1
|
Osmond AD, Leija RG, Arevalo JA, Curl CC, Duong JJ, Huie MJ, Masharani U, Brooks GA. Aging delays the suppression of lipolysis and fatty acid oxidation in the postprandial period. J Appl Physiol (1985) 2024; 137:1200-1219. [PMID: 39236144 PMCID: PMC11563596 DOI: 10.1152/japplphysiol.00437.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Plasma glycerol and free fatty acid concentrations decrease following oral glucose consumption, but changes in the rate of lipolysis during an oral glucose tolerance test (OGTT) have not been documented in conjunction with changes in fatty acid (FA) oxidation or reesterification rates in healthy individuals. After a 12-h overnight fast, 15 young (21-35 yr; 7 men and 8 women) and 14 older (60-80 yr; 7 men and 7 women) participants had the forearm vein catheterized for primed continuous infusion of [1,1,2,3,3-2H]glycerol. A contralateral hand vein was catheterized for arterialized blood sampling. Indirect calorimetry was performed simultaneously to determine total FA and carbohydrate (CHO) oxidation rates (Rox). Total FA reesterification rates (Rs) were estimated from tracer-measured lipolytic and FA oxidation rates. After a 90-min equilibration period, participants underwent a 120-min, 75-g OGTT. Glycerol rate of appearance (Ra), an index of lipolysis, decreased significantly from baseline 5 min postchallenge in young participants and 30 min in older participants. At 60 min, FA Rox decreased in both groups, but was significantly higher in older participants. Between 5 and 90 min, CHO Rox was significantly lower in older participants. In addition, FA Rs was significantly lower in older participants at 60 and 90 min. The area under the curve (AUC) for FA Rox was greater than that for FA Rs in older, but not in young participants. Our results indicate that, in aging, the postprandial suppression of lipolysis and FA oxidation are delayed such that FA oxidation is favored over CHO oxidation and FA reesterification.NEW & NOTEWORTHY To our knowledge, our investigation is the first to demonstrate changes in lipolysis during an oral glucose tolerance test (OGTT) in healthy young and older individuals. Plasma glycerol and free fatty acid concentrations changed after glycerol rate of appearance (Ra), indicating that plasma concentrations are incomplete surrogates of the lipolytic rate. Moreover, simultaneous determinations of substrate oxidation rates are interpreted to indicate that metabolic inflexibility in aging is characterized by delayed changes in postprandial substrate utilization related to the lipolytic rate.
Collapse
Affiliation(s)
- Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Justin J Duong
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Melvin J Huie
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Umesh Masharani
- Division of Endocrinology, Department of Medicine, University of California, San Francisco, California, United States
| | - George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| |
Collapse
|
2
|
Cao C, Koh HCE, Reeds DN, Patterson BW, Klein S, Mittendorfer B. Critical Evaluation of Indices Used to Assess β-Cell Function. Diabetes 2024; 73:391-400. [PMID: 38015795 PMCID: PMC10882145 DOI: 10.2337/db23-0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023]
Abstract
The assessment of β-cell function, defined as the relationship between insulin secretion rate (ISR) and plasma glucose, is not standardized and often involves any of a number of β-cell function indices. We compared β-cell function by using popular indices obtained during basal conditions and after glucose ingestion, including the HOMA-B index, the basal ISR (or plasma insulin)-to-plasma glucose concentration ratio, the insulinogenic and ISRogenic indices, the ISR (or plasma insulin)-to-plasma glucose concentration areas (or incremental areas) under the curve ratio, and the disposition index, which integrates a specific β-cell function index value with an estimate of insulin sensitivity, between lean people with normal fasting glucose (NFG) and normal glucose tolerance (NGT) (n = 50) and four groups of people with obesity (n = 188) with 1) NFG-NGT, 2) NFG and impaired glucose tolerance (IGT), 3) impaired fasting glucose (IFG) and IGT, and 4) type 2 diabetes. We also plotted the ISR-plasma glucose relationship before and after glucose ingestion and used a statistical mixed-effects model to evaluate group differences in this relationship (i.e., β-cell function). Index-based group differences in β-cell function produced contradicting results and did not reflect the group differences of the actual observed ISR-glucose relationship or, in the case of the disposition index, group differences in glycemic status. The discrepancy in results is likely due to incorrect mathematical assumptions that are involved in computing indices, which can be overcome by evaluating the relationship between ISR and plasma glucose with an appropriate statistical model. Data obtained with common β-cell function indices should be interpreted cautiously. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Chao Cao
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Han-Chow E. Koh
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Dominic N. Reeds
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Bruce W. Patterson
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
- Sansum Diabetes Research Institute, Santa Barbara, CA
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
- Departments of Medicine and Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
3
|
Sugimoto H, Hironaka KI, Yamada T, Sakaguchi K, Ogawa W, Kuroda S. DI/cle, a Measure Consisting of Insulin Sensitivity, Secretion, and Clearance, Captures Diabetic States. J Clin Endocrinol Metab 2023; 108:3080-3089. [PMID: 37406246 PMCID: PMC10655546 DOI: 10.1210/clinem/dgad392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
CONTEXT Insulin clearance is implicated in regulation of glucose homeostasis independently of insulin sensitivity and insulin secretion. OBJECTIVE To understand the relation between blood glucose and insulin sensitivity, secretion, and clearance. METHODS We performed a hyperglycemic clamp, a hyperinsulinemic-euglycemic clamp, and an oral glucose tolerance test (OGTT) in 47, 16, and 49 subjects with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), and type 2 diabetes mellitus (T2DM), respectively. Mathematical analyses were retrospectively performed on this dataset. RESULTS The disposition index (DI), defined as the product of insulin sensitivity and secretion, showed a weak correlation with blood glucose levels, especially in IGT (r = 0.04; 95% CI, -0.63 to 0.44). However, an equation relating DI, insulin clearance, and blood glucose levels was well conserved regardless of the extent of glucose intolerance. As a measure of the effect of insulin, we developed an index, designated disposition index/clearance, (DI/cle) that is based on this equation and corresponds to DI divided by the square of insulin clearance. DI/cle was not impaired in IGT compared with NGT, possibly as a result of a decrease in insulin clearance in response to a reduction in DI, whereas it was impaired in T2DM relative to IGT. Moreover, DI/cle estimated from a hyperinsulinemic-euglycemic clamp, OGTT, or a fasting blood test were significantly correlated with that estimated from 2 clamp tests (r = 0.52; 95% CI, 0.37 to 0.64, r = 0.43; 95% CI, 0.24 to 0.58, r = 0.54; 95% CI, 0.38 to 0.68, respectively). CONCLUSION DI/cle can serve as a new indicator for the trajectory of changes in glucose tolerance.
