| | - Maria Brito
- Mount Sinai Thyroid Center, Mount Sinai Downtown at Union Sq, New York, NY, USA
| | - Anja K Eckstein
- Department of Ophthalmology, University Duisburg Essen, Essen, Germany
| | - Alex Stagnaro-Green
- Departments of Medicine, Obstetrics and Gynecology and Medical Education, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - George J Kahaly
- Department of Medicine I, Johannes Gutenberg University Medical Centre, Mainz, Germany
| |
Collapse
|
16
|
Eckstein A, Philipp S, Goertz G, Banga JP, Berchner-Pfannschmidt U. Lessons from mouse models of Graves' disease. Endocrine 2020; 68:265-270. [PMID: 32399893 PMCID: PMC7266836 DOI: 10.1007/s12020-020-02311-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/07/2020] [Indexed: 11/27/2022]
Abstract
Graves' disease (GD) is an autoimmune condition with the appearance of anti-TSH receptor (TSHR) autoantibodies in the serum. The consequence is the development of hyperthyroidism in most of the patients. In addition, in the most severe cases, patients can develop orbitopathy (GO), achropachy and dermopathy. The central role of the TSHR for the disease pathology has been well accepted. Therefore immunization against the TSHR is pivotal for the creation of in vivo models for the disease. However, TSHR is well preserved among the species and therefore the immune system is highly tolerant. Many differing attempts have been performed to break tolerance and to create a proper animal model in the last decades. The most successful have been achieved by introducing the human TSHR extracellular domain into the body, either by injection of plasmid or adenoviruses. Currently available models develop the whole spectrum of Graves' disease-autoimmune thyroid disease and orbitopathy and are suitable to study disease pathogenesis and to perform treatment studies. In recent publications new immunomodulatory therapies have been assessed and also diseaseprevention by inducing tolerance using small cyclic peptides from the antigenic region of the extracellular subunit of the TSHR.
Collapse
Affiliation(s)
- A Eckstein
- Department of Ophthalmology, Medical Faculty, University Duisburg-Essen, Essen, Germany.
| | - S Philipp
- Laboratory of Molecular Ophthalmology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - G Goertz
- Laboratory of Molecular Ophthalmology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - J P Banga
- Laboratory of Molecular Ophthalmology, Medical Faculty, University Duisburg-Essen, Essen, Germany
- Emeritus Professor, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - U Berchner-Pfannschmidt
- Laboratory of Molecular Ophthalmology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
17
|
He K, Jiang P, Liu BL, Liu XM, Mao XM, Hu Y. Intrathyroid injection of dexamethasone inhibits Th2 cells in Graves' disease. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2020; 64:243-250. [PMID: 32555990 PMCID: PMC10522220 DOI: 10.20945/2359-3997000000244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/10/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Intrathyroid injection of dexamethasone (IID) was used for decrease the relapse rate of hyperthyroidism in the treatment of Graves' disease (GD), but the mechanism is still unclear. We aimed to explore the effect of IID on T help (Th)1/Th2 cells and their chemokine in patients with GD. SUBJECTS AND METHODS A total of 42 patients with GD who were euthyroidism by methimazole were randomly divided into IID group (n = 20) and control group (n = 22). Thyroid function and associated antibody, Th1/Th2 cells proportion, serum CXCL10 and CCL2 levels, and CXCR3/CCR2 mRNA expression in peripheral blood mononuclear cells before and after 3-month IID treatment were tested by chemiluminescence assay, Flow cytometry, ELISA, and real-time PCR, respectively. Thyroid follicular cells were stimulated by IFN-γ and TNF-α and treated with dexamethasone in vitro. CXCL10 and CCL2 levels in supernatant were determined. RESULTS After 3-month therapy, the proportion of Th2 cells and serum CCL2 levels, as well as TPOAb, TRAb levels and thyroid volume decreased in IID group (p < 0.05). However, the proportion of Th1 and CXCL10 levels had no change in IID group and control (p > 0.05). The CXCR3/CCR2 ratio had no change in both groups (p > 0.05). CONCLUSION IID therapy could inhibit peripheral Th2 cells via decreasing CCL2 level in peripheral blood, and this result partly explain the effects of IID therapy on prevention of relapse of GD. Arch Endocrinol Metab. 2020;64(3):243-50.
Collapse
Affiliation(s)
- Ke He
- Department of EndocrinologyWuxi Hospital of Traditional Chinese MedicineNanjing University of Chinese MedicineWuxiChinaDepartment of Endocrinology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Peng Jiang
- Department of Thyroid and Breast SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChinaDepartment of Thyroid and Breast Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bing-li Liu
- Department of EndocrinologyNanjing First HospitalNanjing Medical UniversityNanjingChinaDepartment of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-mei Liu
- Department of EndocrinologyNanjing First HospitalNanjing Medical UniversityNanjingChinaDepartment of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-ming Mao
- Department of EndocrinologyNanjing First HospitalNanjing Medical UniversityNanjingChinaDepartment of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Hu
- Department of EndocrinologyNanjing First HospitalNanjing Medical UniversityNanjingChinaDepartment of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
McLachlan SM, Rapoport B. A transgenic mouse that spontaneously develops pathogenic TSH receptor antibodies will facilitate study of antigen-specific immunotherapy for human Graves' disease. Endocrine 2019; 66:137-148. [PMID: 31560118 DOI: 10.1007/s12020-019-02083-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Graves' hyperthyroidism can be treated but not cured. Antigen-specific immunotherapy would accomplish this goal, for which purpose an animal model is an invaluable tool. Two types of animal models are available. First, pathogenic TSHR antibodies (TSHRAb) can be induced by injecting mice with fibroblasts co-expressing the human TSHR (hTSHR) and MHC class II, or in mammals using plasmid or adenovirus vectors encoding the hTSHR or its A-subunit. Second, a mouse model that spontaneously develops pathogenic TSHRAb resembling those in human disease was recently described. This outcome was accomplished by transgenic intrathyroidal expression of the hTSHR A-subunit in NOD.H2h4 mice that are genetically predisposed to develop thyroiditis but, without the transgene, do not generate TSHRAb. Recently, novel approaches to antigen-specific immunotherapy have been tested, primarily in the induced model, by injecting TSHR A-subunit protein or cyclic TSHR peptides. T-cell tolerance has also been induced in "humanized" HLA-DR3 mice by injecting synthetic peptides predicted in silico to mimic naturally processed TSHR T-cell epitopes. Indeed, a phase 1 study based on the latter approach has been conducted in humans. In the spontaneous model (hTSHR/NOD.H2h mice), injection of soluble or nanoparticle-bearing hTSHR A-subunits had the unwanted effect of exacerbating pathogenic TSHRAb levels. A promising avenue for tolerance induction, successful in other conditions and yet to be tested with the TSHR, involves encapsulating the antigen. In conclusion, these studies provide insight into the potential outcome of immunotherapeutic approaches and emphasize the importance of a spontaneous model to test future novel, antigen-specific immunotherapies for Graves' disease.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Department of Medicine, University of California Los Angeles, 100 Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Basil Rapoport
- Department of Medicine, University of California Los Angeles, 100 Medical Plaza Driveway, Los Angeles, CA, 90095, USA.
| |
Collapse
|
19
|
Zhao F, Wu L, Wang Y, Liu L, Yang F, Sun Y, Jiao X, Bao L, Chen P, Liang Q, Shi B. Dihydrotestosterone regulates oxidative stress and immunosuppressive cytokines in a female BALB/c mouse model of Graves' disease. Autoimmunity 2019; 52:117-125. [PMID: 31134819 DOI: 10.1080/08916934.2019.1621857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: Graves' disease (GD) is an autoimmune disease that affects more women than men. In our previous study, a potent bioactive androgen, 5α-dihydrotestosterone (DHT) showed a protective effect against GD in female BALB/c mice. Evidence indicates that abnormal oxidative stress and immunosuppressive cytokines (TGF-β, IL-35) play critical roles in the pathogenesis and development of GD. The purpose of this research is to measure these cytokines and oxidative stress markers to explore potential protective mechanisms of DHT in a BALB/c mouse model of GD. Methods: GD was induced in female BALB/c mice by intramuscular injection of an adenovirus expressing the A-subunit of the TSH receptor (Ad-TSHR289). DHT or a matching placebo was injected every 3 days. Mice were sacrificed four weeks after the third virus immunization to obtain blood, thyroid and spleen for further analysis. Results: Thyroid hormones were significantly reduced in DHT treated GD mice. In addition, DHT attenuated thyroid oxidative injuries in GD mice, as shown by decreased total antioxidation capability (TAOC), superoxide dismutase (SOD) and the level of malondialdehyde (MDA). The levels of immunosuppressive cytokines (TGF-β, IL-35) in DHT group were significant higher compared with the GD group. Conclusions: The results demonstrated that DHT could reduce the severity of GD in female BALB/c mice by regulating oxidative stress. The upregulation of immunosuppressive cytokines might be another important protective mechanism.
