1
|
Gill AS, Sharma P, Nassar M, Marte E. Hypophosphatasia: A case report. World J Clin Cases 2025; 13:103642. [DOI: 10.12998/wjcc.v13.i21.103642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/28/2025] [Accepted: 03/27/2025] [Indexed: 04/27/2025] Open
Abstract
BACKGROUND Hypophosphatasia (HPP) is a rare metabolic disorder caused by low tissue-nonspecific alkaline phosphatase (ALP) activity, presenting symptoms from bone demineralization to tooth loss. It affects multiple systems and is diagnosed based on clinical symptoms, radiological findings, and lab tests. This case report emphasizes considering HPP in patients with unexplained bone pain and low ALP levels, especially with underlying osteopenia or osteoporosis. It highlights the importance of genetic testing and counseling for early diagnosis and treatment, aiming to raise clinician awareness.
CASE SUMMARY We present a case of a 65-year-old female patient who was referred to our endocrinology clinic for complaints of generalized bone pain and hypothyroidism. Initial evaluation revealed osteopenia, managed with calcium and vitamin D supplementation. Persistently low ALP levels and elevated vitamin B6 levels led to the diagnosis of HPP, confirmed by genetic testing identifying a pathogenic ALPL gene variant [c.119C>T (p.Ala40Val)]. Despite conservative treatment, her bone density declined, although remaining in the osteopenic range. The Fracture Risk Assessment score indicated a low risk of major osteoporotic and hip fractures, not warranting immediate treatment. Plans are underway to initiate enzyme replacement therapy with asfotase alfa.
CONCLUSION Recognizing HPP is crucial, as early diagnosis and treatment can significantly improve patient outcomes and prevent complications.
Collapse
Affiliation(s)
- Angad Singh Gill
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14221, United States
- Department of Research, American Society for Inclusion, Diversity, and Equity in Healthcare, Lewes, DE 19958, United States
| | - Pallavi Sharma
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14221, United States
- Department of Research, American Society for Inclusion, Diversity, and Equity in Healthcare, Lewes, DE 19958, United States
| | - Mahmoud Nassar
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14221, United States
- Department of Research, American Society for Inclusion, Diversity, and Equity in Healthcare, Lewes, DE 19958, United States
| | - Erlin Marte
- Department of Research, American Society for Inclusion, Diversity, and Equity in Healthcare, Lewes, DE 19958, United States
- Department of Endocrinology, Buffalo Veterans Affairs Medical Center, Buffalo, NY 14215, United States
| |
Collapse
|
2
|
Diwan N, Alam A, Verma N. Infantile hypophosphatasia: a rare aetiology of recurrent pneumonia. BMJ Case Rep 2025; 18:e261831. [PMID: 39922572 DOI: 10.1136/bcr-2024-261831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
Abstract
We report a rare case of infantile hypophosphatasia associated with recurrent pneumonia, a condition with few similar cases documented globally. Clinical exome sequencing identified a heterozygous mutation in the alkaline phosphatase (ALPL) gene (c.69_74del; p.Glu23_Lys24del), the first such case reported in India and classified as 'likely pathogenic'. Its causality remains unproven due to limited evidence, including the absence of in vitro studies and pedigree analysis. Phenotypic variability may be influenced by factors such as incomplete penetrance, variable expressivity and environmental or epigenetic modifiers. This case highlights a rare but important cause of recurrent pneumonia in infants. Despite treatment, the child succumbed to severe pneumonia within 2 months. Clinicians should consider infantile hypophosphatasia in cases of recurrent pneumonia, motor delay, seizures, severe malnutrition and persistently low serum alkaline phosphatase. Further genetic and functional studies are needed to validate genotype-phenotype correlations and improve disease management.
Collapse
Affiliation(s)
- Nikita Diwan
- Department of Paediatrics, King George's Medical College, Lucknow, Uttar Pradesh, India
| | - Areesha Alam
- Department of Paediatrics, King George's Medical College, Lucknow, Uttar Pradesh, India
| | - Nishant Verma
- Department of Paediatrics, King George's Medical College, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Lira dos Santos EJ, Mohamed FF, Kramer K, Foster BL. Dental manifestations of hypophosphatasia: translational and clinical advances. JBMR Plus 2025; 9:ziae180. [PMID: 39872235 PMCID: PMC11770227 DOI: 10.1093/jbmrpl/ziae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Hypophosphatasia (HPP) is an inherited error in metabolism resulting from loss-of-function variants in the ALPL gene, which encodes tissue-nonspecific alkaline phosphatase (TNAP). TNAP plays a crucial role in biomineralization of bones and teeth, in part by reducing levels of inorganic pyrophosphate (PPi), an inhibitor of biomineralization. HPP onset in childhood contributes to rickets, including growth plate defects and impaired growth. In adulthood, osteomalacia from HPP contributes to increased fracture risk. HPP also affects oral health. The dentoalveolar complex, that is, the tooth and supporting connective tissues of the surrounding periodontia, include 4 unique hard tissues: enamel, dentin, cementum, and alveolar bone, and all can be affected by HPP. Premature tooth loss of fully rooted teeth is pathognomonic for HPP. Patients with HPP often have complex oral health issues that require multidisciplinary dental care, potentially involving general or pediatric dentists, periodontists, prosthodontists, and orthodontists. The scientific literature to date has relatively few reports on dental care of individuals with HPP. Animal models to study HPP included global Alpl knockout mice, Alpl mutation knock-in mice, and mice with tissue-specific conditional Alpl ablation, allowing for new studies on pathological mechanisms and treatment effects in dental and skeletal tissues. Enzyme replacement therapy (ERT) in the form of injected, recombinant mineralized tissue-targeted TNAP has been available for nearly a decade and changed the prognosis for those with HPP. However, effects of ERT on dental tissues remain poorly defined and limitations of the current ERT have prompted exploration of gene therapy approaches to treat HPP. Preclinical gene therapy studies are promising and may contribute to improved oral health in HPP.
Collapse
Affiliation(s)
- Elis J Lira dos Santos
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Fatma F Mohamed
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Kaitrin Kramer
- Cleft Palate-Craniofacial Clinic, Nationwide Children's Hospital, Columbus, OH, 43205, United States
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States
| |
Collapse
|
4
|
Gan Y, Li G, Wei Z, Feng Y, Shi Y, Deng Y. Precision diagnosis and treatment of vitamin metabolism-related epilepsy. ACTA EPILEPTOLOGICA 2024; 6:27. [PMID: 40217438 PMCID: PMC11960229 DOI: 10.1186/s42494-024-00169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/23/2024] [Indexed: 01/05/2025] Open
Abstract
Epilepsy is a chronic disorder of the nervous system caused by abnormal discharges from brain cells. Structural, infectious, metabolic, immunologic, and unknown causes can contribute to the development of seizures. In recent years, there has been increasing attention on epilepsy caused by genetic metabolic disorders. More than two hundred inherited metabolic disorders have been identified as potential cause of seizures, and they are mainly associated with energy deficiency in the brain, accumulation of toxic substances, abnormal neurotransmitter transmission, and deficiency of cofactors. Vitamins play a crucial role as components of several enzymes or coenzymes. Impaired metabolism of thiamine, biotin, vitamin B6, vitamin B12 and folic acid can contribute to early-onset seizures and developmental abnormalities in infants. However, timely supplementation therapy can significantly improve patient prognosis of affected patients. Therefore, a thorough understanding and investigation of the metabolic basis of epilepsy is essential for the development of precise therapeutic approaches, which could provide significant therapeutic benefits for patients.
Collapse
Affiliation(s)
- Yajing Gan
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Guoyan Li
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Zihan Wei
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yan Feng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Yuqing Shi
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Yanchun Deng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
- Xijing Institute of Epilepsy and Encephalopathy, Xi'an, 710000, People's Republic of China.
| |
Collapse
|
5
|
Aljuraibah F, Alalwan I, Habeb A. Diagnostic and New Therapeutic Approaches to Two Challenging Pediatric Metabolic Bone Disorders: Hypophosphatasia and X-linked Hypophosphatemic Rickets. Curr Pediatr Rev 2024; 20:395-404. [PMID: 37927073 DOI: 10.2174/0115733963206838231031102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/09/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
The diagnosis and management of metabolic bone disease among children can be challenging. This difficulty could be due to many factors, including limited awareness of these rare conditions, the complex pathophysiology of calcium and phosphate homeostasis, the overlapping phenotype with more common disorders (such as rickets), and the lack of specific treatments for these rare disorders. As a result, affected individuals could experience delayed diagnosis or misdiagnosis, leading to improper management. In this review, we describe the challenges facing diagnostic and therapeutic approaches to two metabolic bone disorders (MBD) among children: hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH). We focus on explaining the pathophysiological processes that conceptually underpin novel therapeutic approaches, as well as these conditions' clinical or radiological similarity to nutritional rickets. Particularly in areas with limited sun exposure and among patients not supplementing vitamin D, nutritional rickets are still more common than HPP and XLH, and pediatricians and primary physicians frequently encounter this disorder in their practices. More recently, our understanding of these disorders has significantly improved, leading to the development of novel therapies. Asfotas alfa, a recombinant, human- tissue, nonspecific alkaline phosphatase, improved the survival of patients with HPP. Burosumab, a human monoclonal anti-FGF23 antibody, was recently approved as a specific therapy for XLH. We also highlight the current evidence on these two specific therapies' safety and effectiveness, though long-term data are still needed. Both HPP and XLH are multisystemic disorders that should be managed by multidisciplinary teams. Finally, recognizing these conditions in early stages will enable affected children and young adults to benefit from newly introduced, specific therapies.
