1
|
Li W, Wang Y, Huang R, Lian F, Xu G, Wang W, Xue S. Rare and common coding variants in lipid metabolism-related genes and their association with coronary artery disease. BMC Cardiovasc Disord 2024; 24:97. [PMID: 38336686 PMCID: PMC10858582 DOI: 10.1186/s12872-024-03759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Coronary artery disease (CAD) is a complex disease that is influenced by environmental and genetic factors. In this study, we aimed to investigate the relationship between coding variants in lipid metabolism-related genes and CAD in a Chinese Han population. METHODS A total of 252 individuals were recruited for this study, including 120 CAD patients and 132 healthy control individuals. Rare and common coding variants in 12 lipid metabolism-related genes (ANGPTL3, ANGPTL4, APOA1, APOA5, APOC1, APOC3, CETP, LDLR, LIPC, LPL, PCSK9 and SCARB1) were detected via next-generation sequencing (NGS)-based targeted sequencing. Associations between common variants and CAD were evaluated by Fisher's exact test. A gene-based association test of rare variants was performed by the sequence kernel association test-optimal (SKAT-O test). RESULTS We found 51 rare variants and 17 common variants in this study. One common missense variant, LIPC rs6083, was significantly associated with CAD after Bonferroni correction (OR = 0.47, 95% CI = 0.29-0.76, p = 1.9 × 10- 3). Thirty-three nonsynonymous rare variants were identified, including two novel variants located in the ANGPTL4 (p.Gly47Glu) and SCARB1 (p.Leu233Phe) genes. We did not find a significant association between rare variants and CAD via gene-based analysis via the SKAT-O test. CONCLUSIONS Targeted sequencing is a powerful tool for identifying rare and common variants in CAD. The common missense variant LIPC rs6083 confers protection against CAD. The clinical relevance of rare variants in CAD aetiology needs to be investigated in larger sample sizes in the future.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yongyi Wang
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Ritai Huang
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Feng Lian
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Genxing Xu
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Weijun Wang
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
2
|
Connally NJ, Nazeen S, Lee D, Shi H, Stamatoyannopoulos J, Chun S, Cotsapas C, Cassa CA, Sunyaev SR. The missing link between genetic association and regulatory function. eLife 2022; 11:e74970. [PMID: 36515579 PMCID: PMC9842386 DOI: 10.7554/elife.74970] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
The genetic basis of most traits is highly polygenic and dominated by non-coding alleles. It is widely assumed that such alleles exert small regulatory effects on the expression of cis-linked genes. However, despite the availability of gene expression and epigenomic datasets, few variant-to-gene links have emerged. It is unclear whether these sparse results are due to limitations in available data and methods, or to deficiencies in the underlying assumed model. To better distinguish between these possibilities, we identified 220 gene-trait pairs in which protein-coding variants influence a complex trait or its Mendelian cognate. Despite the presence of expression quantitative trait loci near most GWAS associations, by applying a gene-based approach we found limited evidence that the baseline expression of trait-related genes explains GWAS associations, whether using colocalization methods (8% of genes implicated), transcription-wide association (2% of genes implicated), or a combination of regulatory annotations and distance (4% of genes implicated). These results contradict the hypothesis that most complex trait-associated variants coincide with homeostatic expression QTLs, suggesting that better models are needed. The field must confront this deficit and pursue this 'missing regulation.'
Collapse
Affiliation(s)
- Noah J Connally
- Department of Biomedical Informatics, Harvard Medical SchoolBostonUnited States
- Brigham and Women’s Hospital, Division of Genetics, Harvard Medical SchoolBostonUnited States
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Sumaiya Nazeen
- Department of Biomedical Informatics, Harvard Medical SchoolBostonUnited States
- Brigham and Women’s Hospital, Division of Genetics, Harvard Medical SchoolBostonUnited States
- Brigham and Women’s Hospital, Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Daniel Lee
- Department of Biomedical Informatics, Harvard Medical SchoolBostonUnited States
- Brigham and Women’s Hospital, Division of Genetics, Harvard Medical SchoolBostonUnited States
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Huwenbo Shi
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
- Department of Epidemiology, Harvard T.H. Chan School of Public HealthBostonUnited States
| | | | - Sung Chun
- Division of Pulmonary Medicine, Boston Children’s HospitalBostonUnited States
| | - Chris Cotsapas
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
- Department of Neurology, Yale Medical SchoolNew HavenUnited States
- Department of Genetics, Yale Medical SchoolNew HavenUnited States
| | - Christopher A Cassa
- Brigham and Women’s Hospital, Division of Genetics, Harvard Medical SchoolBostonUnited States
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical SchoolBostonUnited States
- Brigham and Women’s Hospital, Division of Genetics, Harvard Medical SchoolBostonUnited States
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
| |
Collapse
|
3
|
Association of lipid metabolism-related gene promoter methylation with risk of coronary artery disease. Mol Biol Rep 2022; 49:9373-9378. [PMID: 35941416 DOI: 10.1007/s11033-022-07789-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) is a complex disease that is influenced by environmental and genetic factors. Lipid levels are regarded as a major risk factor for CAD, and epigenetic mechanisms might be involved in the regulation of CAD development. This study was designed to investigate the association between the DNA methylation status of 8 lipid metabolism-related genes and the risk of CAD in the Chinese Han population. METHODS A total of 260 individuals were sampled in this study, including 120 CAD cases and 140 normal healthy controls. DNA methylation status was tested via targeted bisulfite sequencing. RESULTS The results indicated a significant association between hypomethylation of the APOC3, CETP and APOC1 gene promoters and the risk of CAD. Individuals with higher methylation levels of the APOA5 and LIPC gene promoters had increased risks for CAD. In addition, ANGPTL4 methylation level was significantly associated with CAD in males but not females. There were no significant differences in the methylation levels of the APOB and PCSK9 gene promoters between CAD patients and controls. CONCLUSIONS The methylation status of the APOC3, APOA5, LIPC, CETP and APOC1 gene promoters may be associated with the development of CAD.
Collapse
|
4
|
Guerra-García MT, Moreno-Macías H, Ochoa-Guzmán A, Ordoñez-Sánchez ML, Rodríguez-Guillen R, Vázquez-Cárdenas P, Ortíz-Ortega VM, Peimbert-Torres M, Aguilar-Salinas CA, Tusié-Luna MT. The -514C>T polymorphism in the LIPC gene modifies type 2 diabetes risk through modulation of HDL-cholesterol levels in Mexicans. J Endocrinol Invest 2021; 44:557-565. [PMID: 32617858 DOI: 10.1007/s40618-020-01346-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Both type 2 diabetes (T2D) and low levels of high-density lipoprotein cholesterol (HDL-C) are very prevalent conditions among Mexicans. Genetic variants in the LIPC gene have been associated with both conditions. This study aimed to evaluate the association of the -514C < T (rs1800588) LIPC gene polymorphism with different metabolic traits, particularly the effects of this polymorphism on HDL-C plasma levels and T2D risk. METHODS Mediation analysis was used to assess the direct and indirect effects of the -514C>T LIPC gene variant on HDL-C levels, T2D risk, and body mass index (BMI), in 2105 Mexican mestizo participants. We also assessed the functional effect of the -514C>T LIPC variant on the promoter activity of a reporter gene in the HepG2 cell line. RESULTS Direct effects show that the -514C>T LIPC polymorphism is significantly associated with increased HDL-C plasma levels (β = 0.03; p < 0.001). The -514C>T variant resulted in an indirect protective effect on T2D risk through increasing HDL-C levels (β = - 0.03; p < 0.001). Marginal direct association between -514C>T and T2D was found (β = 0.08; p = 0.06). Variables directly influencing T2D status were European ethnicity (β = - 7.20; p < 0.001), age (β = 0.04; p < 0.001), gender (β = - 0.15; p = 0.017) and HDL-C (β = - 1.07; p < 0.001). In addition, we found that the -514C>T variant decreases the activity of LIPC promoter by 90% (p < 0.001). CONCLUSIONS The -514C>T polymorphism was not directly associated with T2D risk. HDL-C acts as a mediator between -514C>T LIPC gene variant and T2D risk in the Mexican population.
Collapse
Affiliation(s)
- M T Guerra-García
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Belisario Domínguez, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - H Moreno-Macías
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Belisario Domínguez, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
- Economy Department, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - A Ochoa-Guzmán
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Belisario Domínguez, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - M L Ordoñez-Sánchez
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Belisario Domínguez, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - R Rodríguez-Guillen
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Belisario Domínguez, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - P Vázquez-Cárdenas
- Obesity Clinic, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - V M Ortíz-Ortega
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - M Peimbert-Torres
- Nature Sciences Department, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - C A Aguilar-Salinas
- Division of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - M T Tusié-Luna
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Belisario Domínguez, Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
- Instituto de Investigaciones Biomédicas, Univesidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
5
|
Functional Haplotype of LIPC Induces Triglyceride-Mediated Suppression of HDL-C Levels According to Genome-Wide Association Studies. Genes (Basel) 2021; 12:genes12020148. [PMID: 33499410 PMCID: PMC7910859 DOI: 10.3390/genes12020148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Hepatic lipase (encoded by LIPC) is a glycoprotein in the triacylglycerol lipase family and mainly synthesized in and secreted from the liver. Previous studies demonstrated that hepatic lipase is crucial for reverse cholesterol transport and modulating metabolism and the plasma levels of several lipoproteins. This study was conducted to investigate the suppression effect of high-density lipoprotein cholesterol (HDL-C) levels in a genome-wide association study and explore the possible mechanisms linking triglyceride (TG) to LIPC variants and HDL-C. Genome-wide association data for TG and HDL-C were available for 4657 Taiwan-biobank participants. The prevalence of haplotypes in the LIPC promoter region and their effects were calculated. The cloned constructs of the haplotypes were expressed transiently in HepG2 cells and evaluated in a luciferase reporter assay. Genome-wide association analysis revealed that HDL-C was significantly associated with variations in LIPC after adjusting for TG. Three haplotypes (H1: TCG, H2: CTA and H3: CCA) in LIPC were identified. H2: CTA was significantly associated with HDL-C levels and H1: TCG suppressed HDL-C levels when a third factor, TG, was included in mediation analysis. The luciferase reporter assay further showed that the H2: CTA haplotype significantly inhibited luciferase activity compared with the H1: TCG haplotype. In conclusion, we identified a suppressive role for TG in the genome-wide association between LIPC and HDL-C. A functional haplotype of hepatic lipase may reduce HDL-C levels and is suppressed by TG.