Collapse
Affiliation(s)
- Fengyi Zhao
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Liping Wu
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Yue Wang
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Lianye Liu
- b Department of Nephrology and Endocrinology , Weinan Central Hospital , Weinan , China
| | - Fei Yang
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Yushi Sun
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Xiang Jiao
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Lingyu Bao
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Pu Chen
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Qiangrong Liang
- c Department of Biomedical Science, New York Institute of Technology , college of Osteopathic Medicine , Old Westbury , New York , USA
| | - Bingyin Shi
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| |
Collapse
|
20
|
Wang Y, Zhao F, Rijntjes E, Wu L, Wu Q, Sui J, Liu Y, Zhang M, He M, Chen P, Hu S, Hou P, Schomburg L, Shi B. Role of Selenium Intake for Risk and Development of Hyperthyroidism. J Clin Endocrinol Metab 2019; 104:568-580. [PMID: 30265356 DOI: 10.1210/jc.2018-01713] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022]
Abstract
PURPOSE To investigate the importance of dietary selenium (Se) for hyperthyroidism. METHODS We performed a more in-depth analysis of a large cross-sectional study of 6152 participants from two counties within the Shaanxi Province, China. These counties are characterized by different habitual Se intake. We investigated the effects of a different dietary Se supply (0.02, 0.18, 0.6, or 2.0 ppm Se) on disease development in a mouse model of Graves disease (GD). RESULTS The cross-sectional study revealed a comparable prevalence of hyperthyroidism, irrespective of Se intake, in both counties. However, an unexpected sex-specific difference was noted, and Se deficiency might constitute a risk factor for hyperthyroidism, especially in males. In a mouse model, pathological thyroid morphology was affected, and greater Se intake exerted some protecting effects on the pathological distortion. Circulating thyroid hormone levels, malondialdehyde concentrations, total antioxidant capacity, and the titer of GD-causing TSH receptor autoantibodies were not affected by Se. Expression analysis of the transcripts in the spleen indicated regulatory effects on genes implicated in the immune response, erythropoiesis, and oxygen status. However, the humoral immune response, including the CD4/CD8 or T-helper 1/T-helper 2 cell ratio and the concentration of regulatory T cells, was similar between the experimental groups, despite the difference in Se intake. CONCLUSIONS Our data have highlighted a sexual dimorphism for the interaction of Se and thyroid disease risk in humans, with indications of a local protective effects of Se on thyroid gland integrity, which appears not to be reflected in the circulating biomarkers tested.
Collapse
Affiliation(s)
- Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fengyi Zhao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Liping Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Qian Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
- Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China
| | - Jing Sui
- Department of Endocrinology and International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yufeng Liu
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Meng Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Mingqian He
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Pu Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shiqian Hu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
21
|
Sun S, Summachiwakij S, Schneck O, Morshed SA, Ma R, Latif R, Davies TF. Antigenic "Hot- Spots" on the TSH Receptor Hinge Region. Front Endocrinol (Lausanne) 2019; 9:765. [PMID: 30666231 PMCID: PMC6330735 DOI: 10.3389/fendo.2018.00765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022] Open
Abstract
The TSH receptor (TSHR) hinge region was previously considered an inert scaffold connecting the leucine-rich ectodomain to the transmembrane region of the receptor. However, mutation studies have established the hinge region to be an extended hormone-binding site in addition to containing a region which is cleaved thus dividing the receptor intoα | ' (A) and β (B) subunits. Furthermore, we have shown in-vitro that monoclonal antibodies directed to the cleaved part of the hinge region (often termed "neutral" antibodies) can induce thyroid cell apoptosis in the absence of cyclic AMP signaling. The demonstration of neutral antibodies in patients with Graves' disease suggests their potential involvement in disease pathology thus making the hinge a potentially important antigenic target. Here we examine the evolution of the antibody immune response to the entire TSHR hinge region (aa280-410) after intense immunization with full-length TSHR cDNA in a mouse (BALB/c) model in order to examine the immunogenicity of this critical receptor structure. We found that TSHR hinge region antibodies were detected in 95% of the immunized mice. The antibody responses were largely restricted to residues 352-410 covering three major epitopes and not merely confined to the cleaved portion. These data indicated the presence of novel antigenic "hotspots" within the carboxyl terminus of the hinge region and demonstrate that the hinge region of the TSHR contains an immunogenic pocket that is involved in the highly heterogeneous immune response to the TSHR. The presence of such TSHR antibodies suggests that they may play an active role in the immune repertoire marshaled against the TSHR and may influence the Graves' disease phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | - Rauf Latif
- Thyroid Research Unit, Department of Medicine, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | |
Collapse
|
22
|
Wu L, Chen G, Liu W, Yang X, Gao J, Huang L, Guan H, Li Z, Zheng Z, Li M, Gu W, Ge L. Intramuscular injection of exogenous leptin induces adiposity, glucose intolerance and fatty liver by repressing the JAK2-STAT3/PI3K pathway in a rat model. Gen Comp Endocrinol 2017; 252:88-96. [PMID: 28242305 DOI: 10.1016/j.ygcen.2017.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 12/23/2022]
Abstract
Obesity, diabetes and fatty liver disease are extremely common in leptin-resistant patients. Dysfunction of leptin or its receptor is associated with obesity. The present study aimed to assess the effects of intramuscular injection of exogenous leptin or its receptor on fat deposition and leptin-insulin feedback regulation. Forty-five 40-day old female Sprague Dawley (SD) rats were injected thrice with leptin or its receptor intramuscularly. Adiposity and fat deposition were assessed by assessing the Lee's index, body weight, food intake, and total cholesterol, high density lipoprotein, low density lipoprotein, and triglyceride levels, as well as histological properties (liver and adipose tissue). Serum glucose, leptin, and insulin amounts were evaluated, and glucose tolerance assessed to monitor glucose metabolism in SD rats; pancreas specimens were analyzed immunohistochemically. Hypothalamic phosphorylated Janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), and phosphatidylinositol-3-kinase (PI3K) signaling, and hepatic sterol regulatory element binding protein-1 (SREBP-1) were qualified by Western blotting. Leptin receptor immunogen reduced fat deposition, increased appetite, and lowered serum leptin levels, enhancing STAT3 signaling in hypothalamus and down-regulating hepatic SREBP-1. In contrast, SD rats administered leptin immunogen displayed significantly increased body weight and fat deposition, with up-regulated SREBP-1, indicating adiposity occurrence. SD rats administered leptin immunogen also showed glucose intolerance, β- cell reduction in the pancreas, and deregulation of JAK2-STAT3/PI3K signaling, indicating that Lep rats were at risk of diabetes. In conclusion, intramuscular injection of exogenous leptin or its receptor, a novel rat model approach, can be used in obesity pathogenesis and therapeutic studies.
Collapse
Affiliation(s)
- Lihong Wu
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China; Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Guoxiong Chen
- First Department of Orthopedics, The Affiliated Nanhai Hospital of Southern Medical University, Foshan 528200, China
| | - Wen Liu
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Xuechao Yang
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Jie Gao
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Liwen Huang
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Hongbing Guan
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Zhengmao Li
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Zhichao Zheng
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Meiling Li
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Weiwang Gu
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China; Department of Laboratory Animal Science, Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan 523808, China.
