1
|
Fasmer KE, Sæterstøl J, Ljunggren MBS, Brun AMK, Pijnenborg JMA, Woie K, Krakstad C, Haldorsen IS. Abdominal fat distribution in endometrial cancer: from diagnosis to follow-up. BMC Cancer 2025; 25:879. [PMID: 40375215 DOI: 10.1186/s12885-025-14155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND The objective of this study is to quantify abdominal obesity markers from computed tomography (CT) scans at primary diagnosis and follow-up in a large endometrial cancer cohort, and to assess temporal change in obesity markers in relation to surgicopathological patient characteristics and outcome. METHODS Total- (TAV), subcutaneous- (SAV), visceral (VAV) abdominal fat volumes, and visceral-to-total fat percentage (VAV%) were derived from CT scans acquired in an endometrial cancer patient cohort at primary diagnosis (nprimary=293). Temporal (delta, δ) changes in CT obesity markers from primary diagnosis to follow-up were assessed for all patients with a follow-up CT 13 (7, 19) [median (interquartile range)] months after diagnosis (nfollow-up=152/293 patients). The CT obesity markers were assessed in relation to clinicopathological features and progression-free survival (PFS) using Mann-Whitney U-test, and Cox hazard ratios (HRs), respectively. RESULTS At primary diagnosis, VAV% was the only marker significantly associated with high-risk histology (median of 33% for endometrioid endometrial carcinoma (EEC) grade 1-2, 36% for EEC grade 3 and 36% for non-endometrioid EC, p = 0.003), myometrial invasion (MI) (median of 34% for MI < 50% vs. 35% for MI ≥ 50%, p = 0.03) and lymphovascular space invasion (LVSI) (median of 34% for no LVSI vs. 36% for LVSI, p = 0.009). High VAV% (≥ 35%) also predicted poor PFS both in univariable analysis (HR = 1.8, p = 0.02), and when stratified for surgicopathological FIGO stage (HR = 3.1, p = 0.03). At follow-up, median TAV, VAV, SAV, and VAV% were significantly lower than at primary diagnosis (p < 0.001 for all). Furthermore, patients with progression had larger reductions in visceral fat compartments (δVAV=-24%, δVAV% =-3%), than patients with no progression (δVAV=-17%, δVAV%=-2%, p ≤ 0.006 for both). CONCLUSION Visceral abdominal obesity (high VAV%) is associated with high-risk histologic features, myometrial invasion, and poor prognosis. Furthermore, high visceral fat loss during/following therapy is associated with disease progression.
Collapse
Affiliation(s)
- Kristine E Fasmer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway.
- Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Jostein Sæterstøl
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Maria B S Ljunggren
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Astrid M K Brun
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Johanna M A Pijnenborg
- Department of Obstetrics and Gynecology, Radboud university medical center, Nijmegen, The Netherlands
| | - Kathrine Woie
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway
| | - Camilla Krakstad
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingfrid S Haldorsen
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway.
- Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
2
|
Kim JW, Tung HC, Yang B, Pant R, Guan X, Feng Y, Xie W. Heme-thiolate monooxygenase cytochrome P450 1B1, an old dog with many new tricks. Pharmacol Rev 2025; 77:100045. [PMID: 40054133 DOI: 10.1016/j.pharmr.2025.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 05/12/2025] Open
Abstract
Cytochrome P450 CYP1B1 is a heme-thiolate monooxygenase traditionally recognized for its xenobiotic functions and extrahepatic expressions. Recent studies have suggested that CYP1B1 is also expressed in hepatic stellate cells, immune cells, endothelial cells, and fibroblasts within the tumor microenvironment, as well as tumor cells themselves. CYP1B1 is responsible for the metabolism of a wide range of substrates, including xenobiotics such as drugs, environmental chemicals, and endobiotics such as steroids, retinol, and fatty acids. Consequently, CYP1B1 and its associated exogenous and endogenous metabolites have been critically implicated in the pathogenesis of many diseases. Understanding the mode of action of CYP1B1 in different pathophysiological conditions and developing pharmacological inhibitors that allow for systemic or cell type-specific modulation of CYP1B1 may pave the way for novel therapeutic opportunities. This review highlights the significant role of CYP1B1 in maintaining physiological homeostasis and provides a comprehensive discussion of recent advancements in our understanding of CYP1B1's involvement in the pathogenesis of diseases such as fibrosis, cancer, glaucoma, and metabolic disorders. Finally, the review emphasizes the therapeutic potential of targeting CYP1B1 for drug development, particularly in the treatment and prevention of cancers and liver fibrosis. SIGNIFICANCE STATEMENT: CYP1B1 plays a critical role in various physiological processes. Dysregulation or genetic mutations of the gene encoding this enzyme can lead to health complications and may increase the risk of diseases such as cancer and liver fibrosis. In this review, we summarize recent preclinical and clinical evidence that underscores the potential of CYP1B1 as a therapeutic target.
Collapse
Affiliation(s)
- Jong-Won Kim
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hung-Chun Tung
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bin Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rajat Pant
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Ye Feng
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Bukato K, Kostrzewa T, Gammazza AM, Gorska-Ponikowska M, Sawicki S. Endogenous estrogen metabolites as oxidative stress mediators and endometrial cancer biomarkers. Cell Commun Signal 2024; 22:205. [PMID: 38566107 PMCID: PMC10985914 DOI: 10.1186/s12964-024-01583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Endometrial cancer is the most common gynecologic malignancy found in developed countries. Because therapy can be curative at first, early detection and diagnosis are crucial for successful treatment. Early diagnosis allows patients to avoid radical therapies and offers conservative management options. There are currently no proven biomarkers that predict the risk of disease occurrence, enable early identification or support prognostic evaluation. Consequently, there is increasing interest in discovering sensitive and specific biomarkers for the detection of endometrial cancer using noninvasive approaches. CONTENT Hormonal imbalance caused by unopposed estrogen affects the expression of genes involved in cell proliferation and apoptosis, which can lead to uncontrolled cell growth and carcinogenesis. In addition, due to their ability to cause oxidative stress, estradiol metabolites have both carcinogenic and anticarcinogenic properties. Catechol estrogens are converted to reactive quinones, resulting in oxidative DNA damage that can initiate the carcinogenic process. The molecular anticancer mechanisms are still not fully understood, but it has been established that some estradiol metabolites generate reactive oxygen species and reactive nitrogen species, resulting in nitro-oxidative stress that causes cancer cell cycle arrest or cell death. Therefore, identifying biomarkers that reflect this hormonal imbalance and the presence of endometrial cancer in minimally invasive or noninvasive samples such as blood or urine could significantly improve early detection and treatment outcomes.
Collapse
Affiliation(s)
- Katarzyna Bukato
- Department of Obstetrics and Gynecology, Oncological Gynecology and Gynecological Endocrinology, Medical University of Gdansk, Smoluchowskiego 17, Gdańsk, 80-214, Poland
| | - Tomasz Kostrzewa
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, Gdansk, 80-211, Poland
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, 90127, Italy
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, Gdansk, 80-211, Poland.
- IEMEST Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, 90127, Italy.
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70174, Stuttgart, Germany.
| | - Sambor Sawicki
- Department of Obstetrics and Gynecology, Oncological Gynecology and Gynecological Endocrinology, Medical University of Gdansk, Smoluchowskiego 17, Gdańsk, 80-214, Poland.
| |
Collapse
|
4
|
Wu HM, Chen LH, Huang HY, Wang HS, Tsai CL. EGF-Enhanced GnRH-II Regulation in Decidual Stromal Cell Motility through Twist and N-Cadherin Signaling. Int J Mol Sci 2023; 24:15271. [PMID: 37894950 PMCID: PMC10607070 DOI: 10.3390/ijms242015271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Crucial roles in embryo implantation and placentation in humans include the invasion of the maternal decidua by extravillous trophoblasts and the motile behavior of decidual endometrial stromal cells. The effects of the epidermal growth factor (EGF) and GnRH-II in the endometrium take part in early pregnancy. In the present study, we demonstrated the coaction of EGF- and GnRH-II-promoted motility of human decidual endometrial stromal cells, indicating the possible roles of EGF and GnRH-II in embryo implantation and early pregnancy. After obtaining informed consent, we obtained human decidual endometrial stromal cells from decidual tissues from normal pregnancies at 6 to 12 weeks of gestation in healthy women undergoing suction dilation and curettage. Cell motility was evaluated with invasion and migration assays. The mechanisms of EGF and GnRH-II were performed using real-time PCR and immunoblot analysis. The results showed that human decidual tissue and stromal cells expressed the EGF and GnRH-I receptors. GnRH-II-mediated cell motility was enhanced by EGF and was suppressed by the knockdown of the endogenous GnRH-I receptor and EGF receptor with siRNA, revealing that GnRH-II promoted the cell motility of human decidual endometrial stromal cells through the GnRH-I receptor and the activation of Twist and N-cadherin signaling. This new concept regarding the coaction of EGF- and GnRH-promoted cell motility suggests that EGF and GnRH-II potentially affect embryo implantation and the decidual programming of human pregnancy.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (L.-H.C.); (H.-Y.H.); (H.-S.W.); (C.-L.T.)
| | | | | | | | | |
Collapse
|
5
|
Rižner TL, Romano A. Targeting the formation of estrogens for treatment of hormone dependent diseases-current status. Front Pharmacol 2023; 14:1155558. [PMID: 37188267 PMCID: PMC10175629 DOI: 10.3389/fphar.2023.1155558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Local formation and action of estrogens have crucial roles in hormone dependent cancers and benign diseases like endometriosis. Drugs that are currently used for the treatment of these diseases act at the receptor and at the pre-receptor levels, targeting the local formation of estrogens. Since 1980s the local formation of estrogens has been targeted by inhibitors of aromatase that catalyses their formation from androgens. Steroidal and non-steroidal inhibitors have successfully been used to treat postmenopausal breast cancer and have also been evaluated in clinical studies in patients with endometrial, ovarian cancers and endometriosis. Over the past decade also inhibitors of sulfatase that catalyses the hydrolysis of inactive estrogen-sulfates entered clinical trials for treatment of breast, endometrial cancers and endometriosis, with clinical effects observed primarily in breast cancer. More recently, inhibitors of 17beta-hydroxysteroid dehydrogenase 1, an enzyme responsible for formation of the most potent estrogen, estradiol, have shown promising results in preclinical studies and have already entered clinical evaluation for endometriosis. This review aims to provide an overview of the current status of the use of hormonal drugs for the major hormone-dependent diseases. Further, it aims to explain the mechanisms behind the -sometimes- observed weak effects and low therapeutic efficacy of these drugs and the possibilities and the advantages of combined treatments targeting several enzymes in the local estrogen formation, or drugs acting with different therapeutic mechanisms.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Laboratory for Molecular Basis of Hormone-Dependent Diseases and Biomarkers, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrea Romano
- GROW Department of Gynaecology, Faculty of Health, Medicine and Life Sciences (FHML)/GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
6
|
Wu X, Zhang K, Zhong X, Huo X, Zhang J, Tian W, Yang X, Zhang Y, Wang Y. Androgens in endometrial carcinoma: the killer or helper? J Endocrinol Invest 2023; 46:457-464. [PMID: 36583833 PMCID: PMC9938034 DOI: 10.1007/s40618-022-01916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/01/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE The aim of this review is to discuss the role of androgens in the progression of endometrial carcinoma (EC) with particular focus on the different kinds of androgenic hormones, androgen receptor (AR) and intracrine androgen metabolism. METHODS A comprehensive literature search within PubMed was performed. Selected publications related to androgens and EC were reviewed. RESULTS There are different kinds of androgenic hormones, and different kinds of androgens may have different effects. Elevated androgens (especially testosterone) have been associated with an increased EC risk in postmenopausal women. 5α-reductases (5α-Reds) and 17β-hydroxysteroid dehydrogenase type 2 (17βHSD2) pathway may inhibit the progression of EC mediated by dihydrotestosterone (DHT), but aromatases stimulate further progression of EC. The most of studies accessing the prognostic value of AR have found that AR expression may be a favorable prognostic indicator. CONCLUSION Androgens may have both oncogenic and tumor suppressive roles. Androgen-specific biases in metabolism and the expression of AR may contribute to the different prognosis of patients with EC.