Collapse
|
6
|
Pirim D, Bunker CH, Hokanson JE, Hamman RF, Demirci FY, Kamboh MI. Hepatic lipase (LIPC) sequencing in individuals with extremely high and low high-density lipoprotein cholesterol levels. PLoS One 2020; 15:e0243919. [PMID: 33326441 PMCID: PMC7743991 DOI: 10.1371/journal.pone.0243919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Common variants in the hepatic lipase (LIPC) gene have been shown to be associated with plasma lipid levels; however, the distribution and functional features of rare and regulatory LIPC variants contributing to the extreme lipid phenotypes are not well known. This study was aimed to catalogue LIPC variants by resequencing the entire LIPC gene in 95 non-Hispanic Whites (NHWs) and 95 African blacks (ABs) with extreme HDL-C levels followed by in silico functional analyses. A total of 412 variants, including 43 novel variants were identified; 56 were unique to NHWs and 234 were unique to ABs. Seventy-eight variants in NHWs and 89 variants in ABs were present either in high HDL-C group or low HDL-C group. Two non-synonymous variants (p.S289F, p.T405M), found in NHWs with high HDL-C group were predicted to have damaging effect on LIPC protein by SIFT, MT2 and PP2. We also found several non-coding variants that possibly reside in the circRNA and lncRNA binding sites and may have regulatory potential, as identified in rSNPbase and RegulomeDB databases. Our results shed light on the regulatory nature of rare and non-coding LIPC variants as well as suggest their important contributions in affecting the extreme HDL-C phenotypes.
Collapse
Affiliation(s)
- Dilek Pirim
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, Bursa Uludag University, Gorukle, Bursa, Turkey
| | - Clareann H. Bunker
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John E. Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Richard F. Hamman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, United States of America
| | - F. Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - M. Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
7
|
Strunz T, Lauwen S, Kiel C, Hollander AD, Weber BHF. A transcriptome-wide association study based on 27 tissues identifies 106 genes potentially relevant for disease pathology in age-related macular degeneration. Sci Rep 2020; 10:1584. [PMID: 32005911 PMCID: PMC6994629 DOI: 10.1038/s41598-020-58510-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/16/2020] [Indexed: 01/06/2023] Open
Abstract
Genome-wide association studies (GWAS) for late stage age-related macular degeneration (AMD) have identified 52 independent genetic variants with genome-wide significance at 34 genomic loci. Typically, such an approach rarely results in the identification of functional variants implicating a defined gene in the disease process. We now performed a transcriptome-wide association study (TWAS) allowing the prediction of effects of AMD-associated genetic variants on gene expression. The TWAS was based on the genotypes of 16,144 late-stage AMD cases and 17,832 healthy controls, and gene expression was imputed for 27 different human tissues which were obtained from 134 to 421 individuals. A linear regression model including each individuals imputed gene expression data and the respective AMD status identified 106 genes significantly associated to AMD variants in at least one tissue (Q-value < 0.001). Gene enrichment analysis highlighted rather systemic than tissue- or cell-specific processes. Remarkably, 31 of the 106 genes overlapped with significant GWAS signals of other complex traits and diseases, such as neurological or autoimmune conditions. Taken together, our study highlights the fact that expression of genes associated with AMD is not restricted to retinal tissue as could be expected for an eye disease of the posterior pole, but instead is rather ubiquitous suggesting processes underlying AMD pathology to be of systemic nature.
Collapse
Affiliation(s)
- Tobias Strunz
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Susette Lauwen
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Christina Kiel
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Anneke den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
8
|
CETP, LIPC, and SCARB1 variants in individuals with extremely high high-density lipoprotein-cholesterol levels. Sci Rep 2019; 9:10915. [PMID: 31358896 PMCID: PMC6662756 DOI: 10.1038/s41598-019-47456-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/17/2019] [Indexed: 11/12/2022] Open
Abstract
The concentration of high-density lipoprotein-cholesterol (HDL-C) in humans is partially determined by genetic factors; however, the role of these factors is incompletely understood. The aim of this study was to examine the prevalence and characteristics of CETP, LIPC, and SCARB1 variants in Korean individuals with extremely high HDL-C levels. We also analysed associations between these variants and cholesterol efflux capacity (CEC), reactive oxygen species (ROS) generation, and vascular cell adhesion molecule-1 (VCAM-1) expression. Of 13,545 participants in the cardiovascular genome cohort, 42 subjects with HDL-C levels >100 mg/dL were analysed. The three target genes were sequenced by targeted next-generation sequencing, the functional effects of detected variants were predicted, and CEC was assessed using a radioisotope and apolipoprotein B-depleted sera. We observed two rare variants of CETP in 13 individuals (rare variant c.A1196G [p.D399G] of CETP was discovered in 12 subjects) and one rare variant of SCARB1 in one individual. Furthermore, all subjects had at least one of four common variants (one CETP and three LIPC variants). Two additional novel CETP variants of unknown frequency were found in two subjects. However, the identified variants did not show significant associations with CEC, ROS generation, or VCAM-1 expression. Our study provides additional insights into the role of genetics in individuals with extremely high HDL-C.
Collapse
|
9
|
Teng MS, Wu S, Hsu LA, Tzeng IS, Chou HH, Su CW, Ko YL. Pleiotropic association of LIPC variants with lipid and urinary 8-hydroxy deoxyguanosine levels in a Taiwanese population. Lipids Health Dis 2019; 18:111. [PMID: 31077211 PMCID: PMC6511151 DOI: 10.1186/s12944-019-1057-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatic lipase (HL, encoded by LIPC) is a glycoprotein primarily synthesized and secreted by hepatocytes. Previous studies had demonstrated that HL is crucial for reverse cholesterol transport and affects the metabolism, composition, and level of several lipoproteins. In current study, we investigated the association of LIPC (Lipase C, Hepatic Type) variants with circulating and urinary biomarker levels by using subgroup and mediation analyses. METHODS A total of 572 participants from Taiwan were genotyped for three LIPC single nucleotide polymorphisms (SNPs) by using TaqMan assay. Fasting levels of glucose, lipid profile, inflammation markers, urine creatinine and 8-hydroxy deoxyguanosine (8-OHdG) were measured. The chi-square test, 2-sample t test and Analysis of variance (ANOVA) were used to examine differences among variables and genotype frequencies. RESULTS SNPs rs2043085 and rs1532085 were significantly associated with urinary 8-OHdG levels, whereas all three SNPs were more significantly associated with Triglycerides (TG) or HDL-cholesterol (HDL-C) levels after additional adjustment for HDL-C or TG levels, respectively. Subgroup analyses revealed that the association of the LIPC SNPs with the levels of serum TG, HDL-C, and urinary 8-OHdG were predominantly observed in the men but not in the women. Differential associations of the LIPC SNPs with various lipid levels were observed in participants with different adiposity statuses. Mediation analyses indicated that TG levels acted as a suppressor masking the association of the LIPC genotypes with HDL-C levels, particularly in the men (Sobel test, all P < 0.01). CONCLUSION Our data revealed that interaction and suppression effects mediated the pleiotropic association of the LIPC variants. The effects of the LIPC SNPs depended on sex, adiposity status, and TG levels. Thus, our findings can provide a method for identifying high-risk populations of cardiovascular diseases for clinical diagnosis.
Collapse
Affiliation(s)
- Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei city, Taiwan
| | - Semon Wu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei city, Taiwan
- Department of Life Science, Chinese Culture University, Taipei, Taiwan
| | - Lung-An Hsu
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei city, Taiwan
| | - Hsin-Hua Chou
- The Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei city, Taiwan
| | - Cheng-Wen Su
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei city, Taiwan
| | - Yu-Lin Ko
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei city, Taiwan.
- The Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei city, Taiwan.
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
10
|
Michita RT, Kaminski VDL, Chies JAB. Genetic Variants in Preeclampsia: Lessons From Studies in Latin-American Populations. Front Physiol 2018; 9:1771. [PMID: 30618791 PMCID: PMC6302048 DOI: 10.3389/fphys.2018.01771] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
Placental vascularization is a tightly regulated physiological process in which the maternal immune system plays a fundamental role. Vascularization of the maternal-placental interface involves a wide range of mechanisms primarily orchestrated by the fetal extravillous trophoblast and maternal immune cells. In a healthy pregnancy, an immune cross-talk between the mother and fetal cells results in the secretion of immunomodulatory mediators, apoptosis of specific cells, cellular differentiation/proliferation, angiogenesis, and vasculogenesis, altogether favoring a suitable microenvironment for the developing embryo. In the context of vasculopathy underlying common pregnancy disorders, it is believed that inefficient invasion of extravillous trophoblast cells in the endometrium leads to a poor placental blood supply, which, in turn, leads to decreased secretion of angiogenic factors, hypoxia, and inflammation commonly associated with preterm delivery, intrauterine growth restriction, and preeclampsia. In this review, we will focus on studies published by Latin American research groups, providing an extensive review of the role of genetic variants from candidate genes involved in a broad spectrum of biological processes underlying the pathophysiology of preeclampsia. In addition, we will discuss how these studies contribute to fill gaps in the current understanding of preeclampsia. Finally, we discuss some trending topics from important fields associated with pregnancy vascular disorders (e.g., epigenetics, transplantation biology, and non-coding RNAs) and underscore their possible implications in the pathophysiology of preeclampsia. As a result, these efforts are expected to give an overview of the extent of scientific research produced in Latin America and encourage multicentric collaborations by highlighted regional research groups involved in preeclampsia investigation.
Collapse
Affiliation(s)
- Rafael Tomoya Michita
- Immunogenetics Laboratory, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Immunogenetics Laboratory, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Immunogenetics Laboratory, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
11
|
Peña-Romero AC, Navas-Carrillo D, Marín F, Orenes-Piñero E. The future of nutrition: Nutrigenomics and nutrigenetics in obesity and cardiovascular diseases. Crit Rev Food Sci Nutr 2017; 58:3030-3041. [PMID: 28678615 DOI: 10.1080/10408398.2017.1349731] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over time, the relationship between diet and health has aroused great interest, since nutrition can prevent and treat several diseases. It has been demonstrated that general recommendations on macronutrients and micronutrients do not affect to every individual in the same way because diet is an important environmental factor that interacts with genes. Thus, there is a growing necessity of improving a personalized nutrition to treat obesity and associated medical conditions, taking into account the interactions between diet, genes and health. Therefore, the knowledge of the interactions between the genome and nutrients at the molecular level, has led to the advent of nutritional genomics, which involves the sciences of nutrigenomics and nutrigenetics. In this review, we will comprehensively analyze the role of the most important genes associated with two interrelated chronic medical conditions, such as obesity and cardiovascular diseases.