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China.
| |
Collapse
|
23
|
Holthoff HP, Li Z, Faßbender J, Reimann A, Adler K, Münch G, Ungerer M. Cyclic Peptides for Effective Treatment in a Long-Term Model of Graves Disease and Orbitopathy in Female Mice. Endocrinology 2017; 158:2376-2390. [PMID: 28368444 DOI: 10.1210/en.2016-1845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
A model for human Graves disease in mice was used to compare several treatment approaches. The mice received regular adenovirus (Ad) thyroid-stimulating hormone receptor (TSHR) A subunit immunizations (injections every 4 weeks). The generation of anti-TSHR antibodies, enlarged thyroid sizes (goiter), elevated serum thyroxine levels, retro-orbital fibrosis, and cardiac involvement (tachycardia and hypertrophy) were consistently observed over 9 months. Treatment of established disease in these mice using cyclic peptides that mimic one of the cylindrical loops of the TSHR leucine-rich repeat domain improved or cured all investigated parameters after six consecutive monthly injections. The first significant beneficial effects were observed 3 to 4 months after starting these therapies. In immunologically naïve mice, administration of any of the cyclic peptides did not induce any immune response. In contrast, monthly injections of the full antigenic TSHR A domain as fusion protein with immunoglobulin G crystallizable fragment induced clinical signs of allergy in Ad-TSHR-immunized mice and anti-TSHR antibodies in naïve control mice. In conclusion, cyclic peptides resolved many clinical findings in a mouse model of established Graves disease and orbitopathy. In contrast to blocking TSHR by allosteric modulation, the approach does not incur a direct receptor antagonism, which might offer a favorable side effect profile.
Collapse
Affiliation(s)
| | - Zhongmin Li
- Procorde-advanceCOR, D 82152 Martinsried, Germany
| | | | | | | | - Götz Münch
- Procorde-advanceCOR, D 82152 Martinsried, Germany
| | | |
Collapse
|
24
|
Yuan Q, Zhao Y, Zhu X, Liu X. Low regulatory T cell and high IL-17 mRNA expression in a mouse Graves' disease model. J Endocrinol Invest 2017; 40:397-407. [PMID: 27822606 DOI: 10.1007/s40618-016-0575-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/29/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE Graves' disease (GD) is an autoimmune thyroid disease, and the most important characteristic of it is the presence of the thyroid-stimulating antibody (TSAb). The mechanisms of the TSAb elevation are still uncertain. Recent studies have suggested that the dysregulation of regulatory T cell (Treg) and T helper 17 (Th17) might stimulate the production of TSAb and be a pathogenesis of GD. However, the role of Treg and Th17 cells in the pathogenesis of GD is still debated. Our aim is to assess changes of Treg and Th17 cells in the spleen of a mouse in an in vivo GD model and try to explain the pathogenesis of GD. METHODS We used an adenovirus expressing the autoantigen thyroid-stimulating hormone receptor (Ad-TSHR289) to immunise mice in order to induce GD in the model. Flow cytometry was used to measure the frequencies of splenic Treg and Th17 cells and real-time PCR to analyse the mRNA expression of forkhead box P3(Foxp3) and interleukin-17(IL-17). RESULTS Compared with the Ad-Control group, the frequencies of CD4+CD25+Foxp3+ Treg cells were significantly decreased (p = 0.007) and gene expression of Foxp3 was down-regulated (p = 0.001) in the Ad-TSHR289 group. Though there was no significant difference in CD4+IL-17+ T cell subpopulation between the two groups (p = 0.336), the IL-17 mRNA expression was significantly up-regulated in the Ad-TSHR289 group (p = 0.001). CONCLUSIONS The pathogenesis of GD may be associated with reduced Treg cells and increased IL-17 gene expression. The increased IL-17 mRNA needs to be explained by other mechanisms but not Th17 cells.
Collapse
Affiliation(s)
- Q Yuan
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
- Department of Laboratory of Diabetes, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Y Zhao
- Department of Laboratory of Diabetes, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - X Zhu
- Department of Laboratory of Diabetes, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - X Liu
- Department of Laboratory of Diabetes, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
25
|
Ungerer M, Faßbender J, Li Z, Münch G, Holthoff HP. Review of Mouse Models of Graves' Disease and Orbitopathy-Novel Treatment by Induction of Tolerance. Clin Rev Allergy Immunol 2017; 52:182-193. [PMID: 27368808 PMCID: PMC5346423 DOI: 10.1007/s12016-016-8562-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Various approaches have been used to model human Graves' disease in mice, including transfected fibroblasts, and plasmid or adenoviral immunisations with the extracellular A subunit of the human thyrotropin receptor (TSHR). Some of these models were only observed for a short time period or were self-limiting. A long-term model for human Graves' disease was established in mice using continuing immunisations (4-weekly injections) with recombinant adenovirus expressing TSHR. Generation of TSHR binding cAMP-stimulatory antibodies, thyroid enlargement and alterations, elevated serum thyroxin levels, tachycardia and cardiac hypertrophy were maintained for at least 9 months in all Ad-TSHR-immunised mice. Here, we show that these mice suffer from orbitopathy, which was detected by serial orbital sectioning and histomorphometry. Attempts to treat established Graves' disease in preclinical mouse model studies have included small molecule allosteric antagonists and specific antagonist antibodies which were isolated from hypothyroid patients. In addition, novel peptides have been conceived which mimic the cylindrical loops of the TSHR leucine-rich repeat domain, in order to re-establish tolerance toward the antigen. Here, we show preliminary results that one set of these peptides improves or even cures all signs and symptoms of Graves' disease in mice after six consecutive monthly injections. First beneficial effects were observed 3-4 months after starting these therapies. In immunologically naïve mice, administration of the peptides did not induce any immune response.
Collapse
Affiliation(s)
- Martin Ungerer
- Procorde (Advancecor), Fraunhoferstrasse 9a, 82152, Martinsried, Germany.
| | - Julia Faßbender
- Procorde (Advancecor), Fraunhoferstrasse 9a, 82152, Martinsried, Germany
| | - Zhongmin Li
- Procorde (Advancecor), Fraunhoferstrasse 9a, 82152, Martinsried, Germany
| | - Götz Münch
- Procorde (Advancecor), Fraunhoferstrasse 9a, 82152, Martinsried, Germany
| | | |
Collapse
|
26
|
Rapoport B, Banuelos B, Aliesky HA, Hartwig Trier N, McLachlan SM. Critical Differences between Induced and Spontaneous Mouse Models of Graves' Disease with Implications for Antigen-Specific Immunotherapy in Humans. THE JOURNAL OF IMMUNOLOGY 2016; 197:4560-4568. [PMID: 27913646 DOI: 10.4049/jimmunol.1601393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/14/2016] [Indexed: 01/20/2023]
Abstract
Graves' hyperthyroidism, a common autoimmune disease caused by pathogenic autoantibodies to the thyrotropin (TSH) receptor (TSHR), can be treated but not cured. This single autoantigenic target makes Graves' disease a prime candidate for Ag-specific immunotherapy. Previously, in an induced mouse model, injecting TSHR A-subunit protein attenuated hyperthyroidism by diverting pathogenic TSHR Abs to a nonfunctional variety. In this study, we explored the possibility of a similar diversion in a mouse model that spontaneously develops pathogenic TSHR autoantibodies, NOD.H2h4 mice with the human (h) TSHR (hTSHR) A-subunit transgene expressed in the thyroid and (shown in this article) the thymus. We hypothesized that such diversion would occur after injection of "inactive" hTSHR A-subunit protein recognized only by nonpathogenic (not pathogenic) TSHR Abs. Surprisingly, rather than attenuating the pre-existing pathogenic TSHR level, in TSHR/NOD.H2h4 mice inactive hTSHR Ag injected without adjuvant enhanced the levels of pathogenic TSH-binding inhibition and thyroid-stimulating Abs, as well as nonpathogenic Abs detected by ELISA. This effect was TSHR specific because spontaneously occurring autoantibodies to thyroglobulin and thyroid peroxidase were unaffected. As controls, nontransgenic NOD.H2h4 mice similarly injected with inactive hTSHR A-subunit protein unexpectedly developed TSHR Abs, but only of the nonpathogenic variety detected by ELISA. Our observations highlight critical differences between induced and spontaneous mouse models of Graves' disease with implications for potential immunotherapy in humans. In hTSHR/NOD.H2h4 mice with ongoing disease, injecting inactive hTSHR A-subunit protein fails to divert the autoantibody response to a nonpathogenic form. Indeed, such therapy is likely to enhance pathogenic Ab production and exacerbate Graves' disease in humans.