Collapse
Affiliation(s)
- Fahad Aljuraibah
- Department of Pediatrics, King Abdullah Specialist Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs Riyadh, Saudi Arabia
| | - Ibrahim Alalwan
- Department of Pediatrics, King Abdullah Specialist Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs Riyadh, Saudi Arabia
| | - Abdelhadi Habeb
- Department of Pediatrics, Prince Mohammed bin Abdulaziz Hospital for National Guard, Al-Madinah, Saudi Arabia
| |
Collapse
|
6
|
Amadeu de Oliveira F, Mohamed FF, Kinoshita Y, Narisawa S, Farquharson C, Miyake K, Foster BL, Millan JL. Gene Therapy Using Recombinant AAV Type 8 Vector Encoding TNAP-D 10 Improves the Skeletal Phenotypes in Murine Models of Osteomalacia. JBMR Plus 2023; 7:e10709. [PMID: 36699639 PMCID: PMC9850441 DOI: 10.1002/jbm4.10709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Hypophosphatasia (HPP), caused by loss-of-function mutations in the ALPL gene encoding tissue-nonspecific alkaline phosphatase (TNAP), is characterized by skeletal and dental hypomineralization that can vary in severity from life-threatening to milder manifestations only in adulthood. PHOSPHO1 deficiency leads to early-onset scoliosis, osteomalacia, and fractures that mimic pseudo-HPP. Asfotase alfa, a life-saving enzyme replacement therapy approved for pediatric-onset HPP, requires subcutaneous injections 3 to 6 times per week. We recently showed that a single injection of an adeno-associated virus vector serotype 8 harboring TNAP-D10 (AAV8-TNAP-D10) effectively prevented skeletal disease and prolonged life in Alpl -/- mice phenocopying infantile HPP. Here, we aimed to determine the efficacy of AAV8-TNAP-D10 in improving the skeletal and dental phenotype in the Alpl Prx1/Prx1 and Phospho1 -/- mouse models of late-onset (adult) HPP and pseudo-HPP, respectively. A single dose of 3 × 1011 vector genomes per body (vg/b) was injected intramuscularly into 8-week-old Alpl Prx1/Prx1 and wild-type (WT) littermates, or into 3-day-old Phospho1 -/- and WT mice, and treatment efficacy was evaluated after 60 days for late-onset HPP mice and after 90 days for Phospho1 -/- mice. Biochemical analysis showed sustained serum alkaline phosphatase activity and reduced plasma PPi levels, and radiographic images, micro-computed tomography (micro-CT) analysis, and hematoxylin and eosin (H&E) staining showed improvements in the long bones in the late-onset HPP mice and corrected scoliosis in the Phospho1 -/- mice. Micro-CT analysis of the dentoalveolar complex did not reveal significant changes in the phenotype of late-onset HPP and pseudo-HPP models. Moreover, alizarin red staining analysis showed that AAV8-TNAP-D10 treatment did not promote ectopic calcification of soft organs in adult HPP mice after 60 days of treatment, even after inducing chronic kidney disease. Overall, the AAV8-TNAP-D10 treatment improved the skeletal phenotype in both the adult HPP and pseudo-HPP mouse models. This preclinical study will contribute to the advancement of gene therapy for the improvement of skeletal disease in patients with heritable forms of osteomalacia. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Fatma F. Mohamed
- Division of Biosciences, College of DentistryThe Ohio State UniversityColumbusOHUSA
| | - Yuka Kinoshita
- Human Genetics ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Sonoko Narisawa
- Human Genetics ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Colin Farquharson
- The Royal (Dick) School of Veterinary Studies (RDSVS), The Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Koichi Miyake
- Department of Gene TherapyNippon Medical SchoolTokyoJapan
| | - Brian L Foster
- Division of Biosciences, College of DentistryThe Ohio State UniversityColumbusOHUSA
| | - Jose Luis Millan
- Human Genetics ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| |
Collapse
|
7
|
Hypophosphatasia: A Unique Disorder of Bone Mineralization. Int J Mol Sci 2021; 22:ijms22094303. [PMID: 33919113 PMCID: PMC8122659 DOI: 10.3390/ijms22094303] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare genetic disease characterized by a decrease in the activity of tissue non-specific alkaline phosphatase (TNSALP). TNSALP is encoded by the ALPL gene, which is abundantly expressed in the skeleton, liver, kidney, and developing teeth. HPP exhibits high clinical variability largely due to the high allelic heterogeneity of the ALPL gene. HPP is characterized by multisystemic complications, although the most common clinical manifestations are those that occur in the skeleton, muscles, and teeth. These complications are mainly due to the accumulation of inorganic pyrophosphate (PPi) and pyridoxal-5′-phosphate (PLP). It has been observed that the prevalence of mild forms of the disease is more than 40 times the prevalence of severe forms. Patients with HPP present at least one mutation in the ALPL gene. However, it is known that there are other causes that lead to decreased alkaline phosphatase (ALP) levels without mutations in the ALPL gene. Although the phenotype can be correlated with the genotype in HPP, the prediction of the phenotype from the genotype cannot be made with complete certainty. The availability of a specific enzyme replacement therapy for HPP undoubtedly represents an advance in therapeutic strategy, especially in severe forms of the disease in pediatric patients.
Collapse
|
8
|
Miranda VHS, Gomes TR, Eller DE, Ferraz LDCN, Chaves AT, Bicalho KA, Silva CEC, Birbrair A, Pascoal Xavier MA, de Goes AM, Corrêa-Oliveira R, Alves ÉAR, Bozzi A. Liver damage in schistosomiasis is reduced by adipose tissue-derived stem cell therapy after praziquantel treatment. PLoS Negl Trop Dis 2020; 14:e0008635. [PMID: 32853206 PMCID: PMC7480869 DOI: 10.1371/journal.pntd.0008635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/09/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background In view of the potential immunosuppressive and regenerative properties of mesenchymal stem cells (MSC), we investigated whether transplantation of adipose tissue-derived stem cells (ASC) could be used to control the granulomatous reaction in the liver of mice infected with Schistosoma mansoni after Praziquantel (PZQ) treatment. Methodology/Prinicpal findings C57BL/6 mice infected with S. mansoni were treated with PZQ and transplanted intravenously with ASC from uninfected mice. Liver morpho-physiological and immunological analyses were performed. The combined PZQ/ASC therapy significantly reduced the volume of hepatic granulomas, as well as liver damage as measured by ALT levels. We also observed that ASC accelerated the progression of the granulomatous inflammation to the advanced/curative phase. The faster healing interfered with the expression of CD28 and CTLA-4 molecules in CD4+ T lymphocytes, and the levels of IL-10 and IL-17 cytokines, mainly in the livers of PZQ/ASC-treated mice. Conclusions Our results show that ASC therapy after PZQ treatment results in smaller granulomas with little tissue damage, suggesting the potential of ASC for the development of novel therapeutic approaches to minimize hepatic lesions as well as a granulomatous reaction following S. mansoni infection. Further studies using the chronic model of schistosomiasis are required to corroborate the therapeutic use of ASC for schistosomiasis. Schistosomiasis is the second most prevalent parasitic disease in the world and is caused by the Schistosoma trematode. This disease is characterized by a granulomatous reaction around parasite eggs trapped in the tissues. The liver is one of the most affected organs and can develop severe fibrosis. Praziquantel (PZQ) is the treatment for schistosomiasis and kills the adult the worm; however, inflammation still persists around the eggs in the tissues. Mesenchymal stem cells (MSC) have been extensively studied as an alternative therapy to repair tissues and to stop inflammation due to their potential to differentiate in several cells types (bone, cartilage, fat, tendon, muscle, and marrow stroma), and to interfere with immune responses. This scenario has motivated the authors to investigate the use of MSC extract from adipose tissue (ASC) associated with PZQ to treat schistosomiasis. Briefly, mice were treated with PZQ followed by ASC injection showing significant reduction of the granulomas and normal levels of the enzyme alanine aminotransferase, an indicator of liver damage. These results suggest that ASC has the potential to be used as a novel therapeutic approach to control inflammation following infection by S. mansoni or liver disorders. Although the findings are promising, further studies using the chronic model of schistosomiasis are required to confirm using ASC for schistosomiasis therapy.
Collapse
Affiliation(s)
| | - Talita Rocha Gomes
- Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Morfologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | - Alexander Birbrair
- Departamento de Patologia, ICB, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Antônio Pascoal Xavier
- Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
- Faculdade de Medicina, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Adriana Bozzi
- Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- * E-mail:
| |
Collapse
|
9
|
Abstract
Hypophosphatasia (HPP) is a rare inherited systemic metabolic disease caused by mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) gene. TNSALP is expressed in the liver, kidney and bone, and its substrates include TNSALP inorganic pyrophosphate, pyridoxal-5'-phosphate (PLP)/vitamin B6 and phosphoethanolamine (PEA). Autosomal recessive and dominant forms of the disease result in a range of clinical entities. Major hallmarks are low alkaline phosphatase (ALP) and elevated PLP and PEA levels. Very severe infantile forms of HPP cause premature death as a result of respiratory insufficiency and also present with hypo-mineralisation leading to deformed limbs with, in some cases, the near-absence of bones and skull altogether. Respiratory failure, rib fractures and seizures due to vitamin B6 deficiency are indicative of a poor prognosis. Craniosynostosis is frequent. HPP leads to an unusual presentation of rickets with high levels of calcium and phosphorus, resulting in hypercalciuria, nephrocalcinosis and low ALP levels. Hypercalcaemic crisis, failure to thrive and growth retardation are concerns in infants. Fractures are common in both infantile and adult forms of the disease, concomitantly occurring with unexplained chronic pain and fatigue. Dental clinical presentations, which include the premature loss of teeth, are also commonly found in HPP and specifically manifest as odontohypophosphatasia. A novel enzyme therapy for human HPP, asfotase alfa, which is specifically targeted to mineralised tissues, has been developed in the past decades. While this treatment seems very promising, especially for infantile HPP, many questions regarding its long-term effects, the management of treatment, and any potential secondary adverse effects remain unresolved.
Collapse
|
10
|
Use of Mesenchymal Stem/Stromal Cells for Pediatric Orthopedic Applications. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Choida V, Bubbear JS. Update on the management of hypophosphatasia. Ther Adv Musculoskelet Dis 2019; 11:1759720X19863997. [PMID: 31413732 PMCID: PMC6676257 DOI: 10.1177/1759720x19863997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 06/22/2019] [Indexed: 12/13/2022] Open
Abstract
Hypophosphatasia is a rare inherited disease caused by a loss of function mutations in the gene that codes for the tissue-nonspecific alkaline phosphatase enzyme. It is autosomally inherited and at least 388 different genetic defects have been identified. The clinical presentation is variable from a severe perinatal form, that is fatal if untreated, to adult-onset disease. This review covers the pathophysiology, diagnosis and current management option including the recently licensed enzyme replacement therapy asfotase alfa.
Collapse
Affiliation(s)
- V Choida
- Metabolic Unit, Royal National Orthopaedic Hospital, Stanmore, UK
| | - J S Bubbear
- Metabolic Unit, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| |
Collapse
|
12
|
Whyte MP, Leung E, Wilcox WR, Liese J, Argente J, Martos-Moreno GÁ, Reeves A, Fujita KP, Moseley S, Hofmann C. Natural History of Perinatal and Infantile Hypophosphatasia: A Retrospective Study. J Pediatr 2019; 209:116-124.e4. [PMID: 30979546 DOI: 10.1016/j.jpeds.2019.01.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To report clinical characteristics and medical history data obtained retrospectively for a large cohort of pediatric patients with perinatal and infantile hypophosphatasia. STUDY DESIGN Medical records from academic medical centers known to diagnose and/or treat hypophosphatasia were reviewed. Patients born between 1970 and 2011 with hypophosphatasia and any of the following signs/symptoms at age <6 months were eligible: vitamin B6-dependent seizures, respiratory compromise, or rachitic chest deformity (NCT01419028). Patient demographics and characteristics, respiratory support requirements, invasive ventilator-free survival, and further complications of hypophosphatasia were followed for up to the first 5 years of life. RESULTS Forty-eight patients represented 12 study sites in 7 countries; 13 patients were alive, and 35 were dead (including 1 stillborn). Chest deformity, respiratory distress, respiratory failure (as conditioned by the eligibility criteria), failure to thrive, and elevated calcium levels were present in >70% of patients between birth and age 5 years. Vitamin B6-dependent seizures and respiratory distress and failure were associated significantly (P < .05) with the risk of early death. Serum alkaline phosphatase activity in all 41 patients tested (mean [SD]: 18.1 [15.4] U/L) was below the mean lower limit of normal of the reference ranges of the various laboratories (88.2 U/L). Among the 45 patients with relevant data, 29 had received respiratory support, of whom 26 had died at the time of data collection. The likelihood of invasive ventilator-free survival for this cohort decreased to 63% at 3 months, 54% at 6 months, 31% at 12 months, and 25% at 5 years. CONCLUSIONS Patients with perinatal or infantile hypophosphatasia and vitamin B6-dependent seizures, with or without significant respiratory distress or chest deformities, have high morbidity and mortality in the first 5 years of life. TRIAL REGISTRATION ClinicalTrials.gov: NCT01419028.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St Louis, MO; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, MO.