Collapse
Affiliation(s)
| | - Diana Navas-Carrillo
- b Department of Surgery, Hospital de la Vega Lorenzo Guirao , University of Murcia , Murcia , Spain
| | - Francisco Marín
- c Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-Arrixaca) , Universidad de Murcia , Murcia , Spain
| | - Esteban Orenes-Piñero
- a Department of Biochemistry and Molecular Biology-A , University of Murcia , Murcia , Spain
| |
Collapse
|
12
|
Verma P, Verma DK, Sethi R, Singh S, Krishna A. The rs2070895 (-250G/A) Single Nucleotide Polymorphism in Hepatic Lipase (HL) Gene and the Risk of Coronary Artery Disease in North Indian Population: A Case-Control Study. J Clin Diagn Res 2016; 10:GC01-6. [PMID: 27656463 DOI: 10.7860/jcdr/2016/20496.8378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/30/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Several Single Nucleotide Polymorphisms (SNPs) in lipid transport genes have been shown to be associated with Coronary Artery Disease (CAD). The Hepatic Lipase (HL)glycoprotein is a key component that catalyzes the hydrolysis of triglycerides and phospholipids in all major classes of lipoproteins. AIM We studied whether the HL gene-250G/A polymorphism affect blood lipid level and the CAD in a North Indian population. MATERIALS AND METHODS A total number of 477 subjects were enrolled in the study after approval of the Institutional Ethics Committee. Out of 477 subjects, 233 were with coronary artery disease as study group and 244 subjects without coronary artery disease as control group. All subjects recruited with matched ethnicity in age group of 40-70 years. Blood samples were collected in EDTA vials and genomic DNA was extracted from blood using the phenol-chloroform method. Lipid profile was estimated by using a commercially available kit. Polymorphisms in the HL (-250 G/A) gene were analysed by using restriction fragment length polymorphism-polymerase chain reaction (PCR-RFLP) method. The effect of this polymorphism on plasma lipids, lipoproteins and coronary artery disease was determined. RESULTS In Human Hepatic Lipase (LIPC)-250G/A genotype, the frequencies of GG, GA and AA genotype in CAD group was 80.69%, 15.45% and 3.86%, respectively; in the control group, the corresponding frequencies were 90.16%, 9.02% and 0.82%, respectively. A significant difference was found in the genotype (LIPC-250G/A) distribution between the two groups. Further logistic regression analysis indicated that the GA and AA genotypes in SNP-250G/A were significantly associated with CAD in all genetic models (In codominant model- GA vs. GG, OR=1.91, 95% CI=1. 09-3.37, p=0. 03 and AA vs. GG, OR= 5.26, 95% CI= 1.10-24.60, p=0.04; in dominant model- GA+AA vs. GG, OR=2.19, p=0.004 and in recessive model- AA vs. GG+GA, OR=5.26, p=0.04 whereas, A allele at nucleotide -250G/A in the LIPC gene had an association with increased risk of CAD (OR=2.33, p=<0.008). CONCLUSION Our findings indicated that the higher frequency of a dominant model (GA+AA) as well as mutant allele A of LIPC-250 G/A polymorphism is significantly associated with risk of CAD and the lipid profile can be used as a predictor of CAD.
Collapse
Affiliation(s)
- Pratima Verma
- Ph.D Student, Department of Physiology, King George's Medical University , Lucknow, Uttar Pradesh, India
| | - Dileep Kumar Verma
- Associate Professor, Department of Physiology, King George's Medical University , Lucknow, Uttar Pradesh, India
| | - Rishi Sethi
- Professor, Department of Cardiology, King George's Medical University , Lucknow, Uttar Pradesh, India
| | - Shraddha Singh
- Professor, Department of Physiology, King George's Medical University , Lucknow, Uttar Pradesh, India
| | - Akhilesh Krishna
- Scholar, Department of Physiology, King George's Medical University , Lucknow, Uttar Pradesh, India
| |
Collapse
|
13
|
Mohammadzadeh G, Ghaffari MA, Bazyar M, Kheirollah A. Association between two common polymorphisms (single nucleotide polymorphism -250G/A and -514C/T) of the hepatic lipase gene and coronary artery disease in type 2 diabetic patients. Adv Biomed Res 2016; 5:27. [PMID: 27014654 PMCID: PMC4785784 DOI: 10.4103/2277-9175.176366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/24/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Variations in the hepatic lipase (HL) gene are the potential candidate for coronary artery disease (CAD) especially in type 2 diabetes mellitus (T2DM) in diverse populations. We assessed the association of -514C/T and -250G/A polymorphisms in HL (LIPC) gene with CAD risk in Iranian population with type 2 diabetes. MATERIALS AND METHODS We evaluated 322 type 2 diabetic patients, 166 patients with normal angiograms as controls and 156 patients those identified with CAD undergoing their first coronary angiography as CAD cases. Genotyping of -514C/T and -250G/A polymorphisms in the promoter of the LIPC gene were studied by polymerase chain reaction (PCR)-restriction fragment length polymorphism technique. RESULTS Genotype distributions in CAD cases (73.7%, 20.5%, and 5.8% for -250G/A) and (62.2%, 32.7%, and 5.1% for -514C/T) were significantly different from those in controls (60.8%, 37.4%, and 1.8% for -250G/A) and (51.2%, 48.2%, and 0.6% for -514C/T). CAD cases had lower A-allele frequency than controls (0.131 vs. 0.196, P = 0.028). The odds ratio for the presence of -250 (GG + GA) genotype and A allele in CAD cases were 2.206 (95% confidence interval [CI] =1.33-3.65, P = 0.002) and 1.609 (95% CI = 1.051 -2.463, P = 0.029) respectively. Haplotype analysis demonstrated a significant association between especially LIPC double mutant (-250 A/-514 T) haplotype and presence of CAD. CONCLUSION Our findings indicated that -250 G/A polymorphism rather than -514 C/T polymorphism of LIPC gene is more associated with the increased risk of CAD particularly in women with T2DM.
Collapse
Affiliation(s)
- Ghorban Mohammadzadeh
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Ali Ghaffari
- Cellular and Molecular Research Center, Department of Clinical Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Bazyar
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Cellular and Molecular Research Center, Department of Clinical Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Wang H, Zhang D, Ling J, Lu W, Zhang S, Zhu Y, Lai M. Gender specific effect of LIPC C-514T polymorphism on obesity and relationship with plasma lipid levels in Chinese children. J Cell Mol Med 2015; 19:2296-306. [PMID: 26282880 PMCID: PMC4568933 DOI: 10.1111/jcmm.12663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/03/2015] [Indexed: 12/24/2022] Open
Abstract
Hepatic lipase (LIPC) is a key rate-limiting enzyme in lipoprotein catabolism pathways involved in the development of obesity. The C-514T polymorphism in the promoter region is associated with decreased LIPC activity. We performed a case-controlled study (850 obese children and 2119 controls) and evaluated the association between LIPC C-514T polymorphism, obesity and plasma lipid profile in Chinese children and adolescents. Additionally, we conducted a meta-analysis of all results from published studies as well as our own data. A significant association between the polymorphism and obesity is observed in boys (P = 0.042), but not in girls. And we observed a significant relationship of the polymorphism with total cholesterol (TC) and high density lipoprotein cholesterol (HDL-C) independent of obesity in boys. The T allele carriers have higher levels of low density lipoprotein cholesterol (LDL-C) in obese boys, and triglyceride (TG), TC and LDL-C in non-obese girls (all P < 0.05). In the meta-analysis, under dominant model the T allele increased body mass index (BMI) level in boys, while it decreased BMI in girls, and increased the levels of TC both in the overall and subgroups, TG and HDL-C in the overall and boys, and LDL-C in the overall (all P < 0.05). Our results suggest that the T allele might carry an increased risk of obesity in Chinese boys. The meta-analysis suggests that T allele acts as a risk allele for higher BMI levels in male childhood, while it is a protective allele in female childhood. And the polymorphism is associated with the levels of plasma lipids, which may be modulated by obesity and gender.
Collapse
Affiliation(s)
- Hao Wang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Dandan Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jie Ling
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Wenhui Lu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shuai Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Xu M, Ng SS, Bray GA, Ryan DH, Sacks FM, Ning G, Qi L. Dietary Fat Intake Modifies the Effect of a Common Variant in the LIPC Gene on Changes in Serum Lipid Concentrations during a Long-Term Weight-Loss Intervention Trial. J Nutr 2015; 145:1289-94. [PMID: 25926410 PMCID: PMC4442119 DOI: 10.3945/jn.115.212514] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/03/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Hepatic lipase (HL) plays a pivotal role in the metabolism of HDL and LDL. Recent genome-wide association studies have identified common variants in the HL gene (LIPC) associated with HDL cholesterol. OBJECTIVE We tested the effect of a common variant in LIPC on changes in blood lipids in response to weight-loss diets in the Preventing Overweight Using Novel Dietary Strategies Trial. METHODS We genotyped LIPC rs2070895 in 743 overweight or obese adults aged 30-70 y (61% women) who were assigned to high-fat (40% energy) or low-fat (20% energy) diets for 2 y. We measured serum concentrations of total cholesterol (TC), triglycerides, LDL cholesterol, and HDL cholesterol at baseline and 2 y of intervention. RESULTS At 2 y of intervention, dietary fat modified effects of the variant on changes in serum TC, LDL cholesterol, and HDL cholesterol (P-interaction: 0.0008, 0.004, and 0.03, respectively). In the low-fat group, as compared to the G allele, the A allele tended to be related to the decrease in TC and LDL cholesterol concentrations [TC (β ± SE): -5.5 ± 3.0, P = 0.07; LDL cholesterol: -4.8 ± 2.5, P = 0.06] and a lower increase in HDL cholesterol concentrations (β ± SE: -1.37 ± 0.69, P = 0.048), whereas an opposite effect in the high-fat diet group was evident [TC (β ± SE): 7.3 ± 2.7, P = 0.008; LDL cholesterol: 4.1 ± 2.3, P = 0.07], and there was no genetic effect on changes in HDL cholesterol concentrations (P = 0.54). CONCLUSION Dietary fat intake modifies the effect of a common variant in LIPC on changes in serum lipids during a long-term weight-loss intervention in overweight or obese adults. This trial was registered at clinicaltrials.gov as NCT00072995.
Collapse
Affiliation(s)
- Min Xu
- Department of Nutrition, Harvard School of Public Health, Boston, MA; Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China;
| | - San San Ng
- Department of Molecular Genetics, GenoVive, New Orleans, LA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA
| | - Donna H Ryan
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA
| | - Frank M Sacks
- Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Guang Ning
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China;,Department of Endocrinology and Metabolism, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Qi
- Department of Nutrition, Harvard School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA; and Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Drenos F, Grossi E, Buscema M, Humphries SE. Networks in Coronary Heart Disease Genetics As a Step towards Systems Epidemiology. PLoS One 2015; 10:e0125876. [PMID: 25951190 PMCID: PMC4423836 DOI: 10.1371/journal.pone.0125876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/24/2015] [Indexed: 02/08/2023] Open
Abstract
We present the use of innovative machine learning techniques in the understanding of Coronary Heart Disease (CHD) through intermediate traits, as an example of the use of this class of methods as a first step towards a systems epidemiology approach of complex diseases genetics. Using a sample of 252 middle-aged men, of which 102 had a CHD event in 10 years follow-up, we applied machine learning algorithms for the selection of CHD intermediate phenotypes, established markers, risk factors, and their previously associated genetic polymorphisms, and constructed a map of relationships between the selected variables. Of the 52 variables considered, 42 were retained after selection of the most informative variables for CHD. The constructed map suggests that most selected variables were related to CHD in a context dependent manner while only a small number of variables were related to a specific outcome. We also observed that loss of complexity in the network was linked to a future CHD event. We propose that novel, non-linear, and integrative epidemiological approaches are required to combine all available information, in order to truly translate the new advances in medical sciences to gains in preventive measures and patients care.