Collapse
Affiliation(s)
- Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, CA 90048; and
| | - Bianca Banuelos
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, CA 90048; and
| | - Holly A Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, CA 90048; and
| | - Nicole Hartwig Trier
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen S, Denmark
| | - Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, CA 90048; and
| |
Collapse
|
27
|
Dragun D, Catar R, Philippe A. Non-HLA antibodies against endothelial targets bridging allo- and autoimmunity. Kidney Int 2016; 90:280-288. [PMID: 27188505 DOI: 10.1016/j.kint.2016.03.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/12/2016] [Accepted: 03/17/2016] [Indexed: 12/17/2022]
Abstract
Detrimental actions of donor-specific antibodies (DSAs) directed against both major histocompatibility antigens (human leukocyte antigen [HLA]) and specific non-HLA antigens expressed on the allograft endothelium are a flourishing research area in kidney transplantation. Newly developed solid-phase assays enabling detection of functional non-HLA antibodies targeting G protein-coupled receptors such as angiotensin type I receptor and endothelin type A receptor were instrumental in providing long-awaited confirmation of their broad clinical relevance. Numerous recent clinical studies implicate angiotensin type I receptor and endothelin type A receptor antibodies as prognostic biomarkers for earlier occurrence and severity of acute and chronic immunologic complications in solid organ transplantation, stem cell transplantation, and systemic autoimmune vascular disease. Angiotensin type 1 receptor and endothelin type A receptor antibodies exert their pathophysiologic effects alone and in synergy with HLA-DSA. Recently identified antiperlecan antibodies are also implicated in accelerated allograft vascular pathology. In parallel, protein array technology platforms enabled recognition of new endothelial surface antigens implicated in endothelial cell activation. Upon target antigen recognition, non-HLA antibodies act as powerful inducers of phenotypic perturbations in endothelial cells via activation of distinct intracellular cell-signaling cascades. Comprehensive diagnostic assessment strategies focusing on both HLA-DSA and non-HLA antibody responses could substantially improve immunologic risk stratification before transplantation, help to better define subphenotypes of antibody-mediated rejection, and lead to timely initiation of targeted therapies. Better understanding of similarities and dissimilarities in HLA-DSA and distinct non-HLA antibody-related mechanisms of endothelial damage should facilitate discovery of common downstream signaling targets and pave the way for the development of endothelium-centered therapeutic strategies to accompany intensified immunosuppression and/or mechanical removal of antibodies.
Collapse
Affiliation(s)
- Duska Dragun
- Clinic for Nephrology and Critical Care Medicine, Campus Virchow-Klinikum and Center for Cardiovascular Research, Medical Faculty of the Charité Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany.
| | - Rusan Catar
- Clinic for Nephrology and Critical Care Medicine, Campus Virchow-Klinikum and Center for Cardiovascular Research, Medical Faculty of the Charité Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Aurélie Philippe
- Clinic for Nephrology and Critical Care Medicine, Campus Virchow-Klinikum and Center for Cardiovascular Research, Medical Faculty of the Charité Berlin, Berlin, Germany
| |
Collapse
|
28
|
Luo Y, Yoshihara A, Oda K, Ishido Y, Hiroi N, Suzuki K. Naked DNA in cells: An inducer of major histocompatibility complex molecules to evoke autoimmune responses? World J Transl Med 2016; 5:46-52. [DOI: 10.5528/wjtm.v5.i1.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/12/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
The major histocompatibility complex (MHC) is the exclusive chaperone that presents intracellular antigens, either self or foreign to T cells. Interestingly, aberrant expression of MHC molecules has been reported in various autoimmune target tissues such as thyroid follicular cells in Grave’s disease. Herein, we review the discovery of an unexpected effect of cytosolic double-stranded DNA (dsDNA), despite its origins, to induce antigen processing and presenting genes, including MHC molecules, in non-immune cells. Moreover, we highlight several recent studies that suggest cell injury endows thyroid epithelial cells with a phenotype of mature antigen presenting cells by inducing multiple antigen processing and presenting genes via releasing genomic DNA fragments into the cytosol. We discuss the possibility that such cytosolic dsDNA, in naked form without binding to histone proteins, might be involved in the development of cell damage-triggered autoimmune responses. We also discuss the possible molecular mechanism by which cytosolic dsDNA can induce MHC molecules. It is reasonable to speculate that cytosolic dsDNA-induced MHC class I is partially due to an autocrine/paracrine effect of type I interferon (IFN). While the mechanism of cytosolic dsDNA-induced MHC class II expression appears, at least partially, distinct from that mediated by IFN-γ. Further in-depth are required to clarify this picture.
Collapse
|
29
|
Berchner-Pfannschmidt U, Moshkelgosha S, Diaz-Cano S, Edelmann B, Görtz GE, Horstmann M, Noble A, Hansen W, Eckstein A, Banga JP. Comparative Assessment of Female Mouse Model of Graves' Orbitopathy Under Different Environments, Accompanied by Proinflammatory Cytokine and T-Cell Responses to Thyrotropin Hormone Receptor Antigen. Endocrinology 2016; 157:1673-82. [PMID: 26872090 DOI: 10.1210/en.2015-1829] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently described a preclinical model of Graves' orbitopathy (GO), induced by genetic immunization of eukaryotic expression plasmid encoding human TSH receptor (TSHR) A-subunit by muscle electroporation in female BALB/c mice. The onset of orbital pathology is characterized by muscle inflammation, adipogenesis, and fibrosis. Animal models of autoimmunity are influenced by their environmental exposures. This follow-up study was undertaken to investigate the development of experimental GO in 2 different locations, run in parallel under comparable housing conditions. Functional antibodies to TSHR were induced in TSHR A-subunit plasmid-immunized animals, and antibodies to IGF-1 receptor α-subunit were also present, whereas control animals were negative in both locations. Splenic T cells from TSHR A-subunit primed animals undergoing GO in both locations showed proliferative responses to purified TSHR antigen and secreted interferon-γ, IL-10, IL-6, and TNF-α cytokines. Histopathological evaluation showed orbital tissue damage in mice undergoing GO, manifest by adipogenesis, fibrosis, and muscle damage with classic signs of myopathy. Although no inflammatory infiltrate was observed in orbital tissue in either location, the appearances were consistent with a "hit-and-run" immune-mediated inflammatory event. A statistically significant increase of cumulative incidence of orbital pathology when compared with control animals was shown for both locations, confirming onset of orbital dysimmune myopathy. Our findings confirm expansion of the model in different environments, accompanied with increased prevalence of T cell-derived proinflammatory cytokines, with relevance for pathogenesis. Wider availability of the model makes it suitable for mechanistic studies into pathogenesis and undertaking of novel therapeutic approaches.
Collapse
Affiliation(s)
- Utta Berchner-Pfannschmidt
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Sajad Moshkelgosha
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Salvador Diaz-Cano
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Bärbel Edelmann
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Gina-Eva Görtz
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Mareike Horstmann
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Alistair Noble
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Wiebke Hansen
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Anja Eckstein
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - J Paul Banga
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| |
Collapse
|
30
|
Chen CR, Hubbard PA, Salazar LM, McLachlan SM, Murali R, Rapoport B. Crystal structure of a TSH receptor monoclonal antibody: insight into Graves' disease pathogenesis. Mol Endocrinol 2016; 29:99-107. [PMID: 25419797 DOI: 10.1210/me.2014-1257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The TSH receptor (TSHR) A-subunit is more effective than the holoreceptor in inducing thyroid-stimulating antibodies (TSAb) that cause Graves' disease. A puzzling phenomenon is that 2 recombinant, eukaryotic forms of A-subunits (residues 22-289), termed active and inactive, are recognized mutually exclusively by pathogenic TSAb and mouse monoclonal antibody 3BD10, respectively. Understanding the structural difference between these TSHR A-subunit forms could provide insight into Graves' disease pathogenesis. The 3-dimensional structure of the active A-subunit (in complex with a human TSAb Fab, M22) is known, but the structural difference with inactive A-subunits is unknown. We solved the 3BD10 Fab 3-dimensional crystal structure. Guided by prior knowledge of a portion of its epitope, 3BD10 docked in silico with the known active TSHR-289 monomeric structure. Because both TSAb and 3BD10 recognize the active TSHR A-subunit monomer, this form of the molecule can be excluded as the basis for the active-inactive dichotomy, suggesting, instead a role for A-subunit quaternary structure. Indeed, in silico analysis revealed that M22, but not 3BD10, bound to a TSHR-289 trimer. In contrast, 3BD10, but not M22, bound to a TSHR-289 dimer. The validity of these models is supported experimentally by the temperature-dependent balance between active and inactive TSHR-289. In summary, we provide evidence for a structural basis to explain the conformational heterogeneity of TSHR A-subunits (TSHR-289). The pathophysiologic importance of these findings is that affinity maturation of pathogenic TSAb in Graves' disease is likely to involve a trimer of the shed TSHR A-subunit.