Collapse
Affiliation(s)
- Hikaru Sugimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ken-ichi Hironaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoko Yamada
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo 650-0017, Japan
| | - Kazuhiko Sakaguchi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo 650-0017, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo 650-0017, Japan
| | - Shinya Kuroda
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Smith K, Taylor GS, Walker M, Brunsgaard LH, Bowden Davies KA, Stevenson EJ, West DJ. Pre-Meal Whey Protein Alters Postprandial Insulinemia by Enhancing β-Cell Function and Reducing Insulin Clearance in T2D. J Clin Endocrinol Metab 2023; 108:e603-e612. [PMID: 36734166 PMCID: PMC10807909 DOI: 10.1210/clinem/dgad069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
CONTEXT Treatments that reduce postprandial glycemia (PPG) independent of stimulating insulin secretion are appealing for the management of type 2 diabetes (T2D). Consuming pre-meal whey protein (WP) reduces PPG by delaying gastric emptying and increasing plasma insulin concentrations. However, its effects on β-cell function and insulin kinetics remains unclear. OBJECTIVE To examine the PPG-regulatory effects of pre-meal WP by modeling insulin secretion rates (ISR), insulin clearance, and β-cell function. METHODS This was a single-blind, randomized, placebo-controlled, crossover design study in 18 adults with T2D (HbA1c, 56.7 ± 8.8 mmol/mol) who underwent 2 240-minute mixed-meal tolerance tests. Participants consumed WP (15 g protein) or placebo (0 g protein) 10 minutes before a mixed-macronutrient breakfast meal. PPG, pancreatic islet, and incretin hormones were measured throughout. ISR was calculated by C-peptide deconvolution. Estimates of insulin clearance and β-cell function were modeled from glucose, insulin, and ISR. Changes in PPG incremental area under the curve (iAUC; prespecified) and insulin clearance (post hoc) were measured. RESULTS β-cell function was 40% greater after WP (P = .001) and was accompanied with a -22% reduction in postprandial insulin clearance vs placebo (P < .0001). Both the peak change and PPG iAUC were reduced by WP (-1.5 mmol/L and -16%, respectively; both P < .05). Pre-meal WP augmented a 5.9-fold increase in glucagon and glucagon-like peptide 1 iAUC (both P < .0001), and a 1.5-fold increase in insulin iAUC (P < .001). Although the plasma insulin response was greater following WP, ISR was unaffected (P = .133). CONCLUSION In adults with T2D, pre-meal WP reduced PPG by coordinating an enhancement in β-cell function with a reduction in insulin clearance. This enabled an efficient postprandial insulinemic profile to be achieved without requiring further β-cell stimulation.Trial registry ISRCTN ID: ISRCTN17563146 Website link: www.isrctn.com/ISRCTN17563146.
Collapse
Affiliation(s)
- Kieran Smith
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Human Nutrition and Exercise Research Centre, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Guy S Taylor
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Human Nutrition and Exercise Research Centre, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Mark Walker
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lise H Brunsgaard
- Health and Performance Nutrition, Arla Foods Ingredients Group P/S, Viby J 8260, Denmark
| | - Kelly A Bowden Davies
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 7EL, UK
| | - Emma J Stevenson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Human Nutrition and Exercise Research Centre, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Daniel J West
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Human Nutrition and Exercise Research Centre, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
5
|
Mittendorfer B, Patterson BW, Magkos F, Yoshino M, Bradley DP, Eagon JC, Klein S. β Cell function after Roux-en-Y gastric bypass surgery or reduced energy intake alone in people with obesity. JCI Insight 2023; 8:e170307. [PMID: 37166995 PMCID: PMC10371232 DOI: 10.1172/jci.insight.170307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
BackgroundThe effects of diet-induced weight loss (WL) and WL after Roux-en-Y gastric bypass (RYGB) surgery on β cell function (BCF) are unclear because of conflicting results from different studies, presumably because of differences in the methods used to measure BCF, the amount of WL between treatment groups, and baseline BCF. We evaluated the effect of WL after RYGB surgery or reduced energy intake alone on BCF in people with obesity with and without type 2 diabetes.MethodsBCF (insulin secretion in relationship to plasma glucose) was assessed before and after glucose or mixed-meal ingestion before and after (a) progressive amounts (6%, 11%, 16%) of WL induced by a low-calorie diet (LCD) in people with obesity without diabetes, (b) ~20% WL after RYGB surgery or laparoscopic adjustable gastric banding (LAGB) in people with obesity without diabetes, and (c) ~20% WL after RYGB surgery or LCD alone in people with obesity and diabetes.ResultsDiet-induced progressive WL in people without diabetes progressively decreased BCF. Marked WL after LAGB or RYGB in people without diabetes did not alter BCF. Marked WL after LCD or RYGB in people with diabetes markedly increased BCF, without a difference between groups.ConclusionMarked WL increases BCF in people with obesity and diabetes but not in people with obesity without diabetes. The effect of RYGB-induced WL on BCF is not different from the effect of matched WL after LAGB or LCD alone.trial registrationNCT00981500, NCT02207777, NCT01299519.FundingNIH grants R01 DK037948, P30 DK056341, P30 DK020579, UL1 TR002345.
Collapse
|
6
|
Chen X, Merovci A, DeFronzo RA, Tripathy D. Chronic physiologic hyperglycemia impairs insulin-mediated suppression of plasma glucagon concentration in healthy humans. Metabolism 2023; 142:155512. [PMID: 36746320 DOI: 10.1016/j.metabol.2023.155512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Hyperglucagonemia is a characteristic feature of type 2 diabetes mellitus (T2DM). We examined the effect of chronic (48-72 h) physiologic increase (+50 mg/dl) in plasma glucose concentration on suppression of plasma glucagon concentration by insulin and by hyperglycemia in normal glucose tolerance (NGT) individuals. MATERIALS AND METHODS Study One: 16 NGT subjects received OGTT and 3-step hyperinsulinemic (10, 20, 40 mU/m2·min) euglycemic clamp before and after 48 hour glucose infusion to increase plasma glucose by ~50 mg/dl. Study Two: 20 NGT subjects received OGTT and 2-step hyperglycemic (+125 and + 300 mg/dl) clamp before and after 72 hour glucose infusion. Plasma insulin, C-peptide and glucagon concentrations were measured during OGTT, euglycemic hyperinsulinemic and hyperglycemic clamps. Ratio of plasma glucagon/insulin was used as an index of insulin-mediated suppression of glucagon secretion. RESULTS During all 3 insulin clamp steps (Study 1), plasma glucagon concentration was increased compared to baseline study, and plasma glucagon/insulin ratio was significantly reduced by 24 % (p < 0.05). The rate of insulin-stimulated glucose disposal was inversely correlated with plasma glucagon/insulin ratio (r = -0.44, p < 0.05) and with glucagon AUC (r = -0.48, p < 0.05). During the 2-step hyperglycemic clamp (Study 2) plasma glucagon was similar before and after 72 h of glucose infusion; however, glucagon/insulin ratio was significantly reduced (p < 0.05). Incremental area under plasma insulin curve during the first (r = -0.74, p < 0.001) and second (r = -0.85, p < 0.001) hyperglycemic clamp steps was strongly and inversely correlated with plasma glucagon/insulin ratio. CONCLUSION Sustained (48-72 h) physiologic hyperglycemia (+50 mg/dl) caused whole body insulin resistance and impaired insulin-mediated suppression of glucagon secretion, suggesting a role for glucotoxicity in development of hyperglucagonemia in T2DM.