Collapse
Affiliation(s)
- X Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China
| | - K Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - X Zhong
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China
| | - X Huo
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China
| | - J Zhang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China
| | - W Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - X Yang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China.
| | - Y Zhang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China.
| | - Y Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
7
|
Petersen Harrington S, Balmaceda J, Spoozak L, Jewell A, Fitzgerald-Wolff S. Higher baseline BMI and lower estimated median income associated with increasing BMI after endometrial cancer diagnosis. Gynecol Oncol Rep 2022; 44:101123. [PMID: 36589506 PMCID: PMC9797639 DOI: 10.1016/j.gore.2022.101123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Endometrial cancer is often directly related to obesity and interventions for weight loss have mixed results. Risk factors for continued weight gain after diagnosis are not clearly defined in the literature. The objective of this study is to describe risk factors associated with increased body mass index (BMI) trajectory among endometrial cancer patients. Methods Patients who were surgically treated for endometrial cancer at a single institution between 2010 and 2015 were identified. Demographics including age, race/ethnicity and estimated median income at diagnosis were obtained. BMI at five time points after diagnosis were calculated. BMI trajectories were estimated by latent class growth modeling using the PROC TRAJ procedure in SAS. Chi-squared tests and ANOVA were used to assess differences between trajectory groups. Statistical significance was set to a p-value < 0.05. Results Of 695 patients included in the study, the average age at diagnosis was 62 years and over 70% of patients were obese at baseline. Patients experienced increasing, stable, or decreasing BMI over 2 years following diagnosis. Patients with younger age and lower estimated median income were most likely to be in the increasing BMI group. Among obese patients, those with Class I obesity (BMI 30 to 34.9 kg/m2) were most likely to experience decreasing BMI and those with Class III obesity (BMI > 40 kg/m2) were most likely to experience increasing BMI, p < 0.0001. Conclusion A third of endometrial cancer survivors experience increasing BMI. Severity of obesity at diagnosis matters, patients with severe obesity (Class III) were most likely to experience weight gain.
Collapse
Affiliation(s)
- Shariska Petersen Harrington
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kansas Medical Center, Kansas City, KS, United States,Corresponding author at: The University of Kansas Medical Center, MS 2028, 3901 Rainbow Boulevard, Kansas City, KS 66160, United States.
| | - Julia Balmaceda
- University of Kansas School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Lori Spoozak
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Andrea Jewell
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sharon Fitzgerald-Wolff
- Department of Population Health, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
8
|
Petersen Harrington S, Balmaceda J, Spoozak L, Jewell A, Fitzgerald-Wolff S. Higher baseline BMI and lower estimated median income is associated with increasing BMI after endometrial cancer diagnosis. Gynecol Oncol Rep 2022; 44:101109. [PMID: 36506038 PMCID: PMC9731388 DOI: 10.1016/j.gore.2022.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Endometrial cancer is often directly related to obesity and interventions for weight loss have mixed results. Risk factors for continued weight gain after diagnosis are not clearly defined in the literature. The objective of this study is to describe risk factors associated with increased body mass index (BMI) trajectory among endometrial cancer patients. Methods Patients who were surgically treated for endometrial cancer at a single institution between 2010 and 2015 were identified. Demographics including age, race/ethnicity and estimated median income at diagnosis were obtained. BMI at five time points after diagnosis were calculated. BMI trajectories were estimated by latent class growth modeling using the PROC TRAJ procedure in SAS. Chi-squared tests and ANOVA were used to assess differences between trajectory groups. Statistical significance was set to a p-value < 0.05. Results Of 695 patients included in the study, the average age at diagnosis was 62 years and over 70% of patients were obese at baseline. Patients experienced increasing, stable, or decreasing BMI over 2 years following diagnosis. Patients with younger age and lower estimated median income were most likely to be in the increasing BMI group. Among obese patients, those with Class I obesity (BMI 30 to 34.9 kg/m2) were most likely to experience decreasing BMI and those with Class III obesity (BMI > 40 kg/m2) were most likely to experience increasing BMI, p < 0.0001. Conclusion A third of endometrial cancer survivors experience increasing BMI. Severity of obesity at diagnosis matters, patients with severe obesity (Class III) were most likely to experience weight gain.
Collapse
Affiliation(s)
- Shariska Petersen Harrington
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kansas Medical Center, Kansas City, KS, United States,Corresponding author at: The University of Kansas Medical Center, MS 2028, 3901 Rainbow Boulevard, Kansas City, KS 66160, United States.
| | - Julia Balmaceda
- University of Kansas School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Lori Spoozak
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Andrea Jewell
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sharon Fitzgerald-Wolff
- Department of Population Health, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
9
|
Pavlič R, Gjorgoska M, Hafner E, Sinreih M, Gajser K, Poschner S, Jäger W, Rižner TL. In the Model Cell Lines of Moderately and Poorly Differentiated Endometrial Carcinoma, Estrogens Can Be Formed via the Sulfatase Pathway. Front Mol Biosci 2021; 8:743403. [PMID: 34805270 PMCID: PMC8602794 DOI: 10.3389/fmolb.2021.743403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy in resource-abundant countries. The majority of EC cases are estrogen dependent but the mechanisms of estrogen biosynthesis and oxidative metabolism and estrogen action are not completely understood. Here, we evaluated formation of estrogens in models of moderately and poorly differentiated EC: RL95-2 and KLE cells, respectively. Results revealed high expression of estrone-sulfate (E1-S) transporters (SLCO1A2, SLCO1B3, SLCO1C1, SLCO3A1, SLC10A6, SLC22A9), and increased E1-S uptake in KLE vs RL95-2 cells. In RL95-2 cells, higher levels of sulfatase and better metabolism of E1-S to E1 were confirmed compared to KLE cells. In KLE cells, disturbed balance in expression of HSD17B genes led to enhanced activation of E1 to E2, compared to RL95-2 cells. Additionally, increased CYP1B1 expression and down-regulation of genes encoding phase II metabolic enzymes: COMT, NQO1, NQO2, and GSTP1 suggested decreased detoxification of carcinogenic metabolites in KLE cells. Results indicate that in model cell lines of moderately and poorly differentiated EC, estrogens can be formed via the sulfatase pathway.
Collapse
Affiliation(s)
- Renata Pavlič
- Laboratory for Molecular Basis of Hormone-Dependent Diseases and Biomarkers, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marija Gjorgoska
- Laboratory for Molecular Basis of Hormone-Dependent Diseases and Biomarkers, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Hafner
- Laboratory for Molecular Basis of Hormone-Dependent Diseases and Biomarkers, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maša Sinreih
- Laboratory for Molecular Basis of Hormone-Dependent Diseases and Biomarkers, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Gajser
- Laboratory for Molecular Basis of Hormone-Dependent Diseases and Biomarkers, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Stefan Poschner
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Tea Lanišnik Rižner
- Laboratory for Molecular Basis of Hormone-Dependent Diseases and Biomarkers, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Patel MV, Shen Z, Rodriguez-Garcia M, Usherwood EJ, Tafe LJ, Wira CR. Endometrial Cancer Suppresses CD8+ T Cell-Mediated Cytotoxicity in Postmenopausal Women. Front Immunol 2021; 12:657326. [PMID: 33968059 PMCID: PMC8103817 DOI: 10.3389/fimmu.2021.657326] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Endometrial cancer is the most common gynecological cancer. To investigate how it suppresses host immune function, we isolated CD8+ T cells from endometrial endometroid carcinomas and adjacent non-cancerous endometrium and determined if the tumor environment regulates cytotoxic capacity. Endometrial carcinomas had increased numbers of CD8+ T cells compared to adjacent non-cancerous endometrium. Tumor CD8+ T cells expressed significantly less granzyme A (GZA), B (GZB), and PD-1 than those in adjacent non-cancerous tissues and also had significantly lower cytotoxic killing of allogeneic target cells. CD103-CD8+ T cells, but not CD103+CD8+ T cells, from both adjacent and tumor tissue were primarily responsible for killing of allogeneic target cells. Secretions recovered from endometrial carcinoma tissues suppressed CD8+ cytotoxic killing and lowered perforin, GZB and PD-1 expression relative to non-tumor CD8+ T cells. Furthermore, tumor secretions contained significantly higher levels of immunosuppressive cytokines including TGFβ than non-tumor tissues. Thus, the tumor microenvironment suppresses cytotoxic killing by CD8+ T cells via the secretion of immunosuppressive cytokines leading to decreased expression of intracellular cytolytic molecules. These studies demonstrate the complexity of CD8+ T cell regulation within the endometrial tumor microenvironment and provide a foundation of information essential for the development of therapeutic strategies for gynecological cancers.
Collapse
Affiliation(s)
- Mickey V. Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Laura J. Tafe
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
11
|
Pavlič R, Vidic S, Anko M, Knific T, Büdefeld T, Marton K, Sinreih M, Poschner S, Jäger W, Frković-Grazio S, Rižner TL. Altered Profile of E1-S Transporters in Endometrial Cancer: Lower Protein Levels of ABCG2 and OSTβ and Up-Regulation of SLCO1B3 Expression. Int J Mol Sci 2021; 22:3819. [PMID: 33917029 PMCID: PMC8067723 DOI: 10.3390/ijms22083819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Endometrial cancer (EC) is associated with increased estrogen actions. Locally, estrogens can be formed from estrone-sulphate (E1-S) after cellular uptake by organic anion-transporting polypeptides (OATP) or organic anion transporters (OAT). Efflux of E1-S is enabled by ATP Binding Cassette transporters (ABC) and organic solute transporter (OST)αβ. Currently, 19 E1-S transporters are known but their roles in EC are not yet understood. Here, we analysed levels of E1-S transporters in Ishikawa (premenopausal EC), HEC-1-A (postmenopausal EC), HIEEC (control) cell lines, in EC tissue, examined metabolism of steroid precursor E1-S, studied effects of OATPs' inhibition and gene-silencing on E1-S uptake, and assessed associations between transporters and histopathological data. Results revealed enhanced E1-S metabolism in HEC-1-A versus Ishikawa which could be explained by higher levels of OATPs in HEC-1-A versus Ishikawa, especially 6.3-fold up-regulation of OATP1B3 (SLCO1B3), as also confirmed by immunocytochemical staining and gene silencing studies, lower ABCG2 expression and higher levels of sulfatase (STS). In EC versus adjacent control tissue the highest differences were seen for ABCG2 and SLC51B (OSTβ) which were 3.0-fold and 2.1-fold down-regulated, respectively. Immunohistochemistry confirmed lower levels of these two transporters in EC versus adjacent control tissue. Further analysis of histopathological data indicated that SLCO1B3 might be important for uptake of E1-S in tumours without lymphovascular invasion where it was 15.6-fold up-regulated as compared to adjacent control tissue. Our results clearly indicate the importance of E1-S transporters in EC pathophysiology and provide a base for further studies towards development of targeted treatment.