Collapse
Affiliation(s)
- Fotios Drenos
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, United Kingdom
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Enzo Grossi
- Medical Department—Bracco Pharmaceuticals, San Donato Milanese, Italy
- current affiliation: Villa Santa Maria Institute, Tavernerio, Italy
- Semeion Research Center of Sciences of Communication, Rome, Italy
| | - Massimo Buscema
- Semeion Research Center of Sciences of Communication, Rome, Italy
- Dept. of Mathematical and Statistical Sciences, University of Colorado at Denver, Denver, CO, United States of America
| | - Steve E. Humphries
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
17
|
Association of polymorphisms of genes involved in lipid metabolism with blood pressure and lipid values in mexican hypertensive individuals. DISEASE MARKERS 2014; 2014:150358. [PMID: 25587205 PMCID: PMC4283438 DOI: 10.1155/2014/150358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 02/08/2023]
Abstract
Hypertension and dyslipidemia exhibit an important clinical relationship because an increase in blood lipids yields an increase in blood pressure (BP). We analyzed the associations of seven polymorphisms of genes involved in lipid metabolism (APOA5 rs3135506, APOB rs1042031, FABP2 rs1799883, LDLR rs5925, LIPC rs1800588, LPL rs328, and MTTP rs1800591) with blood pressure and lipid values in Mexican hypertensive (HT) patients. A total of 160 HT patients and 160 normotensive individuals were included. Genotyping was performed through PCR-RFLP, PCR-AIRS, and sequencing. The results showed significant associations in the HT group and HT subgroups classified as normolipemic and hyperlipemic. The alleles FABP2 p.55T, LIPC −514T, and MTTP −493T were associated with elevated systolic BP. Five alleles were associated with lipids. LPL p.474X and FABP2 p.55T were associated with decreased total cholesterol and LDL-C, respectively; APOA5 p.19W with increased HDL-C; APOA5 p.19W and FABP2 p.55T with increased triglycerides; and APOB p.4181K and LDLR c.1959T with decreased triglycerides. The APOB p.E4181K polymorphism increases the risk for HT (OR = 1.85, 95% CI: 1.17–2.93; P = 0.001) under the dominant model. These findings indicate that polymorphisms of lipid metabolism genes modify systolic BP and lipid levels and may be important in the development of essential hypertension and dyslipidemia in Mexican HT patients.
Collapse
|
18
|
Khabour OF, Alomari MA, Alzoubi KH, Gharaibeh MY, Alhashimi FH. Lack of Association between Polymorphisms of Hepatic Lipase with Lipid Profile in Young Jordanian Adults. Lipid Insights 2014; 7:1-5. [PMID: 25278769 PMCID: PMC4167487 DOI: 10.4137/lpi.s14798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 11/29/2022] Open
Abstract
The human hepatic lipase (LIPC) gene encodes hepatic lipase, an enzyme involved in lipoprotein metabolism and regulation. Therefore, variants in LIPC gene may influence plasma lipoprotein levels. In this study, the association of LIPC C-514T and G-250A polymorphisms with plasma lipid profiles in 348 young Jordanians was investigated. Genotyping of C-514T and G-250A was performed by polymerase chain reaction and subsequent digestion with DraI and NiaIII restriction enzymes, respectively, while Roche analyzer was used to determine plasma total cholesterol, triglycerides, low-and high-density lipoprotein. The G-250 and C-514 alleles were most abundant in Jordanians with 79 and 80% frequencies, respectively. Additionally, no difference was found in the lipid–lipoprotein profile between the different genotype groups of C-514T or G-250A polymorphisms, even when males and females were examined separately (P > 0.05). In young Jordanian adults, the examined LIPC polymorphisms seem to play a limited role in determining the lipid profile.
Collapse
Affiliation(s)
- Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Mahmoud A Alomari
- Department of Rehabilitation Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Y Gharaibeh
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Farah H Alhashimi
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
19
|
Bartelt A, Beil FT, Müller B, Koehne T, Yorgan TA, Heine M, Yilmaz T, Rüther W, Heeren J, Schinke T, Niemeier A. Hepatic lipase is expressed by osteoblasts and modulates bone remodeling in obesity. Bone 2014; 62:90-8. [PMID: 24440515 DOI: 10.1016/j.bone.2014.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/18/2013] [Accepted: 01/07/2014] [Indexed: 01/23/2023]
Abstract
A number of unexpected molecules were recently identified as products of osteoblasts, linking bone homeostasis to systemic energy metabolism. Here we identify the lipolytic enzyme hepatic lipase (HL, encoded by Lipc) as a novel cell-autonomous regulator of osteoblast function. In an unbiased genome-wide expression analysis, we find Lipc to be highly induced upon osteoblast differentiation, verified by quantitative Taqman analyses of primary osteoblasts in vitro and of bone samples in vivo. Functionally, loss of HL in vitro leads to increased expression and secretion of osteoprotegerin (OPG), while expression of some osteoblast differentiation makers is impaired. When challenging energy metabolism in a diet-induced obesity (DIO) study, lack of HL leads to a significant increase in bone formation markers and a decrease in bone resorption markers. Accordingly, in the DIO setting, we observe in Lipc(-/-) animals but not in wild-type controls a significant increase in lumbar vertebral trabecular bone mass and formation rate as well as in femoral trabecular bone mass and cortical thickness. Taken together, we demonstrate that HL expressed by osteoblasts has an impact on osteoblast OPG expression and that lack of HL leads to increased bone mass in DIO. These data provide a novel and completely unexpected molecular link in the complex interplay of osteoblasts and systemic energy metabolism.
Collapse
Affiliation(s)
- Alexander Bartelt
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - F Timo Beil
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Brigitte Müller
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Till Koehne
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Tayfun Yilmaz
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Wolfgang Rüther
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Andreas Niemeier
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
20
|
Affiliation(s)
- Federico Oldoni
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Richard J. Sinke
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Albert Kuivenhoven
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
21
|
Verdier C, Ruidavets JB, Bongard V, Taraszkiewicz D, Martinez LO, Elbaz M, Ferrières J, Perret B. Association of hepatic lipase -514T allele with coronary artery disease and ankle-brachial index, dependence on the lipoprotein phenotype: the GENES study. PLoS One 2013; 8:e67805. [PMID: 23874450 PMCID: PMC3706445 DOI: 10.1371/journal.pone.0067805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 05/27/2013] [Indexed: 11/19/2022] Open
Abstract
Objectives Relationship between hepatic lipase (LIPC) polymorphism and coronary artery disease (CAD) has often led to contradictory results. We studied this relation by genotyping rs1800588 in the LIPC promoter in a case-control study on CAD (the GENES study). We also investigated the relationship between this polymorphism and the ankle-brachial index (ABI), which is predictive of atherosclerosis progression and complications in patients at high cardiovascular risk. Methods 557 men aged 45–74 with stable coronary artery disease and 560 paired controls were genotyped for rs1800588. Medical data, clinical examination including determination of ABI and biological measurements related to cardiovascular risk factors enabled multivariate analyses and multiple adjustments. Results CAD cases showed a higher T-allele frequency than controls (0.246 vs 0.192, p = 0.003). An interaction has been found between LIPC polymorphism and triglycerides (TG) levels regarding risk of CAD: TT-homozigosity was associated with an Odds ratio (OR) of 6.4 (CI: 1.8–22.3) when TG were below 1.5 g/L, but no association was found at higher TG levels (OR = 1.34, CI: 0.3–5.9). The distribution of LIPC genotypes was compared between CAD patients with normal or abnormal ABI and impact of LIPC polymorphism on ABI was determined. Following multiple adjustments, association of the T-allele with pejorative ABI (<0.90) was significant for heterozygotes and for all T-carriers (OR = 1.55, CI: 1.07–2.25). Conclusion The -514T LIPC allele is associated with CAD under normotriglyceridemic conditions and constitutes an independent determinant of pejorative ABI in coronary patients.
Collapse
Affiliation(s)
- Céline Verdier
- CHU Toulouse, Department of Biochemistry, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Endoplasmic reticulum-localized hepatic lipase decreases triacylglycerol storage and VLDL secretion. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1113-23. [DOI: 10.1016/j.bbalip.2013.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/09/2013] [Accepted: 01/23/2013] [Indexed: 01/07/2023]
|
23
|
Kim S, Park K, Shin C, Cho NH, Ko JJ, Koh I, Kwack K. Diplotyper: diplotype-based association analysis. BMC Med Genomics 2013; 6 Suppl 2:S5. [PMID: 23819435 PMCID: PMC3654869 DOI: 10.1186/1755-8794-6-s2-s5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background It was previously reported that an association analysis based on haplotype clusters increased power over single-locus tests, and that another association test based on diplotype trend regression analysis outperformed other, more common association approaches. We suggest a novel algorithm to combine haplotype cluster- and diplotype-based analyses. Methods Diplotyper combines a novel algorithm designed to cluster haplotypes of interest from a given set of haplotypes with two existing tools: Haploview, for analyses of linkage disequilibrium blocks and haplotypes, and PLINK, to generate all possible diplotypes from given genotypes of samples and calculate linear or logistic regression. In addition, procedures for generating all possible diplotypes from the haplotype clusters and transforming these diplotypes into PLINK formats were implemented. Results Diplotyper is a fully automated tool for performing association analysis based on diplotypes in a population. Diplotyper was tested through association analysis of hepatic lipase (LIPC) gene polymorphisms or diplotypes and levels of high-density lipoprotein (HDL) cholesterol. Conclusions Diplotyper is useful for identifying more precise and distinct signals over single-locus tests.
Collapse
Affiliation(s)
- Sunshin Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Villard EF, EI Khoury P, Frisdal E, Bruckert E, Clement K, Bonnefont-Rousselot D, Bittar R, Le Goff W, Guerin M. Genetic determination of plasma cholesterol efflux capacity is gender-specific and independent of HDL-cholesterol levels. Arterioscler Thromb Vasc Biol 2013; 33:822-8. [PMID: 23372063 DOI: 10.1161/atvbaha.112.300979] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We investigated the impact of several genetic variants located in genes encoding for proteins involved in biogenesis, maturation, and intravascular remodeling of high density lipoprotein (HDL) particles on plasma efflux capacity. APPROACH AND RESULTS The capacity of whole-plasma to mediate cholesterol efflux from cholesterol-loaded human THP-1 macrophages was measured in 846 individuals (450 men and 396 women). We demonstrated that rs17231506 (CETP c.-1337 C>T), rs2230806 (ABCA1 p.R219K), rs1799837 (APOA1 c.-75 G>A), rs5086 (APOAII c.-265 T>C), and rs1800588 (LIPC c.-514 C>T) single nucleotide polymorphisms (SNPs) significantly modulate the capacity of whole-plasma to mediate cholesterol efflux from human macrophages in a sex-dependent manner. Such associations were independent of circulating plasma lipid levels (HDL-cholesterol, triglyceride, low density lipoprotein-cholesterol). In women, we identified the APOA1 c.-75 G>A and the LIPC c.-514 C>T variants as major contributors of interindividual variability of plasma efflux capacity, whereas the ABCA1 p.R219K and the APOAII c.-265 T>C SNPs mostly contribute to total variance of plasma efflux capacity in men. Multiple regression analyses revealed that the 7 SNPs tested accounted together for approximately 6% of total plasma efflux capacity. We demonstrated that genetically determined plasma efflux capacity represents a better predictor of macrophage cholesterol removal, as compared with plasma HDL-cholesterol levels. CONCLUSIONS Genetic variants located within genes encoding proteins involved in HDL metabolism significantly impact plasma efflux capacity independently of variation in plasma HDL-cholesterol levels.