Collapse
Affiliation(s)
- Xi Chen
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| | - Aurora Merovci
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ralph A DeFronzo
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA; Audie L. Murphy VA Hospital, South Texas Veterans Heath Care System, San Antonio, TX, USA
| | - Devjit Tripathy
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA; Audie L. Murphy VA Hospital, South Texas Veterans Heath Care System, San Antonio, TX, USA.
| |
Collapse
|
7
|
Zhang X, Xiao D, Guzman G, Edirisinghe I, Burton-Freeman B. Avocado Consumption for 12 Weeks and Cardiometabolic Risk Factors: A Randomized Controlled Trial in Adults with Overweight or Obesity and Insulin Resistance. J Nutr 2022; 152:1851-1861. [PMID: 35700149 PMCID: PMC9486596 DOI: 10.1093/jn/nxac126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/17/2022] [Accepted: 05/24/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Diets emphasizing unsaturated fat and high fiber are associated with reducing cardiometabolic risk factors. Avocados are rich in MUFA and PUFA fats and fiber. OBJECTIVES Assess replacement of carbohydrate energy with avocado energy for 12 wk on glucose homeostasis and cardiometabolic risk factors in self-selecting free-living adults who are overweight or with obesity and have insulin resistance. METHODS In a single-center, randomized, 2-arm, controlled, 12-wk parallel trial, adults [n = 93; male/female: 39/54; mean ± SD age: 42 ± 12 y; BMI: 32.6 ± 3.9 (in kg/m2); HOMA-IR: 2.7 ± 1.7] were counseled to exchange avocado (AV) or control food (C; low fat, low fiber, energy matched) for carbohydrate food in their usual diet for 12 wk. The primary outcome was the change in Matsuda Insulin Sensitivity Index (MISI) after 12-wk interventions. Secondary outcomes were changes in fasting and post-oral glucose tolerance test glycemic variables, fasting lipids, endothelial activation and inflammation markers. Automated Self-Administered 24-h Dietary Assessment Tool captured weekly dietary intake. Intervention effects were mainly determined by ANCOVA using PC-SAS version 9.4. RESULTS Dietary total, MUFA, and PUFA fat; fiber; and vegetable intake were higher in the AV group compared with the C group (P < 0.05), and no change in body weight or composition was observed (P > 0.05). Differences between the changes in MISI after AV compared with C were not different (Δ0-12 wk, P = 0.1092). Differences in fasting insulin (Δ0-12 wk, P = 0.0855) and improved glycated hemoglobin (Δ0-12 wk, P = 0.0632) after AV compared with C were suggested. C-reactive protein was significantly lower after AV compared with C at 12 wk (P = 0.0418). Select biomarkers of endothelial activation and lipoproteins by NMR were also influenced by AV compared with C food intake. CONCLUSIONS Avocado intake was associated with a healthier dietary pattern and trends favoring improved glucose control and reduced biomarkers of cardiometabolic risk when replacing avocado energy for carbohydrate energy in free-living adults who are overweight or with obesity and have insulin resistance. This trial was registered at clinicaltrials.gov as NCT02695433.
Collapse
Affiliation(s)
- Xuhuiqun Zhang
- Department of Food Science and Nutrition, Center for Nutrition Research and Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Di Xiao
- Department of Food Science and Nutrition, Center for Nutrition Research and Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Gabriela Guzman
- Department of Food Science and Nutrition, Center for Nutrition Research and Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Indika Edirisinghe
- Department of Food Science and Nutrition, Center for Nutrition Research and Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | | |
Collapse
|
8
|
Zhang X, Zhao A, Sandhu AK, Edirisinghe I, Burton-Freeman BM. Red Raspberry and Fructo-Oligosaccharide Supplementation, Metabolic Biomarkers, and the Gut Microbiota in Adults with Prediabetes: A Randomized Crossover Clinical Trial. J Nutr 2022; 152:1438-1449. [PMID: 35421233 DOI: 10.1093/jn/nxac037] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/02/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Evidence suggests that the gut microbiota and cardiometabolic status are associated, suggesting dietary interventions that alter the microbiota may affect metabolic health. OBJECTIVES We investigated whether supplementation with (poly)phenol-dense red raspberries (RRB), alone or with a fructo-oligosaccharide (FOS) prebiotic, would improve biomarkers of cardiometabolic risk in individuals with prediabetes (PreDM) and insulin resistance (IR) and whether the effects are related to modulation of the gut microbiota. METHODS Adults with PreDM-IR (n = 26; mean ± SEM age, 35 ± 2 years; fasting glucose, 5.7 ± 0.1 mmol/L; HOMA-IR, 3.3 ± 0.3) or who were metabolically healthy (reference group; n = 10; age, 31 ± 3 years; fasting glucose, 5.1 ± 0.2 mmol/L; HOMA-IR, 1.1 ± 0.1) participated in a randomized crossover trial with two 4-week supplementation periods, in which they consumed either RRB (125 g fresh equivalents) daily or RRB + 8g FOS daily, separated by a 4-week washout. The primary outcome variable was the change in the gut microbiota composition, assessed by shotgun sequencing before (baseline) and at the end of each supplementation period. Secondary outcomes were changes in glucoregulation, lipid metabolism, anti-inflammatory status, and anthropometry. The trial is registered at ClinicalTrials.gov, NCT03049631. RESULTS In PreDM-IR, RRB supplementation reduced hepatic-IR (-30.1% ± 14.6%; P = 0.04) and reduced plasma total and LDL cholesterol [-4.9% ± 1.8% (P = 0.04) and -7.2% ± 2.3% (P = 0.003), respectively] from baseline. Adding FOS (RRB + FOS) improved β-cell function [insulin secretion rate, +70.2% ± 32.8% (P = 0.02); Disposition Index, +94.4% ± 50.2% (P = 0.04)], but had no significant effect on plasma cholesterol compared to baseline. RRB increased Eubacterium eligens (2-fold) and decreased Ruminococcus gnavus (-60% ± 34%), whereas RRB + FOS increased Bifidobacterium spp. (4-fold) and decreased Blautia wexlerae (-23% ± 12%) from baseline (all P values ≤ 0.05). R. gnavus was positively correlated with hepatic-IR, and E. eligens and Bifidobacterium catenulatum were negatively correlated with cholesterol concentrations (P ≤ 0.05). CONCLUSIONS Increased Bifidobacterium spp., concurrently with reduced R. gnavus, was associated with metabolic improvements in adults with PreDM-IR, warranting further research on the mechanisms involved in (poly)phenol/FOS-microbial interactions with host metabolism.