| | - Edward Leung
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - William R Wilcox
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Johannes Liese
- University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, CIBERobn, ISCIII, IMDEA Food Institute, CEIUAM+CSIC, Madrid, Spain
| | - Gabriel Á Martos-Moreno
- Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, CIBERobn, ISCIII, IMDEA Food Institute, CEIUAM+CSIC, Madrid, Spain
| | - Amy Reeves
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St Louis, MO
| | - Kenji P Fujita
- Clinical Research, Alexion Pharmaceuticals, Inc, Boston, MA
| | - Scott Moseley
- Biostatistics, Alexion Pharmaceuticals, Inc, Boston, MA
| | - Christine Hofmann
- University Children's Hospital, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
13
|
Bowden SA, Foster BL. Alkaline Phosphatase Replacement Therapy for Hypophosphatasia in Development and Practice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:279-322. [PMID: 31482504 DOI: 10.1007/978-981-13-7709-9_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hypophosphatasia (HPP) is an inherited disorder that affects bone and tooth mineralization characterized by low serum alkaline phosphatase. HPP is caused by loss-of-function mutations in the ALPL gene encoding the protein, tissue-nonspecific alkaline phosphatase (TNSALP). TNSALP is expressed by mineralizing cells of the skeleton and dentition and is associated with the mineralization process. Generalized reduction of activity of the TNSALP leads to accumulation of its substrates, including inorganic pyrophosphate (PPi) that inhibits physiological mineralization. This leads to defective skeletal mineralization, with manifestations including rickets, osteomalacia, fractures, and bone pain, all of which can result in multi-systemic complications with significant morbidity, as well as mortality in severe cases. Dental manifestations are nearly universal among affected individuals and feature most prominently premature loss of deciduous teeth. Management of HPP has been limited to supportive care until the introduction of a TNSALP enzyme replacement therapy (ERT), asfotase alfa (AA). AA ERT has proven to be transformative, improving survival in severely affected infants and increasing overall quality of life in children and adults with HPP. This chapter provides an overview of TNSALP expression and functions, summarizes HPP clinical types and pathologies, discusses early attempts at therapies for HPP, summarizes development of HPP mouse models, reviews design and validation of AA ERT, and provides up-to-date accounts of AA ERT efficacy in clinical trials and case reports, including therapeutic response, adverse effects, limitations, and potential future directions in therapy.
Collapse
Affiliation(s)
- S A Bowden
- Division of Endocrinology, Department of Pediatrics, Nationwide Children's Hospital/The Ohio State University College of Medicine, Columbus, OH, USA.
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Bowden SA, Foster BL. Profile of asfotase alfa in the treatment of hypophosphatasia: design, development, and place in therapy. Drug Des Devel Ther 2018; 12:3147-3161. [PMID: 30288020 PMCID: PMC6161731 DOI: 10.2147/dddt.s154922] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypophosphatasia (HPP) is a multi-systemic metabolic disorder caused by loss-of-function mutations in the ALPL gene that encodes the mineralization-associated enzyme, tissue-nonspecific alkaline phosphatase (TNSALP). HPP is characterized by defective bone and dental mineralization, leading to skeletal abnormalities with complications resulting in significant morbidity and mortality. Management of HPP has been limited to supportive care until the introduction of a recently approved enzyme replacement therapy employing bone-targeted recombinant human TNSALP, asfotase alfa (AA). This new therapy has been transformative as it improves survival in severely affected infants, and overall quality of life in children and adults with HPP. This review provides an overview of HPP, focusing on important steps in the development of AA enzyme replacement therapy, including the drug design, preclinical studies in the HPP mouse model, and outcomes from clinical trials and case report publications to date, with special attention given to response to therapy of skeletal manifestations, biochemical features, and other clinical manifestations. The limitations, adverse effects, and outcomes of AA are outlined and the place in therapy for individuals with HPP is discussed.
Collapse
Affiliation(s)
- Sasigarn A Bowden
- Division of Endocrinology, Department of Pediatrics, Nationwide Children's Hospital/The Ohio State University College of Medicine, Columbus, OH 43205, USA,
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
15
|
Deeb A, Elfatih A. Could Alerting Physicians for Low Alkaline Phosphatase Levels Be Helpful in Early Diagnosis of Hypophosphatasia? J Clin Res Pediatr Endocrinol 2018; 10:19-24. [PMID: 28766503 PMCID: PMC5838368 DOI: 10.4274/jcrpe.4426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Hypophosphatasia (HPP) is an inborn error of metabolism with significant morbidity and mortality. Its presentation is nonspecific leading to delayed or missed diagnosis. Low alkaline phosphatase (ALP) is a diagnostic test. Unlike high ALP, low level is commonly not flagged by laboratories as abnormal. A new treatment was shown to be effective in HPP. In this study we aimed to establish the frequency of low ALP levels requiring notification to physicians by the laboratory and also to describe the clinical manifestations of patients presenting with low ALP for a possible diagnosis of HPP. METHODS Patients under age 18 years with low ALP levels were identified from biochemistry records over a period of 6 months. Reference ranges were used as per the Associated Regional and University Pathologists Reference Laboratory (Utah, USA). Electronic results for patients with low levels were checked for flagging as abnormal/low ALP results. Charts of identified patients were reviewed. Presenting features were categorized under groups of disorders. RESULTS ALP levels were tested in 2890 patients. 702 had values less than 160 U/L. Of these patients, 226 (32%) had age/gender specific low ALP. None of the low ALP results was flagged as low. Twenty-one had more than one low reading and their charts were reviewed. Four patients in the neuromuscular and four in the miscellaneous group presented with features consistent with HPP despite these patients having no specific diagnoses. CONCLUSION Laboratories do not alert physicians in cases with low ALP levels. A persistently low level in patients with unspecified diagnoses could be a key to diagnose HPP. Implementing lab-specific ranges and alerting for low levels could prompt physicians to investigate for undiagnosed HPP.
Collapse
Affiliation(s)
- Asma Deeb
- Mafraq Hospital, Clinic of Paediatric Endocrinology, Abu Dhabi, United Arab Emirates,* Address for Correspondence: Mafraq Hospital, Clinic of Pediatric Endocrinology, Abu Dhabi, United Arab Emirates Phone: +971 508350568 E-mail:
| | - Abubaker Elfatih
- Shaikh Khalifa Medical City, Clinic of Biochemistry, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
Kishnani PS, Rush ET, Arundel P, Bishop N, Dahir K, Fraser W, Harmatz P, Linglart A, Munns CF, Nunes ME, Saal HM, Seefried L, Ozono K. Monitoring guidance for patients with hypophosphatasia treated with asfotase alfa. Mol Genet Metab 2017; 122:4-17. [PMID: 28888853 DOI: 10.1016/j.ymgme.2017.07.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 11/15/2022]
Abstract
Hypophosphatasia (HPP) is a rare, inherited, systemic, metabolic disorder caused by autosomal recessive mutations or a single dominant-negative mutation in the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). The disease is associated with a broad range of signs, symptoms, and complications, including impaired skeletal mineralization, altered calcium and phosphate metabolism, recurrent fractures, pain, respiratory problems, impaired growth and mobility, premature tooth loss, developmental delay, and seizures. Asfotase alfa is a human, recombinant enzyme replacement therapy that is approved in many countries for the treatment of patients with HPP. To address the unmet need for guidance in the monitoring of patients receiving asfotase alfa, an international panel of physicians with experience in diagnosing and managing HPP convened in May 2016 to discuss treatment monitoring parameters. The panel discussions focused on recommendations for assessing and monitoring patients after the decision to treat with asfotase alfa had been made and did not include recommendations for whom to treat. Based on the consensus of panel members, this review provides guidance on the monitoring of patients with HPP during treatment with asfotase alfa, including recommendations for laboratory, efficacy, and safety assessments and the frequency with which these should be performed during the course of treatment. Recommended assessments are based on patient age and include regular monitoring of biochemistry, skeletal radiographs, respiratory function, growth, pain, mobility and motor function, and quality of life. Because of the systemic presentation of HPP, a coordinated, multidisciplinary, team-based, patient-focused approach is recommended in the management of patients receiving asfotase alfa. Monitoring of efficacy and safety outcomes must be tailored to the individual patient, depending on medical history, clinical manifestations, availability of resources in the clinical setting, and the clinician's professional judgment.
Collapse
Affiliation(s)
- Priya S Kishnani
- Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA.
| | - Eric T Rush
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA(2)
| | - Paul Arundel
- Metabolic Bone Team, Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, UK
| | - Nick Bishop
- Academic Unit of Child Health, University of Sheffield and Sheffield Children's Hospital, Sheffield S10 2TH, UK
| | - Kathryn Dahir
- Division of Diabetes and Endocrinology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - William Fraser
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7UY, UK
| | - Paul Harmatz
- Pediatric Gastroenterology and Nutrition, UCSF Benioff Children's Hospital Oakland, Oakland, CA 94609, USA
| | - Agnès Linglart
- Service d'Endocrinologie Pédiatrique, Hôpital Bicêtre Paris-Sud, APHP, 94270 Le Kremlin Bicêtre, France
| | - Craig F Munns
- Paediatrics & Child Health, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark E Nunes
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Howard M Saal
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Lothar Seefried
- Orthopedic Department, University of Würzburg, Würzburg, Bavaria 97074, Germany
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Abstract
Hypophosphatasia (HPP) is the inborn-error-of-metabolism that features low serum alkaline phosphatase (ALP) activity (hypophosphatasemia) caused by loss-of-function mutation(s) of the gene that encodes the tissue-nonspecific isoenzyme of ALP (TNSALP). Autosomal recessive or autosomal dominant inheritance from among >300 TNSALP (ALPL) mutations largely explains HPP's remarkably broad-ranging severity. TNSALP is a cell-surface homodimeric phosphohydrolase richly expressed in the skeleton, liver, kidney, and developing teeth. In HPP, TNSALP substrates accumulate extracellularly. Among them is inorganic pyrophosphate (PPi), a potent inhibitor of mineralization. Superabundance of extracellular PPi explains the hard tissue complications of HPP that feature premature loss of deciduous teeth and often rickets or osteomalacia as well as calcific arthropathies in some affected adults. In infants with severe HPP, blocked entry of minerals into the skeleton can cause hypercalcemia, and insufficient hydrolysis of pyridoxal 5'-phosphate (PLP), the major circulating form of vitamin B6, can cause pyridoxine-dependent seizures. Elevated circulating PLP is a sensitive and specific biochemical marker for HPP. Also, the TNSALP substrate phosphoethanolamine (PEA) is usually elevated in serum and urine in HPP, though less reliably for diagnosis. Pathognomonic radiographic changes occur in pediatric HPP when the skeletal disease is severe. TNSALP mutation analysis is essential for recurrence risk assessment for HPP in future pregnancies and for prenatal diagnosis. HPP was the final rickets/osteomalacia to have a medical treatment. Now, significant successes using asfotase alfa, a mineral-targeted recombinant TNSALP, are published concerning severely affected newborns, infants, and children. Asfotase alfa was approved by regulatory agencies multinationally in 2015 typically for pediatric-onset HPP.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri, USA.