Collapse
Affiliation(s)
- Elise F Villard
- INSERM UMRS 939, Hôpital de la Pitié, Pavillon Benjamin Delessert, 83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Association of the G-250A promoter polymorphism in the hepatic lipase gene with the risk of type 2 diabetes mellitus. ANNALES D'ENDOCRINOLOGIE 2013; 74:45-8. [PMID: 23351562 DOI: 10.1016/j.ando.2012.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 11/19/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Variants in hepatic lipase (HL) gene which is a lipolytic enzyme involved in the metabolism of plasma lipoprotein and regulating lipid and lipoprotein metabolism are potential candidate genes for type 2 diabetes. Association of the polymorphisms in the promoter region of the HL gene (LIPC) to the plasma HDL-C concentration has been investigated. In this study, we investigated whether the G-250A polymorphism of LIPC is associated with type 2 diabetes in Chinese Han population. SUBJECTS AND METHODS A total of 130 patients with type 2 diabetes and 133 healthy subjects as control were randomly selected from January 2008 to January 2011 in endocrine wards of Zhengzhou People's Hospital. The G-250A polymorphisms were studied by polymerase chain reaction and restriction fragment length polymorphism. A logistic regression analysis was performed to determine the association between the rare allele and type 2 diabetes mellitus. RESULTS The frequency of the -250A allele was 0.297 in the T2DM group and 0.388 in the control group (P<0.05), with the difference remaining significant. CONCLUSIONS Patients who are carrying of the -250A allele in the promoter of the LIPC gene are susceptible to type 2 diabetes mellitus in Chinese Han population.
Collapse
|
26
|
New Research Advances in Genetics Associated With High-density Lipoprotein Cholesterol*. PROG BIOCHEM BIOPHYS 2013. [DOI: 10.3724/sp.j.1206.2012.00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Makambi KH, Lu W. Combining study outcome measures using dominance adjusted weights. Res Synth Methods 2013; 4:188-97. [PMID: 26053657 DOI: 10.1002/jrsm.1073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/12/2012] [Accepted: 12/07/2012] [Indexed: 11/09/2022]
Abstract
Weighting of studies in meta-analysis is usually implemented by using the estimated inverse variances of treatment effect estimates. However, there is a possibility of one study dominating other studies in the estimation process by taking on a weight that is above some upper limit. We implement an estimator of the heterogeneity variance that takes advantage of dominance adjusted weights. The performance of this estimator is compared with that of the commonly used estimator in meta-analysis, the DerSimonian-Laird estimator. Two test procedures for the overall treatment effect are proposed that are based on the quadratic form associated with the proposed heterogeneity variance estimator. An example is given to illustrate the application of these procedures. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Wenxin Lu
- Georgetown University, Washington, DC, USA
| |
Collapse
|
28
|
Murase T, Ebara T, Okubo M. Hepatic lipase activity is decreased in Japanese patients with type III hyperlipoproteinemia. Clin Chim Acta 2012; 414:185-7. [DOI: 10.1016/j.cca.2012.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 11/28/2022]
|
29
|
Reid RJ, McBride CM, Alford SH, Price C, Baxevanis AD, Brody LC, Larson EB. Association between health-service use and multiplex genetic testing. Genet Med 2012; 14:852-9. [PMID: 22595941 PMCID: PMC3424345 DOI: 10.1038/gim.2012.52] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The objective of this work was to examine whether offers of multiplex genetic testing increase health-care utilization among healthy patients aged 25-40 years. The identification of genetic variants associated with common disease is accelerating rapidly. "Multiplex tests" that give individuals feedback on large panels of genetic variants have proliferated. Availability of these test results may prompt consumers to use more health-care services. METHODS A total of 1,599 continuously insured adults aged 25-40 years were surveyed and offered a multiplex genetic susceptibility test for eight common health conditions. Health-care utilization from automated records was compared in 12-month pre- and posttest periods among persons who completed a baseline survey only (68.7%), those who visited a study website but opted not to test (17.8%), and those who chose the multiplex genetic susceptibility test (13.6%). RESULTS In the pretest period, persons choosing genetic testing used an average of 1.02 physician visits per quarter as compared with 0.93 and 0.82 for the baseline-only and Web-only groups, respectively (P < 0.05). There were no statistically significant differences by group in the pretest use of any common medical tests or procedures associated with four common health conditions. When changes in physician and medical test/procedure use in the posttest period were compared among the groups, no statistically significant differences were observed for any utilization category. CONCLUSIONS Persons offered and completing multiplex genetic susceptibility testing used more physician visits before testing, but testing was not associated with subsequent changes in use. This study supports the supposition that multiplex genetic testing offers can be provided directly to the patients in such a way that use of health services is not inappropriately increased.
Collapse
Affiliation(s)
- Robert J Reid
- Group Health Research Institute, Seattle, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Hu M, Li Z, Fang DZ. A high carbohydrate diet induces the beneficial effect of the CC genotype of hepatic lipase C-514T polymorphism on the apoB100/apoAI ratio only in young Chinese males. Scandinavian Journal of Clinical and Laboratory Investigation 2012; 72:563-9. [PMID: 22935046 DOI: 10.3109/00365513.2012.705889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Both diet and genetic background have profound effects on plasma lipid profiles. It was hypothesized that a high carbohydrate (high-CHO) diet could affect the ratios of serum lipids and apolipoproteins (apo) differently in subjects with different genotypes of the C-514T hepatic lipase rs1800588 polymorphism. Fifty-six healthy university students were given a stabilization diet of 54.1% carbohydrate for 7 days, followed with a high-CHO diet of 70.1% carbohydrate for 6 days. Body composition, serum lipids, apolipoproteins and the hepatic lipase C-514T rs1800588 polymorphism were analyzed. The ratios of serum lipids and apolipoproteins were calculated afterwards. At baseline, females have significantly lower waist circumference (WC) (CC genotype: p = 0.049; T carriers: p = 0.015) and waist-to-hip ratio (WHR) (CC genotype: p = 0.019; T carriers: p = 0.000) than males. When compared with those before the high-CHO diet, the body mass index (BMI) (p = 0.043) and WC (p = 0.048) were significantly decreased in the male T carriers, the TG/HDL-C ratios were significantly increased in females (CC genotype: p = 0.047; T carriers: p = 0.003). The TC/HDL-C ratios were significantly decreased in males (CC genotype: p = 0.000; T carriers: p = 0.003). And the LDL-C/HDL-C ratios were significantly decreased in all subjects (males with the CC genotype: p = 0.001; male T carriers: p = 0.000; females with the CC genotype: p = 0.018; female T carriers: p = 0.006). However, the apoB100/apoAI ratio was only significantly decreased in male CC genotype after the high-CHO diet (p = 0.005).
Collapse
Affiliation(s)
- Minshan Hu
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | | | | |
Collapse
|
31
|
Crous-Bou M, Rennert G, Salazar R, Rodriguez-Moranta F, Rennert HS, Lejbkowicz F, Kopelovich L, Lipkin SM, Gruber SB, Moreno V. Genetic polymorphisms in fatty acid metabolism genes and colorectal cancer. Mutagenesis 2012; 27:169-76. [PMID: 22294764 DOI: 10.1093/mutage/ger066] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Epidemiological risk factors for CRC included dietary fat intake; consequently, the role of genes in the fatty acid biosynthesis and metabolism pathways is of particular interest. Moreover, hyperlipidaemia has been associated with different type of cancer and serum lipid levels could be affected by genetic factors, including polymorphisms in the lipid metabolism pathway. The aim of this study is to assess the association between single-nucleotide polymorphisms (SNPs) in fatty acid metabolism genes, serum lipid levels, body mass index (BMI) and dietary fat intake and CRC risk; 30 SNPs from 8 candidate genes included in fatty acid biosynthesis and metabolism pathways were genotyped in 1780 CRC cases and 1864 matched controls from the Molecular Epidemiology of Colorectal Cancer study. Information on clinicopathological characteristics, lifestyle and dietary habits were also obtained. Logistic regression and association analysis were conducted. Several LIPC (lipase, hepatic) polymorphisms were found to be associated with CRC risk, although no particular haplotype was related to CRC. The SNP rs12299484 showed an association with CRC risk after Bonferroni correction. We replicate the association between the T allele of the LIPC SNP rs1800588 and higher serum high-density lipoprotein levels. Weak associations between selected polymorphism in the LIPC and PPARG genes and BMI were observed. A path analysis based on structural equation modelling showed a direct effect of LIPC gene polymorphisms on colorectal carcinogenesis as well as an indirect effect mediated through serum lipid levels. Genetic polymorphisms in the hepatic lipase gene have a potential role in colorectal carcinogenesis, perhaps though the regulation of serum lipid levels.
Collapse
Affiliation(s)
- M Crous-Bou
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08907, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Interaction between cholesteryl ester transfer protein and hepatic lipase encoding genes and the risk of type 2 diabetes: results from the Telde study. PLoS One 2011; 6:e27208. [PMID: 22073289 PMCID: PMC3207838 DOI: 10.1371/journal.pone.0027208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/11/2011] [Indexed: 11/21/2022] Open
Abstract
Background and Aim Diabetic dyslipidaemia is common in type 2 diabetes (T2D) and insulin resistance and often precedes the onset of T2D. The Taq1B polymorphism in CETP (B1 and B2 alleles) (rs708272) and the G-250A polymorphism in LIPC (rs2070895) are associated with changes in enzyme activity and lipid concentrations. Our aim was to assess the effects of both polymorphisms on the risk of T2D. Methods and Results In a case-control study from the population-based Telde cohort, both polymorphisms were analysed by PCR-based methods. Subjects were classified, according to an oral glucose tolerance test, into diabetic (N = 115) and pre-diabetic (N = 116); 226 subjects with normal glucose tolerance, matched for age and gender, were included as controls. Chi-square (comparison between groups) and logistic regression (identification of independent effects) were used for analysis. The B1B1 Taq1B CETP genotype frequency increased with worsening glucose metabolism (42.5%, 46.1% and 54.3% in control, IGR and diabetic group; p = 0.042). This polymorphism was independently associated with an increased risk of diabetes (OR: 1.828; IC 95%: 1.12–2.99; p = 0.016), even after adjusting by confounding variables, whereas the LIPC polymorphism was not. Regarding the interaction between both polymorphisms, in the B1B1 genotype carriers, the absence of the minor (A) allele of the LIPC polymorphism increased the risk of having diabetes. Conclusion The presence of the B1B1 Taq1B CETP genotype contributes to the presence of diabetes, independently of age, sex, BMI and waist. However, among carriers of B1B1, the presence of GG genotype of the -250 LIPC polymorphism increases this risk further.