Collapse
Affiliation(s)
- Chun-Rong Chen
- Thyroid Autoimmune Disease Unit (C-R.C., L.M.S., S.M.M., B.R.) and Department of Biomedical Sciences (P.H., R.M.), Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, California 90048
| | | | | | | | | | | |
Collapse
|
31
|
Inaba H, De Groot LJ, Akamizu T. Thyrotropin Receptor Epitope and Human Leukocyte Antigen in Graves' Disease. Front Endocrinol (Lausanne) 2016; 7:120. [PMID: 27602020 PMCID: PMC4994058 DOI: 10.3389/fendo.2016.00120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/12/2016] [Indexed: 11/13/2022] Open
Abstract
Graves' disease (GD) is an organ-specific autoimmune disease, and thyrotropin (TSH) receptor (TSHR) is a major autoantigen in this condition. Since the extracellular domain of human TSHR (TSHR-ECD) is shed into the circulation, TSHR-ECD is a preferentially immunogenic portion of TSHR. Both genetic factors and environmental factors contribute to development of GD. Inheritance of human leukocyte antigen (HLA) genes, especially HLA-DR3, is associated with GD. TSHR-ECD protein is endocytosed into antigen-presenting cells (APCs), and processed to TSHR-ECD peptides. These peptide epitopes bind to HLA-class II molecules, and subsequently the complex of HLA-class II and TSHR-ECD epitope is presented to CD4+ T cells. The activated CD4+ T cells secrete cytokines/chemokines that stimulate B-cells to produce TSAb, and in turn hyperthyroidism occurs. Numerous studies have been done to identify T- and B-cell epitopes in TSHR-ECD, including (1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. Murine models of GD and HLA-transgenic mice have played a pivotal role in elucidating the immunological mechanisms. To date, linear or conformational epitopes of TSHR-ECD, as well as the molecular structure of the epitope-binding groove in HLA-DR, were reported to be related to the pathogenesis in GD. Dysfunction of central tolerance in the thymus, or in peripheral tolerance, such as regulatory T cells, could allow development of GD. Novel treatments using TSHR antagonists or mutated TSHR peptides have been reported to be effective. We review and update the role of immunogenic TSHR epitopes and HLA in GD, and offer perspectives on TSHR epitope specific treatments.
Collapse
Affiliation(s)
- Hidefumi Inaba
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Hidefumi Inaba,
| | - Leslie J. De Groot
- Department of Cellular and Molecular Biology, University of Rhode Island, Providence, RI, USA
| | - Takashi Akamizu
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
32
|
Wu LP, Xun LR, Xu L, Hussain A, Shi BY. A Study on Neonatal Tolerance Against Graves' Disease in BALB/c Mice. Chin Med J (Engl) 2015; 128:3243-6. [PMID: 26612302 PMCID: PMC4794885 DOI: 10.4103/0366-6999.170274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
| | | | | | | | - Bing-Yin Shi
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
33
|
Ahmed R, Abdel-Latif M, Mahdi EA, El-Nesr KA. Immune stimulation improves endocrine and neural fetal outcomes in a model of maternofetal thyrotoxicosis. Int Immunopharmacol 2015; 29:714-721. [DOI: 10.1016/j.intimp.2015.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
|
34
|
Khong JJ, McNab AA, Ebeling PR, Craig JE, Selva D. Pathogenesis of thyroid eye disease: review and update on molecular mechanisms. Br J Ophthalmol 2015; 100:142-50. [PMID: 26567024 DOI: 10.1136/bjophthalmol-2015-307399] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/25/2015] [Indexed: 01/07/2023]
Abstract
Orbital changes in thyroid orbitopathy (TO) result from de novo adipogenesis, hyaluronan synthesis, interstitial oedema and enlargement of extraocular muscles. Cellular immunity, with predominantly CD4+ T cells expressing Th1 cytokines, and overexpression of macrophage-derived cytokines, perpetuate orbital inflammation. Orbital fibroblasts appear to be the major effector cells. Orbital fibroblasts express both thyrotropin receptor (TSHR) and insulin-like growth factor-1 receptor (IGF-1R) at higher levels than normal fibroblasts. TSHR expression increases in adipogenesis; TSHR agonism enhances hyaluronan production. IGF-1R stimulation leads to adipogenesis, hyaluronan synthesis and production of the chemokines, interleukin (IL)-16 and Regulated on Activation, Normal T Cell Expression and Secreted, which facilitate lymphocyte trafficking into the orbit. Immune activation uses a specific CD40:CD154 molecular bridge to activate orbital fibroblasts, which secrete pro-inflammatory cytokines including IL-1β, IL-1α, IL-6, IL-8, macrophage chemoattractant protein-1 and transforming growth factor-β, to perpetuate orbital inflammation. Molecular pathways including adenylyl cyclase/cyclic adenosine monophosphate, phophoinositide 3 kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase are involved in TO. The emergence of a TO animal model and a new generation of TSHR antibody assays increasingly point towards TSHR as the primary autoantigen for extrathyroidal orbital involvement. Oxidative stress in TO resulting from imbalances of the oxidation-reduction state provides a framework of understanding for smoking prevention, achieving euthyroidism and the use of antioxidants such as selenium. Progress has been made in the understanding of the pathogenesis of TO, which should advance development of novel therapies targeting cellular immunity, specifically the CD40:CD40 ligand interaction, antibody-producing B cells, cytokines, TSHR and IGF-1R and its signalling pathways. Further studies in signalling networks and molecular triggers leading to burnout of TO will further our understanding of TO.
Collapse
Affiliation(s)
- Jwu Jin Khong
- North West Academic Centre, The University of Melbourne, Western Hospital, St Albans, Victoria, Australia Orbital Plastics and Lacrimal Unit, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia Austin Health, Department of Surgery, University of Melbourne, Heidelberg, Victoria, Australia
| | - Alan A McNab
- Orbital Plastics and Lacrimal Unit, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia Centre of Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Peter R Ebeling
- North West Academic Centre, The University of Melbourne, Western Hospital, St Albans, Victoria, Australia Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Dinesh Selva
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to summarize the recent advances on experimental Graves' hyperthyroidism and orbitopathy as studied in two widely used mouse models, which involve repetitive genetic vaccinations using either adenovirus or in-vivo electroporation of the eukaryotic expression plasmid expressing the thyrotropin receptor (TSHR) as a vector. RECENT FINDINGS The models have been improved by using different types of antigens, including the holo receptor, the receptor A-subunit, an alternatively spliced form of variant receptor lacking a single leucine-rich repeat in the codomain, the receptors of human or mouse origin; different mice such as wild-type, TSHR knockout, TSHR transgenic and different inbred mice; and different immunization protocols. They are now useful for elucidating the pathogenic mechanisms of not only Graves' hyperthyroidism but also Graves' orbitopathy. SUMMARY This review summarizes the literature of mouse models of Graves' hyperthyroidism and orbitopathy published over the last 3 years.
Collapse
Affiliation(s)
- Yuji Nagayama
- aDepartment of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University bDepartment of Endocrinology and Metabolism, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | |
Collapse
|
36
|
Banga JP, Moshkelgosha S, Berchner-Pfannschmidt U, Eckstein A. Modeling Graves' Orbitopathy in Experimental Graves' Disease. Horm Metab Res 2015; 47:797-803. [PMID: 26287396 DOI: 10.1055/s-0035-1555956] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Graves' orbitopathy (GO), also known as thyroid eye disease is an inflammatory disease of the orbital tissue of the eye that arises as a consequence of autoimmune thyroid disease. The central feature of the disease is the production of antibodies to the thyrotropin hormone receptor (TSHR) that modulate the function of the receptor leading to autoimmune hyperthyroidism and GO. Over the years, all viable preclinical models of Graves' disease have been incomplete and singularly failed to progress in the treatment of orbital complications. A new mouse model of GO based upon immunogenic presentation of human TSHR A-subunit plasmid by close field electroporation is shown to lead to induction of prolonged functional antibodies to TSHR resulting in chronic disease with subsequent progression to GO. The stable preclinical GO model exhibited pathologies reminiscent of human disease characterized by orbital remodeling by inflammation and adipogenesis. Inflammatory lesions characterized by CD3+ T cells and macrophages were localized in the orbital muscle tissue. This was accompanied by extensive adipogenesis of orbital fat in some immune animals. Surprisingly, other signs of orbital involvement were reminiscent of eyelid inflammation involving chemosis, with dilated and congested orbital blood vessels. More recently, the model is replicated in the author's independent laboratories. The pre-clinical model will provide the basis to study the pathogenic and regulatory roles of immune T and B cells and their subpopulations to understand the initiation, pathophysiology, and progression of GO.