| |
Collapse
|
18
|
Kiernan J, Davies JE, Stanford WL. Concise Review: Musculoskeletal Stem Cells to Treat Age-Related Osteoporosis. Stem Cells Transl Med 2017; 6:1930-1939. [PMID: 28834263 PMCID: PMC6430063 DOI: 10.1002/sctm.17-0054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/14/2017] [Indexed: 01/03/2023] Open
Abstract
Age‐related (type‐II) osteoporosis is a common and debilitating condition driven in part by the loss of bone marrow (BM) mesenchymal stromal cells (MSC) and their osteoblast progeny, leading to reduced bone formation. Current pharmacological regiments targeting age‐related osteoporosis do not directly treat the disease by increasing bone formation, but instead use bisphosphonates to reduce bone resorption—a treatment designed for postmenopausal (type‐I) osteoporosis. Recently, the bone regenerative capacity of MSCs has been found within a very rare population of skeletal stem cells (SSCs) residing within the larger heterogeneous BM‐MSC pool. The osteoregenerative potential of SSCs would be an ideal candidate for cell‐based therapies to treat degenerative bone diseases such as osteoporosis. However, to date, clinical and translational studies attempting to improve bone formation through cell transplantation have used the larger, nonspecific, MSC pool. In this review, we will outline the physiological basis of age‐related osteoporosis, as well as discuss relevant preclinical studies that use exogenous MSC transplantation with the aim of treating osteoporosis in murine models. We will also discuss results from specific clinical trials aimed at treating other systemic bone diseases, and how the discovery of SSC could help realize the full regenerative potential of MSC therapy to increase bone formation. Finally, we will outline how ancillary clinical trials could be initiated to assess MSC/SSC‐mediated bone formation gains in existing and potentially unrelated clinical trials, setting the stage for a dedicated clinical investigation to treat age‐related osteoporosis. Stem Cells Translational Medicine2017;6:1930–1939
Collapse
Affiliation(s)
- Jeffrey Kiernan
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - John E Davies
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - William L Stanford
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Departments of Cellular & Molecular Medicine, and Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Iqbal U, Anwar H, Chaudhary A, Alvi M, Freeth A. Recurrent Metatarsal Fractures in Postmenopausal Woman With Low Serum Alkaline Phosphatase: A Rare Diagnosis Not to Miss. J Investig Med High Impact Case Rep 2017; 5:2324709617718851. [PMID: 28748194 PMCID: PMC5507388 DOI: 10.1177/2324709617718851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/08/2017] [Accepted: 06/11/2017] [Indexed: 11/16/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare inborn error of metabolism due to a loss-of-function mutation in the gene for tissue nonspecific isoenzyme of alkaline phosphatase (ALP) that results in low levels of ALP. The clinical presentation of HPP is variable and in adults can easily be misdiagnosed as other forms of osteomalacia. We present a case of a 53-year-old Caucasian female who was evaluated for recurrent metatarsal fractures. She reported her first metatarsal fracture at age 21, and since then had at least 8 more metatarsal fractures over her lifetime, most without injury other than weight bearing. She reported history of gait disturbance as a child and dental issues (spacing and loosening). Laboratory tests showed normal serum calcium, phosphorus, and parathyroid hormone, but low serum ALP <20 IU/L and elevated N-telopeptide. Foot X-ray showed several healed and nonhealed metatarsal fractures, and bone densitometry revealed osteopenia. She was treated with calcium and vitamin D. A year later she had a new metatarsal fracture and a nontraumatic pelvic fracture. Teriparatide therapy was attempted but not tolerated. Due to suspicion of HPP vitamin B6 levels were checked and found to be elevated at 263 µg/L. Given her clinical presentation and low ALP levels with elevated vitamin B6, the diagnosis of HPP was made. Clinicians should be attentive to a history of recurrent low trauma fractures, premature loss of deciduous teeth, and persistently low serum ALP to suspect this diagnosis. Early case detection with the availability of recent Food and Drug Administration-approved asfotase alfa may avoid years of undiagnosed morbidity.
Collapse
Affiliation(s)
- Umair Iqbal
- Bassett Medical Center, Cooperstown, NY, USA
| | - Hafsa Anwar
- Dow University of Health and Sciences, Karachi, Pakistan
| | | | - Madiha Alvi
- Bassett Medical Center, Cooperstown, NY, USA
| | - Amy Freeth
- Bassett Medical Center, Cooperstown, NY, USA
| |
Collapse
|
20
|
The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells-Their Current Uses and Potential Applications. Stem Cells Int 2017; 2017:2638305. [PMID: 28698718 PMCID: PMC5494105 DOI: 10.1155/2017/2638305] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/16/2017] [Indexed: 02/07/2023] Open
Abstract
Only select tissues and organs are able to spontaneously regenerate after disease or trauma, and this regenerative capacity diminishes over time. Human stem cell research explores therapeutic regenerative approaches to treat various conditions. Mesenchymal stem cells (MSCs) are derived from adult stem cells; they are multipotent and exert anti-inflammatory and immunomodulatory effects. They can differentiate into multiple cell types of the mesenchyme, for example, endothelial cells, osteoblasts, chondrocytes, fibroblasts, tenocytes, vascular smooth muscle cells, and sarcomere muscular cells. MSCs are easily obtained and can be cultivated and expanded in vitro; thus, they represent a promising and encouraging treatment approach in orthopedic surgery. Here, we review the application of MSCs to various orthopedic conditions, namely, orthopedic trauma; muscle injury; articular cartilage defects and osteoarthritis; meniscal injuries; bone disease; nerve, tendon, and ligament injuries; spinal cord injuries; intervertebral disc problems; pediatrics; and rotator cuff repair. The use of MSCs in orthopedics may transition the practice in the field from predominately surgical replacement and reconstruction to bioregeneration and prevention. However, additional research is necessary to explore the safety and effectiveness of MSC treatment in orthopedics, as well as applications in other medical specialties.
Collapse
|
21
|
Whyte MP. Hypophosphatasia: Enzyme Replacement Therapy Brings New Opportunities and New Challenges. J Bone Miner Res 2017; 32:667-675. [PMID: 28084648 DOI: 10.1002/jbmr.3075] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/09/2016] [Accepted: 12/26/2016] [Indexed: 11/11/2022]
Abstract
Hypophosphatasia (HPP) is caused by loss-of-function mutation(s) of the gene that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). Autosomal inheritance (dominant or recessive) from among more than 300 predominantly missense defects of TNSALP (ALPL) explains HPP's broad-ranging severity, the greatest of all skeletal diseases. In health, TNSALP is linked to cell surfaces and richly expressed in the skeleton and developing teeth. In HPP,TNSALP substrates accumulate extracellularly, including inorganic pyrophosphate (PPi), an inhibitor of mineralization. The PPi excess can cause tooth loss, rickets or osteomalacia, calcific arthropathies, and perhaps muscle weakness. Severely affected infants may seize from insufficient hydrolysis of pyridoxal 5'-phosphate (PLP), the major extracellular vitamin B6 . Now, significant successes are documented for newborns, infants, and children severely affected by HPP given asfotase alfa, a hydroxyapatite-targeted recombinant TNSALP. Since fall 2015, this biologic is approved by regulatory agencies multinationally typically for pediatric-onset HPP. Safe and effective treatment is now possible for this last rickets to have a medical therapy, but a number of challenges involving diagnosis, understanding prognosis, and providing this treatment are reviewed herein. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael P Whyte
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, and Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO, USA
| |
Collapse
|
22
|
Meah F, Basit A, Emanuele N, Emanuele MA. Hypophosphatasia: Review of Bone Mineral Metabolism, Pathophysiology, Clinical Presentation, Diagnosis, and Treatment. Clin Rev Bone Miner Metab 2017. [DOI: 10.1007/s12018-016-9225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Nitkin CR, Bonfield TL. Concise Review: Mesenchymal Stem Cell Therapy for Pediatric Disease: Perspectives on Success and Potential Improvements. Stem Cells Transl Med 2016; 6:539-565. [PMID: 28191766 PMCID: PMC5442806 DOI: 10.5966/sctm.2015-0427] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a potentially revolutionary therapy for a wide variety of pediatric diseases, but the optimal cell-based therapeutics for such diversity have not yet been specified. The published clinical trials for pediatric pulmonary, cardiac, orthopedic, endocrine, neurologic, and hematologic diseases provide evidence that MSCs are indeed efficacious, but the significant heterogeneity in therapeutic approaches between studies raises new questions. The purpose of this review is to stimulate new preclinical and clinical trials to investigate these factors. First, we discuss recent clinical trials for pediatric diseases studying MSCs obtained from bone marrow, umbilical cord and umbilical cord blood, placenta, amniotic fluid, and adipose tissue. We then identify factors, some unique to pediatrics, which must be examined to optimize therapeutic efficacy, including route of administration, dose, timing of administration, the role of ex vivo differentiation, cell culture techniques, donor factors, host factors, and the immunologic implications of allogeneic therapy. Finally, we discuss some of the practicalities of bringing cell-based therapy into the clinic, including regulatory and manufacturing considerations. The aim of this review is to inform future studies seeking to maximize therapeutic efficacy for each disease and for each patient. Stem Cells Translational Medicine 2017;6:539-565.
Collapse
Affiliation(s)
- Christopher R. Nitkin
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
| | - Tracey L. Bonfield
- Division of Pulmonology, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Okawa R, Iijima O, Kishino M, Okawa H, Toyosawa S, Sugano-Tajima H, Shimada T, Okada T, Ozono K, Ooshima T, Nakano K. Gene therapy improves dental manifestations in hypophosphatasia model mice. J Periodontal Res 2016; 52:471-478. [PMID: 27561677 DOI: 10.1111/jre.12412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVE Hypophosphatasia is a rare inherited skeletal disorder characterized by defective bone mineralization and deficiency of tissue non-specific alkaline phosphatase (TNSALP) activity. The disease is caused by mutations in the liver/bone/kidney alkaline phosphatase gene (ALPL) encoding TNSALP. Early exfoliation of primary teeth owing to disturbed cementum formation, periodontal ligament weakness and alveolar bone resorption are major complications encountered in oral findings, and discovery of early loss of primary teeth in a dental examination often leads to early diagnosis of hypophosphatasia. Although there are no known fundamental treatments or effective dental approaches to prevent early exfoliation of primary teeth in affected patients, several possible treatments have recently been described, including gene therapy. Gene therapy has also been applied to TNSALP knockout mice (Alpl-/- ), which phenocopy the infantile form of hypophosphatasia, and improved their systemic condition. In the present study, we investigated whether gene therapy improved the dental condition of Alpl-/- mice. MATERIAL AND METHODS Following sublethal irradiation (4 Gy) at the age of 2 d, Alpl-/- mice underwent gene therapy using bone marrow cells transduced with a lentiviral vector expressing a bone-targeted form of TNSALP injected into the jugular vein (n = 3). Wild-type (Alpl+/+ ), heterozygous mice (Alpl+/- ) and Alpl-/- mice were analyzed at 9 d of age (n = 3 of each), while Alpl+/+ mice and treated or untreated Alpl-/- mice were analyzed at 1 mo of age (n = 3 of each), and Alpl+/- mice and Alpl-/- mice with gene therapy were analyzed at 3 mo of age (n = 3 of each). A single mandibular hemi-section obtained at 1 mo of age was analyzed using a small animal computed tomography machine to assess alveolar bone formation. Other mandibular hemi-sections obtained at 9 d, 1 mo and 3 mo of age were subjected to hematoxylin and eosin staining and immunohistochemical analysis of osteopontin, a marker of cementum. RESULTS Immunohistochemical analysis of osteopontin, a marker of acellular cementum, revealed that Alpl-/- mice displayed impaired formation of cementum and alveolar bone, similar to the human dental phenotype. Cementum formation was clearly present in Alpl-/- mice that underwent gene therapy, but did not recover to the same level as that in wild-type (Alpl+/+ ) mice. Micro-computed tomography examination showed that gene therapy improved alveolar bone mineral density in Alpl-/- mice to a similar level to that in Alpl+/+ mice. CONCLUSIONS Our results suggest that gene therapy can improve the general condition of Alpl-/- mice, and induce significant alveolar bone formation and moderate improvement of cementum formation, which may contribute to inhibition of early spontaneous tooth exfoliation.