Collapse
Affiliation(s)
- Xuhuiqun Zhang
- Department of Food Science and Nutrition, Center for Nutrition Research and the Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Anqi Zhao
- Department of Food Science and Nutrition, Center for Nutrition Research and the Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Amandeep K Sandhu
- Department of Food Science and Nutrition, Center for Nutrition Research and the Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Indika Edirisinghe
- Department of Food Science and Nutrition, Center for Nutrition Research and the Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Britt M Burton-Freeman
- Department of Food Science and Nutrition, Center for Nutrition Research and the Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
9
|
Tomlinson B, Chan P, Lam CWK. An overview of alogliptin + pioglitazone for the treatment of type 2 diabetes. Expert Opin Pharmacother 2021; 23:29-42. [PMID: 34591742 DOI: 10.1080/14656566.2021.1985465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Type 2 diabetes (T2D) is a progressive condition, and sequential additions of therapy are usually required to maintain glycemic control. The options for glucose lowering therapies have increased considerably in recent years. Fixed-dose combinations such as alogliptin with pioglitazone provide a convenient choice which can improve medication adherence. AREAS COVERED The authors performed a literature search to identify publications describing the efficacy and safety of alogliptin and pioglitazone when used separately and in combinations. EXPERT OPINION Pioglitazone activates peroxisome proliferator-activated receptor-gamma which improves insulin sensitivity and helps to preserve β-cell function with a durable improvement in glycemic control. Pioglitazone can retard the progression of atherosclerosis and reduce cardiovascular events, but it is associated with adverse events including weight gain, fluid retention, and increased risk of fractures. Alogliptin improves glycemic control and appears neutral in terms of cardiovascular events. It does not appear to increase the adverse events associated with pioglitazone and use of the combination may permit the use of lower doses of pioglitazone with reduced adverse effects. There are no cardiovascular outcome studies with the combination but the cardiovascular benefits of pioglitazone and additional glucose lowering effects of alogliptin provide a useful combination with convenient once daily dosing.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Paul Chan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | | |
Collapse
|
10
|
Chen X, Maldonado E, DeFronzo RA, Tripathy D. Impaired Suppression of Glucagon in Obese Subjects Parallels Decline in Insulin Sensitivity and Beta-Cell Function. J Clin Endocrinol Metab 2021; 106:1398-1409. [PMID: 33524152 PMCID: PMC8063259 DOI: 10.1210/clinem/dgab019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/23/2022]
Abstract
AIM To examine the relationship between plasma glucagon levels and insulin sensitivity and insulin secretion in obese subjects. METHODS Suppression of plasma glucagon was examined in 275 obese Hispanic Americans with varying glucose tolerance. All subjects received a 2-hour oral glucose tolerance test (OGTT) and a subset (n = 90) had euglycemic hyperinsulinemic clamp. During OGTT, we quantitated suppression of plasma glucagon concentration, Matsuda index of insulin sensitivity, and insulin secretion/insulin resistance (disposition) index. Plasma glucagon suppression was compared between quartiles of insulin sensitivity and beta-cell function. RESULTS Fasting plasma glucagon levels were similar in obese subjects with normal glucose tolerance (NGT), prediabetes, and type 2 diabetes (T2D), but the fasting glucagon/insulin ratio decreased progressively from NGT to prediabetes to T2D (9.28 ± 0.66 vs 6.84 ± 0.44 vs 5.84 ± 0.43; P < 0.001). Fasting and 2-hour plasma glucagon levels during OGTT progressively increased and correlated positively with severity of insulin resistance (both Matsuda index and euglycemic hyperinsulinemic clamp). The fasting glucagon/insulin ratio declined with worsening insulin sensitivity and beta-cell function, and correlated with whole-body insulin sensitivity (Matsuda index, r = 0.81; P < 0.001) and beta-cell function (r = 0.35; P < 0.001). The glucagon/insulin ratio also correlated and with beta-cell function during OGTT at 60 and 120 minutes (r = -0.47; P < 0.001 and r = -0.32; P < 0.001). CONCLUSION Insulin-mediated suppression of glucagon secretion in obese subjects is impaired with increasing severity of glucose intolerance and parallels the severity of insulin resistance and beta-cell dysfunction.
Collapse
Affiliation(s)
- Xi Chen
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| | - Enrique Maldonado
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ralph A DeFronzo
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
- Audie L Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Devjit Tripathy
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
- Audie L Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
- Correspondence: Devjit Tripathy, MD, PhD, Division of Diabetes, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
11
|
Gastaldelli A, Abdul Ghani M, DeFronzo RA. Adaptation of Insulin Clearance to Metabolic Demand Is a Key Determinant of Glucose Tolerance. Diabetes 2021; 70:377-385. [PMID: 33077684 PMCID: PMC7881859 DOI: 10.2337/db19-1152] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
With the development of insulin resistance (IR), there is a compensatory increase in the plasma insulin response to offset the defect in insulin action to maintain normal glucose tolerance. The insulin response is the result of two factors: insulin secretion and metabolic clearance rate of insulin (MCRI). Subjects (104 with normal glucose tolerance [NGT], 57 with impaired glucose tolerance [IGT], and 207 with type 2 diabetes mellitus [T2DM]), divided in nonobese and obese groups, received a euglycemic insulin-clamp (40 mU/m2 ⋅ min) and an oral glucose tolerance test (OGTT) (75 g) on separate days. MCRI was calculated during the insulin-clamp performed with [3-3H]glucose and the OGTT and related to IR: peripheral (glucose uptake during the insulin clamp), hepatic (basal endogenous glucose production × fasting plasma insulin [FPI]), and adipocyte (fasting free fatty acid × FPI). MCRI during the insulin clamp was reduced in obese versus nonobese NGT (0.60 ± 0.03 vs. 0.73 ± 0.02 L/min ⋅ m2, P < 0.001), in nonobese IGT (0.62 ± 0.02, P < 0.004), and in nonobese T2DM (0.68 ± 0.02, P < 0.03). The MCRI during the insulin clamp was strongly and inversely correlated with IR (r = -0.52, P < 0.0001). During the OGTT, the MCRI was suppressed within 15-30 min in NGT and IGT subjects and remained suppressed. In contrast, suppression was minimal in T2DM. In conclusion, the development of IR in obese subjects is associated with a decline in MCRI that represents a compensatory response to maintain normal glucose tolerance but is impaired in individuals with T2DM.