Collapse
Affiliation(s)
- Renata Pavlič
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| | - Suzana Vidic
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| | - Maja Anko
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| | - Tamara Knific
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| | - Tomaž Büdefeld
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| | - Kristina Marton
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| | - Maša Sinreih
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| | - Stefan Poschner
- Department of Pharmaceutical Chemistry, University of Vienna, 1090 Vienna, Austria; (S.P.); (W.J.)
| | - Walter Jäger
- Department of Pharmaceutical Chemistry, University of Vienna, 1090 Vienna, Austria; (S.P.); (W.J.)
| | - Snježana Frković-Grazio
- Department of Gynecological Pathology, Division of Gynaecology and Obstetrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| |
Collapse
|
12
|
Wu HM, Chang HM, Leung PCK. Gonadotropin-releasing hormone analogs: Mechanisms of action and clinical applications in female reproduction. Front Neuroendocrinol 2021; 60:100876. [PMID: 33045257 DOI: 10.1016/j.yfrne.2020.100876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/23/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022]
Abstract
Extra-hypothalamic GnRH and extra-pituitary GnRH receptors exist in multiple human reproductive tissues, including the ovary, endometrium and myometrium. Recently, new analogs (agonists and antagonists) and modes of GnRH have been developed for clinical application during controlled ovarian hyperstimulation for assisted reproductive technology (ART). Additionally, the analogs and upstream regulators of GnRH suppress gonadotropin secretion and regulate the functions of the reproductive axis. GnRH signaling is primarily involved in the direct control of female reproduction. The cellular mechanisms and action of the GnRH/GnRH receptor system have been clinically applied for the treatment of reproductive disorders and have widely been introduced in ART. New GnRH analogs, such as long-acting GnRH analogs and oral nonpeptide GnRH antagonists, are being continuously developed for clinical application. The identification of the upstream regulators of GnRH, such as kisspeptin and neurokinin B, provides promising potential to develop these upstream regulator-related analogs to control the hypothalamus-pituitary-ovarian axis.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan, ROC
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5, Canada.
| |
Collapse
|
13
|
van Weelden WJ, Fasmer KE, Tangen IL, IntHout J, Abbink K, van Herwaarden AE, Krakstad C, Massuger LFAG, Haldorsen IS, Pijnenborg JMA. Impact of body mass index and fat distribution on sex steroid levels in endometrial carcinoma: a retrospective study. BMC Cancer 2019; 19:547. [PMID: 31174495 PMCID: PMC6555924 DOI: 10.1186/s12885-019-5770-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/29/2019] [Indexed: 12/25/2022] Open
Abstract
Background Obesity is an important cause of multiple cancer types, amongst which endometrial cancer (EC). The relation between obesity and cancer is complicated and involves alterations in insulin metabolism, response to inflammation and alterations in estradiol metabolism. Visceral obesity is assumed to play the most important role in the first two mechanisms, but its role in estradiol metabolism is unclear. Therefore, this retrospective study explores the relationship of body mass index (BMI), visceral fat volume (VAV) and subcutaneous fat volume (SAV) and serum levels of sex steroids and lipids in patients with endometrial cancer. Methods Thirty-nine postmenopausal EC patients with available BMI, blood serum and Computed Tomography (CT) scans were included. Serum was analyzed for estradiol, dehydroepiandrosterone sulfate (DHEAS), androstenedione, testosterone, cholesterol, triglycerides and high (HDL), low (LDL) and non-high density (NHDL) lipoprotein. VAV and SAV were quantified on abdominal CT scan images. Findings were interpreted using pearson correlation coefficient and linear regression with commonality analysis. Results Serum estradiol is moderately correlated with BMI (r = 0.62) and VAV (r = 0.58) and strongly correlated with SAV (r = 0.74) (p < 0.001 for all). SAV contributes more to estradiol levels than VAV (10.3% for SAV, 1.4% for VAV, 35.9% for SAV and VAV, p = 0.01). Other sex steroids and lipids have weak and moderate correlations with VAV or SAV. Conclusions This study shows that serum estradiol is correlated with BMI and other fat-distribution measures in postmenopausal endometrial cancer patients. Subcutaneous fat tissue contributes more to the estradiol levels indicating that subcutaneous fat might be relevant in endometrial cancer carcinogenesis. Electronic supplementary material The online version of this article (10.1186/s12885-019-5770-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Willem Jan van Weelden
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Geert Grooteplein 10, P.O. Box 9101, 6500, HB, Nijmegen, The Netherlands.
| | - Kristine Eldevik Fasmer
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital Bergen, Bergen, Norway.,Department of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingvild L Tangen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Joanna IntHout
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, Netherlands
| | - Karin Abbink
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Geert Grooteplein 10, P.O. Box 9101, 6500, HB, Nijmegen, The Netherlands
| | | | - Camilla Krakstad
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Leon F A G Massuger
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Geert Grooteplein 10, P.O. Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Ingfrid S Haldorsen
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital Bergen, Bergen, Norway.,Department of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Johanna M A Pijnenborg
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Geert Grooteplein 10, P.O. Box 9101, 6500, HB, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Cornel KMC, Bongers MY, Kruitwagen RPFM, Romano A. Local estrogen metabolism (intracrinology) in endometrial cancer: A systematic review. Mol Cell Endocrinol 2019; 489:45-65. [PMID: 30326245 DOI: 10.1016/j.mce.2018.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Endometrial cancer (EC) is the most common malignancy of the female gynaecological tract and increased exposure to estrogens is a risk factor. EC cells are able to produce estrogens locally using precursors like, among others, adrenal steroids present in the serum. This is referred to as local estrogen metabolism (or intracrinology) and consists of a complex network of multiple enzymes. Particular relevant to the final generation of active estrogens in endometrial cells are: steroid sulfatase (STS), estrogen sulfotransferase (SULT1E1), aromatase (CYP19A1), 17β-hydroxysteroid dehydrogenase (HSD17B) type 1 and type 2. During the last decades, a plethora of studies explored the level of these enzymes in EC but contrasting data were reported, which generated vigorous debate and controversies. Several reviews attempted at clarifying some of the debated issues, but published reviews are based on investigator-defined bibliography selection and not on systematic analysis. Therefore, we performed a systematic review of the literature reporting about the level of STS, SULT1E1, CYP19A1, HSD17B1 and HSD17B2 in EC. Additional intracrine enzymes and networks (e.g., HSD17Bs other than types 1 and 2, aldo-keto reductases, progesterone and androgen metabolism) were non-systematically reviewed as well.
Collapse
Affiliation(s)
- K M C Cornel
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands
| | - M Y Bongers
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands; Department of Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, the Netherlands
| | - R P F M Kruitwagen
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands
| | - A Romano
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands.
| |
Collapse
|
15
|
Heinosalo T, Saarinen N, Poutanen M. Role of hydroxysteroid (17beta) dehydrogenase type 1 in reproductive tissues and hormone-dependent diseases. Mol Cell Endocrinol 2019; 489:9-31. [PMID: 30149044 DOI: 10.1016/j.mce.2018.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/14/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Abnormal synthesis and metabolism of sex steroids is involved in the pathogenesis of various human diseases, such as endometriosis and cancers arising from the breast and uterus. Steroid biosynthesis is a multistep enzymatic process proceeding from cholesterol to highly active sex steroids via different intermediates. Human Hydroxysteroid (17beta) dehydrogenase 1 (HSD17B1) enzyme shows a high capacity to produce the highly active estrogen, estradiol, from a precursor hormone, estrone. However, the enzyme may also play a role in other steps of the steroid biosynthesis pathway. In this article, we have reviewed the literature on HSD17B1, and summarize the role of the enzyme in hormone-dependent diseases in women as evidenced by preclinical studies.
Collapse
Affiliation(s)
- Taija Heinosalo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| | - Niina Saarinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland; Institute of Medicine, The Sahlgrenska Academy, Gothenburg University, 413 45, Gothenburg, Sweden
| |
Collapse
|
16
|
Shen ML, Xiao A, Yin SJ, Wang P, Lin XQ, Yu CB, He GH. Associations between UGT2B7 polymorphisms and cancer susceptibility: A meta-analysis. Gene 2019; 706:115-123. [PMID: 31082503 DOI: 10.1016/j.gene.2019.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND UGT2B7 was recently acknowledged as a new critical enzyme involved in biotransformation of a variety of carcinogens, whose function was reported to be significantly associated with its encoding gene (UGT2B7) polymorphisms. However, results regarding the associations between single nucleotide polymorphisms (SNPs) of UGT2B7 and cancer risk still remained controversial. Therefore, a meta-analysis was conducted to further elucidate the role of UGT2B7 SNPs on cancer susceptibilities. METHODS PubMed, EMBASE, Cochrane library, Chinese National Knowledge Infrastructure (CNKI), Technology of Chongqing (VIP) and Wan Fang Database were searched for eligible studies until March 2019. All analysis was carried out using the Review Manager 5.3 software. Subgroup analyses were performed by cancer types, ethnicity or source of controls. RESULTS 13 studies with a total of 7688 cancer cases and 11,281 controls were included in this meta-analysis. The results showed that UGT2B7 rs7439366 increased the colorectal cancer risk in dominant model (OR = 0.76, 95% CI = 0.61-0.95, P = 0.02). However, as for the rs7435335 and rs12233719, we did not find their associations with cancer risk in all genetic models. In addition, the rs7441774 was found to be associated with breast cancer risk and significantly reduced papillary thyroid cancer risk in rs3924194 was also observed. Nevertheless, these findings remained to be further proven in future studies since these 2 SNPs were only respectively involved in 1 study. CONCLUSION This meta-analysis confirmed the association of UGT2B7 rs7439366 with colorectal cancer risk, which may be a potential promising biomarker for prediction of colorectal cancer risk.
Collapse
Affiliation(s)
- Ming-Li Shen
- Institute of Pharmacy and Chemistry, Dali University, Dali 671000, China; Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - An Xiao
- Department of Infectious Diseases, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650000, China
| | - Sun-Jun Yin
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Ping Wang
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Xiao-Qian Lin
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Chen-Bin Yu
- Emergency Department, Taikang Xianlin Drum Tower Hospital affiliated to Nanjing University Medical School, Nanjing 210046, China.
| | - Gong-Hao He
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China.
| |
Collapse
|
17
|
Miyamoto T, Shiozawa T. Two-sided role of estrogen on endometrial carcinogenesis: stimulator or suppressor? Gynecol Endocrinol 2019; 35:370-375. [PMID: 30668178 DOI: 10.1080/09513590.2018.1549219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Endometrial carcinoma (EC) often expresses estrogen receptors (ER), and the growth of EC is stimulated by estrogen. Therefore, EC is considered to be an estrogen-dependent tumor. However, the role of estrogen in endometrial carcinogenesis is somewhat unclear because the majority of EC occurs at peri- or post menopause when serum estrogen levels are generally decreased. In this article, we describe the double-edged role of estrogen in the genesis of EC, especially in terms of mismatch repair functions in vitro and in vivo, i.e. when serum estradiol (E2) levels are relatively low (approximately less than 90 pg/ml), and E2 enhance the carcinogenesis, whereas high E2 levels may suppress the carcinogenesis. This will deepen mechanistic insight into unopposed estrogen.
Collapse
Affiliation(s)
- Tsutomu Miyamoto
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Tanri Shiozawa
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| |
Collapse
|
18
|
Émond JP, Labriet A, Desjardins S, Rouleau M, Villeneuve L, Hovington H, Brisson H, Lacombe L, Simonyan D, Caron P, Périgny M, Têtu B, Fallon JK, Klein K, Smith PC, Zanger UM, Guillemette C, Lévesque E. Factors Affecting Interindividual Variability of Hepatic UGT2B17 Protein Expression Examined Using a Novel Specific Monoclonal Antibody. Drug Metab Dispos 2019; 47:444-452. [PMID: 30819787 DOI: 10.1124/dmd.119.086330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/21/2019] [Indexed: 08/10/2024] Open
Abstract
Accurate quantification of the metabolic enzyme uridine diphospho-glucuronosyltransferase (UGT) UGT2B17 has been hampered by the high sequence identity with other UGT2B enzymes (as high as 94%) and by the lack of a specific antibody. Knowing the significance of the UGT2B17 pathway in drug and hormone metabolism and cancer, we developed a specific monoclonal antibody (EL-2B17mAb), initially validated by the lack of detection in liver microsomes of an individual carrying no UGT2B17 gene copy and in supersomes expressing UGT2B enzymes. Immunohistochemical detection in livers revealed strong labeling of bile ducts and variable labeling of hepatocytes. Expression levels assessed by immunoblotting were highly correlated to mass spectrometry-based quantification (r = 0.93), and three major expression patterns (absent, low, or high) were evidenced. Livers with very low expression were carriers of the functional rs59678213 G variant, located in the binding site for the transcription factor forkhead box A1 (FOXA1) of the UGT2B17 promoter. The highest level of expression was observed for individuals carrying at least one rs59678213 A allele. Multiple regression analysis indicated that the number of gene copies explained only 8% of UGT2B17 protein expression, 49% when adding rs59678213, reaching 54% when including sex. The novel EL-2B17mAb antibody allowed specific UGT2B17 quantification and exposed different patterns of hepatic expression. It further suggests that FOXA1 is a key driver of UGT2B17 expression in the liver. The availability of this molecular tool will help characterize the UGT2B17 level in various disease states and establish more precisely the contribution of the UGT2B17 enzyme to drug and hormone metabolism.