Collapse
Affiliation(s)
- R Okawa
- Osaka University Graduate School of Dentistry, Osaka, Japan
| | - O Iijima
- Nippon Medical School, Tokyo, Japan
| | - M Kishino
- Osaka University Graduate School of Dentistry, Osaka, Japan
| | - H Okawa
- Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Toyosawa
- Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | | - T Okada
- Nippon Medical School, Tokyo, Japan
| | - K Ozono
- Osaka University Graduate School of Medicine, Osaka, Japan
| | - T Ooshima
- Osaka University Graduate School of Dentistry, Osaka, Japan
| | - K Nakano
- Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
25
|
Wang ZY, Zhang K, Zheng GS, Qiao W, Su YX. Current concepts in odontohypophosphatasia form of hypophosphatasia and report of two cases. BMC Oral Health 2016; 16:70. [PMID: 27531358 PMCID: PMC4988024 DOI: 10.1186/s12903-016-0266-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/02/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Hypophosphatasia is a rare inherited disease derived from mutations in tissue non-specific alkaline phosphatase genes, with typical oral symptoms including short root anomaly and dysplasia of dentin or cementum. CASE PRESENTATION Two young female patients presented with short root anomaly with a history of premature loss of deciduous and/or permanent teeth. The laboratory and imaging investigations were performed. One case was diagnosed as odontohypophosphatasia concurrent with hyperthyroidism, the other was odontohypophosphatasia concurrent with multiple radicular cysts. CONCLUSION This report presents two cases of odontohypophosphatasia, a rare disease which is difficult to be diagnosed, and highlights that the history of premature loss of deciduous and/or permanent teeth, oral manifestation and laboratory tests are crucial for clinical diagnosis.
Collapse
Affiliation(s)
- Zhu-yu Wang
- Department of Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Kai Zhang
- Department of Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Guang-sen Zheng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wei Qiao
- Department of Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yu-xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, the University of Hong Kong, 34 Hospital Road, Hong Kong, Hong Kong
| |
Collapse
|
26
|
Yap P, Savarirayan R. Emerging targeted drug therapies in skeletal dysplasias. Am J Med Genet A 2016; 170:2596-604. [PMID: 27155200 DOI: 10.1002/ajmg.a.37734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/28/2016] [Indexed: 11/10/2022]
Abstract
Quantum advances have occurred in the field of human genetics in the six decades since Watson and Crick expressed their "wish to suggest a structure for the salt of deoxyribose nucleic acid." These culminated with the human genome project, which has opened up myriad possibilities, including that of individualized genetic medicine, the ability to deliver medical advice, management, and therapy tailored to an individual's genetic blueprint. Advances in genetic diagnostic capabilities have been rapid, to the point where the genome can be sequenced for several thousand dollars. Crucially, it has facilitated the identification of targets for "precision" treatments to combat genetic diseases at their source. This manuscript will review the innovative, pathogenesis-based therapies that are revolutionizing management of skeletal dysplasias, giving patients and families new options and outcomes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Patrick Yap
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia. .,Department of Pediatrics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
27
|
Saeed H, Ahsan M, Saleem Z, Iqtedar M, Islam M, Danish Z, Khan AM. Mesenchymal stem cells (MSCs) as skeletal therapeutics - an update. J Biomed Sci 2016; 23:41. [PMID: 27084089 PMCID: PMC4833928 DOI: 10.1186/s12929-016-0254-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/03/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells hold the promise to treat not only several congenital and acquired bone degenerative diseases but also to repair and regenerate morbid bone tissues. Utilizing MSCs, several lines of evidences advocate promising clinical outcomes in skeletal diseases and skeletal tissue repair/regeneration. In this context, both, autologous and allogeneic cell transfer options have been utilized. Studies suggest that MSCs are transplanted either alone by mixing with autogenous plasma/serum or by loading onto repair/induction supportive resorb-able scaffolds. Thus, this review is aimed at highlighting a wide range of pertinent clinical therapeutic options of MSCs in the treatment of skeletal diseases and skeletal tissue regeneration. Additionally, in skeletal disease and regenerative sections, only the early and more recent preclinical evidences are discussed followed by all the pertinent clinical studies. Moreover, germane post transplant therapeutic mechanisms afforded by MSCs have also been conversed. Nonetheless, assertive use of MSCs in the clinic for skeletal disorders and repair is far from a mature therapeutic option, therefore, posed challenges and future directions are also discussed. Importantly, for uniformity at all instances, term MSCs is used throughout the review.
Collapse
Affiliation(s)
- Hamid Saeed
- Section of Clinical Pharmacy, University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000, Lahore, Pakistan.
| | - Muhammad Ahsan
- Section of Clinical Pharmacy, University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000, Lahore, Pakistan
| | - Zikria Saleem
- Section of Clinical Pharmacy, University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000, Lahore, Pakistan
| | - Mehwish Iqtedar
- Department of Bio-technology, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Islam
- Section of Clinical Pharmacy, University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000, Lahore, Pakistan
| | - Zeeshan Danish
- Section of Clinical Pharmacy, University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000, Lahore, Pakistan
| | - Asif Manzoor Khan
- Department of Biochemistry and Molecular Biology, University of the Southern Denmark, 5230, Odense, Denmark
| |
Collapse
|
28
|
Abstract
Hypophosphatasia is the inborn error of metabolism characterized by low serum alkaline phosphatase activity (hypophosphatasaemia). This biochemical hallmark reflects loss-of-function mutations within the gene that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). TNSALP is a cell-surface homodimeric phosphohydrolase that is richly expressed in the skeleton, liver, kidney and developing teeth. In hypophosphatasia, extracellular accumulation of TNSALP natural substrates includes inorganic pyrophosphate, an inhibitor of mineralization, which explains the dento-osseous and arthritic complications featuring tooth loss, rickets or osteomalacia, and calcific arthopathies. Severely affected infants sometimes also have hypercalcaemia and hyperphosphataemia due to the blocked entry of minerals into the skeleton, and pyridoxine-dependent seizures from insufficient extracellular hydrolysis of pyridoxal 5'-phosphate, the major circulating form of vitamin B6, required for neurotransmitter synthesis. Autosomal recessive or dominant inheritance from ~300 predominantly missense ALPL (also known as TNSALP) mutations largely accounts for the remarkably broad-ranging expressivity of hypophosphatasia. High serum concentrations of pyridoxal 5'-phosphate represent a sensitive and specific biochemical marker for hypophosphatasia. Also, phosphoethanolamine levels are usually elevated in serum and urine, though less reliably for diagnosis. TNSALP mutation detection is important for recurrence risk assessment and prenatal diagnosis. Diagnosing paediatric hypophosphatasia is aided by pathognomic radiographic changes when the skeletal disease is severe. Hypophosphatasia was the last type of rickets or osteomalacia to await a medical treatment. Now, significant successes for severely affected paediatric patients are recognized using asfotase alfa, a bone-targeted recombinant TNSALP.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, 4400 Clayton Avenue, Saint Louis, Missouri 63110, USA
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA
| |
Collapse
|
29
|
Abstract
Hypophosphatasia (HPP) results from ALPL mutations leading to deficient activity of the tissue-non-specific alkaline phosphatase isozyme (TNAP) and thereby extracellular accumulation of inorganic pyrophosphate (PPi), a natural substrate of TNAP and potent inhibitor of mineralization. Thus, HPP features rickets or osteomalacia and hypomineralization of teeth. Enzyme replacement using mineral-targeted TNAP from birth prevented severe HPP in TNAP-knockout mice and was then shown to rescue and substantially treat infants and young children with life-threatening HPP. Clinical trials are revealing aspects of HPP pathophysiology not yet fully understood, such as craniosynostosis and muscle weakness when HPP is severe. New treatment approaches are under development to improve patient care.
Collapse
Affiliation(s)
- José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO, 63110, USA
- Division of Bone and Mineral Diseases, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, 63110, USA
| |
Collapse
|
30
|
Kosnik-Infinger L, Gendron C, Gordon CB, Pan BS, van Aalst JA, Vogel TW. Enzyme replacement therapy for congenital hypophosphatasia allows for surgical treatment of related complex craniosynostosis: a case series. Neurosurg Focus 2016; 38:E10. [PMID: 25929963 DOI: 10.3171/2015.2.focus14847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hypophosphatasia (HPP) is a rare inherited disorder of bone metabolism that results in the loss of function of the gene coding for tissue-nonspecific alkaline phosphatase (TNSALP). Patients with HPP have defective bone mineralization as well as craniosynostosis that can be seen in the infantile and childhood forms of this disease. Traditionally, HPP has had a poor prognosis, with few children surviving to exhibit the phenotype of clinical craniosynostosis that requires surgical intervention. Here, the authors report on new advancements in enzyme replacement therapy (ERT) for children affected by HPP, allowing these patients to survive and undergo surgery to address complex craniosynostosis. The authors discuss their case series of 4 HPP patients treated at their institution with ERT who have undergone successful surgical intervention for craniosynostosis. These children had no complications related to their surgeries and exhibited decreased neurological symptoms following cranial vault remodeling. This study reveals that ERT administered either pre- or post- operatively paired with cranial vault remodeling strategies can yield improved neurological outcomes in children affected by HPP.
Collapse
|
31
|
Bianchi ML. Hypophosphatasia: an overview of the disease and its treatment. Osteoporos Int 2015; 26:2743-57. [PMID: 26245849 DOI: 10.1007/s00198-015-3272-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/28/2015] [Indexed: 11/30/2022]
Abstract
This review presents the current knowledge on hypophosphatasia, a rare genetic disease of very variable severity (from lethal to mild) and clinical presentation, caused by defective production of tissue-non-specific alkaline phosphatase (TNSALP). Hypophosphatasia can affect babies in utero as well as infants, children, and adults. The article first presents the genetics of TNSALP and its many known mutations underlying the disease. Then, it presents the epidemiology, classification, and clinical presentation of the six different forms of the disease (perinatal lethal, prenatal benign, infantile, childhood, adult, and odontohypophosphatasia) as well as the essential diagnostic clues. The last section on treatment presents a survey of the therapeutic approaches, up to the ongoing phase 2 studies of enzyme replacement therapy.