Collapse
Affiliation(s)
- Amalia Gastaldelli
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
- University of Texas Health Science Center, San Antonio, TX
| | | | | |
Collapse
|
12
|
Merovci A, Tripathy D, Chen X, Valdez I, Abdul-Ghani M, Solis-Herrera C, Gastaldelli A, DeFronzo RA. Effect of Mild Physiologic Hyperglycemia on Insulin Secretion, Insulin Clearance, and Insulin Sensitivity in Healthy Glucose-Tolerant Subjects. Diabetes 2021; 70:204-213. [PMID: 33033064 PMCID: PMC7881846 DOI: 10.2337/db20-0039] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022]
Abstract
The aim of the current study was to evaluate the effect of sustained physiologic increase of ∼50 mg/dL in plasma glucose concentration on insulin secretion in normal glucose-tolerant (NGT) subjects. Twelve NGT subjects without family history of type 2 diabetes mellitus (T2DM; FH-) and 8 NGT with family history of T2DM (FH+) received an oral glucose tolerance test and two-step hyperglycemic clamp (100 and 300 mg/dL) followed by intravenous arginine bolus before and after 72-h glucose infusion. Fasting plasma glucose increased from 94 ± 2 to 142 ± 4 mg/dL for 72 h. First-phase insulin secretion (0-10 min) increased by 70%, while second-phase insulin secretion during the first (10-80 min) and second (90-160 min) hyperglycemic clamp steps increased by 3.8-fold and 1.9-fold, respectively, following 72 h of physiologic hyperglycemia. Insulin sensitivity during hyperglycemic clamp declined by ∼30% and ∼55% (both P < 0.05), respectively, during the first and second hyperglycemic clamp steps. Insulin secretion/insulin resistance (disposition) index declined by 60% (second clamp step) and by 62% following arginine (both P < 0.005) following 72-h glucose infusion. The effect of 72-h glucose infusion on insulin secretion and insulin sensitivity was similar in subjects with and without FH of T2DM. Following 72 h of physiologic hyperglycemia, metabolic clearance rate of insulin was markedly reduced (P < 0.01). These results demonstrate that sustained physiologic hyperglycemia for 72 h 1) increases absolute insulin secretion but impairs β-cell function, 2) causes insulin resistance, and 3) reduces metabolic clearance rate of insulin.
Collapse
Affiliation(s)
- Aurora Merovci
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Devjit Tripathy
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
- Audie L. Murphy VA Hospital, South Texas Veterans Heath Care System, Foundation for Advancing Veterans' Health Research, San Antonio, TX
| | - Xi Chen
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Ivan Valdez
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Muhammad Abdul-Ghani
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Carolina Solis-Herrera
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Amalia Gastaldelli
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Ralph A DeFronzo
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
- Audie L. Murphy VA Hospital, South Texas Veterans Heath Care System, Foundation for Advancing Veterans' Health Research, San Antonio, TX
| |
Collapse
|
13
|
Guerra S, Gastaldelli A. The role of the liver in the modulation of glucose and insulin in non alcoholic fatty liver disease and type 2 diabetes. Curr Opin Pharmacol 2020; 55:165-174. [PMID: 33278735 DOI: 10.1016/j.coph.2020.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022]
Abstract
In this review we have discussed how the liver plays a central role in the regulation of glucose metabolism and in insulin clearance. Both non-alcoholic fatty liver disease (NAFLD) and diabetes (T2D) are characterized by high plasma insulin concentrations, hepatic insulin resistance, high hepatic glucose production (HGP), in particular gluconeogenesis (GNG), that are increased proportionally to fasting hyperglycemia, while postprandial hyperglycemia is due to impaired suppression of HGP by insulin, and reduced hepatic glycogen storage. The liver acts also as a modulator of peripheral insulin since most of insulin secreted by the pancreas is cleared by the liver during the first pass. Hepatokines and hepatic lipids can act in either autocrine or paracrine way and can be responsible of the changes in insulin sensitivity and alterations in glucose metabolism.
Collapse
Affiliation(s)
- Sara Guerra
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy.