Collapse
Affiliation(s)
- Jean-Philippe Émond
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - Adrien Labriet
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - Sylvie Desjardins
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - Michèle Rouleau
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - Lyne Villeneuve
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - Hélène Hovington
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - Hervé Brisson
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - Louis Lacombe
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - David Simonyan
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - Patrick Caron
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - Martine Périgny
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - Bernard Têtu
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - John K Fallon
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - Kathrin Klein
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - Philip C Smith
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - Ulrich M Zanger
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - Chantal Guillemette
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| | - Eric Lévesque
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine (J.-P.É., S.D., H.H., H.B., L.L., M.P., B.T., E.L.) and CHU de Québec Research Centre and Faculty of Pharmacy, Laval University (A.L., M.R., L.V., P.C., C.G.), and Statistical and Clinical Research Platform, CHU de Québec Research Centre (D.S.), Québec, Canada.); Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (K.K., U.M.Z.)
| |
Collapse
|
19
|
Abdul Aziz AA, Md Salleh MS, Mohamad I, Krishna Bhavaraju VM, Mazuwin Yahya M, Zakaria AD, Hua Gan S, Ankathil R. Single-nucleotide polymorphisms and mRNA expression of CYP1B1 influence treatment response in triple negative breast cancer patients undergoing chemotherapy. J Genet 2018; 97:1185-1194. [PMID: 30555068 DOI: 10.1007/s12041-018-1013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 10/27/2022]
Abstract
Triple negative breast cancer (TNBC) is typically associated with poor and interindividual variability in treatment response. Cytochrome P450 family 1 subfamily B1 (CYP1B1) is a metabolizing enzyme, involved in the biotransformation of xenobiotics and anticancer drugs. We hypothesized that, single-nucleotide polymorphisms (SNPs), CYP1B1 142 C>G, 4326 C>G and 4360 A>G, and CYP1B1 mRNA expression might be potential biomarkers for prediction of treatment response in TNBC patients. CYP1B1 SNPs genotyping (76 TNBC patients) was performed using allele-specific polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism methods and mRNA expression of CYP1B1 (41 formalin-fixed paraffin embeddedblocks) was quantified using quantitative reverse transcription PCR. Homozygous variant genotype (GG) and variant allele (G) of CYP1B1 4326C>G polymorphism showed significantly higher risk for development of resistance to chemotherapy with adjusted odds ratio (OR): 6.802 and 3.010, respectively. Whereas, CYP1B1 142 CG heterozygous genotype showed significant association with goodtreatment response with adjusted OR: 0.199. CYP1B1 142C-4326G haplotype was associated with higher risk for chemoresistance with OR: 2.579. Expression analysis revealed that the relative expression of CYP1B1 was downregulated (0.592) in cancerous tissue compared with normal adjacent tissues. When analysed for association with chemotherapy response, CYP1B1 expression was found to be significantly upregulated (3.256) in cancerous tissues of patients who did not respond as opposed to those of patients who showed response to chemotherapy. Our findings suggest that SNPs together with mRNA expression of CYP1B1 may be useful biomarkers to predict chemotherapy response in TNBC patients.
Collapse
Affiliation(s)
- Ahmad Aizat Abdul Aziz
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Konings G, Brentjens L, Delvoux B, Linnanen T, Cornel K, Koskimies P, Bongers M, Kruitwagen R, Xanthoulea S, Romano A. Intracrine Regulation of Estrogen and Other Sex Steroid Levels in Endometrium and Non-gynecological Tissues; Pathology, Physiology, and Drug Discovery. Front Pharmacol 2018; 9:940. [PMID: 30283331 PMCID: PMC6157328 DOI: 10.3389/fphar.2018.00940] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the intracrine (or local) regulation of estrogen and other steroid synthesis and degradation expanded in the last decades, also thanks to recent technological advances in chromatography mass-spectrometry. Estrogen responsive tissues and organs are not passive receivers of the pool of steroids present in the blood but they can actively modify the intra-tissue steroid concentrations. This allows fine-tuning the exposure of responsive tissues and organs to estrogens and other steroids in order to best respond to the physiological needs of each specific organ. Deviations in such intracrine control can lead to unbalanced steroid hormone exposure and disturbances. Through a systematic bibliographic search on the expression of the intracrine enzymes in various tissues, this review gives an up-to-date view of the intracrine estrogen metabolisms, and to a lesser extent that of progestogens and androgens, in the lower female genital tract, including the physiological control of endometrial functions, receptivity, menopausal status and related pathological conditions. An overview of the intracrine regulation in extra gynecological tissues such as the lungs, gastrointestinal tract, brain, colon and bone is given. Current therapeutic approaches aimed at interfering with these metabolisms and future perspectives are discussed.
Collapse
Affiliation(s)
- Gonda Konings
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Linda Brentjens
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bert Delvoux
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Karlijn Cornel
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Marlies Bongers
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Roy Kruitwagen
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sofia Xanthoulea
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Andrea Romano
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
21
|
17β-Hydroxysteroid Dehydrogenase Type 2 Expression Is Induced by Androgen Signaling in Endometrial Cancer. Int J Mol Sci 2018; 19:ijms19041139. [PMID: 29642629 PMCID: PMC5979403 DOI: 10.3390/ijms19041139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/26/2018] [Accepted: 04/09/2018] [Indexed: 01/13/2023] Open
Abstract
Endometrial cancer is one of the most common female pelvic cancers and has been considered an androgen-related malignancy. Several studies have demonstrated the anti-cell proliferative effect of androgen on endometrial cancer cells; however, the mechanisms of the anti-cancer effect of androgen remain largely unclear. 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2), which catalyzes the conversion of E2 to E1, is known to be upregulated by androgen treatment in breast cancer cells. In this study, we therefore focused on the role of androgen on estrogen dependence in endometrial cancer. Dihydrotestosterone (DHT) was found to induce 17β-HSD2 mRNA and protein expression in HEC-1B endometrial cancer cells. DHT could also inhibit cell proliferation of HEC-1B when induced by estradiol treatment. In 19 endometrioid endometrial adenocarcinoma (EEA) tissues, intratumoral DHT concentration was measured by liquid chromatography/electrospray tandem mass spectrometry and was found to be significantly correlated with 17β-HSD2 immunohistochemical status. We further examined the correlations between 17β-HSD2 immunoreactivity and clinicopathological parameters in 53 EEA tissues. 17β-HSD2 status was inversely associated with the histological grade, clinical stage, and cell proliferation marker Ki-67, and positively correlated with progesterone receptor expression. 17β-HSD2 status tended to be positively associated with androgen receptor status. In 53 EEA cases, the 17β-HSD2-positive group tended to have better prognosis than that for the negative group with respect to progression-free survival and endometrial cancer-specific survival. These findings suggest that androgen suppresses the estrogen dependence of endometrial cancer through the induction of 17β-HSD2 in endometrial cancer.
Collapse
|
22
|
Audet-Delage Y, Grégoire J, Caron P, Turcotte V, Plante M, Ayotte P, Simonyan D, Villeneuve L, Guillemette C. Estradiol metabolites as biomarkers of endometrial cancer prognosis after surgery. J Steroid Biochem Mol Biol 2018; 178:45-54. [PMID: 29092787 DOI: 10.1016/j.jsbmb.2017.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022]
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy prevailing after menopause. Defining steroid profiles may help predict the risk of recurrence after hysterectomy, which remains limited due to the lack of reliable markers. Adrenal precursors, androgens, parent estrogens and catechol estrogen metabolites were measured by mass spectrometry (MS) in preoperative serums and those collected one month after hysterectomy from 246 newly diagnosed postmenopausal EC cases. We also examined the associations between steroid hormones and EC status by including 110 healthy postmenopausal women. Steroid concentrations were analyzed in relation to clinicopathological features, recurrence and overall survival (OS). The mean follow-up time was 65.5 months and 26 patients experienced relapse after surgery for a recurrence incidence of 10.6% (6.4% Type I and 29.5% Type II). Recurrence and OS were related to a more aggressive disease but not linked to body mass index. Preoperative levels of estriol (E3) and estrone-sulfate (E1-S) were inversely associated with recurrence in a multivariate logistic regression analysis (Hazard ratios (HRs) of 0.31, P=0.039 and 3.01, P=0.024; respectively). All circulating steroids declined considerably after surgery almost reaching those of healthy women, except 4-methoxy-E2 (4MeO-E2) for which postoperative levels increased by 35% and were associated to a 68% decreased risk of recurrence (HR=0.32, P=0.015). Women diagnosed with both histological types of EC present significantly higher levels of steroids, in support of their mitogenic effects. The estrogen precursor E1-S, the anticancer metabolite 4MeO-E2, and E3 that exert mixed antagonist and agonist estrogenic activities and immunological effects, are potential independent prognostic factors.
Collapse
Affiliation(s)
- Yannick Audet-Delage
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Jean Grégoire
- Gynecologic Oncology Service, CHU de Québec, and Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Laval University, Québec, Canada
| | - Patrick Caron
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Véronique Turcotte
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Marie Plante
- Gynecologic Oncology Service, CHU de Québec, and Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Laval University, Québec, Canada
| | - Pierre Ayotte
- CHU de Québec Research Center, and Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Québec, Canada
| | - David Simonyan
- Statistical and Clinical Research Platform, CHU de Québec Research Center, Québec, Canada
| | - Lyne Villeneuve
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Chantal Guillemette
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, Québec, Canada; Canada Research Chair in Pharmacogenomics, Canada.
| |
Collapse
|
23
|
Audet-Delage Y, Villeneuve L, Grégoire J, Plante M, Guillemette C. Identification of Metabolomic Biomarkers for Endometrial Cancer and Its Recurrence after Surgery in Postmenopausal Women. Front Endocrinol (Lausanne) 2018; 9:87. [PMID: 29593653 PMCID: PMC5857535 DOI: 10.3389/fendo.2018.00087] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/23/2018] [Indexed: 11/24/2022] Open
Abstract
Endometrial cancer (EC) is the most frequent gynecological cancer in developed countries. Most EC occurs after menopause and is diagnosed as endometrioid (type I) carcinomas, which exhibit a favorable prognosis. In contrast, non-endometrioid (type II) carcinomas such as serous tumors have a poor prognosis. Our goal was to identify novel blood-based markers associated with EC subtypes and recurrence after surgery in postmenopausal women. Using mass spectrometry-based untargeted metabolomics, we examined preoperative serum metabolites among control women (n = 18) and those with non-recurrent (NR) and recurrent (R) cases of type I endometrioid (n = 24) and type II serous (n = 12) carcinomas. R and NR cases were similar with respect to pathological characteristics, body mass index, and age. A total of 1,592 compounds were analyzed including 14 different lipid classes. When we compared EC cases with controls, 137 metabolites were significantly different. A combination of spermine and isovalerate resulted in an age-adjusted area under the receiver-operating characteristic curve (AUCadj) of 0.914 (P < 0.001) for EC detection. The combination of 2-oleoylglycerol and TAG42:2-FA12:0 allowed the distinction of R cases from NR cases with an AUCadj of 0.901 (P < 0.001). Type I R cases were also characterized by much lower levels of bile acids and elevated concentrations of phosphorylated fibrinogen cleavage peptide, whereas type II R cases displayed higher levels of ceramides. The findings from our pilot study provide a detailed metabolomics study of EC and identify putative serum biomarkers for defining clinically relevant risk groups.