Collapse
|
33
|
Pulchinelli A, Costa AMM, de Carvalho CV, de Souza NCN, Haidar MA, Andriolo A, da Silva IDCG. Positive association of the hepatic lipase gene polymorphism c.514C > T with estrogen replacement therapy response. Lipids Health Dis 2011; 10:197. [PMID: 22047520 PMCID: PMC3225335 DOI: 10.1186/1476-511x-10-197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/02/2011] [Indexed: 11/20/2022] Open
Abstract
Background Hepatic lipase (HL), an enzyme present in the hepatic sinusoids, is responsible for the lipolysis of lipoproteins. Human HL contains four polymorphic sites: G-250A, T-710C, A-763G, and C-514T single-nucleotide polymorphism (SNPs). The last polymorphism is the focus of the current study. The genotypes associated with the C-514T polymorphism are CC (normal homozygous - W), CT (heterozygous - H), and TT (minor-allele homozygous - M). HL activity is significantly impaired in individuals of the TT and CT genotypes. A total of 58 post-menopausal women were studied. The subjects were hysterectomized women receiving hormone replacement therapy consisting of 0.625 mg of conjugated equine estrogen once a day. The inclusion criteria were menopause of up to three years and normal blood tests, radiographs, cervical-vaginal cytology, and densitometry. DNA was extracted from the buccal and blood cells of all 58 patients using a commercially available kit (GFX® - Amersham-Pharmacia, USA). Results Statistically significant reductions in triglycerides (t = 2.16; n = 58; p = 0.03) but not in total cholesterol (t = 0.14; n = 58; p = 0.89) were found after treatment. This group of good responders were carriers of the T allele; the CT and TT genotypes were present significantly more frequently than in the group of non-responders (p = 0.02 or p = 0.07, respectively). However, no significant difference in HDL-C (t = 0.94; n = 58; p = 0.35) or LDL-C (t = -0.83; n = 58; p = 0.41) was found in these patients. Conclusions The variation in lipid profile associated with the C-514T polymorphism is significant, and the T allele is associated with the best response to ERT.
Collapse
Affiliation(s)
- Alvaro Pulchinelli
- Laboratório de Biologia Molecular, Departamento de Ginecologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil.
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Role of hepatic lipase and endothelial lipase in high-density lipoprotein-mediated reverse cholesterol transport. Curr Atheroscler Rep 2011; 13:257-65. [PMID: 21424685 PMCID: PMC3085744 DOI: 10.1007/s11883-011-0175-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Reverse cholesterol transport (RCT) constitutes a key part of the atheroprotective properties of high-density lipoproteins (HDL). Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol levels. Although overexpression of EL decreases overall macrophage-to-feces RCT, knockout of both HL and EL leaves RCT essentially unaffected. With respect to important individual steps of RCT, current data on the role of EL and HL in cholesterol efflux are not conclusive. Both enzymes increase hepatic selective cholesterol uptake; however, this does not translate into altered biliary cholesterol secretion, which is regarded the final step of RCT. Also, the impact of HL and EL on atherosclerosis is not clear cut; rather it depends on respective experimental conditions and chosen models. More mechanistic insights into the diverse biological properties of these enzymes are therefore required to firmly establish EL and HL as targets for the treatment of atherosclerotic cardiovascular disease.
Collapse
|
36
|
Genoux A, Pons V, Radojkovic C, Roux-Dalvai F, Combes G, Rolland C, Malet N, Monsarrat B, Lopez F, Ruidavets JB, Perret B, Martinez LO. Mitochondrial inhibitory factor 1 (IF1) is present in human serum and is positively correlated with HDL-cholesterol. PLoS One 2011; 6:e23949. [PMID: 21935367 PMCID: PMC3173369 DOI: 10.1371/journal.pone.0023949] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mitochondrial ATP synthase is expressed as a plasma membrane receptor for apolipoprotein A-I (apoA-I), the major protein component in High Density Lipoproteins (HDL). On hepatocytes, apoA-I binds to cell surface ATP synthase (namely ecto-F(1)-ATPase) and stimulates its ATPase activity, generating extracellular ADP. This production of extracellular ADP activates a P2Y(13)-mediated HDL endocytosis pathway. Conversely, exogenous IF1, classically known as a natural mitochondrial specific inhibitor of F(1)-ATPase activity, inhibits ecto-F(1)-ATPase activity and decreases HDL endocytosis by both human hepatocytes and perfused rat liver. METHODOLOGY/PRINCIPAL FINDINGS Since recent reports also described the presence of IF1 at the plasma membrane of different cell types, we investigated whether IF1 is present in the systemic circulation in humans. We first unambiguously detected IF1 in human serum by immunoprecipitation and mass spectrometry. We then set up a competitive ELISA assay in order to quantify its level in human serum. Analyses of IF1 levels in 100 normolipemic male subjects evidenced a normal distribution, with a median value of 0.49 µg/mL and a 95% confidence interval of 0.22-0.82 µg/mL. Correlations between IF1 levels and serum lipid levels demonstrated that serum IF1 levels are positively correlated with HDL-cholesterol and negatively with triglycerides (TG). CONCLUSIONS/SIGNIFICANCE Altogether, these data support the view that, in humans, circulating IF1 might affect HDL levels by inhibiting hepatic HDL uptake and also impact TG metabolism.
Collapse
Affiliation(s)
- Annelise Genoux
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Véronique Pons
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | - Claudia Radojkovic
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | - Florence Roux-Dalvai
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
| | - Guillaume Combes
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | - Corinne Rolland
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | - Nicole Malet
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | - Bernard Monsarrat
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
| | - Frédéric Lopez
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | | | - Bertrand Perret
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Laurent O. Martinez
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
37
|
Soyal SM, Sandhofer A, Hahne P, Oberkofler H, Felder T, Iglseder B, Miller K, Krempler F, Patsch JR, Paulweber B, Patsch W. Cholesteryl ester transfer protein and hepatic lipase gene polymorphisms: effects on hepatic mRNA levels, plasma lipids and carotid atherosclerosis. Atherosclerosis 2011; 216:374-80. [PMID: 21371711 DOI: 10.1016/j.atherosclerosis.2011.01.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/07/2011] [Accepted: 01/31/2011] [Indexed: 11/25/2022]
Abstract
OBJECTIVE HDL modifying effects of cholesteryl ester transfer protein (CETP) and hepatic lipase (LIPC) depend in part on each other. We studied associations of CETP-Taq1B and -514C>T-LIPC polymorphisms with hepatic mRNA levels, and their combined effects on plasma lipids and carotid atherosclerosis. METHODS We genotyped the CETP-Taq1B and the -514C>T-LIPC polymorphisms in 67 obese women in whom hepatic CETP and LIPC transcript levels were determined as well as in 1549 participants of the Salzburg Atherosclerosis Prevention Program in Subjects at High Individual Risk (SAPHIR). Carotid atherosclerosis was assessed by intima-media thickness and extent of plaques (B-score) of the carotid arteries. RESULTS In obese women, CETP-Taq1B and -514C>T-LIPC variant alleles were associated with reduced hepatic levels of CETP and LIPC mRNA, respectively. The CETP and LIPC polymorphisms accounted for 12.9 and 14.4% of the variability in respective transcripts. In the SAPHIR population, CETP-Taq1B showed independent effects on LDL diameter, HDL and LDL cholesterol, apolipoproteins AI and B and cholesterol/HDL cholesterol, while -514C>T-LIPC revealed independent effects on HDL cholesterol and apolipoprotein AI. The two polymorphisms displayed interactions at the level of HDL cholesterol. Compared to subjects carrying wild-type alleles at both loci, subjects homozygous for the CETP wild-type allele, but heterozygous for the LIPC polymorphism and subjects heterozygous for the CETP polymorphism, but homozygous for the LIPC wild-type allele showed an increased risk of carotid atherosclerosis (both P<0.05). CONCLUSIONS CETP and LIPC polymorphisms influence the respective hepatic transcript levels, demonstrate interactions on HDL cholesterol and suggest that imbalances between CETP and LIPC activities may modulate the risk of carotid atherosclerosis.
Collapse
Affiliation(s)
- Selma M Soyal
- Department of Laboratory Medicine, Paracelsus Medical University, Müllner Hauptstr. 48, 5020 Salzburg, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ramakrishnan L, Sachdev HS, Sharma M, Abraham R, Prakash S, Gupta D, Singh Y, Bhaskar S, Sinha S, Chandak GR, Reddy KS, Santosh B. Relationship of APOA5, PPARγ and HL gene variants with serial changes in childhood body mass index and coronary artery disease risk factors in young adulthood. Lipids Health Dis 2011; 10:68. [PMID: 21548985 PMCID: PMC3120674 DOI: 10.1186/1476-511x-10-68] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 05/08/2011] [Indexed: 11/29/2022] Open
Abstract
Background Triglycerides is an independent risk factor for coronary artery disease (CAD) and is especially important in Indians because of high prevalence of hypertriglyceridemia in this population. Both genetic and environmental factors determine triglyceride levels. In a birth cohort from India, hypertriglyceridemia was found in 41% of men and 11% of women. Subjects who had high triglycerides had more rapid body mass index (BMI) or weight gain than rest of the cohort throughout infancy, childhood and adolescence. We analysed polymorphisms in APOA5, hepatic lipase and PPARγ genes and investigated their association with birth weight and serial changes in BMI. Results Polymorphisms in APOA5 (-1131T > C, S19W), PPARγ (Pro12Ala) and hepatic lipase (-514C > T) were studied by polymerase chain reaction (PCR) followed by restriction digestion in 1492 subjects from the New Delhi Birth Cohort (NDBC). We assessed whether these polymorphisms influence lipid and other variables and serial changes in BMI, both individually and together. The risk allele of APOA5 (-1131C) resulted in 23.6 mg/dl higher triglycerides as compared to normal allele (P < 0.001). Risk allele of HL (-514T) was associated with significantly higher HDL2 levels (P = 0.002). Except for the marginal association of PPARγ Pro12Ala variation with a lower conditional weight at 6 months, (P = 0.020) and APOA5 S19W with a higher conditional BMI at 11 yrs of age (P = 0.030), none of the other associations between the gene polymorphisms and serial changes in body mass index from birth to young adulthood were significant. Conclusion The promoter polymorphism in APOA5 was associated with raised serum triglycerides and that of HL with raised HDL2 levels. None of the polymorphisms had any significant relationship with birth weight or serial changes in anthropometry from birth to adulthood in this cohort.
Collapse
Affiliation(s)
- Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang H, Jiang M, Qiu J. Quantitative assessment of the effect of hepatic lipase gene polymorphism on the risk of coronary heart disease. Arch Med Res 2011; 41:383-90. [PMID: 20851298 DOI: 10.1016/j.arcmed.2010.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 08/04/2010] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS The human hepatic lipase (LIPC) is a glycoprotein member of the lipase superfamily that has attracted considerable attention as a candidate gene for coronary heart disease (CHD) based on its enzyme function as a key factor in lipoprotein catabolism pathways. In the past decade, a number of case-control studies have been carried out to investigate the relationship between the LIPC polymorphisms and CHD. However, studies on the association between LIPC polymorphisms and CHD remain conflicting. METHODS To derive a more precise estimation of the relationship, a meta-analysis of 11,906 cases and 13,273 controls from 18 published case-control studies was performed. RESULTS Overall, the summary odds ratio of CHD was 0.87 (95% confidence interval: 0.66-1.15) and 1.03 (95% confidence interval: 0.98-1.07) for LIPC -250A and -514T alleles, respectively. No significant results were observed in heterozygous and homozygous when compared with wild genotype for these polymorphisms. In the stratified analyses according to ethnicity, source of controls, no evidence of any gene-disease association was obtained. CONCLUSIONS Our result suggest that the G-250A, C-514T polymorphisms of LIPC gene are not associated with CHD susceptibility.