Collapse
Affiliation(s)
- J P Banga
- Faculty of Life Sciences & Medicine, King's College London, The Rayne Institute, London, UK
| | - S Moshkelgosha
- Faculty of Life Sciences & Medicine, King's College London, The Rayne Institute, London, UK
| | | | - A Eckstein
- Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
37
|
Leporati P, Groppelli G, Zerbini F, Rotondi M, Chiovato L. Etiopathogenesis of Basedow's disease. Trends and current aspects. Nuklearmedizin 2015; 54:204-10. [PMID: 26293122 DOI: 10.3413/nukmed-0739-15-04] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/12/2015] [Indexed: 12/13/2022]
Abstract
Basedow's disease (BD) owes its name to the German physician Karl Adolph von Basedow, who described in 1840 the clinical picture of exophthalmic toxic goitre. More than one century after the seminal paper of Karl von Basedow, the ultimate cause of BD remains to be fully elucidated. In the last years, evidence was accumulated indicating that BD is a polygenic and multifactorial disease that develops as a result of a complex interplay between genetic susceptibility and environmental and endogenous factors, which leads to the loss of immune tolerance to thyroid antigens and in particular to the TSH receptor. Our aim is to review the current knowledge on the pathogenesis of BD. To this purpose, we will firstly focus our attention on the role of genetic factors (the HLA complex, the genes encoding for thyroglobulin, the TSH receptor, CD40, CTLA-4 and PTPN22), and of environmental factors (iodine, infections, psychological stress, gender, smoking, thyroid damage, vitamin D, selenium, immune modulating agents) as possible causes of BD. Taking advantage of the experimental animal models of BD, we will then focus on the immunological mechanisms leading to the loss of tolerance in BD. The pathogenic role played by the chemokine system will be also reviewed.
Collapse
Affiliation(s)
| | | | | | | | - L Chiovato
- Luca Chiovato, M.D., Ph.D., Unit of Internal Medicine and Endocrinology, Fondazione Salvatore Maugeri I.R.C.C.S., Chair of Endocrinology, University of Pavia, Via S. Maugeri 10, I-27100, Pavia, Italy, Fax +39/03 82/59 26 92,
| |
Collapse
|
38
|
Giménez-Barcons M, Colobran R, Gómez-Pau A, Marín-Sánchez A, Casteràs A, Obiols G, Abella R, Fernández-Doblas J, Tonacchera M, Lucas-Martín A, Pujol-Borrell R. Graves' disease TSHR-stimulating antibodies (TSAbs) induce the activation of immature thymocytes: a clue to the riddle of TSAbs generation? THE JOURNAL OF IMMUNOLOGY 2015; 194:4199-206. [PMID: 25801430 DOI: 10.4049/jimmunol.1500183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/24/2015] [Indexed: 01/22/2023]
Abstract
Graves' disease (GD) is an autoimmune thyroid disease defined by the production of stimulating autoantibodies to the thyroid-stimulating hormone receptor (TSHR) (TSAbs) that induce a sustained state of hyperthyroidism in patients. We previously demonstrated that TSHR, the target of this autoimmune response, is also a key susceptibility gene for GD, probably acting through thymic-dependent central tolerance. We also showed that TSHR is, unexpectedly, expressed in thymocytes. In this report, we confirm the expression of TSHR in thymocytes by protein immunoblotting and quantitative PCR, and show that expression is confined to maturing thymocytes. Using functional assays, we show that thymic TSHR is functional and that TSAbs can stimulate thymocytes through this receptor. This new activity of TSAbs on thymocytes may: 1) explain GD-associated thymic enlargement (hyperplasia), and 2) suggest the provocative hypothesis that the continuous stimulation of thymocytes by TSAbs could lead to a vicious cycle of iterative improvement of the affinity and stimulating capability of initially low-affinity antibacterial (e.g., Yersinia) Abs cross-reactive with TSHR, eventually leading to TSAbs. This may help to fill one of the gaps in our present understanding of unusual characteristics of TSAbs.
Collapse
Affiliation(s)
| | - Roger Colobran
- Vall d'Hebron Institute de Recerca, 08035 Barcelona, Spain; Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Ana Gómez-Pau
- Vall d'Hebron Institute de Recerca, 08035 Barcelona, Spain
| | - Ana Marín-Sánchez
- Servei d'Immunologia, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Anna Casteràs
- Servei de Endocrinologia, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Gabriel Obiols
- Servei de Endocrinologia, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Raúl Abella
- Servei de Cirurgia, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | | | - Massimo Tonacchera
- Department of Clinical and Experimental Medicine, Pisa University, 56126 Pisa, Italy; and
| | - Ana Lucas-Martín
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Catalonia, Spain
| | - Ricardo Pujol-Borrell
- Vall d'Hebron Institute de Recerca, 08035 Barcelona, Spain; Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; Servei d'Immunologia, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain;
| |
Collapse
|
39
|
Lei MM, Wu SQ, Shao XB, Li XW, Chen Z, Ying SJ, Shi ZD. Creating leptin-like biofunctions by active immunization against chicken leptin receptor in growing chickens. Domest Anim Endocrinol 2015; 50:55-64. [PMID: 25447880 DOI: 10.1016/j.domaniend.2014.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 12/19/2022]
Abstract
In this study, immunization against chicken leptin receptor (cLEPR) extracellular domain (ECD) was applied to investigate leptin regulation and LEPR biofunction in growing chicken pullets. A recombinant protein (cLEPR ECD) based on the cLEPR complemenary DNA sequence corresponding to the 582nd to 796th amino acid residues of cLEPR mature peptide was prepared and used as antigen. Immunization against cLEPR ECD in growing chickens increased anti-cLEPR ECD antibody titers in blood, enhanced proportions of phosphorylated janus kinase 2 (JAK2) and served as signal transducer and activator of transcription 3 (STAT3) protein in liver tissue. Chicken live weight gain and abdominal fat mass were significantly decreased (P < 0.05), but feed intake was stimulated by cLEPR ECD immunization (P < 0.05). The treatment also upregulated the gene expression levels of lepR, AMP-activated protein kinase (AMPK), acetyl CoA carboxylase-2 (ACC2), and uncoupling protein 3 (UCP3) in liver, abdominal fat, and breast muscle (P < 0.05) but decreased fasn expression levels (P < 0.01). Apart from that of lepR, the expression of appetite-regulating genes, such as orexigenic genes, agouti-related peptide (AgRP) and neuropeptide Y (NPY), were upregulated (P < 0.01), whereas the anorexigenic gene proopiomelanocortin (POMC) was downregulated in the hypothalamic tissue of cLEPR-immunized pullets (P < 0.01). Blood concentrations of metabolic molecules, such as glucose, triglycerides, and very-low-density lipoprotein, were significantly decreased in cLEPR-immunized pullets but those of cholesterol, high-density lipoprotein, and low-density lipoprotein increased. These results demonstrate that antibodies to membrane proximal cLEPR ECD enhance cLEPR signal transduction, which stimulates metabolism and reduces fat deposition in chickens.
Collapse
Affiliation(s)
- M M Lei
- Laboratory of Animal Breed Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - S Q Wu
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - X B Shao
- Institute of Guagndong Province Poultry Technology, Guangzhou, 510520, China
| | - X W Li
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Z Chen
- Laboratory of Animal Breed Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - S J Ying
- Laboratory of Animal Breed Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Z D Shi
- Laboratory of Animal Breed Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
40
|
Abstract
The pathophysiology of thyroid eye disease (TED) is complex and incompletely understood. Orbital fibroblasts (OFs) seem to be the key effector cells that are responsible for the characteristic soft tissue enlargement seen in TED. They express potentially pathogenic autoantigens, such as thyrotropin receptor and insulin-like growth factor-1 receptor. An intricate interplay between these autoantigens and the autoantibodies found in Graves disease may lead to the activation of OFs, which then leads to increased hyaluronan production, proinflammatory cytokine synthesis, and enhanced differentiation into either myofibroblasts or adipocytes. Some of the OFs in TED patients seem to be derived from infiltrating fibrocytes. These cells originate from the bone marrow and exhibit both fibroblast and myeloid phenotype. In the TED orbit, they may mediate the orbital expansion and inflammatory infiltration. Last, lymphocytes and cytokines are intimately involved in the initiation, amplification, and maintenance of the autoimmune process in TED.