| |
Collapse
|
14
|
Ipsen EØ, Madsen KS, Chi Y, Pedersen-Bjergaard U, Richter B, Metzendorf MI, Hemmingsen B. Pioglitazone for prevention or delay of type 2 diabetes mellitus and its associated complications in people at risk for the development of type 2 diabetes mellitus. Cochrane Database Syst Rev 2020; 11:CD013516. [PMID: 33210751 PMCID: PMC8092670 DOI: 10.1002/14651858.cd013516.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The term prediabetes is used to describe a population with an elevated risk of developing type 2 diabetes mellitus (T2DM). With projections of an increase in the incidence of T2DM, prevention or delay of the disease and its complications is paramount. It is currently unknown whether pioglitazone is beneficial in the treatment of people with increased risk of developing T2DM. OBJECTIVES To assess the effects of pioglitazone for prevention or delay of T2DM and its associated complications in people at risk of developing T2DM. SEARCH METHODS We searched CENTRAL, MEDLINE, Chinese databases, ICTRP Search Portal and ClinicalTrials.gov. We did not apply any language restrictions. Further, we investigated the reference lists of all included studies and reviews. We tried to contact all study authors. The date of the last search of databases was November 2019 (March 2020 for Chinese databases). SELECTION CRITERIA We included randomised controlled trials (RCTs) with a minimum duration of 24 weeks, and participants diagnosed with intermediate hyperglycaemia with no concomitant diseases, comparing pioglitazone as monotherapy or part of dual therapy with other glucose-lowering drugs, behaviour-changing interventions, placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently screened abstracts, read full-text articles and records, assessed risk of bias and extracted data. We performed meta-analyses with a random-effects model and calculated risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes, with 95% confidence intervals (CIs) for effect estimates. We evaluated the certainty of the evidence with the GRADE. MAIN RESULTS We included 27 studies with a total of 4186 randomised participants. The size of individual studies ranged between 43 and 605 participants and the duration varied between 6 and 36 months. We judged none of the included studies as having low risk of bias across all 'Risk of bias' domains. Most studies identified people at increased risk of T2DM by impaired fasting glucose or impaired glucose tolerance (IGT), or both. Our main outcome measures were all-cause mortality, incidence of T2DM, serious adverse events (SAEs), cardiovascular mortality, nonfatal myocardial infarction or stroke (NMI/S), health-related quality of life (QoL) and socioeconomic effects. The following comparisons mostly reported only a fraction of our main outcome set. Three studies compared pioglitazone with metformin. They did not report all-cause and cardiovascular mortality, NMI/S, QoL or socioeconomic effects. Incidence of T2DM was 9/168 participants in the pioglitazone groups versus 9/163 participants in the metformin groups (RR 0.98, 95% CI 0.40 to 2.38; P = 0.96; 3 studies, 331 participants; low-certainty evidence). No SAEs were reported in two studies (201 participants; low-certainty evidence). One study compared pioglitazone with acarbose. Incidence of T2DM was 1/50 participants in the pioglitazone group versus 2/46 participants in the acarbose group (very low-certainty evidence). No participant experienced a SAE (very low-certainty evidence).One study compared pioglitazone with repaglinide. Incidence of T2DM was 2/48 participants in the pioglitazone group versus 1/48 participants in the repaglinide group (low-certainty evidence). No participant experienced a SAE (low-certainty evidence). One study compared pioglitazone with a personalised diet and exercise consultation. All-cause and cardiovascular mortality, NMI/S, QoL or socioeconomic effects were not reported. Incidence of T2DM was 2/48 participants in the pioglitazone group versus 5/48 participants in the diet and exercise consultation group (low-certainty evidence). No participant experienced a SAE (low-certainty evidence). Six studies compared pioglitazone with placebo. No study reported on QoL or socioeconomic effects. All-cause mortality was 5/577 participants the in the pioglitazone groups versus 2/579 participants in the placebo groups (Peto odds ratio 2.38, 95% CI 0.54 to 10.50; P = 0.25; 4 studies, 1156 participants; very low-certainty evidence). Incidence of T2DM was 80/700 participants in the pioglitazone groups versus 131/695 participants in the placebo groups (RR 0.40, 95% CI 0.17 to 0.95; P = 0.04; 6 studies, 1395 participants; low-certainty evidence). There were 3/93 participants with SAEs in the pioglitazone groups versus 1/94 participants in the placebo groups (RR 3.00, 95% CI 0.32 to 28.22; P = 0.34; 2 studies, 187 participants; very low-certainty evidence). However, the largest study for this comparison did not distinguish between serious and non-serious adverse events. This study reported that 121/303 (39.9%) participants in the pioglitazone group versus 151/299 (50.5%) participants in the placebo group experienced an adverse event (P = 0.03). One study observed cardiovascular mortality in 2/181 participants in the pioglitazone group versus 0/186 participants in the placebo group (RR 5.14, 95% CI 0.25 to 106.28; P = 0.29; very low-certainty evidence). One study observed NMI in 2/303 participants in the pioglitazone group versus 1/299 participants in the placebo group (RR 1.97: 95% CI 0.18 to 21.65; P = 0.58; very low-certainty evidence). Twenty-one studies compared pioglitazone with no intervention. No study reported on cardiovascular mortality, NMI/S, QoL or socioeconomic effects. All-cause mortality was 11/441 participants in the pioglitazone groups versus 12/425 participants in the no-intervention groups (RR 0.85, 95% CI 0.38 to 1.91; P = 0.70; 3 studies, 866 participants; very low-certainty evidence). Incidence of T2DM was 60/1034 participants in the pioglitazone groups versus 197/1019 participants in the no-intervention groups (RR 0.31, 95% CI 0.23 to 0.40; P < 0.001; 16 studies, 2053 participants; moderate-certainty evidence). Studies reported SAEs in 16/610 participants in the pioglitazone groups versus 21/601 participants in the no-intervention groups (RR 0.71, 95% CI 0.38 to 1.32; P = 0.28; 7 studies, 1211 participants; low-certainty evidence). We identified two ongoing studies, comparing pioglitazone with placebo and with other glucose-lowering drugs. These studies, with 2694 participants. may contribute evidence to future updates of this review. AUTHORS' CONCLUSIONS Pioglitazone reduced or delayed the development of T2DM in people at increased risk of T2DM compared with placebo (low-certainty evidence) and compared with no intervention (moderate-certainty evidence). It is unclear whether the effect of pioglitazone is sustained once discontinued. Pioglitazone compared with metformin neither showed advantage nor disadvantage regarding the development of T2DM in people at increased risk (low-certainty evidence). The data and reporting of all-cause mortality, SAEs, micro- and macrovascular complications were generally sparse. None of the included studies reported on QoL or socioeconomic effects.
Collapse
Affiliation(s)
- Emil Ørskov Ipsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper S Madsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yuan Chi
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ulrik Pedersen-Bjergaard
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital, Hillerød, Denmark
| | - Bernd Richter
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Maria-Inti Metzendorf
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Bianca Hemmingsen
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Svegliati-Baroni G, Gaggini M, Carli F, Barbieri C, Cucco M, Youne R, Rosso C, Bugianesi E, Gastaldelli A. Mechanisms for increased risk of diabetes in chronic liver diseases. Liver Int 2020; 40:2489-2499. [PMID: 32515880 DOI: 10.1111/liv.14556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/13/2023]
Abstract
OBJECTIVE Patients with chronic liver disease (CLD), both non-alcoholic fatty liver disease (NAFLD) and chronic hepatitis C (CHC), are at high risk of diabetes (T2D), but mechanisms are still unknown. Muscle/liver insulin resistance (IR) and pancreatic dysfunction are the major metabolic defects leading to T2D. However, if the risk of T2D in CLD patients is because of reduced insulin response and/or to IR, and the impact of liver histology has not been investigated. DESIGN We studied 220 non-T2D patients with chronic liver disease (129 NAFLD, BMI = 27.3 kg/m2 ; 91 CHC, BMI = 25.0 kg/m2 ) that received a 75-gram oral glucose tolerance test (OGTT) with the measurement of glucose and insulin concentrations for 2 hours, glucose tolerance (NGT vs IGT) and liver biopsy. The results were compared to 26 controls (CT-NGT, BMI = 25.6 kg/m2 ). We evaluated peripheral insulin sensitivity (OGIS), OGTT-insulin response (ΔAUC-I/ΔAUC-G) and disposition-index (DI = OGIS∙ΔAUC-I/ΔAUC-G) for the risk to develop T2D. RESULTS NAFLD had increased muscle IR (associated to NASH, steatosis and fibrosis), higher than in CHC or CT-NGT (OGIS = 8.9 vs 11.3 and 10.5 mL/min kg, P < .0001). In NAFLD, OGTT-insulin response (ΔAUC-I/ΔAUC-G) was the highest while it was significantly decreased in CHC (2.2 vs 1.1 and 1.6, NAFLD vs. CHC and CT-NGT, P < .005). The highest T2D risk (low DI) was observed in CHC-IGT (7.5), CHC-NGT (13.5) and NAFLD-IGT (10.8) vs CT-NGT (14.9, all P < .0001), but not in NAFL-NGT or NASH-NGT. CONCLUSION We observed an increased T2D risk in NAFLD-IGT, CHC-IGT and CHC-NGT mainly because of reduced OGTT-insulin response, while insulin response in NAFLD-NGT compensates the IR thus maintaining normal glycaemia.