Collapse
Affiliation(s)
- HaiRong Wang
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, PR China
| | | | | |
Collapse
|
40
|
Kashani Farid MA, Azizi F, Hedayati M, Daneshpour MS, Shamshiri AR, Siassi F. Association between CETP Taq1B and LIPC -514C/T polymorphisms with the serum lipid levels in a group of Tehran's population: a cross sectional study. Lipids Health Dis 2010; 9:96. [PMID: 20822508 PMCID: PMC2944238 DOI: 10.1186/1476-511x-9-96] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/07/2010] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Low level of high density lipoprotein cholesterol (HDL-C) has high prevalence in the Tehran Lipid and Glucose Study (TLGS) cohort. About 50% of the inter-individual variation in serum HDL-C levels is genetically determined. Polymorphisms in cholesteryl ester transfer protein (CETP) and hepatic lipase (LIPC) genes have been found to be associated with the metabolism and serum concentration of the HDL-C. OBJECTIVES To determine the association between Taq1B polymorphism in CETP gene and -514C/T polymorphism in LIPC gene with serum lipid levels and lipid peroxidation in a subgroup of the TLGS population. RESULTS Serum HDL-C level had significant association with CETP Taq1B polymorphism and B2B2 subjects had the highest HDL-C levels compared to B2B1 and B1B1 genotypes (37.9 vs. 36.9 and 35.3 mg/dl, respectively; P = 0.01). However, carriers of "B1" allele, in comparison to the non carriers (B2B2), had significantly lower levels of TC (200.1 vs. 215.2 mg/dl; P = 0.005), HDL-C (35.8 vs. 37.9 mg/dl; P = 0.009) and malondialdehyde MDA (4.5 vs. 5.0 nmol/mL; P=0.031). Carriers of the "T" allele in -514C/T polymorphism in LIPC gene had higher means of HDL-C than non carriers (37.7 vs. 35.7 mg/dl, P = 0.04). No other association was found between -514C/T polymorphism and any other serum lipids or MDA level. CONCLUSION This study demonstrates the association between Taq1B and -514C/T polymorphisms in the CETP and LIPC genes with the serum HDL-C levels.
Collapse
Affiliation(s)
- Mohammad Ali Kashani Farid
- Department of Nutrition and Biochemistry, School of Public Health, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | | | | | | | | | | |
Collapse
|
41
|
Brown RJ, Lagor WR, Sankaranaravanan S, Yasuda T, Quertermous T, Rothblat GH, Rader DJ. Impact of combined deficiency of hepatic lipase and endothelial lipase on the metabolism of both high-density lipoproteins and apolipoprotein B-containing lipoproteins. Circ Res 2010; 107:357-64. [PMID: 20558822 PMCID: PMC2948973 DOI: 10.1161/circresaha.110.219188] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 06/07/2010] [Indexed: 11/16/2022]
Abstract
RATIONALE Hepatic lipase (HL) and endothelial lipase (EL) are extracellular lipases that both hydrolyze triglycerides and phospholipids and display potentially overlapping or complementary roles in lipoprotein metabolism. OBJECTIVE We sought to dissect the overlapping roles of HL and EL by generating mice deficient in both HL and EL (HL/EL-dko) for comparison with single HL-knockout (ko) and EL-ko mice, as well as wild-type mice. METHODS AND RESULTS Reproduction and viability of the HL/EL-dko mice were impaired compared with the single-knockout mice. The plasma levels of total cholesterol, high-density lipoprotein (HDL) cholesterol, non-HDL cholesterol, and phospholipids in the HL/EL-dko mice were markedly higher than those in the single-knockout mice. Most notably, the HL/EL-dko mice exhibited an unexpected substantial increase in small low-density lipoproteins. Kinetic studies with [(3)H]cholesteryl ether-labeled very-low-density lipoproteins demonstrated that the HL/EL-dko mice accumulated counts in the smallest low-density lipoprotein-sized fractions, as assessed by size exclusion chromatography, suggesting that it arises from lipolysis of very-low-density lipoproteins. HDL from all 3 lipase knockout models had an increased cholesterol efflux capacity but reduced clearance of HDL cholesteryl esters versus control mice. Despite their higher HDL cholesterol levels, neither HL-ko, EL-ko, nor HL/EL-dko mice demonstrated an increased rate of macrophage reverse cholesterol transport in vivo. CONCLUSIONS These studies reveal an additive effect of HL and EL on HDL metabolism but not macrophage reverse cholesterol transport in mice and an unexpected redundant role of HL and EL in apolipoprotein B lipoprotein metabolism.
Collapse
Affiliation(s)
- Robert J Brown
- Department of Medicine and Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Weissglas-Volkov D, Pajukanta P. Genetic causes of high and low serum HDL-cholesterol. J Lipid Res 2010; 51:2032-57. [PMID: 20421590 DOI: 10.1194/jlr.r004739] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Plasma levels of HDL cholesterol (HDL-C) have a strong inherited basis with heritability estimates of 40-60%. The well-established inverse relationship between plasma HDL-C levels and the risk of coronary artery disease (CAD) has led to an extensive search for genetic factors influencing HDL-C concentrations. Over the past 30 years, candidate gene, genome-wide linkage, and most recently genome-wide association (GWA) studies have identified several genetic variations for plasma HDL-C levels. However, the functional role of several of these variants remains unknown, and they do not always correlate with CAD. In this review, we will first summarize what is known about HDL metabolism, monogenic disorders associated with both low and high HDL-C levels, and candidate gene studies. Then we will focus this review on recent genetic findings from the GWA studies and future strategies to elucidate the remaining substantial proportion of HDL-C heritability. Comprehensive investigation of the genetic factors conferring to low and high HDL-C levels using integrative approaches is important to unravel novel pathways and their relations to CAD, so that more effective means of diagnosis, treatment, and prevention will be identified.
Collapse
|
43
|
Abstract
Cardiovascular disease (CVD) risk and rate of progression is determined by genetic, environmental and behavioural factors. Majority of genotype-diet-CVD phenotype research till date has focussed on the interactive impact of single nucleotide polymorphisms (SNP) and dietary fat composition, on blood lipids levels, with strong evidence of the existence of hypo- and hyper-responders. However, a recognised concern in the field of nutrigenetics is a lack of consistency between findings of different studies. This apparent lack of consistency is likely to be attributable to the impact of factors such as ethnicity and gender on the 'size' of nutrigenetic interactions, a clear understanding of which needs to be gained. Although not yet ready for widespread use, in the future a greater use of genetic profiling is likely to enhance current strategies of CVD prediction, and improve the design of more personalised approaches to minimise risk in the individual.
Collapse
Affiliation(s)
- Anne M Minihane
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
44
|
Vasseur F, Caeyseele T, Barat-Houari M, Lobbens S, Meirhaeghe A, Meyre D, Froguel P, Amouyel P, Helbecque N. Concordance of two multiple analytical approaches demonstrate that interaction between BMI and ADIPOQ haplotypes is a determinant of LDL cholesterol in a general French population. J Hum Genet 2010; 55:227-31. [PMID: 20186155 DOI: 10.1038/jhg.2010.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic and environmental factors are involved in insulin resistance (IR). IR and dyslipidemia associate with increased risk of cardiovascular diseases. Plasma low-density lipoprotein cholesterol (LDL-C) level is a marker of cardiovascular risk. In a Caucasian general population we aimed at determining the multifactorial components of LDL-C levels using 10 genes and 3 phenotypes. In the PPARG, UCP3, ADIPOQ, TNF, LIPC, CARTPT, PCSK9, SCAP, SCARB1 and ENPP1 genes known to be associated with IR or dyslipidemia we genotyped 19 single nucleotide polymorphisms (SNPs) in 846 subjects. When several SNPs were genotyped for a given gene we constructed haplotypes. Including genetic and environmental variables (gender, body mass index (BMI) and adiponectin level) we used (1) the multifactor dimensionality reduction method to explain clusters of high and low LDL-C, and (2) the restricted partition method to explain LDL-C levels. Both methods showed that BMI and haplotypes at the ADIPOQ adiponectin encoding gene but not adiponectin level itself, were discriminant regarding to LDL-C. Subjects bearing an at-risk combination of BMI and ADIPOQ genotypes were prone to have a higher LDL-C (OR=3.13, 95% CI=2.20-4.46, P<0.0001). Our results suggest that in interaction with BMI, ADIPOQ haplotypes capture genetic variation(s) from neighboring gene(s) that would modulate LDL-C level.
Collapse
Affiliation(s)
- Francis Vasseur
- Biostatistics Department EA2694, University Hospital, University Lille Nord de France, UDSL, Lille cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fat Intake Influences the Effect of the Hepatic Lipase C-514T Polymorphism on HDL-Cholesterol Levels in Children. Exp Biol Med (Maywood) 2009; 234:744-9. [DOI: 10.3181/0812-rm-373] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polymorphisms in the hepatic lipase gene have been associated with variability in plasma HDL-C concentrations, but contradictory results have been reported regarding the effect of diet on this association in adults. In our study, we examined whether dietary fat intake modified the association between lipid levels and the C-514T polymorphism in the hepatic lipase gene (LIPC C-514T) in prepubescent children. The LIPC C-514T polymorphism was determined by PCR and restriction analysis in 1260 healthy school children, aged 6–8. Information on the children’s nutrient intake was obtained by means of a validated food frequency questionnaire. We found that regardless of gender, carriers of the minor allele had significantly higher apo A-I levels compared to noncarrier subjects. The effect of the polymorphism, however, was modified by dietary fat intake. In boys, the presence of the LIPC C-514T polymorphism was associated with significantly higher HDL-C among children within the highest tertiles of total, saturated, monounsaturated, or polyunsaturated fat intake. Apo A-I levels were significantly higher in carriers of the LIPC C-514T polymorphism, but only among boys who consumed high total as well as monounsaturated fat and among girls who consumed high total, saturated, monounsaturated, and polyunsaturated fat. Our data show that dietary fat intake modifies the effect of the LIPC C-514T polymorphism on plasma HDL-C and apo A-I levels in prepubescent children, being associated with higher levels of HDL-C and apo A-I only when fat intake is high. This significant gene-nutrient interaction could help to explain inter-individual variations in the plasma lipid response to fat intake.