Collapse
Affiliation(s)
- Shannon J C Shan
- Wilmer Eye Institute (SJCS), The Johns Hopkins University School of Medicine, Baltimore, Maryland; and Kellogg Eye Center (RSD), University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
41
|
Vitamin D deficiency is related to thyroid antibodies in autoimmune thyroiditis. Cent Eur J Immunol 2014; 39:493-7. [PMID: 26155169 PMCID: PMC4439962 DOI: 10.5114/ceji.2014.47735] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/15/2014] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION It has been known that vitamin D has some immunomodulatory effects and in autoimmune thyroid diseases, vitamin D deficiency was more prevalent. In this study, our aim was to investigate the relationship between thyroid autoantibodies and vitamin D. MATERIAL AND METHODS Group 1 and 2 consisted of 254 and 27 newly diagnosed Hashimoto's thyroiditis (HT) and Graves' disease (GD) cases, respectively; age-matched 124 healthy subjects were enrolled as controls (group 3). All subjects (n = 405) were evaluated for 25OHD and thyroid autoantibody [anti-thyroid peroxidase (anti-TPO) and anti-thyroglobulin (anti-tg)] levels. RESULTS Group 2 and group 1 patients had lower 25OHD levels than group 3 subjects 14.9 ±8.6 ng/ml, 19.4 ±10.1 ng/ml and 22.5 ±15.4 ng/ml, respectively (p < 0.001). Serum 25OHD levels inversely correlated with anti-tg (r = -0.136, p = 0.025), anti-TPO (r = -0.176, p = 0.003) and parathormone (PTH) (r = -0.240, p < 0.001). Group 2 patients had higher anti-tg and anti-TPO levels than group 1 and 3 (p < 0.001). CONCLUSIONS In this study, we found that patients with autoimmune thyroid disease (AITD) present with lower vitamin D levels and GD patients have higher prevalence. Since we found an inverse correlation between vitamin D levels and thyroid antibody levels, we may suggest that vitamin D deficiency is one of the potential factors in pathogenesis of autoimmune thyroid disorders.
Collapse
|
42
|
Uchida T, Goto H, Kasai T, Komiya K, Takeno K, Abe H, Shigihara N, Sato J, Honda A, Mita T, Kanazawa A, Fujitani Y, Watada H. Therapeutic effectiveness of potassium iodine in drug-naïve patients with Graves' disease: a single-center experience. Endocrine 2014; 47:506-11. [PMID: 24493028 DOI: 10.1007/s12020-014-0171-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Iodine is beneficial against Graves' thyrotoxicosis, though its effects are short-lived. However, its long-term effectiveness as an initial therapy has not been fully elucidated. Here, we compared the effects of potassium iodine (KI) and methimazole (MMI) in Graves' thyrotoxicosis and on thyrotropin receptor antibody (TRAb) levels. Between 2008 and 2011, 293 patients with untreated Graves' disease visited the outpatient clinic of Juntendo University. Of these, 227 patients were treated with MMI and 30 treated with KI as the initial therapy. To compare the effects of KI and MMI, we identified patients with similar probabilities of receiving MMI or KI using propensity score (PS) analysis based on the observed clinical features. PS matching created 20 matched pairs of patients with Graves' disease treated with MMI and KI. The baseline characteristics of post-matched patients treated with MMI were comparable to those treated with KI (FT3; 7.16 ± 2.30, 6.56 ± 1.85 pg/ml, FT4; 2.57 ± 0.79, 2.49 ± 0.70 ng/dl, respectively). The initial dose of MMI was 14.0 ± 8.2 mg/day and that of KI was 53.6 ± 11.7 mg/day. Three patients of the KI group did not respond to the monotherapy, requiring the inclusion of antithyroid drugs. One patient on MMI developed moderate skin eruption, but continued the treatment. Patients who continued the initial treatment showed significant and comparable reductions in FT4, FT3 and TRAb by MMI as well as by KI at the end of 12-month treatment. Although patients were limited to mild untreated Graves' disease thyrotoxicosis, KI offers a possible alternative initial treatment for this condition.
Collapse
Affiliation(s)
- Toyoyoshi Uchida
- Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Côté-Bigras S, Dionne A, Asselin-Mullen P, Leblicq C, Rottembourg D. Interferon-gamma ELISPOT detecting reactivity of T cells to TSH receptor peptides in Graves' disease. Clin Endocrinol (Oxf) 2014; 80:296-300. [PMID: 23734883 DOI: 10.1111/cen.12257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 04/24/2013] [Accepted: 05/30/2013] [Indexed: 11/27/2022]
Abstract
OBJECTIVE While thyrotrophin receptor (TSHR) is recognized as the main autoantigen in Graves' disease (GD), the actual antigen specificity of T cells that infiltrate the thyroid and the orbit is unknown. Identifying T cell responses to TSHR peptides has been difficult in the past due to the low frequency of autoreactive T cells and to the diversity of the putative epitopes identified by proliferation assays. METHODS We used the interferon-gamma ELISPOT assay to identify T cell reactivity to TSHR peptides in patients with GD. Peripheral blood T cells were exposed in vitro to four pools of 10 overlapping TSHR peptides. RESULTS T cells from 11 of 31 (35%) patients with GD and 1 of 22 (4%) healthy controls reacted to at least one peptide pool (P = 0·009). Mean time since diagnosis was 3·2 years in responder patients and 5·6 years in nonresponders (P = 0·07). In two patients, T cell reactivity was observed shortly after radioiodine treatment and not thereafter. CONCLUSIONS Our findings demonstrate that the ELISPOT assay is effective to test T cell reactivity in patients with GD and that patients with GD have significantly more interferon-gamma responses towards TSHR peptides than controls. The data suggest that screening for T cell responses in patients with GD might be more efficient in recent-onset disease or after radioiodine treatment.
Collapse
Affiliation(s)
- Sarah Côté-Bigras
- Faculty of Medicine, University Hospital Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | |
Collapse
|
44
|
Stefanic M, Karner I. Thyroid peroxidase autoantibodies are associated with a lesser likelihood of late reversion to hyperthyroidism after successful non-ablative treatment of Graves' disease in Croatian patients. J Endocrinol Invest 2014; 37:71-7. [PMID: 24464453 DOI: 10.1007/s40618-013-0026-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/16/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Thyroid peroxidase autoantibodies (TPOAbs) are frequently observed in Graves' disease (GD) and tend to persist in patients even after successful treatment with antithyroid drugs. However, there is a lack of consistent data regarding the prognostic significance of TPOAbs during and after non-ablative treatment for Graves' hyperthyroidism. AIM To assess the prognostic value of TPOAbs on the long-term outcome of GD patients, who were in remission after the use of antithyroid drugs (block-and-replace regimen). SUBJECTS 100 remitters were retrospectively investigated for factors associated with the 5-year course of disease recurrence and compared to 60 age/sex-matched patients with intractable GD. RESULTS Mild hyperthyroidism, low baseline thyroid-stimulating antibodies levels, and small goiters were predictive of remission. Once attained, the remission was shorter in younger patients, patients with declining post-treatment TSH values, and negative baseline TPOAb levels. The 5-year cumulative incidence of relapse incrementally increased from 24 to 44 to 70 % across decreasing TPOAb tertiles (log-rank, p = 0.00056; the lower tertile representing TPOAb-negative cases). The age-of-onset (p = 0.034), and the baseline TPOAb value [upper tertile, hazard ratio (HR) 0.25; 95 % confidence interval, 0.11-0.59; p = 0.0014; middle tertile, HR 0.47 (0.24-0.9); p = 0.024; Cox regression] were inversely associated with late (>12 months) relapse rates in a level-dependent manner. In contrast, serum logTSH measured 6 months after drug discontinuation was inversely associated with hazard rates at all time points (p = 0.0005). CONCLUSION Baseline TPOAb positivity is an independent indicator of long-term remission in GD patients who have been successfully treated, but the mechanism of action and causal relations remain unknown.