Collapse
Affiliation(s)
- M L Bianchi
- Experimental Laboratory for Children's Bone Metabolism Research, Bone Metabolism Unit, Istituto Auxologico Italiano IRCCS, via L. Ariosto 13, 20145, Milano, Italy.
| |
Collapse
|
32
|
Iijima O, Miyake K, Watanabe A, Miyake N, Igarashi T, Kanokoda C, Nakamura-Takahashi A, Kinoshita H, Noguchi T, Abe S, Narisawa S, Millán JL, Okada T, Shimada T. Prevention of Lethal Murine Hypophosphatasia by Neonatal Ex Vivo Gene Therapy Using Lentivirally Transduced Bone Marrow Cells. Hum Gene Ther 2015; 26:801-12. [PMID: 26467745 DOI: 10.1089/hum.2015.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hypophosphatasia (HPP) is an inherited skeletal and dental disease caused by loss-of-function mutations in the gene that encodes tissue-nonspecific alkaline phosphatase (TNALP). The major symptoms of severe forms of the disease are bone defects, respiratory insufficiency, and epileptic seizures. In 2015, enzyme replacement therapy (ERT) using recombinant bone-targeted TNALP with deca-aspartate (D10) motif was approved to treat pediatric HPP patients in Japan, Canada, and Europe. However, the ERT requires repeated subcutaneous administration of the enzyme because of the short half-life in serum. In the present study, we evaluated the feasibility of neonatal ex vivo gene therapy in TNALP knockout (Akp2(-/-)) HPP mice using lentivirally transduced bone marrow cells (BMC) expressing bone-targeted TNALP in which a D10 sequence was linked to the C-terminus of soluble TNALP (TNALP-D10). The Akp2(-/-) mice usually die within 20 days because of growth failure, epileptic seizures, and hypomineralization. However, an intravenous transplantation of BMC expressing TNALP-D10 (ALP-BMC) into neonatal Akp2(-/-) mice prolonged survival of the mice with improved bone mineralization compared with untransduced BMC-transplanted Akp2(-/-) mice. The treated Akp2(-/-) mice were normal in appearance and experienced no seizures during the experimental period. The lentivirally transduced BMC were efficiently engrafted in the recipient mice and supplied TNALP-D10 continuously at a therapeutic level for at least 3 months. Moreover, TNALP-D10 overexpression did not affect multilineage reconstitution in the recipient mice. The plasma ALP activity was sustained at high levels in the treated mice, and tissue ALP activity was selectively detected on bone surfaces, not in the kidneys or other organs. No ectopic calcification was observed in the ALP-BMC-treated mice. These results indicate that lentivirally transduced BMC can serve as a reservoir for stem cell-based ERT to rescue the Akp2(-/-) phenotype. Neonatal ex vivo gene therapy thus appears to be a possible treatment option for treating severe HPP.
Collapse
Affiliation(s)
- Osamu Iijima
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - Koichi Miyake
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - Atsushi Watanabe
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan .,2 Division of Clinical Genetics, Nippon Medical School Hospital, Tokyo, Japan
| | - Noriko Miyake
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - Tsutomu Igarashi
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan .,3 Department of Ophthalmology, Nippon Medical School Hospital, Tokyo, Japan
| | - Chizu Kanokoda
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - Aki Nakamura-Takahashi
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - Hideaki Kinoshita
- 4 Department of Dental Materials Science, Tokyo Dental College, Tokyo, Japan
| | - Taku Noguchi
- 5 Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Shinichi Abe
- 5 Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Sonoko Narisawa
- 6 Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute , La Jolla, California
| | - José Luis Millán
- 6 Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute , La Jolla, California
| | - Takashi Okada
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - Takashi Shimada
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
33
|
Abstract
HPP is a rare disease that manifests in different ways across the life course. Accurate diagnosis depends upon the use of appropriate age-related normative data. A new therapy is undergoing clinical trials; the preliminary published data is encouraging, but the scope of clinical application remains to be determined.
Collapse
Affiliation(s)
- Nick Bishop
- Academic Unit of Child Health, Department of Human Metabolism, University of Sheffield, United Kingdom and Sheffield Children's Hospital, Sheffield, United Kingdom
| |
Collapse
|
34
|
Taketani T, Oyama C, Mihara A, Tanabe Y, Abe M, Hirade T, Yamamoto S, Bo R, Kanai R, Tadenuma T, Michibata Y, Yamamoto S, Hattori M, Katsube Y, Ohnishi H, Sasao M, Oda Y, Hattori K, Yuba S, Ohgushi H, Yamaguchi S. Ex Vivo Expanded Allogeneic Mesenchymal Stem Cells with Bone Marrow Transplantation Improved Osteogenesis in Infants with Severe Hypophosphatasia. Cell Transplant 2015; 24:1931-43. [DOI: 10.3727/096368914x685410] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patients with severe hypophosphatasia (HPP) develop osteogenic impairment with extremely low alkaline phosphatase (ALP) activity, resulting in a fatal course during infancy. Mesenchymal stem cells (MSCs) differentiate into various mesenchymal lineages, including bone and cartilage. The efficacy of allogeneic hematopoietic stem cell transplantation for congenital skeletal and storage disorders is limited, and therefore we focused on MSCs for the treatment of HPP. To determine the effect of MSCs on osteogenesis, we performed multiple infusions of ex vivo expanded allogeneic MSCs for two patients with severe HPP who had undergone bone marrow transplantation (BMT) from asymptomatic relatives harboring the heterozygous mutation. There were improvements in not only bone mineralization but also muscle mass, respiratory function, and mental development, resulting in the patients being alive at the age of 3. After the infusion of MSCs, chimerism analysis of the mesenchymal cell fraction isolated from bone marrow in the patients demonstrated that donor-derived DNA sequences existed. Adverse events of BMT were tolerated, whereas those of MSC infusion did not occur. However, restoration of ALP activity was limited, and normal bony architecture could not be achieved. Our data suggest that multiple MSC infusions, following BMT, were effective and brought about clinical benefits for patients with lethal HPP. Allogeneic MSC-based therapy would be useful for patients with other congenital bone diseases and tissue disorders if the curative strategy to restore clinically normal features, including bony architecture, can be established.
Collapse
Affiliation(s)
- Takeshi Taketani
- Division of Blood Transfusion, Shimane University Hospital, Izumo, Shimane, Japan
- Department of Pediatrics, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Chigusa Oyama
- Department of Pediatrics, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Aya Mihara
- Department of Pediatrics, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Yuka Tanabe
- Department of Pediatrics, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Mariko Abe
- Department of Pediatrics, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Tomohiro Hirade
- Department of Pediatrics, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Satoshi Yamamoto
- Department of Pediatrics, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Ryosuke Bo
- Department of Pediatrics, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Rie Kanai
- Department of Pediatrics, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Taku Tadenuma
- Division of Rehabilitation, Shimane University Hospital, Izumo, Shimane, Japan
| | - Yuko Michibata
- Division of Rehabilitation, Shimane University Hospital, Izumo, Shimane, Japan
| | - Soichiro Yamamoto
- Department of Orthopedics, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Miho Hattori
- Division of Blood Transfusion, Shimane University Hospital, Izumo, Shimane, Japan
| | - Yoshihiro Katsube
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Amagasaki, Hyogo, Japan
| | - Hiroe Ohnishi
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Amagasaki, Hyogo, Japan
| | - Mari Sasao
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Amagasaki, Hyogo, Japan
| | - Yasuaki Oda
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Amagasaki, Hyogo, Japan
| | - Koji Hattori
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Amagasaki, Hyogo, Japan
| | - Shunsuke Yuba
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Amagasaki, Hyogo, Japan
| | - Hajime Ohgushi
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Amagasaki, Hyogo, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University School of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
35
|
Tosi LL, Warman ML. Mechanistic and therapeutic insights gained from studying rare skeletal diseases. Bone 2015; 76:67-75. [PMID: 25819040 DOI: 10.1016/j.bone.2015.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 03/19/2015] [Indexed: 12/14/2022]
Abstract
Rare bone diseases account for 5% of all birth defects and can cause significant morbidity throughout patients' lives. Significant progress is being made to elucidate the pathophysiological mechanisms underlying these diseases. This paper summarizes presentation highlights of a workshop on Rare Skeletal Diseases convened to explore how the study of rare diseases has influenced the field's understanding of bone anabolism and catabolism and directed the search for new therapies benefiting patients with rare conditions as well as patients with common skeletal disorders.
Collapse
Affiliation(s)
- Laura L Tosi
- Division of Orthopaedics and Sports Medicine, Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| | - Matthew L Warman
- Orthopaedic Research Laboratories, Boston Children's Hospital, 320 Longwood Avenue, Room EN260.1, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Whyte MP, Zhang F, Wenkert D, McAlister WH, Mack KE, Benigno MC, Coburn SP, Wagy S, Griffin DM, Ericson KL, Mumm S. Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone 2015; 75:229-39. [PMID: 25731960 DOI: 10.1016/j.bone.2015.02.022] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 01/06/2023]
Abstract
Hypophosphatasia (HPP) is caused by loss-of-function mutation(s) within the gene TNSALP that encodes the "tissue-nonspecific" isoenzyme of alkaline phosphatase (TNSALP). In HPP, inorganic pyrophosphate, an inhibitor of mineralization and substrate for TNSALP, accumulates extracellularly often leading to rickets or osteomalacia and tooth loss, and sometimes to craniosynostosis and calcium crystal arthropathies. HPP's remarkably broad-ranging expressivity spans stillbirth from profound skeletal hypomineralization to adult-onset dental problems or arthropathies without bone disease, which is largely explained by autosomal recessive versus autosomal dominant transmission from among several hundred, usually missense, TNSALP mutations. For clinical purposes, this expressivity has been codified according to absence or presence of skeletal disease and then patient age at presentation and diagnosis. Pediatric patients are reported principally with "odonto", "childhood", "infantile", or "perinatal" HPP. However, this nosology has not been tested using a cohort of patients, and the ranges of the clinical and laboratory findings have not been defined and contrasted among these patient groups. To evaluate the extant nosology for HPP in children, we assessed our 25 years experience with 173 pediatric HPP patients. Data were exclusively from inpatient studies. The childhood form of HPP was further designated "mild" or "severe". Here, we focused on demographic, clinical, and dual-energy X-ray absorptiometry parameters compared to data from healthy American children. The 173-patient cohort comprised 64 individuals with odonto HPP, 38 with mild childhood HPP, 58 with severe childhood HPP, and 13 with infantile HPP. None was a survivor of perinatal HPP. TNSALP analysis revealed a mutation(s) in all 105 probands tested. Thirteen mutations were unique. Most patients represented autosomal dominant inheritance of HPP. Mutant allele dosage generally indicated the disorder's severity. Gender discordance was found for severe childhood HPP; 42 boys versus 16 girls (p=0.006), perhaps reflecting parental concern about stature and strength. Key disease parameters (e.g., height, weight, numbers of teeth lost prematurely, grip strength, spine and hip bone mineral density) were increasingly compromised as HPP was designated more severe. Although data overlapped successively between the four patient groups, body size (height and weight) differed significantly. Thus, our expanded nosology for HPP in children organizes the disorder's broad-ranging expressivity and should improve understanding of HPP presentation, natural history, complications, and prognosis.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63131, USA; Division of Bone and Mineral Diseases, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Fan Zhang
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63131, USA.
| | - Deborah Wenkert
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63131, USA.
| | - William H McAlister
- Department of Pediatric Radiology, Mallinckrodt Institute of Radiology at St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Karen E Mack
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63131, USA.
| | - Marci C Benigno
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63131, USA.
| | - Stephen P Coburn
- Department of Chemistry, Indiana University-Purdue University, Fort Wayne, IN 46805, USA.