Collapse
Affiliation(s)
- Yannick Audet-Delage
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - Lyne Villeneuve
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - Jean Grégoire
- Gynecologic Oncology Service, CHU de Québec, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Marie Plante
- Gynecologic Oncology Service, CHU de Québec, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Chantal Guillemette
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Pharmacy, Laval University, Québec, QC, Canada
- Canada Research Chair in Pharmacogenomi, Laval University, Québec, QC, Canada
- *Correspondence: Chantal Guillemette,
| |
Collapse
|
24
|
Sinreih M, Knific T, Anko M, Hevir N, Vouk K, Jerin A, Frković Grazio S, Rižner TL. The Significance of the Sulfatase Pathway for Local Estrogen Formation in Endometrial Cancer. Front Pharmacol 2017; 8:368. [PMID: 28690541 PMCID: PMC5481366 DOI: 10.3389/fphar.2017.00368] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/29/2017] [Indexed: 01/27/2023] Open
Abstract
Endometrial cancer (EC) is the most common estrogen-dependent gynecological malignancy in the developed World. To investigate the local formation of estradiol (E2), we first measured the concentrations of the steroid precursor androstenedione (A-dione) and the most potent estrogen, E2, and we evaluated the metabolism of A-dione, estrone-sulfate (E1-S), and estrone (E1) in cancerous and adjacent control endometrium. Furthermore, we studied expression of the key genes for estradiol formation via the aromatase and sulfatase pathways. A-dione and E2 were detected in cancerous and adjacent control endometrium. In cancerous endometrium, A-dione was metabolized to testosterone, and no E2 was formed. Both, E1-S and E1 were metabolized to E2, with increased levels of E2 seen in cancerous tissue. There was no significant difference in expression of the key genes of the aromatase (CYP19A1) and the sulfatase (STS, HSD17B1, HSD17B2) pathways in cancerous endometrium compared to adjacent control tissue. The mRNA levels of CYP19A1 and HSD17B1 were low, and HSD17B14, which promotes inactivation of E2, was significantly down-regulated in cancerous endometrium, especially in patients with lymphovascular invasion. At the protein level, there were no differences in the levels of STS and HSD17B2 between cancerous and adjacent control tissue by Western blotting, and immunohistochemistry revealed intense staining for STS and HSD17B2, and weak staining for SULT1E1 and HSD17B1 in cancerous tissue. Our data demonstrate that in cancerous endometrium, E2 is formed from E1-S via the sulfatase pathway, and not from A-dione via the aromatase pathway.
Collapse
Affiliation(s)
- Maša Sinreih
- Institute of Biochemistry, Faculty of Medicine, University of LjubljanaLjubljana, Slovenia
| | - Tamara Knific
- Institute of Biochemistry, Faculty of Medicine, University of LjubljanaLjubljana, Slovenia
| | - Maja Anko
- Institute of Biochemistry, Faculty of Medicine, University of LjubljanaLjubljana, Slovenia
| | - Neli Hevir
- Institute of Biochemistry, Faculty of Medicine, University of LjubljanaLjubljana, Slovenia
| | - Katja Vouk
- Institute of Biochemistry, Faculty of Medicine, University of LjubljanaLjubljana, Slovenia
| | - Aleš Jerin
- Institute of Clinical Chemistry and Biochemistry, University Medical CentreLjubljana, Slovenia
| | - Snježana Frković Grazio
- Division of Obstetrics and Gynecology, Department of Pathology, University Medical CentreLjubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of LjubljanaLjubljana, Slovenia
| |
Collapse
|
25
|
Rižner TL, Thalhammer T, Özvegy-Laczka C. The Importance of Steroid Uptake and Intracrine Action in Endometrial and Ovarian Cancers. Front Pharmacol 2017; 8:346. [PMID: 28674494 PMCID: PMC5474471 DOI: 10.3389/fphar.2017.00346] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/22/2017] [Indexed: 01/06/2023] Open
Abstract
Endometrial and ovarian cancers predominately affect women after menopause, and are more frequently observed in developed countries. These are considered to be hormone-dependent cancers, as steroid hormones, and estrogens in particular, have roles in their onset and progression. After the production of estrogens in the ovary has ceased, estrogen synthesis occurs in peripheral tissues. This depends on the cellular uptake of estrone-sulfate and dehydroepiandrosterone-sulfate, as the most important steroid precursors in the plasma of postmenopausal women. The uptake through transporter proteins, such as those of the organic anion-transporting polypeptide (OATP) and organic anion-transporter (OAT) families, is followed by the synthesis and action of estradiol E2. Here, we provide an overview of the current understanding of this intracrine action of steroid hormones, which depends on the availability of the steroid precursors and transmembrane transporters for precursor uptake, along with the enzymes for the synthesis of E2. The data is also provided relating to the selected transmembrane transporters from the OATP, OAT, SLC51, and ABC-transporter families, and the enzymes involved in the E2-generating pathways in cancers of the endometrium and ovary. Finally, we discuss these transporters and enzymes as potential drug targets.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of LjubljanaLjubljana, Slovenia
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Centre for Pathophysiology, Infectiology and Immunology, Medical University of ViennaVienna, Austria
| | - Csilla Özvegy-Laczka
- Momentum Membrane Protein Research Group, Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of SciencesBudapest, Hungary
| |
Collapse
|
26
|
Gilligan LC, Gondal A, Tang V, Hussain MT, Arvaniti A, Hewitt AM, Foster PA. Estrone Sulfate Transport and Steroid Sulfatase Activity in Colorectal Cancer: Implications for Hormone Replacement Therapy. Front Pharmacol 2017; 8:103. [PMID: 28326039 PMCID: PMC5339229 DOI: 10.3389/fphar.2017.00103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Hormone replacement therapy (HRT) affects the incidence and potential progression of colorectal cancer (CRC). As HRT primarily consists of estrone sulfate (E1S), understanding whether this conjugated estrogen is transported and metabolized in CRC will define its potential effect in this malignancy. Here, we show that a panel of CRC cell lines (Colo205, Caco2, HCT116, HT-29) have steroid sulfatase (STS) activity, and thus can hydrolyze E1S. STS activity is significantly higher in CRC cell lysate, suggesting the importance of E1S transport in intracellular STS substrate availability. As E1S transport is regulated by the expression pattern of certain solute carrier organic anion transporter polypeptides, we show that in CRC OATP4A1 is the most abundantly expressed transporter. All four CRC cell lines rapidly transported E1S into cells, with this effect significantly inhibited by the competitive OATP inhibitor BSP. Transient knockdown of OATP4A1 significantly disrupted E1S uptake. Examination of estrogen receptor status showed ERα was present in Colo205 and Caco2 cells. None of the cells expressed ERβ. Intriguingly, HCT116 and HT29 cells strongly expressed the G protein coupled estrogen receptor (GPER), and that stimulation of this receptor with estradiol (E2) and G1, a GPER agonist, significantly (p < 0.01) increased STS activity. Furthermore, tamoxifen and fulvestrant, known GPER agonist, also increased CRC STS activity, with this effect inhibited by the GPER antagonist G15. These results suggest that CRC can take up and hydrolyze E1S, and that subsequent GPER stimulation increases STS activity in a potentially novel positive feedback loop. As elevated STS expression is associated with poor prognosis in CRC, these results suggest HRT, tamoxifen and fulvestrant may negatively impact CRC patient outcomes.
Collapse
Affiliation(s)
- Lorna C Gilligan
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham Birmingham, UK
| | - Ali Gondal
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham Birmingham, UK
| | - Vivien Tang
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham Birmingham, UK
| | - Maryam T Hussain
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham Birmingham, UK
| | - Anastasia Arvaniti
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham Birmingham, UK
| | - Anne-Marie Hewitt
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham Birmingham, UK
| | - Paul A Foster
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of BirminghamBirmingham, UK; Centre for Endocrinology, Diabetes, and Metabolism, Birmingham Health PartnersBirmingham, UK
| |
Collapse
|
27
|
Epidemiology of Endometrial Carcinoma: Etiologic Importance of Hormonal and Metabolic Influences. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:3-46. [PMID: 27910063 DOI: 10.1007/978-3-319-43139-0_1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endometrial carcinoma is the most common gynecologic cancer in developed nations, and the annual incidence is projected to increase, secondary to the high prevalence of obesity, a strong endometrial carcinoma risk factor. Although endometrial carcinomas are etiologically, biologically, and clinically diverse, hormonal and metabolic mechanisms are particularly strongly implicated in the pathogenesis of endometrioid carcinoma, the numerically predominant subtype. The centrality of hormonal and metabolic disturbances in the pathogenesis of endometrial carcinoma, combined with its slow development from well-characterized precursors in most cases, offers a substantial opportunity to reduce endometrial carcinoma mortality through early detection, lifestyle modification, and chemoprevention. In this chapter, we review the epidemiology of endometrial carcinoma, emphasizing theories that link risk factors for these tumors to hormonal and metabolic mechanisms. Future translational research opportunities related to prevention are discussed.
Collapse
|
28
|
Popov SV, Markov PA, Patova OA, Vityazev FV, Bakutova LA, Borisenkov MF, Martinson EA, Ananchenko BA, Durnev EA, Burkov AA, Litvinets SG, Belyi VA, Ipatova EA. In vitro gastrointestinal-resistant pectin hydrogel particles for β-glucuronidase adsorption. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 28:293-311. [DOI: 10.1080/09205063.2016.1268461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sergey V. Popov
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Pavel A. Markov
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Olga A. Patova
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Fedor V. Vityazev
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Larisa A. Bakutova
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Mikhail F. Borisenkov
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Ekaterina A. Martinson
- Federal Government-financed Educational Institution of Higher Professional Education, Vyatka State University, Kirov, Russia
| | - Boris A. Ananchenko
- Federal Government-financed Educational Institution of Higher Professional Education, Vyatka State University, Kirov, Russia
| | - Eugene A. Durnev
- Federal Government-financed Educational Institution of Higher Professional Education, Vyatka State University, Kirov, Russia
| | - Andrey A. Burkov
- Federal Government-financed Educational Institution of Higher Professional Education, Vyatka State University, Kirov, Russia
| | - Sergey G. Litvinets
- Federal Government-financed Educational Institution of Higher Professional Education, Vyatka State University, Kirov, Russia
| | - Vladimir A. Belyi
- Institute of Chemistry, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Elena A. Ipatova
- Institute of Chemistry, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| |
Collapse
|
29
|
Ito K, Miki Y, Suzuki T, McNamara KM, Sasano H. In situ androgen and estrogen biosynthesis in endometrial cancer: focus on androgen actions and intratumoral production. Endocr Relat Cancer 2016; 23:R323-35. [PMID: 27287451 DOI: 10.1530/erc-15-0470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/10/2016] [Indexed: 01/20/2023]
Abstract
In situ estrogen biosynthesis is considered to play pivotal roles in the development and progression of human endometrial carcinoma. However, the biological roles of androgen have remained virtually unknown. Various epidemiological studies have revealed that elevated serum androgen levels are generally associated with an increased risk of developing endometrial carcinoma; however, studies directly examining androgens in carcinoma tissues are relatively rare and reviews summarizing this information are scarce. Therefore, we summarized recent studies on androgens in endometrial carcinoma, especially focusing androgen actions and in situ androgen biosynthesis. Among the enzymes required for local biosynthesis of androgen, 17β-hydroxysteroid dehydrogenase type 5 (conversion from androstenedione to testosterone) and 5α-reductase (reduction of testosterone to dihydrotestosterone (DHT)) are the principal enzymes involved in the formation of biologically most potent androgen, DHT. Both enzymes and androgen receptor were expressed in endometrial carcinoma tissues, and in situ production of DHT has been reported to exist in endometrial carcinoma tissues. However, testosterone is not only a precursor of DHT production, but also a precursor of estradiol synthesis, as a substrate of the aromatase enzyme. Therefore, aromatase could be another key enzyme serving as a negative regulator for in situ production of DHT by reducing amounts of the precursor. In an in vitro study, DHT was reported to exert antiproliferative effects on endometrial carcinoma cells. Intracrine mechanisms of androgens, the downstream signals of AR, which are directly related to anticancer progression, and the clinical significance of DHT-AR pathway in the patients with endometrial carcinoma have, however, not been fully elucidated.