Collapse
Affiliation(s)
- Gianluca Svegliati-Baroni
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy.,Liver Injury and Transplant Unit, Ospedali Riuniti di Ancona, Ancona, Italy.,Obesity Center, Polytechnic University of Marche, Ancona, Italy
| | | | | | | | - Monica Cucco
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Ramy Youne
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Chiara Rosso
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
16
|
Mather KJ, Chen M, Hannon TS. Linearization of the Disposition Index equation allows evaluation of secretion-sensitivity coupling slopes. J Diabetes Complications 2020; 34:107589. [PMID: 32376087 DOI: 10.1016/j.jdiacomp.2020.107589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 12/28/2022]
Abstract
AIMS The Disposition Index (DI) is widely used in clinical studies of β-cell function. However, direct physiologic interpretation of the DI value and the inverse exponential slope relating insulin secretion and insulin sensitivity terms is difficult. We evaluated a linearization of the relationship that allows separate evaluation of the DI term and the slope. METHODS Insulin secretion and sensitivity indices were derived from standardized oral glucose tolerance testing, including commonly used terms and model-derived terms. The population included participants with normoglycemia, dysglycemia or Type 2 diabetes. Logarithmic transformation of the DI equation to linearize the secretion-sensitivity relationship was performed, and the resulting secretion-sensitivity relationships were evaluated using standard linear regression methods. RESULTS Simple logarithmic transformation linearized the secretion-sensitivity relationships available from a variety of OGTT-derived metrics. In normoglycemic subjects the slopes approximated -1 in insulin-basedsecretion-sensitivity pairs, and approximated -0.6 in C-peptide based secretion-sensitivity pairs. Group differences in DI terms were observed as expected. These analyses also revealed differing secretion-sensitivity slopes, with IGT and T2D demonstrating progressively impaired coupling. CONCLUSIONS Linearization of the secretion-sensitivity relationship provides simplified interpretation of the DI value and allows simple analysis and meaningful interpretation of the secretion-sensitivity slope. This linear relationship is amenable to standard statistical evaluations for comparisons of insulin secretion responses and of secretion-sensitivity coupling across groups.
Collapse
Affiliation(s)
- Kieren J Mather
- Indiana University School of Medicine, United States of America.
| | - Melinda Chen
- University of Nebraska School of Medicine, United States of America
| | - Tamara S Hannon
- Indiana University School of Medicine, United States of America
| |
Collapse
|
17
|
Smith GI, Polidori DC, Yoshino M, Kearney ML, Patterson BW, Mittendorfer B, Klein S. Influence of adiposity, insulin resistance, and intrahepatic triglyceride content on insulin kinetics. J Clin Invest 2020; 130:3305-3314. [PMID: 32191646 PMCID: PMC7260030 DOI: 10.1172/jci136756] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUNDInsulin is a key regulator of metabolic function. The effects of excess adiposity, insulin resistance, and hepatic steatosis on the complex integration of insulin secretion and hepatic and extrahepatic tissue extraction are not clear.METHODSA hyperinsulinemic-euglycemic clamp and a 3-hour oral glucose tolerance test were performed to evaluate insulin sensitivity and insulin kinetics after glucose ingestion in 3 groups: (a) lean subjects with normal intrahepatic triglyceride (IHTG) and glucose tolerance (lean-NL; n = 14), (b) obese subjects with normal IHTG and glucose tolerance (obese-NL; n = 24), and (c) obese subjects with nonalcoholic fatty liver disease (NAFLD) and prediabetes (obese-NAFLD; n = 22).RESULTSInsulin sensitivity progressively decreased and insulin secretion progressively increased from the lean-NL to the obese-NL to the obese-NAFLD groups. Fractional hepatic insulin extraction progressively decreased from the lean-NL to the obese-NL to the obese-NAFLD groups, whereas total hepatic insulin extraction (molar amount removed) was greater in the obese-NL and obese-NAFLD subjects than in the lean-NL subjects. Insulin appearance in the systemic circulation and extrahepatic insulin extraction progressively increased from the lean-NL to the obese-NL to the obese-NAFLD groups. Total hepatic insulin extraction plateaued at high rates of insulin delivery, whereas the relationship between systemic insulin appearance and total extrahepatic extraction was linear.CONCLUSIONHyperinsulinemia after glucose ingestion in obese-NL and obese-NAFLD is due to an increase in insulin secretion, without a decrease in total hepatic or extrahepatic insulin extraction. However, the liver's maximum capacity to remove insulin is limited because of a saturable extraction process. The increase in insulin delivery to the liver and extrahepatic tissues in obese-NAFLD is unable to compensate for the increase in insulin resistance, resulting in impaired glucose homeostasis.TRIAL REGISTRATIONClinicalTrials.gov NCT02706262.FUNDINGNIH grants DK56341 (Nutrition Obesity Research Center), DK052574 (Digestive Disease Research Center), RR024992 (Clinical and Translational Science Award), and T32 DK007120 (a T32 Ruth L. Kirschstein National Research Service Award); the American Diabetes Foundation (1-18-ICTS-119); Janssen Research & Development; and the Pershing Square Foundation.