Collapse
Affiliation(s)
- M Stefanic
- Clinical Institute of Nuclear Medicine and Radiation Protection, Osijek University Hospital, J. Huttlera 4, 31 000, Osijek, Croatia,
| | | |
Collapse
|
45
|
Wang Y, Wu LP, Fu J, Lv HJ, Guan XY, Xu L, Chen P, Gao CQ, Hou P, Ji MJ, Shi BY. Hyperthyroid monkeys: a nonhuman primate model of experimental Graves' disease. J Endocrinol 2013; 219:183-93. [PMID: 24029729 DOI: 10.1530/joe-13-0279] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Graves' disease (GD) is a common organ-specific autoimmune disease with the prevalence between 0.5 and 2% in women. Several lines of evidence indicate that the shed A-subunit rather than the full-length thyrotropin receptor (TSHR) is the autoantigen that triggers autoimmunity and leads to hyperthyroidism. We have for the first time induced GD in female rhesus monkeys, which exhibit greater similarity to patients with GD than previous rodent models. After final immunization, the monkeys injected with adenovirus expressing the A-subunit of TSHR (A-sub-Ad) showed some characteristics of GD. When compared with controls, all the test monkeys had significantly higher TSHR antibody levels, half of them had increased total thyroxine (T₄) and free T₄, and 50% developed goiter. To better understand the underlying mechanisms, quantitative studies on subpopulations of CD4+T helper cells were carried out. The data indicated that this GD model involved a mixed Th1 and Th2 response. Declined Treg proportions and increased Th17:Treg ratio are also observed. Our rhesus monkey model successfully mimicked GD in humans in many aspects. It would be a useful tool for furthering our understanding of the pathogenesis of GD and would potentially shorten the distance toward the prevention and treatment of this disease in human.
Collapse
Affiliation(s)
- Y Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Antonelli A, Ferrari SM, Corrado A, Ferrannini E, Fallahi P. Increase of interferon-γ inducible CXCL9 and CXCL11 serum levels in patients with active Graves' disease and modulation by methimazole therapy. Thyroid 2013; 23:1461-9. [PMID: 23721189 DOI: 10.1089/thy.2012.0485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chemokine (C-X-C motif) ligand (CXCL)9 and CXCL11 play an important role in the initial phases of autoimmune thyroiditis (AT); however, their serum levels in patients with Graves' disease (GD) have never been evaluated in relation to thyroid function and treatment. METHODS To evaluate CXCL9 and CXCL11 serum levels in GD and to relate these parameters to the clinical phenotype, we measured CXCL9 and CXCL11 serum levels in 91 GD patients; 91 AT, 34 nontoxic multinodular goiters (MNGs), 31 toxic nodular goiters (TNGs), respectively; and 91 healthy controls (age- and sex-matched). RESULTS Mean CXCL9 and CXCL11 levels were higher in GD in comparison with controls, euthyroid AT, MNG, or TNG (p < 0.05, ANOVA; CXCL9: 274 ± 265, 76 ± 33, 132 ± 78, 87 ± 48, and 112 ± 56 pg/mL; CXCL11: 140 ± 92, 64 ± 20, 108 ± 48, 76 ± 33, 91 ± 41 pg/mL, respectively). Hyperthyroid GD patients had significantly higher CXCL9 or CXCL11 than euthyroid or hypothyroid GD patients. GD patients with untreated hyperthyroidism had higher CXCL9 or CXCL11 than hyperthyroid or euthyroid GD patients under methimazole (MMI) treatment. Comparable CXCL9 and CXCL11 levels were observed in newly diagnosed untreated hyperthyroid GD versus untreated patients with relapse of hyperthyroidism after a previous MMI course. CONCLUSIONS Serum CXCL9 and CXCL11 levels are associated with the active phase of GD both in newly diagnosed and relapsing hyperthyroid patients. The reduction of serum CXCL9 and CXCL11 levels in treated patients with GD may be related to the immunomodulatory effects of MMI.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Peng D, Xu B, Wang Y, Guo H, Jiang Y. A high frequency of circulating th22 and th17 cells in patients with new onset graves' disease. PLoS One 2013; 8:e68446. [PMID: 23874630 PMCID: PMC3708941 DOI: 10.1371/journal.pone.0068446] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/29/2013] [Indexed: 01/05/2023] Open
Abstract
T-helper (Th) 22 and Th17 cells are involved in the pathogenesis of autoimmune diseases. However, their roles in the pathogenesis of Graves'disease (GD) are unclear. This study is aimed at examining the frequency of peripheral blood Th22, Th17, and Th1 cells and the levels of plasma IL-22, IL-17, and IFN-γ in patients with GD. A total of 27 patients with new onset GD and 27 gender- and age-matched healthy controls (HC) were examined for the frequency of peripheral blood Th22, Th17, and IFN-γ cells by flow cytometry. The concentrations of plasma IL-22, IL-17, and IFN-γ were examined by enzyme-linked immunosorbent assay. The levels of serum TSHR antibodies (A-TSHR), free triiodothyronine (FT3), free thyroxine (FT4), and thyroid stimulating hormone (TSH) were examined by radioimmunoassay and chemiluminescent assay, respectively. The levels of serum TSAb were examined by enzyme-linked immunosorbent assay. In comparison with those in the HC, significantly elevated percentages of Th22 and Th17 cells, but not Th1 cells, and increased levels of plasma IL-22 and IL-17, but not IFN-γ, were detected in GD patients (P<0.0001, for both). The percentages of both Th22 and Th17 cells and the levels of plasma IL-22 and IL-17 were correlated positively with the levels of serum TSAb in GD patients (r = 0.7944, P<0.0001; r = 0.8110, P<0.0001; r = 0.7101, p<0.0001; r = 0.7407, p<0.0001, respectively). Th22 and Th17 cells may contribute to the pathogenesis of GD.
Collapse
Affiliation(s)
- Di Peng
- Department of Central Laboratory, the Second Part of the First Hospital, Jilin University, Changchun, China
| | - Bingchuan Xu
- Department of Central Laboratory, the Second Part of the First Hospital, Jilin University, Changchun, China
| | - Ye Wang
- Department of Central Laboratory, the Second Part of the First Hospital, Jilin University, Changchun, China
| | - Hui Guo
- Department of Central Laboratory, the Second Part of the First Hospital, Jilin University, Changchun, China
| | - Yanfang Jiang
- Department of Central Laboratory, the Second Part of the First Hospital, Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| |
Collapse
|
49
|
Inaba H, Moise L, Martin W, De Groot AS, Desrosiers J, Tassone R, Buchman G, Akamizu T, De Groot LJ. Epitope recognition in HLA-DR3 transgenic mice immunized to TSH-R protein or peptides. Endocrinology 2013; 154:2234-43. [PMID: 23592747 PMCID: PMC5393327 DOI: 10.1210/en.2013-1033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Development of Graves' disease is related to HLA-DR3. The extracellular domain (ECD) of human TSH receptor (hTSH-R) is a crucial antigen in Graves' disease. hTSH-R peptide 37 (amino acids 78-94) is an important immunogenic peptide in DR3 transgenic mice immunized to hTSH-R. This study examined the epitope recognition in DR3 transgenic mice immunized to hTSH-R protein and evaluated the ability of a mutant hTSH-R peptide to attenuate the immunogenicity of hTSH-R peptide 37. DR3 transgenic mice were immunized to recombinant hTSH-R-ECD protein or peptides. A mutant hTSH-R 37 peptide (ISRIYVSIDATLSQLES: 37 m), in which DR3 binding motif position 5 was mutated V>A, and position 8 Q>S, was synthesized. 37 m should bind to HLA-DR3 but not bind T cell receptors. DR3 transgenic mice were immunized to hTSH-R 37 and 37 m. Mice immunized to hTSH-R-ECD protein developed strong anti-hTSH-R antibody, and antisera reacted strongly with hTSH-R peptides 1-5 (20-94), 21 (258-277), 41 (283-297), 36 (376-389), and 31 (399-418). Strikingly, antisera raised to hTSH-R peptide 37 bound to hTSH-R peptides 1-7 (20-112), 10 (132-50), 33 (137-150), 41, 23 (286-305), 24 (301-320), 36, and 31 as well as to hTSH-R-ECD protein. Both antibody titers to hTSH-R 37 and reaction of splenocytes to hTSH-R 37 were significantly reduced in mice immunized to hTSH-R 37 plus 37 m, compared with mice immunized to hTSH-R 37 alone. The ability of immunization to a single peptide to induce antibodies that bind hTSH-R-ECD protein, and multiple unrelated peptides, is a unique observation. Immunogenic reaction to hTSH-R peptide 37 was partially suppressed by 37 m, and this may contribute to immunotherapy of autoimmune thyroid disease.
Collapse
Affiliation(s)
- Hidefumi Inaba
- Department of Cellular and Molecular Biology, University of Rhode Island, Kingston, Rhode Island 02881, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Giulia Cogni
- Unit of Internal Medicine and Endocrinology, Fondazione Salvatore Maugeri I.R.C.C.S., Chair of Endocrinology, University of Pavia, Italy
| | | |
Collapse
|