| | - Susan Wagy
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63131, USA.
| | - Donna M Griffin
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63131, USA.
| | - Karen L Ericson
- Department of Chemistry, Indiana University-Purdue University, Fort Wayne, IN 46805, USA.
| | - Steven Mumm
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63131, USA; Division of Bone and Mineral Diseases, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
37
|
Gasque KCS, Foster BL, Kuss P, Yadav MC, Liu J, Kiffer-Moreira T, van Elsas A, Hatch N, Somerman MJ, Millán JL. Improvement of the skeletal and dental hypophosphatasia phenotype in Alpl-/- mice by administration of soluble (non-targeted) chimeric alkaline phosphatase. Bone 2015; 72:137-47. [PMID: 25433339 PMCID: PMC4283789 DOI: 10.1016/j.bone.2014.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/16/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022]
Abstract
Hypophosphatasia (HPP) results from ALPL gene mutations, which lead to a deficiency of tissue-nonspecific alkaline phosphatase (TNAP), and accumulation of inorganic pyrophosphate, a potent inhibitor of mineralization that is also a natural substrate of TNAP, in the extracellular space. HPP causes mineralization disorders including soft bones (rickets or osteomalacia) and defects in teeth and periodontal tissues. Enzyme replacement therapy using mineral-targeting recombinant TNAP has proven effective in preventing skeletal and dental defects in TNAP knockout (Alpl(-/-)) mice, a model for life-threatening HPP. Here, we show that the administration of a soluble, intestinal-like chimeric alkaline phosphatase (ChimAP) improves the manifestations of HPP in Alpl(-/-) mice. Mice received daily subcutaneous injections of ChimAP at doses of 1, 8 or 16 mg/kg, from birth for up to 53 days. Lifespan and body weight of Alpl(-/-) mice were normalized, and vitamin B6-associated seizures were absent with 16 mg/kg/day of ChimAP. Radiographs, μCT and histological analyses documented improved mineralization in cortical and trabecular bone and secondary ossification centers in long bones of ChimAP16-treated mice. There was no evidence of craniosynostosis in the ChimAP16-treated mice and we did not detect ectopic calcification by radiography and histology in the aortas, stomachs, kidneys or lungs in any of the treatment groups. Molar tooth development and function improved with the highest ChimAP dose, including enamel, dentin, and tooth morphology. Cementum remained deficient and alveolar bone mineralization was reduced compared to controls, though ChimAP-treated Alpl(-/-) mice featured periodontal attachment and retained teeth. This study provides the first evidence for the pharmacological efficacy of ChimAP for use in the treatment of skeletal and dental manifestations of HPP.
Collapse
Affiliation(s)
- Kellen C S Gasque
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Brian L Foster
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pia Kuss
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Manisha C Yadav
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Jin Liu
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Tina Kiffer-Moreira
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | - Nan Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Martha J Somerman
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Abstract
Hypophosphatasia (HPP) is due to mutations of the tissue non-specific alkaline phosphatase (TNAP) gene expressed in the liver, kidney, and bone. TNAP substrates include inorganic pyrophosphate cleaved into inorganic phosphate (Pi) in bone, pyridoxal-5'-phosphate (PLP), the circulating form of vitamin B6, and phosphoethanolamine (PEA). As an autosomal recessive or dominant disease, HPP results in a range of clinical forms. Its hallmarks are low alkaline phosphatase (AP) and elevated PLP and PEA levels. Perinatal HPP may cause early death with respiratory insufficiency and hypomineralization resulting in deformed limbs and sometimes near-absence of bones and skull. Infantile HPP is diagnosed before 6 months of life. Respiratory failure, rib fractures and seizures due to vitamin B6 deficiency in the brain indicate poor prognosis. Craniosynostosis is frequent. Unlike in other forms of rickets, calcium and phosphorus are not decreased, resulting in hypercalciuria and nephrocalcinosis. Hypercalcemic crisis may occur. Failure to thrive and growth retardation are concerns. In infantile and adult forms of HPP, non-traumatic fractures may be the prominent manifestation, with otherwise unexplained chronic pain. Progressive myopathy has been described. Dental manifestations with early loss of teeth are usual in HPP and in a specific form, odontohypophosphatasia. HPP has been studied in knock-out mice models which mimic its severe form. Animal models have made a major contribution to the development of an original enzyme therapy for human infantile HPP, which is however essentially targeted at mineralized tissues. Better knowledge of its extraskeletal manifestations, including pain and neurological symptoms, is therefore required.
Collapse
Affiliation(s)
- Jean Pierre Salles
- Unité d'Endocrinologie Maladies Osseuses, Hôpital Des Enfants, CHU de Toulouse and Inserm UMR 1043 UPS, Toulouse Cedex, France,
| |
Collapse
|
39
|
Abstract
Hypophosphatasia (HPP) is a bone metabolic disorder caused by mutations in the liver/bone/kidney alkaline phosphatase gene (ALPL), which encodes tissue-nonspecific alkaline phosphatase (TNAP). This disease is characterized by disrupted bone and tooth mineralization, and reduced serum AP activity. Along with bone and tooth symptoms, many neurological symptoms, seizure, encephalopathy, intracranial hypertension, mental retardation, deafness, and growth hormone deficiency (GHD), are frequently found in HPP patients. Seizure occurs in severe HPP types soon after birth, and responds to pyridoxine, but is an indicator of lethal prognosis. Encephalopathy rarely presents in severe HPP types, but has severe sequelae. Intracranial hypertension complicated in mild HPP types develops after the age of 1 year and sometimes need neurosurgical intervention. Mental retardation, deafness and GHD are more frequently found in Japanese HPP patients. Mental retardation occurs in all HPP types. Deafness in perinatal lethal type is both conductive and sensorineural. GHD develops in all but perinatal lethal type and the diagnosis tends to delay. The pathogenesis of these neural features of HPP might be due to impairment of both vitamin B6 metabolism and central nervous system development by ALPL mutations.
Collapse
|
40
|
Molecular, phenotypic aspects and therapeutic horizons of rare genetic bone disorders. BIOMED RESEARCH INTERNATIONAL 2014; 2014:670842. [PMID: 25530967 PMCID: PMC4230237 DOI: 10.1155/2014/670842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/12/2014] [Accepted: 08/24/2014] [Indexed: 12/21/2022]
Abstract
A rare disease afflicts less than 200,000 individuals, according to the National Organization for Rare Diseases (NORD) of the United States. Over 6,000 rare disorders affect approximately 1 in 10 Americans. Rare genetic bone disorders remain the major causes of disability in US patients. These rare bone disorders also represent a therapeutic challenge for clinicians, due to lack of understanding of underlying mechanisms. This systematic review explored current literature on therapeutic directions for the following rare genetic bone disorders: fibrous dysplasia, Gorham-Stout syndrome, fibrodysplasia ossificans progressiva, melorheostosis, multiple hereditary exostosis, osteogenesis imperfecta, craniometaphyseal dysplasia, achondroplasia, and hypophosphatasia. The disease mechanisms of Gorham-Stout disease, melorheostosis, and multiple hereditary exostosis are not fully elucidated. Inhibitors of the ACVR1/ALK2 pathway may serve as possible therapeutic intervention for FOP. The use of bisphosphonates and IL-6 inhibitors has been explored to be useful in the treatment of fibrous dysplasia, but more research is warranted. Cell therapy, bisphosphonate polytherapy, and human growth hormone may avert the pathology in osteogenesis imperfecta, but further studies are needed. There are still no current effective treatments for these bone disorders; however, significant promising advances in therapeutic modalities were developed that will limit patient suffering and treat their skeletal disabilities.
Collapse
|
41
|
Taketani T, Onigata K, Kobayashi H, Mushimoto Y, Fukuda S, Yamaguchi S. Clinical and genetic aspects of hypophosphatasia in Japanese patients. Arch Dis Child 2014; 99:211-5. [PMID: 24276437 DOI: 10.1136/archdischild-2013-305037] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE We examined the clinical and genetic features of hypophosphatasia (HPP) in Japanese patients. HPP is a rare metabolic bone disorder of bone mineralisation caused by mutations in the liver/bone/kidney alkaline phosphatase (ALPL) gene, which encodes tissue-non-specific alkaline phosphatase isoenzyme. METHODS We retrospectively investigate the incidence and clinical features of 52 patients with paediatric HPP who were born between 1999 and 2010. Mutations of the ALPL gene were analysed in 31 patients. RESULTS The annual incidence of perinatal lethal HPP (PLH) was estimated to be 2-3/1 000 000 births. The most frequent clinical type was PLH followed by prenatal benign. In addition to bone symptoms, cerebral manifestations were frequently observed including convulsion, mental retardation, deafness and short stature with growth hormone deficiency. Respiratory failure was the most significant predictor of a poor prognosis for PLH. The first and second most frequent mutations in the ALPL gene were c.1559delT and c.T979C (p.F327L), respectively. The c.1559delT homozygous mutation was lethal with respiratory failure. Patients with the p.F327L compound heterozygous mutation had the different non-lethal type with short stature and a gradual improvement in ALP level and bone mineralisation. CONCLUSIONS The most frequent clinical type was the PLH type with prognosis related to respiratory failure, biochemical/radiological changes and ALPL mutations. Cerebral manifestations frequently occurred. Genotype-phenotype correlations were associated with specific outcomes in the PLH type, whereas different clinical features were associated with the same genotype in the non-lethal type.
Collapse
Affiliation(s)
- Takeshi Taketani
- Division of Blood Transfusion, Shimane University Hospital, , Shimane, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Davey GC, Patil SB, O'Loughlin A, O'Brien T. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol (Lausanne) 2014; 5:86. [PMID: 24936198 PMCID: PMC4047679 DOI: 10.3389/fendo.2014.00086] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/23/2014] [Indexed: 12/22/2022] Open
Abstract
The worldwide increase in the prevalence of Diabetes mellitus (DM) has highlighted the need for increased research efforts into treatment options for both the disease itself and its associated complications. In recent years, mesenchymal stromal cells (MSCs) have been highlighted as a new emerging regenerative therapy due to their multipotency but also due to their paracrine secretion of angiogenic factors, cytokines, and immunomodulatory substances. This review focuses on the potential use of MSCs as a regenerative medicine in microvascular and secondary complications of DM and will discuss the challenges and future prospects of MSCs as a regenerative therapy in this field. MSCs are believed to have an important role in tissue repair. Evidence in recent years has demonstrated that MSCs have potent immunomodulatory functions resulting in active suppression of various components of the host immune response. MSCs may also have glucose lowering properties providing another attractive and unique feature of this therapeutic approach. Through a combination of the above characteristics, MSCs have been shown to exert beneficial effects in pre-clinical models of diabetic complications prompting initial clinical studies in diabetic wound healing and nephropathy. Challenges that remain in the clinical translation of MSC therapy include issues of MSC heterogeneity, optimal mode of cell delivery, homing of these cells to tissues of interest with high efficiency, clinically meaningful engraftment, and challenges with cell manufacture. An issue of added importance is whether an autologous or allogeneic approach will be used. In summary, MSC administration has significant potential in the treatment of diabetic microvascular and secondary complications but challenges remain in terms of engraftment, persistence, tissue targeting, and cell manufacture.