Collapse
|
46
|
Fan YM, Raitakari OT, Kähönen M, Hutri-Kähönen N, Juonala M, Marniemi J, Viikari J, Lehtimäki T. Hepatic lipase promoter C-480T polymorphism is associated with serum lipids levels, but not subclinical atherosclerosis: the Cardiovascular Risk in Young Finns Study. Clin Genet 2009; 76:46-53. [PMID: 19558527 DOI: 10.1111/j.1399-0004.2009.01180.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The common C-480T polymorphism (rs1800588) of the hepatic lipase gene (LIPC) has been associated with high-density lipoprotein (HDL) cholesterol, atherosclerosis, and coronary artery disease. In this study, we examined whether the polymorphism is associated with serum lipid and lipoprotein concentrations, as well as with subclinical atherosclerosis in Young Finns. The participants comprised 2041 men and women (aged 24-39 years) enrolled in the Cardiovascular Risk in Young Finns Study with complete data concerning the rs1800588 polymorphism and serum lipids concentration. All participants underwent an ultrasound examination for brachial artery flow-mediated vasodilatation (FMD) and carotid artery intima-media thickness (IMT) measurement. The marker of arterial elasticity, carotid artery compliance (CAC), was also calculated by means of ultrasound and concomitant brachial blood pressure measurements. In all subjects, serum total cholesterol (p < 0.001), HDL cholesterol (p = 0.006), apolipoprotein AI (apoAI, p < 0.001), and triglyceride (p = 0.009) concentrations increased according to rs1800588 genotype in the order CC, CT, and TT. The same order applied only to apoAI after adjustment for age, body mass index, systolic and diastolic blood pressure, smoking, alcohol consumption, physical activity, diabetes, hypertension, contraceptive hormone use in women, and concentrations of glucose, insulin and C-reactive protein in men and women separately (p = 0.007 and p = 0.003, respectively). The polymorphism was also associated with HDL cholesterol, total cholesterol, and triglyceride levels in women (adjusted p = 0.004, p = 0.007 and 0.02, respectively), but not in men (p was not significant for all). No significant association between the rs1800588 and brachial FMD, carotid IMT, or CAC was found among the entire study population or among women or men separately, with or without adjustment for the above-mentioned factors. The rs1800588 is associated with serum lipid and apolipoprotein concentrations, especially in women, but does not seem to be a determinant of brachial artery FMD, carotid IMT, or CAC in young healthy adults.
Collapse
Affiliation(s)
- Y-M Fan
- Laboratory of Atherosclerosis Genetics, Department of Clinical Chemistry, Tampere University Hospital, University of Tampere, FI-33521 Tampere, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Feitosa MF, Myers RH, Pankow JS, Province MA, Borecki IB. LIPC variants in the promoter and intron 1 modify HDL-C levels in a sex-specific fashion. Atherosclerosis 2009; 204:171-7. [PMID: 19101670 PMCID: PMC2710035 DOI: 10.1016/j.atherosclerosis.2008.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 11/18/2022]
Abstract
We previously reported linkage for plasma levels of high-density lipoprotein cholesterol (HDL-C) on 15q21 in Caucasian families from the National Heart, Lung, and Blood Institute Family Heart Study (NHLBI FHS). Hepatic lipase gene (LIPC), which has a major role in lipoprotein metabolism, resides within the linkage region and constitutes an obvious candidate gene. While hepatic lipase is a known player in HDL metabolism, the relationship between common LIPC variants and HDL-C levels remains unclear. In the current study, we employed population-based and family-based tests of association with both quantitative HDL-C levels and a dichotomous dyslipidemia trait (affected men: HDL<40 mg/dL and women: HDL<50 mg/dL, denoted as low HDL). We genotyped 19 tag-SNPs spanning 139.9 kb around the LIPC in the 591 families (2238 subjects). Strong association in a proxy-promoter 5' SNP (rs261342) and HDL-C levels was detected in women, but not in men. The less common allele was associated with an increase of approximately 14% in HDL-C levels, and a decrease of approximately 30% in risk of low HDL. In addition, strong association in women of an intron 1 SNP (rs12593008) and low HDL and moderate association in men (rs8028759) with both HDL-C levels and low HDL phenotype were found and may represent either functional single nucleotide polymorphisms (SNPs), or more likely, SNPs in linkage disequilibrium with functional variants. Because of the association of lipid abnormalities with diabetes, and other lifestyle parameters, we also performed association analyses using different covariate adjustments as well as strategically selected sub-samples. The sex-specific association of rs261342, rs12593008 or rs8028759 remained substantially the same through these analyses. Finally, we found that a common haplotype was overtransmitted to offspring with low HDL-C. The sex-specific associations found in our study could be due to the interactions with the endogenous hormonal environment, lifestyle and/or genetic factors, although the underlying physiologic mechanisms are not understood.
Collapse
Affiliation(s)
- Mary F Feitosa
- Division of Statistical Genomics, Center for Genome Sciences, Washington University School of Medicine, St. Louis, MO, 63108-2212, USA.
| | | | | | | | | |
Collapse
|
48
|
Diagnostic value of post-heparin lipase testing in detecting common genetic variants in the LPL and LIPC genes. Eur J Hum Genet 2009; 17:1386-93. [PMID: 19367320 DOI: 10.1038/ejhg.2009.61] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Post-heparin lipoprotein lipase and hepatic lipase activities are used to identify primary disorders of triglyceride and HDL-cholesterol metabolism. Their ability to identify common variants in the lipoprotein lipase (LPL) and hepatic lipase (LIPC) genes is unclear. To investigate the ability of lipase testing to detect common lipase gene variants, we included 183 patients who had undergone post-heparin lipase testing and genotyped the LPL D9N, N291S, PvuII, HindIII, and S447X and the LIPC-514CT, V73M, V133V, and N193S polymorphisms. Allele frequencies were compared with 163 controls. Polymorphisms with different allele frequencies in patients and controls or influencing lipids, were analyzed further. The diagnostic value of post-heparin lipase testing was assessed using logistic regression and receiver operating characteristic curves. We found that lipase activities did not predict the LPL D9N and N291S polymorphisms, but predicted the LPL S447X and LIPC-514CT polymorphisms. Adjusted for covariates, the area under the receiver operating characteristic curves was 0.643, 0.478, 0.686, and 0.657 for LPL D9N, N291S S447X and LIPC-514CT, respectively. On the basis of these findings, we conclude that high-LPL and low-HL activities associate with the LPL S447X and LIPC-514CT polymorphisms, but low-LPL activity was not related to LPL polymorphisms. Overall, the discriminative ability of post-heparin lipase tests in identifying carriers of common variants in the LPL and LIPC genes was limited. This indicates that conclusions on the genetic causes of lipase activities outside of the normal range should be drawn with caution.
Collapse
|
49
|
Johannsen TH, Kamstrup PR, Andersen RV, Jensen GB, Sillesen H, Tybjaerg-Hansen A, Nordestgaard BG. Hepatic lipase, genetically elevated high-density lipoprotein, and risk of ischemic cardiovascular disease. J Clin Endocrinol Metab 2009; 94:1264-73. [PMID: 19088157 DOI: 10.1210/jc.2008-1342] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Hepatic lipase influences metabolism of high-density lipoprotein (HDL), a risk factor for ischemic cardiovascular disease (ICD: ischemic heart disease and ischemic cerebrovascular disease). OBJECTIVE We tested the hypothesis that genetic variation in the hepatic lipase genetic variants V73M, N193S, S267F, L334F, T383M, and -480c>t influence levels of lipids, lipoproteins, and apolipoproteins and risk of ICD. DESIGN For the cross-sectional study, we genotyped 9003 individuals from the Copenhagen City Heart Study; hereof were 8971 individuals included in the prospective study, 1747 of whom had incident ICD during 28 yr of follow-up. For the case-control studies, 2110 ischemic heart disease patients vs. 4899 controls and 769 ischemic cerebrovascular disease patients vs. 2836 controls, respectively, were genotyped. Follow-up was 100% complete. RESULTS HDL cholesterol was higher by 0.21 mmol/liter in S267F heterozygotes, by 0.06 mmol/liter in -480c>t heterozygotes, and by 0.13 mmol/liter in -480c>t homozygotes, as compared with noncarriers. These HDL increases theoretically predicted hazard ratios for ICD of 0.87 [95% confidence interval (CI) 0.84-0.90], 0.96 (95% CI 0.95-0.97), and 0.91 (95% CI 0.89-0.94), respectively; this calculation assumes that genetically elevated HDL levels confer decreased risk similar to common HDL elevations. In contrast, when all cases and controls were combined, the observed odds ratios for ICD for these three genetic variants vs. noncarriers were 1.19 (0.76-1.88), 1.04 (0.96-1.13), and 1.08 (0.89-1.30), respectively. Hazard/odds ratios for ICD in carriers vs. noncarriers of the four remaining hepatic lipase genetic variants did not differ consistently from 1.0. CONCLUSION Hepatic lipase genetic variants with elevated levels of HDL cholesterol did not associate with risk of ICD.
Collapse
Affiliation(s)
- Trine Holm Johannsen
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | | | | | | | | | | |
Collapse
|
50
|
Boes E, Coassin S, Kollerits B, Heid IM, Kronenberg F. Genetic-epidemiological evidence on genes associated with HDL cholesterol levels: a systematic in-depth review. Exp Gerontol 2009; 44:136-60. [PMID: 19041386 PMCID: PMC2730542 DOI: 10.1016/j.exger.2008.11.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 10/09/2008] [Accepted: 11/04/2008] [Indexed: 12/12/2022]
Abstract
High-density lipoprotein (HDL) particles exhibit multiple antiatherogenic effects. They are key players in the reverse cholesterol transport which shuttles cholesterol from peripheral cells (e.g. macrophages) to the liver or other tissues. This complex process is thought to represent the basis for the antiatherogenic properties of HDL particles. The amount of cholesterol transported in HDL particles is measured as HDL cholesterol (HDLC) and is inversely correlated with the risk for coronary artery disease: an increase of 1mg/dL of HDLC levels is associated with a 2% and 3% decrease of the risk for coronary artery disease in men and women, respectively. Genetically determined conditions with high HDLC levels (e.g. familial hyperalphalipoproteinemia) often coexist with longevity, and higher HDLC levels were found among healthy elderly individuals. HDLC levels are under considerable genetic control with heritability estimates of up to 80%. The identification and characterization of genetic variants associated with HDLC concentrations can provide new insights into the background of longevity. This review provides an extended overview on the current genetic-epidemiological evidence from association studies on genes involved in HDLC metabolism. It provides a path through the jungle of association studies which are sometimes confusing due to the varying and sometimes erroneous names of genetic variants, positions and directions of associations. Furthermore, it reviews the recent findings from genome-wide association studies which have identified new genes influencing HDLC levels. The yet identified genes together explain only a small amount of less than 10% of the HDLC variance, which leaves an enormous room for further yet to be identified genetic variants. This might be accomplished by large population-based genome-wide meta-analyses and by deep-sequencing approaches on the identified genes. The resulting findings will probably result in a re-drawing and extension of the involved metabolic pathways of HDLC metabolism.
Collapse
Affiliation(s)
- Eva Boes
- Division of Genetic Epidemiology; Department of Medical Genetics, Molecular and Clinical Pharmacology; Innsbruck Medical University, Innsbruck, Austria
| | - Stefan Coassin
- Division of Genetic Epidemiology; Department of Medical Genetics, Molecular and Clinical Pharmacology; Innsbruck Medical University, Innsbruck, Austria
| | - Barbara Kollerits
- Division of Genetic Epidemiology; Department of Medical Genetics, Molecular and Clinical Pharmacology; Innsbruck Medical University, Innsbruck, Austria
| | - Iris M. Heid
- Institute of Epidemiology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Information Management, Biometry and Epidemiology; Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Florian Kronenberg
- Division of Genetic Epidemiology; Department of Medical Genetics, Molecular and Clinical Pharmacology; Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|