Collapse
Affiliation(s)
- Kiyoshi Ito
- Department of Disaster Obstetrics and GynecologyInternational Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai, Japan Department of Disaster Obstetrics and GynecologyTohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and GynecologyInternational Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and HistotechnologyTohoku University Graduate School of Medicine, Sendai, Japan
| | - Keely May McNamara
- Department of PathologyTohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of PathologyTohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
30
|
K-Ras stabilization by estrogen via PKCδ is involved in endometrial tumorigenesis. Oncotarget 2016; 6:21328-40. [PMID: 26015399 PMCID: PMC4673268 DOI: 10.18632/oncotarget.4049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
Abstract
Estrogens are considered as a major risk factor of endometrial cancer. In this study, we identified a mechanism of tumorigenesis in which K-Ras protein is stabilized via estrogen signaling through the ER-α36 receptor. PKCδ was shown to stabilize K-Ras specifically via estrogen signaling. Estrogens stabilize K-Ras via inhibition of polyubiquitylation-dependent proteasomal degradation. Estrogen-induced cellular transformation was abolished by either K-Ras or PKCδ knockdown. The role of PKCδ in estrogen-induced tumorigenesis was confirmed in a mouse xenograft model by reduction of tumors after treatment with rottlerin, a PKCδ inhibitor. Finally, levels of PKCδ correlated with that of Ras in human endometrial tumor tissues. Stabilization of K-Ras by estrogen signaling involving PKCδ up-regulation provides a potential therapeutic approach for treatment of endometrial cancer.
Collapse
|
31
|
Rižner TL. The Important Roles of Steroid Sulfatase and Sulfotransferases in Gynecological Diseases. Front Pharmacol 2016; 7:30. [PMID: 26924986 PMCID: PMC4757672 DOI: 10.3389/fphar.2016.00030] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/03/2016] [Indexed: 01/08/2023] Open
Abstract
Gynecological diseases such as endometriosis, adenomyosis and uterine fibroids, and gynecological cancers including endometrial cancer and ovarian cancer, affect a large proportion of women. These diseases are estrogen dependent, and their progression often depends on local estrogen formation. In peripheral tissues, estrogens can be formed from the inactive precursors dehydroepiandrosterone sulfate and estrone sulfate. Sulfatase and sulfotransferases have pivotal roles in these processes, where sulfatase hydrolyzes estrone sulfate to estrone, and dehydroepiandrosterone sulfate to dehydroepiandrosterone, and sulfotransferases catalyze the reverse reactions. Further activation of estrone to the most potent estrogen, estradiol, is catalyzed by 17-ketosteroid reductases, while estradiol can also be formed from dehydroepiandrosterone by the sequential actions of 3β-hydroxysteroid dehydrogenase-Δ4-isomerase, aromatase, and 17-ketosteroid reductase. This review introduces the sulfatase and sulfotransferase enzymes, in terms of their structures and reaction mechanisms, and the regulation and different transcripts of their genes, together with the importance of their currently known single nucleotide polymorphisms. Data on expression of sulfatase and sulfotransferases in gynecological diseases are also reviewed. There are often unchanged mRNA and protein levels in diseased tissue, with higher sulfatase activities in cancerous endometrium, ovarian cancer cell lines, and adenomyosis. This can be indicative of a disturbed balance between the sulfatase and sulfotransferases enzymes, defining the potential for sulfatase as a drug target for treatment of gynecological diseases. Finally, clinical trials with sulfatase inhibitors are discussed, where two inhibitors have already concluded phase II trials, although so far with no convincing clinical outcomes for patients with endometrial cancer and endometriosis.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| |
Collapse
|
32
|
Nishimoto M, Toyoshima M, Shiga N, Utsunomiya H, Suzuki F, Nagase S, Nishigori H, Suzuki T, Sasano H, Ito K, Yaegashi N. Steroid Sulfatase Inhibitor Reduces Proliferation of Ishikawa Endometrial Cancer Cells in Co-Culture Systems. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ojemd.2016.69025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Borisenkov MF, Karmanov AP, Kocheva LS, Markov PA, Istomina EI, Bakutova LA, Litvinets SG, Martinson EA, Durnev EA, Vityazev FV, Popov SV. Adsorption ofβ-glucuronidase and estrogens on pectin/lignin hydrogel particles. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1129955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Caron P, Turcotte V, Guillemette C. A chromatography/tandem mass spectrometry method for the simultaneous profiling of ten endogenous steroids, including progesterone, adrenal precursors, androgens and estrogens, using low serum volume. Steroids 2015; 104:16-24. [PMID: 26254607 DOI: 10.1016/j.steroids.2015.07.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/22/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
Measurement of a large set of sex steroids in clinical epidemiology and laboratory research with reliable methods providing low quantification limits and using a limited volume of blood sample represents a significant challenge. We report a new validated gas chromatography selected reaction monitoring - tandem mass spectrometry assay (GC-MS/MS) for the simultaneous quantification of ten endogenous steroids including progesterone (PROG), dehydroepiandrosterone (DHEA), androstenediol (5-diol), androstenedione (4-dione), testosterone (T), dihydrotestosterone (DHT), androsterone (ADT), 5alpha-androstan-3beta-17beta-diol (3β-diol), estrone (E1) and estradiol (E2). After addition of stable isotope internal standards, the approach involved the combination of liquid-liquid extraction, derivatization and solid-phase extraction for injection into the GC system and multiple reaction monitoring (MRM). The method presents high reproducibility for all analytical parameters in 250 μl serum samples. The lower limit of quantification (LLOQ) were of 100 pg/ml for DHEA, 50 pg/ml for PROG, 5-diol, 4-dione and ADT, 30 pg/ml for T, 10 pg/ml for 3β-diol and DHT, 5 pg/ml for E1, and 1 pg/ml for E2. The applicability of the validated method to determine the concentrations of these 10 steroids was successfully tested on serum from men (n=15), premenopausal (n=10) and postmenopausal women (n=20), and is currently used for larger cancer-related epidemiology studies. One of the most considerable advantages over existing methods is the simultaneous determination of ten steroids in a limited volume of serum that will help conserve important clinical samples from existing biobanks.
Collapse
Affiliation(s)
- Patrick Caron
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Véronique Turcotte
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada.
| |
Collapse
|
35
|
Hojnik M, Dobovišek L, Knez Ž, Ferk P. A synergistic interaction of 17-β-estradiol with specific cannabinoid receptor type 2 antagonist/inverse agonist on proliferation activity in primary human osteoblasts. Biomed Rep 2015; 3:554-558. [PMID: 26171165 DOI: 10.3892/br.2015.469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/02/2015] [Indexed: 12/19/2022] Open
Abstract
The bone remodeling process is influenced by various factors, including estrogens and transmitters of the endocannabinoid system. In osteoblasts, cannabinoid receptors 2 (CB-2) are expressed at a much higher level compared to CB-1 receptors. Previous studies have shown that estrogens could influence CB-2 receptor expression. In the present study, the possible interactions of a specific CB-2 agonist and a specific CB-2 antagonist/inverse agonist with 17-β-estradiol were investigated in primary human osteoblasts (HOB). HOB cells were cultured in phenol red-free osteoblast growth medium (37°C, 5% CO2). In their 5th passage, HOB were exposed to different concentrations of i) 17-β-estradiol (1, 10 and 100 nM); ii) a specific CB-2 agonist (R,S)-AM1241 (1 and 7.5 µM); and iii) a specific CB-2 antagonist/inverse agonist AM630 (10 µM) and to selected combinations of the substances. After 24 and 48 h of incubation, HOB proliferation activity was measured using a WST-8 assay. Alkaline phosphatase activity was also evaluated using spectrophotometry. Concomitant exposure of HOB to 17-β-estradiol (10 nM) and to specific CB-2 antagonist/inverse agonist (10 µM) showed similar HOB proliferation activity to HOB incubated with 17-β-estradiol only at a 100 nM concentration. By contrast, concomitant incubation of HOB with 17-β-estradiol (10 nM) and specific CB-2 agonist (7.5 µM) resulted in decreased HOB proliferation activity as compared to HOB incubated with 17-β-estradiol only (10 nM). Similar findings were observed after 24 and 48 h of incubation. In all the experiments, HOB successfully passed the alkaline phosphatase differentiation test. In conclusion, for the first time a synergistic interaction between 17-β-estradiol and specific CB-2 antagonist/inverse agonist was observed in HOB. Understanding the molecular pathways of this interaction would be of great importance in developing more efficient and safer drugs for treating or preventing bone diseases.
Collapse
Affiliation(s)
- Marko Hojnik
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Maribor, Maribor SI-2000, Slovenia
| | - Luka Dobovišek
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Maribor, Maribor SI-2000, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor SI-2000, Slovenia
| | - Polonca Ferk
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Maribor, Maribor SI-2000, Slovenia
| |
Collapse
|
36
|
Tourancheau A, Margaillan G, Rouleau M, Gilbert I, Villeneuve L, Lévesque E, Droit A, Guillemette C. Unravelling the transcriptomic landscape of the major phase II UDP-glucuronosyltransferase drug metabolizing pathway using targeted RNA sequencing. THE PHARMACOGENOMICS JOURNAL 2015; 16:60-70. [PMID: 25869014 DOI: 10.1038/tpj.2015.20] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 02/09/2015] [Indexed: 02/04/2023]
Abstract
A comprehensive view of the human UDP-glucuronosyltransferase (UGT) transcriptome is a prerequisite to the establishment of an individual's UGT metabolic glucuronidation signature. Here, we uncover the transcriptome landscape of the 10 human UGT gene loci in normal and tumoral metabolic tissues by targeted RNA next-generation sequencing. Alignment on the human hg19 reference genome identifies 234 novel exon-exon junctions. We recover all previously known UGT1 and UGT2 enzyme-coding transcripts and identify over 130 structurally and functionally diverse novel UGT variants. We further expose a revised genomic structure of UGT loci and provide a comprehensive repertoire of transcripts for each UGT gene. Data also uncover a remodelling of the UGT transcriptome occurring in a tissue- and tumor-specific manner. The complex alternative splicing program regulating UGT expression and protein functions is likely critical in determining detoxification capacity of an organ and stress-related responses, with significant impact on drug responses and diseases.
Collapse
Affiliation(s)
- A Tourancheau
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - G Margaillan
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - M Rouleau
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - I Gilbert
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - L Villeneuve
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - E Lévesque
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Medicine, Laval University, Québec, QC, Canada
| | - A Droit
- Faculty of Medicine, Laval University, Québec, QC, Canada
| | - C Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada.,Canada Research Chair in Pharmacogenomics, Pharmacogenomics Laboratory, CHU de Quebec Research Center, Quebec, QC, Canada
| |
Collapse
|
37
|
Wu HM, Huang HY, Lee CL, Soong YK, Leung PC, Wang HS. Gonadotropin-Releasing Hormone Type II (GnRH-II) Agonist Regulates the Motility of Human Decidual Endometrial Stromal Cells: Possible Effect on Embryo Implantation and Pregnancy1. Biol Reprod 2015; 92:98. [DOI: 10.1095/biolreprod.114.127324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/03/2015] [Indexed: 11/01/2022] Open
|
38
|
Margaillan G, Rouleau M, Fallon JK, Caron P, Villeneuve L, Turcotte V, Smith PC, Joy MS, Guillemette C. Quantitative profiling of human renal UDP-glucuronosyltransferases and glucuronidation activity: a comparison of normal and tumoral kidney tissues. Drug Metab Dispos 2015; 43:611-9. [PMID: 25650382 PMCID: PMC4366751 DOI: 10.1124/dmd.114.062877] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 11/22/2022] Open
Abstract
Renal metabolism by UDP-glucuronosyltransferase (UGT) enzymes is central to the clearance of many drugs. However, significant discrepancies about the relative abundance and activity of individual UGT enzymes in the normal kidney prevail among reports, whereas glucuronidation in tumoral kidney has not been examined. In this study, we performed an extensive profiling of glucuronidation metabolism in normal (n = 12) and tumor (n = 14) kidneys using targeted mass spectrometry quantification of human UGTs. We then correlated UGT protein concentrations with mRNA levels assessed by quantitative polymerase chain reaction and with conjugation activity for the major renal UGTs. Beyond the wide interindividual variability in expression levels observed among kidney samples, UGT1A9, UGT2B7, and UGT1A6 are the most abundant renal UGTs in both normal and tumoral tissues based on protein quantification. In normal kidney tissues, only UGT1A9 protein levels correlated with mRNA levels, whereas UGT1A6, UGT1A9, and UGT2B7 quantification correlated significantly with their mRNA levels in tumor kidneys. Data support that posttranscriptional regulation of UGT2B7 and UGT1A6 expression is modulating glucuronidation in the kidney. Importantly, our study reveals a significant decreased glucuronidation capacity of neoplastic kidneys versus normal kidneys that is paralleled by drastically reduced UGT1A9 and UGT2B7 mRNA and protein expression. UGT2B7 activity is the most repressed in tumors relative to normal tissues, with a 96-fold decrease in zidovudine metabolism, whereas propofol and sorafenib glucuronidation is decreased by 7.6- and 5.2-fold, respectively. Findings demonstrate that renal drug metabolism is predominantly mediated by UGT1A9 and UGT2B7 and is greatly reduced in kidney tumors.