Collapse
Affiliation(s)
- Grace C Davey
- Regenerative Medicine Institute (REMEDI) and Biosciences Building, National University of Ireland , Galway , Ireland
| | - Swapnil B Patil
- Regenerative Medicine Institute (REMEDI) and Biosciences Building, National University of Ireland , Galway , Ireland
| | - Aonghus O'Loughlin
- Department of Medicine, Galway University Hospital (GUH) , Galway , Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI) and Biosciences Building, National University of Ireland , Galway , Ireland ; Department of Medicine, Galway University Hospital (GUH) , Galway , Ireland
| |
Collapse
|
43
|
Abstract
Mesenchymal stem cells (MSCs) are self-renewing, multipotent progenitor cells with multilineage potential to differentiate into cell types of mesodermal origin, such as adipocytes, osteocytes, and chondrocytes. In addition, MSCs can migrate to sites of inflammation and exert potent immunosuppressive and anti-inflammatory effects through interactions between lymphocytes associated with both the innate and adaptive immune system. Along with these unique therapeutic properties, their ease of accessibility and expansion suggest that use of MSCs may be a useful therapeutic approach for various disorders. In the clinical setting, MSCs are being explored in trials of various conditions, including orthopedic injuries, graft versus host disease following bone marrow transplantation, cardiovascular diseases, autoimmune diseases, and liver diseases. Furthermore, genetic modification of MSCs to overexpress antitumor genes has provided prospects for clinical use as anticancer therapy. Here, we highlight the currently reported uses of MSCs in clinical trials and discuss their efficacy as well as their limitations.
Collapse
Affiliation(s)
- Nayoun Kim
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
| | - Seok-Goo Cho
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Sultana S, Al-Shawafi HA, Makita S, Sohda M, Amizuka N, Takagi R, Oda K. An asparagine at position 417 of tissue-nonspecific alkaline phosphatase is essential for its structure and function as revealed by analysis of the N417S mutation associated with severe hypophosphatasia. Mol Genet Metab 2013; 109:282-8. [PMID: 23688511 DOI: 10.1016/j.ymgme.2013.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/24/2013] [Accepted: 04/24/2013] [Indexed: 01/01/2023]
Abstract
Various loss-of function mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) gene cause a rare genetic disorder called hypophosphatasia (HPP), which is characterized by defective mineralization in the bones and teeth and a deficiency in serum alkaline phosphatase. A point mutation (c.1250A>G), which leads to replacement of an asparagine at position 417 of TNSALP with serine [TNSALP (N417S)], has been reported in a patient diagnosed with perinatal HPP (Sergi C. et al. Am, J. Med. Genet. 103, 235-240, 2001). In order to characterize the molecular properties of TNSALP (N417S), we expressed and analyzed TNSALP (N417S) both in COS-1 cells (transient expression) and CHO K1 Tet-On cells (inducible cell system). In contrast to wild-type TNSALP [TNSALP (W)], cells expressing TNSALP (N417S) lacked its alkaline phosphatase activity. However, this mutant underwent N-linked oligosaccharide processing and appeared on the cell surface similar to TNSALP (W). Importantly, this mutant failed to assemble into a dimer structure, which is needed for the catalytic function of TNSALP, as evidenced by newly developed SDS-PAGE as well as sucrose-density-gradient centrifugation. Substitution of the asparagine at position 417 with structurally related amino acids such as an aspartate and a glutamine also abolished the dimerization of TNSALP without perturbing its cell surface localization. Taken together, the asparagine at position 417 is crucial for the assembly and function of TNSALP, which may explain the severity of the N417S mutation.
Collapse
Affiliation(s)
- Sara Sultana
- Division of Oral and Maxillofacial Surgery in the Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Hofmann C, Girschick HJ, Mentrup B, Graser S, Seefried L, Liese J, Jakob F. Clinical Aspects of Hypophosphatasia: An Update. Clin Rev Bone Miner Metab 2013. [DOI: 10.1007/s12018-013-9139-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Leung ECW, Mhanni AA, Reed M, Whyte MP, Landy H, Greenberg CR. Outcome of perinatal hypophosphatasia in manitoba mennonites: a retrospective cohort analysis. JIMD Rep 2013; 11:73-8. [PMID: 23580367 DOI: 10.1007/8904_2013_224] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 12/23/2022] Open
Abstract
Hypophosphatasia (HPP) is the metabolic bone disease caused by loss-of-function mutation within the gene that encodes the "tissue nonspecific" isoenzyme of alkaline phosphatase (TNSALP). Perinatal HPP is usually fatal due to respiratory insufficiency, and infantile HPP often has a similar outcome although no formal study into the natural history of these severe forms of HPP has been undertaken. We reviewed our 80-year (1927-2007) cohort of 15 Canadian patients with perinatal HPP. All had Mennonite heritage. Family linkage studies indicated that nine were homozygous for a TNSALP disease allele, likely Gly334Asp. Three patients had parents who were carriers for the Gly334Asp allele by mutation analysis. One patient was confirmed by mutation analysis to be homozygous for the TNSALP Gly334Asp mutation. One patient who had only one Mennonite parent was a genetic compound for the Gly334Asp mutation and the Val382Ile mutation. This patient's sibling was also affected. All 15 patients had profound skeletal hypomineralization, severe rickets, and respiratory insufficiency. All died by 9 months of age, usually soon after birth, from pulmonary failure.
Collapse
Affiliation(s)
- Edward C W Leung
- Manitoba Institute of Child Health and Department of Pediatrics and Child Health, University of Manitoba, AE308 - 820 Sherbrook St, R3A 1R9, Winnipeg, Manitoba, Canada,
| | | | | | | | | | | |
Collapse
|
47
|
Infantile hypophosphatasia secondary to a novel compound heterozygous mutation presenting with pyridoxine-responsive seizures. JIMD Rep 2013; 11:17-24. [PMID: 23479201 DOI: 10.1007/8904_2013_217] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 12/12/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare metabolic disease with the hallmark finding of deficient serum tissue nonspecific alkaline phosphatase (TNSALP) activity. TNSALP is primarily known for its role in mineralization; hence, HPP is characterized by defective mineralization of bone and/or teeth. TNSALP is also necessary for proper vitamin B6 metabolism and its participation as a cofactor for neurotransmitters in the central nervous system. Defective TNSALP activity in the brain can result in intractable seizures responsive to pyridoxine. The pathophysiology of pyridoxine-responsive seizures (PRS) in severe HPP remains to be clearly defined. We review the case of a 2-month-old Caucasian boy presenting with seizures refractory to conventional antiepileptic medications. Empiric treatment with favorable response to pyridoxine in conjunction with severe metabolic bone disease, extremely low serum alkaline phosphatase, elevated phosphoethanolamine, hypercalcemia, hypercalciuria, and nephrocalcinosis led to a clinical diagnosis of infantile HPP. Sequence analysis revealed compound heterozygosity of the TNSALP gene with a novel mutation in exon 9 and a previously reported mutation in exon 12. This case reminds the physician that severe infantile HPP can present with PRS as its major initial manifestation and should alert clinicians to consider HPP in their differential of PRS. In addition, despite this severe genotype, the clinical diagnosis of our patient was delayed because of minimal phenotypic features initially. This highlights that the phenotype-genotype correlation could be variable even in severe disease. This case also demonstrates that HPP should be classified as PRS and not a form of pyridoxine-dependent epilepsy (PDE) as our patient was able to stop the pyridoxine supplementation without seizure recurrence once enzyme replacement was initiated. With the advent of enzyme replacement therapy, this once fatal disease may have improved morbidity and mortality.
Collapse
|
48
|
Makita S, Al-Shawafi HA, Sultana S, Sohda M, Nomura S, Oda K. A dimerization defect caused by a glycine substitution at position 420 by serine in tissue-nonspecific alkaline phosphatase associated with perinatal hypophosphatasia. FEBS J 2012; 279:4327-37. [DOI: 10.1111/febs.12022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/27/2012] [Accepted: 10/01/2012] [Indexed: 12/19/2022]
Affiliation(s)
| | - Hiba A. Al-Shawafi
- Division of Oral Biochemistry, Department of Tissue Regeneration and Reconstruction; Niigata University Graduate School of Medical and Dental Sciences; Japan
| | | | - Miwa Sohda
- Division of Oral Biochemistry, Department of Tissue Regeneration and Reconstruction; Niigata University Graduate School of Medical and Dental Sciences; Japan
| | - Shuichi Nomura
- Division of Comprehensive Prosthodontics, Department of Oral Health Science; Niigata University Graduate School of Medical and Dental Sciences; Japan
| | - Kimimitsu Oda
- Division of Oral Biochemistry, Department of Tissue Regeneration and Reconstruction; Niigata University Graduate School of Medical and Dental Sciences; Japan
| |
Collapse
|
49
|
Nery AA, Nascimento IC, Glaser T, Bassaneze V, Krieger JE, Ulrich H. Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications. Cytometry A 2012; 83:48-61. [PMID: 23027703 DOI: 10.1002/cyto.a.22205] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 12/25/2022]
Abstract
Modern medicine will unequivocally include regenerative medicine as a major breakthrough in the re-establishment of damaged or lost tissues due to degenerative diseases or injury. In this scenario, millions of patients worldwide can have their quality of life improved by stem cell implantation coupled with endogenous secretion or administration of survival and differentiation promoting factors. Large efforts, relying mostly on flow cytometry and imaging techniques, have been put into cell isolation, immunophenotyping, and studies of differentiation properties of stem cells of diverse origins. Mesenchymal stem cells (MSCs) are particularly relevant for therapy due to their simplicity of isolation. A minimal phenotypic pattern for the identification of MSCs cells requires them to be immunopositive for CD73, CD90, and CD105 expression, while being negative for CD34, CD45, and HLA-DR and other surface markers. MSCs identified by their cell surface marker expression pattern can be readily purified from patient's bone marrow and adipose tissues. Following expansion and/or predifferentiation into a desired tissue type, stem cells can be reimplanted for tissue repair in the same patient, virtually eliminating rejection problems. Transplantation of MSCs is subject of almost 200 clinical trials to cure and treat a very broad range of conditions, including bone, heart, and neurodegenerative diseases. Immediate or medium term improvements of clinical symptoms have been reported as results of many clinical studies.
Collapse
Affiliation(s)
- Arthur A Nery
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
50
|
Zhou X, Cui Y, Zhou X, Han J. Phosphate/pyrophosphate and MV-related proteins in mineralisation: discoveries from mouse models. Int J Biol Sci 2012; 8:778-90. [PMID: 22719218 PMCID: PMC3372882 DOI: 10.7150/ijbs.4538] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/22/2012] [Indexed: 12/22/2022] Open
Abstract
During the process of matrix vesicle (MV)-mediated initiation of mineralisation, chondrocytes and osteoblasts mineralise the extracellular matrix by promoting the seeding of basic calcium phosphate crystals of hydroxyapatite (HA) along the collagen fibrils. This orchestrated process is carefully regulated by the balanced action of propagators and inhibitors of calcification. The primary antagonistic regulators of extracellular matrix mineralisation are phosphate (Pi) and inorganic pyrophosphate (PPi). Studies in mouse models and in humans have established critical roles for Pi/PPi homeostasis in biomineralisation. In this review, we present the regulators of Pi/PPi, as derived from animal models, and discuss their clinical relevance to physiological and pathological mineralisation.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Shandong Academy of Medical Sciences, Shandong Medical Biotechnological Center, Key Laboratory for Rare Disease Research of Shandong Province, Shandong, China
| | | | | | | |
Collapse
|