Collapse
Affiliation(s)
- Guillaume Margaillan
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center, and Faculty of Pharmacy, Laval University, Quebec, Canada (G.M., M.R., P.C., L.V., V.T., C.G.); Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); and University of Colorado Anschutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Boulder, Colorado (M.S.J.)
| | - Michèle Rouleau
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center, and Faculty of Pharmacy, Laval University, Quebec, Canada (G.M., M.R., P.C., L.V., V.T., C.G.); Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); and University of Colorado Anschutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Boulder, Colorado (M.S.J.)
| | - John K Fallon
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center, and Faculty of Pharmacy, Laval University, Quebec, Canada (G.M., M.R., P.C., L.V., V.T., C.G.); Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); and University of Colorado Anschutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Boulder, Colorado (M.S.J.)
| | - Patrick Caron
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center, and Faculty of Pharmacy, Laval University, Quebec, Canada (G.M., M.R., P.C., L.V., V.T., C.G.); Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); and University of Colorado Anschutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Boulder, Colorado (M.S.J.)
| | - Lyne Villeneuve
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center, and Faculty of Pharmacy, Laval University, Quebec, Canada (G.M., M.R., P.C., L.V., V.T., C.G.); Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); and University of Colorado Anschutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Boulder, Colorado (M.S.J.)
| | - Véronique Turcotte
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center, and Faculty of Pharmacy, Laval University, Quebec, Canada (G.M., M.R., P.C., L.V., V.T., C.G.); Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); and University of Colorado Anschutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Boulder, Colorado (M.S.J.)
| | - Philip C Smith
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center, and Faculty of Pharmacy, Laval University, Quebec, Canada (G.M., M.R., P.C., L.V., V.T., C.G.); Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); and University of Colorado Anschutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Boulder, Colorado (M.S.J.)
| | - Melanie S Joy
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center, and Faculty of Pharmacy, Laval University, Quebec, Canada (G.M., M.R., P.C., L.V., V.T., C.G.); Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); and University of Colorado Anschutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Boulder, Colorado (M.S.J.)
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center, and Faculty of Pharmacy, Laval University, Quebec, Canada (G.M., M.R., P.C., L.V., V.T., C.G.); Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); and University of Colorado Anschutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Boulder, Colorado (M.S.J.)
| |
Collapse
|
39
|
Zhou Y, Shen J, Xia L, Wang Y. Estrogen mediated expression of nucleophosmin 1 in human endometrial carcinoma clinical stages through estrogen receptor-α signaling. Cancer Cell Int 2014; 14:540. [PMID: 25663821 PMCID: PMC4319226 DOI: 10.1186/s12935-014-0145-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/10/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Endometrial carcinoma is one of the most common gynecologic malignancies. Estrogen plays a critical role in its pathogenesis, but the underlying mechanism is not clear. Nucleophosmin 1 (NPM1), a multifunctional protein involved in many cellular activities, has been implicated in the tumorigenesis processes. However, the role of NPM1 in endometrial carcinogenesis remains to be elucidated. The present study was aimed to elucidate the role of NPM1 in different clinical stages of human endometrial carcinoma and the underlying mechanism of NPM1 action. METHODS The distribution and expression of NPM1 in normal endometrium, FIGO stages I to IV endometrial carcinoma tissues was analyzed using immunohistochemistry, RT-qPCR and Western blotting. The association between NPM1 expression and estrogen and estrogen receptor signaling was investigated in primary-cultured FIGO stage I endometrial adenocarcinoma cells. RESULTS A strong positive correlation between NPM1 level and the clinical stage and histological grade of endometrial carcinomas was observed. Expression of NPM1 was up-regulated by estrogen in primary-cultured human endometrial adenocarcinoma cells. Furthermore, estrogen increased NPM1 level via estrogen receptor-α (ERα) signaling, nor estrogen receptor-β signaling. CONCLUSIONS Expression of NPM1 was gradually increased with the increase of clinical stages of endometrial carcinomas. Overexpression of NPM1 may play a role in the effects of estrogen on the malignant progression of endometrioid adenocarcinoma via ERα signaling. These findings may extend our understanding of the oncogenesis of steroid hormone-related cancers and have significance for the diagnosis and treatment of this carcinoma.
Collapse
Affiliation(s)
- Yunxiao Zhou
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Jie Shen
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Liqun Xia
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Yanli Wang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| |
Collapse
|
40
|
The endometrial cancer cell lines Ishikawa and HEC-1A, and the control cell line HIEEC, differ in expression of estrogen biosynthetic and metabolic genes, and in androstenedione and estrone-sulfate metabolism. Chem Biol Interact 2014; 234:309-19. [PMID: 25437045 DOI: 10.1016/j.cbi.2014.11.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/30/2014] [Accepted: 11/20/2014] [Indexed: 01/04/2023]
Abstract
Estrogens have important roles in the pathogenesis of endometrial cancer. They can have carcinogenic effects through stimulation of cell proliferation or formation of DNA-damaging species. To characterize model cell lines of endometrial cancer, we determined the expression profiles of the estrogen receptors (ERs) ESR1, ESR2 and GPER, and 23 estrogen biosynthetic and metabolic genes, and investigated estrogen biosynthesis in the control HIEEC cell line and the Ishikawa and HEC-1A EC cell lines. HIEEC and Ishikawa expressed all ERs to different extents, while HEC-1A cells lacked expression of ESR1. Considering the estrogen biosynthetic and metabolic enzymes, these cells showed statistically significant different gene expression profiles for SULT2B1, HSD3B2, CYP19A1, AKR1C3, HSD17B1, HSD17B7, HSD17B12, CYP1B1, CYP3A5, COMT, SULT1A1, GSTP1 and NQO2. In these cells, E2 was formed from E1S and E1, while androstenedione was not converted to estrogens. HIEEC and Ishikawa had similar profiles of androstenedione and E1 metabolism, but hydrolysis of E1S to E1 was weaker in Ishikawa cells. HEC-1A cells were less efficient for activation of E1 into the potent E2, but metabolized androstenedione to other androgenic metabolites better than HIEEC and Ishikawa cells. This study reveals that HIEEC, Ishikawa, and HEC-1A cells can all form estrogens only via the sulfatase pathway. HIEEC, Ishikawa, and HEC-1A cells expressed all the major genes in the production of hydroxyestrogens and estrogen quinones, and in their conjugation. Significantly higher CYP1B1 mRNA levels in Ishikawa cells compared to HEC-1A cells, together with lack of UGT2B7 expression, indicate that Ishikawa cells can accumulate more toxic estrogen-3,4-quinones than HEC-1A cells, as also for HIEEC cells. This study provides further characterization of HIEEC, Ishikawa, and HEC-1A cells, and shows that they differ greatly in expression of the genes investigated and in their capacity for E2 formation, and thus they represent different in vitro models.
Collapse
|
41
|
Alonso-Alconada L, Muinelo-Romay L, Madissoo K, Diaz-Lopez A, Krakstad C, Trovik J, Wik E, Hapangama D, Coenegrachts L, Cano A, Gil-Moreno A, Chiva L, Cueva J, Vieito M, Ortega E, Mariscal J, Colas E, Castellvi J, Cusido M, Dolcet X, Nijman HW, Bosse T, Green JA, Romano A, Reventos J, Lopez-Lopez R, Salvesen HB, Amant F, Matias-Guiu X, Moreno-Bueno G, Abal M. Molecular profiling of circulating tumor cells links plasticity to the metastatic process in endometrial cancer. Mol Cancer 2014; 13:223. [PMID: 25261936 PMCID: PMC4190574 DOI: 10.1186/1476-4598-13-223] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/19/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND About 20% of patients diagnosed with endometrial cancer (EC) are considered high-risk with unfavorable prognosis. In the framework of the European Network for Individualized Treatment in EC (ENITEC), we investigated the presence and phenotypic features of Circulating Tumor Cells (CTC) in high-risk EC patients. METHODS CTC isolation was carried out in peripheral blood samples from 34 patients, ranging from Grade 3 Stage IB to Stage IV carcinomas and recurrences, and 27 healthy controls using two methodologies. Samples were subjected to EpCAM-based immunoisolation using the CELLection™ Epithelial Enrich kit (Invitrogen, Dynal) followed by RTqPCR analysis. The phenotypic determinants of endometrial CTC in terms of pathogenesis, hormone receptor pathways, stem cell markers and epithelial to mesenchymal transition (EMT) drivers were asked. Kruskal-Wallis analysis followed by Dunn's post-test was used for comparisons between groups. Statistical significance was set at p < 0.05. RESULTS EpCAM-based immunoisolation positively detected CTC in high-risk endometrial cancer patients. CTC characterization indicated a remarkable plasticity phenotype defined by the expression of the EMT markers ETV5, NOTCH1, SNAI1, TGFB1, ZEB1 and ZEB2. In addition, the expression of ALDH and CD44 pointed to an association with stemness, while the expression of CTNNB1, STS, GDF15, RELA, RUNX1, BRAF and PIK3CA suggested potential therapeutic targets. We further recapitulated the EMT phenotype found in endometrial CTC through the up-regulation of ETV5 in an EC cell line, and validated in an animal model of systemic dissemination the propensity of these CTC in the accomplishment of metastasis. CONCLUSIONS Our results associate the presence of CTC with high-risk EC. Gene-expression profiling characterized a CTC-plasticity phenotype with stemness and EMT features. We finally recapitulated this CTC-phenotype by over-expressing ETV5 in the EC cell line Hec1A and demonstrated an advantage in the promotion of metastasis in an in vivo mouse model of CTC dissemination and homing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Miguel Abal
- Translational Medical Oncology; Health Research Institute of Santiago (IDIS), SERGAS, Trav, Choupana s/n 15706, Santiago de Compostela, Spain.
| | | |
Collapse
|
42
|
Gibson DA, Simitsidellis I, Collins F, Saunders PTK. Evidence of androgen action in endometrial and ovarian cancers. Endocr Relat Cancer 2014; 21:T203-18. [PMID: 24623742 DOI: 10.1530/erc-13-0551] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endometrial cancer (EC) and ovarian cancer are common gynaecological malignancies. The impact of androgen action in these cancers is poorly understood; however, there is emerging evidence to suggest that targeting androgen signalling may be of therapeutic benefit. Epidemiological evidence suggests that there is an increased risk of EC associated with exposure to elevated levels of androgens, and genetic variants in genes related to both androgen biosynthesis and action are associated with an increased risk of both EC and ovarian cancer. Androgen receptors (ARs) may be a potential therapeutic target in EC due to reported anti-proliferative activities of androgens. By contrast, androgens may promote growth of some ovarian cancers and anti-androgen therapy has been proposed. Introduction of new therapies targeting ARs expressed in EC or ovarian cancer will require a much greater understanding of the impacts of cell context-specific AR-dependent signalling and how ARs can crosstalk with other steroid receptors during progression of disease. This review considers the evidence that androgens may be important in the aetiology of EC and ovarian cancer with discussion of evidence for androgen action in normal and malignant endometrial and ovarian tissue.
Collapse
Affiliation(s)
- Douglas A Gibson
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ioannis Simitsidellis
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Frances Collins
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Philippa T K Saunders
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
43
|
Kinoshita T, Honma S, Shibata Y, Yamashita K, Watanabe Y, Maekubo H, Okuyama M, Takashima A, Takeshita N. An innovative LC-MS/MS-based method for determining CYP 17 and CYP 19 activity in the adipose tissue of pre- and postmenopausal and ovariectomized women using 13C-labeled steroid substrates. J Clin Endocrinol Metab 2014; 99:1339-47. [PMID: 24456285 DOI: 10.1210/jc.2013-3715] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Does adipose tissue produce steroid hormones like an endocrine organ? OBJECT To clarify whether adipose tissue produces sex steroid hormone like an endocrine organ, we estimated several key steroid hormone levels, as well as CYP17 and CYP19 activity, in ovariectomized, pre- and postmenopausal women by liquid chromatography-tandem mass spectrometry (LC-MS/MS). SUBJECTS AND METHODS The subjects were 19 premenopausal (n = 12), postmenopausal (n = 4), and ovariectomized women (n = 3) aged 27-68 years. Serum, visceral adipose and sc adipose samples were taken from these subjects and stored at -70°C. The levels of cortisol, cortisone, progesterone (Prog), androstenedione, dehydroepiandrosterone, estrone, estradiol (E2), and T in serum and adipose tissue were estimated simultaneously by LC-MS/MS. CYP17 and CYP19 activity in tissues were assayed with the use of (13)C-labeled steroid precursors and LC-MS/MS-based estimation of the metabolites. RESULTS E2 and Prog levels in the sera of postmenopausal or ovariectomized women were less than 10% of those in premenopausal women. No marked variations were seen in other hormones. Estrone, androstenedione, dehydroepiandrosterone, and Prog levels in the visceral and sc tissues of postmenopausal and ovariectomized women were 9-60 times higher than those in serum, whereas E2 and T levels were 3- to 7-fold higher than those in serum, and cortisol and cortisone levels were 20% of those found for serum. CYP17 in adipose tissue was found to have 17-hydroxylase and 20,17-lyase activity, with each catalytic activity being essentially equal. Therefore, CYP17 in adipose tissue is of the testicular/ovarian type but not adrenal type, which has 17-hydroxylase activity dominant. The presence of CYP19 activity in adipose tissue was approximately 3% of CYP17. CONCLUSION Our findings suggest that adipose tissue acts as an endocrine organ, with CYP17 and CYP19 activity playing an essential role in sex steroid hormone biosynthesis.
Collapse
Affiliation(s)
- Toshihiko Kinoshita
- Department of Obstetrics and Gynecology (T.K., A.T., N.T.), Toho University Medical Center Sakura Hospital, Chiba 285-8741, Japan; Department of Analytical Research (S.H., Y.W., H.M., M.O.), ASKA Pharma Medical Co Ltd, Kawasaki 213-8522, Japan; Department of Urology (Y.S.), Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; and Department of Clinical Analysis (K.Y.), Tohoku Pharmaceutical University, Sendai 981-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cook LS, Dong Y, Round P, Huang X, Magliocco AM, Friedenreich CM. Hormone Contraception before the First Birth and Endometrial Cancer Risk. Cancer Epidemiol Biomarkers Prev 2013; 23:356-61. [DOI: 10.1158/1055-9965.epi-13-0943] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Rižner TL. Estrogen biosynthesis, phase I and phase II metabolism, and action in endometrial cancer. Mol Cell Endocrinol 2013; 381:124-39. [PMID: 23911898 DOI: 10.1016/j.mce.2013.07.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/30/2013] [Accepted: 07/22/2013] [Indexed: 12/21/2022]
Abstract
Endometrial cancer is the most common gynecological malignancy in the developed World. Based on their histopathology, clinical manifestation, and epidemiology, the majority of endometrial cancer cases can be divided into two groups: the more prevalent type 1 which is associated with unopposed estrogen exposure; and the less common type 2, which is usually not associated with hyper-estrogenic factors. This manuscript overviews the published data on the expression of genes encoding the estrogen biosynthetic enzymes, the phase I and phase II estrogen metabolic enzymes, and the estrogen receptors in endometrial cancer, at the mRNA, protein and enzyme activity levels. The potential role of altered expression of these enzymes and receptors in cancerous versus control endometrial tissue, and the implication of estrogens in tumor initiation and promotion, are discussed. Finally, based on the published data, a model of estrogen metabolism and actions is proposed for pre-cancerous and cancerous endometrial tissue, and the role of the estrogens in the progression of endometrial cancer from endometrial hyperplasia is suggested.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
46
|
Lévesque É, Laverdière I, Lacombe L, Caron P, Rouleau M, Turcotte V, Têtu B, Fradet Y, Guillemette C. Importance of 5α-reductase gene polymorphisms on circulating and intraprostatic androgens in prostate cancer. Clin Cancer Res 2013; 20:576-84. [PMID: 24277450 DOI: 10.1158/1078-0432.ccr-13-1100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Polymorphisms in the genes SRD5A1 and SRD5A2 encoding androgen biosynthetic 5α-reductase enzymes have been associated with an altered risk of biochemical recurrence after radical prostatectomy in localized prostate cancer. EXPERIMENTAL DESIGN To gain potential insights into SRD5A biologic effects, we examined the relationship between SRD5A prognostic markers and endogenous sex-steroid levels measured by mass spectrometry in plasma samples and corresponding prostatic tissues of patients with prostate cancer. RESULTS We report that five of the seven SRD5A markers differentially affect sex-steroid profiles of dihydrotestosterone and its metabolites in both the circulation and prostatic tissues of patients with prostate cancer. Remarkably, a 32% increase in intraprostatic testosterone levels was observed in the presence of the high-risk SRD5A rs2208532 polymorphism. Moreover, SRD5A2 markers were associated predominantly with circulating levels of inactive glucuronides. Indeed, the rs12470143 SRD5A2 protective allele was associated with high circulating androstane-3α, 17β-diol-17-glucuronide (3α-diol-17G) levels as opposed to lower levels of both 3α-diol-17G and androsterone-glucuronide observed with the rs2208532 SRD5A2 risk allele. Moreover, SRD5A2 rs676033 and rs523349 (V89L) risk variants, in strong linkage disequilibrium, were associated with higher circulating levels of 3α-diol-3G. The SRD5A2 rs676033 variant further correlated with enhanced intraprostatic exposure to 5α-reduced steroids (dihydrotestosterone and its metabolite 3β-diol). Similarly, the SRD5A1 rs166050C risk variant was associated with greater prostatic exposure to androsterone, whereas no association was noted with circulating steroids. CONCLUSIONS Our data support the association of 5α-reductase germline polymorphisms with the hormonal milieu in patients with prostate cancer. Further studies are needed to evaluate if these variants influence 5α-reductase inhibitor efficacy.
Collapse
Affiliation(s)
- Éric Lévesque
- Authors' Affiliations: Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy; and Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Estradiol and tamoxifen induce cell migration through GPR30 and activation of focal adhesion kinase (FAK) in endometrial cancers with low or without nuclear estrogen receptor α (ERα). PLoS One 2013; 8:e72999. [PMID: 24039841 PMCID: PMC3767783 DOI: 10.1371/journal.pone.0072999] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/16/2013] [Indexed: 12/24/2022] Open
Abstract
Estrogens and tamoxifen (an antiestrogen) exert their actions by activation of estrogen receptor (ER) through genomic and non-genomic mechanisms and are implicated in the development of endometrial cancer. Previous reports have demonstrated that estradiol and tamoxifen induce proliferation of human endometrial cancer cells through GPR30 (non-genomic ER) signaling pathway. Herein, we demonstrate that phosphorylation of focal adhesion kinase (FAK) is involved in cell migration induced by estradiol, tamoxifen and G1 (a GPR30 agonist) through the transmembrane ER (GPR30) in endometrial cancer cell lines with or without ERα (Ishikawa and RL95-2). Additionally, the GPR30-mediated cell migration was further abolished by administration of either specific RNA interference targeting GPR30 or an FAK inhibitor. Moreover, we have validated that the signaling between GPR30 and phosphorylated FAK is indeed mediated by the EGFR/PI3K/ERK pathway. Clinically, a significant correlation between levels of GPR30 and phophorylated FAK (pFAK) observed in human endometrial cancer tissues with low or without ERα further suggested that estrogen-induced phosphorylation of FAK and cell migration were most likely triggered by GPR30 activation. These results provided new insights for understanding the pathophysiological functions of GPR30 in human endometrial cancers.
Collapse
|
48
|
Santos FM, Pedro AQ, Soares RF, Martins R, Bonifácio MJ, Queiroz JA, Passarinha LA. Performance of hydrophobic interaction ligands for human membrane-bound catechol-O
-methyltransferase purification. J Sep Sci 2013; 36:1693-702. [DOI: 10.1002/jssc.201300010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/21/2013] [Accepted: 02/28/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Fátima Milhano Santos
- CICS-UBI- Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - Augusto Quaresma Pedro
- CICS-UBI- Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - Rui Filipe Soares
- CICS-UBI- Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - Rita Martins
- CICS-UBI- Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - Maria João Bonifácio
- Departamento de Investigação e Desenvolvimento; BIAL; S. Mamede do Coronado Portugal
| | - João António Queiroz
- CICS-UBI- Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - Luís António Passarinha
- CICS-UBI- Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| |
Collapse
|
49
|
Secky L, Svoboda M, Klameth L, Bajna E, Hamilton G, Zeillinger R, Jäger W, Thalhammer T. The sulfatase pathway for estrogen formation: targets for the treatment and diagnosis of hormone-associated tumors. JOURNAL OF DRUG DELIVERY 2013; 2013:957605. [PMID: 23476785 PMCID: PMC3586502 DOI: 10.1155/2013/957605] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/17/2012] [Indexed: 12/15/2022]
Abstract
The extragonadal synthesis of biological active steroid hormones from their inactive precursors in target tissues is named "intracrinology." Of particular importance for the progression of estrogen-dependent cancers is the in situ formation of the biological most active estrogen, 17beta-estradiol (E2). In cancer cells, conversion of inactive steroid hormone precursors to E2 is accomplished from inactive, sulfated estrogens in the "sulfatase pathway" and from androgens in the "aromatase pathway." Here, we provide an overview about expression and function of enzymes of the "sulfatase pathway," particularly steroid sulfatase (STS) that activates estrogens and estrogen sulfotransferase (SULT1E1) that converts active estrone (E1) and other estrogens to their inactive sulfates. High expression of STS and low expression of SULT1E1 will increase levels of active estrogens in malignant tumor cells leading to the stimulation of cell proliferation and cancer progression. Therefore, blocking the "sulfatase pathway" by STS inhibitors may offer an attractive strategy to reduce levels of active estrogens. STS inhibitors either applied in combination with aromatase inhibitors or as novel, dual aromatase-steroid sulfatase inhibiting drugs are currently under investigation. Furthermore, STS inhibitors are also suitable as enzyme-based cancer imaging agents applied in the biomedical imaging technique positron emission tomography (PET) for cancer diagnosis.
Collapse
Affiliation(s)
- Lena Secky
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Martin Svoboda
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Lukas Klameth
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Cluster Translational Oncology, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Erika Bajna
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gerhard Hamilton
- Ludwig Boltzmann Cluster Translational Oncology, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Robert Zeillinger
- Ludwig Boltzmann Cluster Translational Oncology, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, 1090 Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
50
|
Sinreih M, Hevir N, Rižner TL. Altered expression of genes involved in progesterone biosynthesis, metabolism and action in endometrial cancer. Chem Biol Interact 2013. [DOI: 10.1016/j.cbi.2012.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|