Collapse
Affiliation(s)
- Gordon I. Smith
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Mihoko Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Monica L. Kearney
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bruce W. Patterson
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Mechanism of Action of Inhaled Insulin on Whole Body Glucose Metabolism in Subjects with Type 2 Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20174230. [PMID: 31470605 PMCID: PMC6747203 DOI: 10.3390/ijms20174230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/09/2023] Open
Abstract
In the current study we investigate the mechanisms of action of short acting inhaled insulin Exubera®, on hepatic glucose production (HGP), plasma glucose and free fatty acid (FFA) concentrations. 11 T2D (Type 2 Diabetes) subjects (age = 53 ± 3 years) were studied at baseline (BAS) and after 16-weeks of Exubera® treatment. At BAS and after 16-weeks subjects received: measurement of HGP (3-3H-glucose); oral glucose tolerance test (OGTT); and a 24-h plasma glucose (24-h PG) profile. At end of study (EOS) we observed a significant decrease in fasting plasma glucose (FPG, 215 ± 15 to 137 ± 11 mg/dl), 2-hour plasma glucose (2-h PG, 309 ± 9 to 264 ± 11 mg/dl), glycated hemoglobin (HbA1c, 10.3 ± 0.5% to 7.5 ± 0.3%,), mean 24-h PG profile (212 ± 17 to 141 ± 8 mg/dl), FFA fasting (665 ± 106 to 479 ± 61 μM), post-OGTT (433 ± 83 to 239 ± 28 μM), and triglyceride (213 ± 39 to 120 ± 14 mg/dl), while high density cholesterol (HDL-C) increased (35 ± 3 to 47 ± 9 mg/dl). The basal HGP decreased significantly and the insulin secretion/insulin resistance (disposition) index increased significantly. There were no episodes of hypoglycemia and no change in pulmonary function at EOS. After 16-weeks of inhaled insulin Exubera® we observed a marked improvement in glycemic control by decreasing HGP and 24-h PG profile, and decreased FFA and triglyceride concentrations.
Collapse
|
19
|
DeFronzo RA, Inzucchi S, Abdul-Ghani M, Nissen SE. Pioglitazone: The forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diab Vasc Dis Res 2019; 16:133-143. [PMID: 30706731 DOI: 10.1177/1479164118825376] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes individuals are at high risk for macrovascular complications: myocardial infarction, stroke and cardiovascular mortality. Recent cardiovascular outcome trials have demonstrated that agents in two antidiabetic classes (SGLT2 inhibitors and GLP-1 receptor agonists) reduce major adverse cardiovascular events. However, there is strong evidence that an older and now generically available medication, the thiazolidinedione, pioglitazone, can retard the atherosclerotic process (PERISCOPE and Chicago) and reduce cardiovascular events in large randomized prospective cardiovascular outcome trials (IRIS and PROactive). Pioglitazone is a potent insulin sensitizer, preserves beta-cell function, causes durable reduction in HbA1c, corrects multiple components of metabolic syndrome and improves nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Adverse effects (weight gain, fluid retention, fractures) must be considered, but are diminished with lower doses and are arguably outweighed by these multiple benefits. With healthcare expenses attributable to diabetes increasing rapidly, this cost-effective drug requires reconsideration in the therapeutic armamentarium for the disease.
Collapse
Affiliation(s)
- Ralph A DeFronzo
- 1 Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Silvio Inzucchi
- 2 Endocrine Division, Yale School of Medicine, New Haven, CT, USA
| | - Muhammad Abdul-Ghani
- 1 Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | | |
Collapse
|
20
|
Dhillon J, Thorwald M, De La Cruz N, Vu E, Asghar SA, Kuse Q, Diaz Rios LK, Ortiz RM. Glucoregulatory and Cardiometabolic Profiles of Almond vs. Cracker Snacking for 8 Weeks in Young Adults: A Randomized Controlled Trial. Nutrients 2018; 10:E960. [PMID: 30044438 PMCID: PMC6115851 DOI: 10.3390/nu10080960] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022] Open
Abstract
The transition to nutritional independence makes new college students vulnerable to alterations in eating patterns, which can increase the risk of cardiometabolic disorders. The aim of the study was to examine the potential benefits of almond vs. cracker snacking in improving glucoregulatory and cardiometabolic profiles in new college students. A randomized controlled, parallel-arm, 8-week intervention of 73 college students (BMI: 18⁻41 kg/m²) with no cardiometabolic disorders was conducted. Participants were randomized into either an almond snack group (56.7 g/day; 364 kcal; n = 38) or Graham cracker control group (77.5 g/day; 338 kcal/d; n = 35). Chronic, static changes were assessed from fasting serum/plasma samples at baseline, and after 4 and 8 weeks. Acute, dynamic effects were assessed during a 2-h oral glucose tolerance test (OGTT) at 8 weeks. Almond snacking resulted in a smaller decline in HDL cholesterol over 8 weeks (13.5% vs. 24.5%, p < 0.05), 13% lower 2-h glucose area under the curve (AUC), 34% lower insulin resistance index (IRI) and 82% higher Matsuda index (p < 0.05) during the OGTT, despite similar body mass gains over 8 weeks compared with the cracker group. In general, both almond and cracker snacking reduced fasting glucose, and LDL cholesterol. CONCLUSIONS Incorporating a morning snack in the dietary regimen of predominantly breakfast-skipping, first-year college students had some beneficial effects on glucoregulatory and cardiometabolic health. Almond consumption has the potential to benefit postprandial glucoregulation in this cohort. These responses may be influenced by cardiometabolic risk factor status.
Collapse
Affiliation(s)
- Jaapna Dhillon
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - Max Thorwald
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - Natalie De La Cruz
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - Emily Vu
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - Syed Asad Asghar
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - Quintin Kuse
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - L Karina Diaz Rios
- Cooperative Extension Specialist, University of California, Merced, CA 95343, USA.
| | - Rudy M Ortiz
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
21
|
de Jesús Garduno-Garcia J, Gastaldelli A, DeFronzo RA, Lertwattanarak R, Holst JJ, Musi N. Older Subjects With β-Cell Dysfunction Have an Accentuated Incretin Release. J Clin Endocrinol Metab 2018; 103:2613-2619. [PMID: 29672742 PMCID: PMC6669818 DOI: 10.1210/jc.2018-00260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/11/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Insulin secretion (IS) declines with age, which increases the risk of impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) in older adults. IS is regulated by the incretin hormones glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). Here we tested the hypotheses that incretin release is lower in older adults and that this decline is associated with β-cell dysfunction. RESEARCH DESIGN A total of 40 young (25 ± 3 years) and 53 older (74 ± 7 years) lean nondiabetic subjects underwent a 2-hour oral glucose tolerance test (OGTT). Based on the OGTT, subjects were divided into three groups: young subjects with normal glucose tolerance (Y-NGT; n = 40), older subjects with normal glucose tolerance (O-NGT; n = 32), and older subjects with IGT (O-IGT; n = 21). MAIN OUTCOME MEASURES Plasma insulin, C-peptide, GLP-1, and GIP concentrations were measured every 15 to 30 minutes. We quantitated insulin sensitivity (Matsuda index) and insulin secretory rate (ISR) by deconvolution of C-peptide with the calculation of β-cell glucose sensitivity. RESULTS Matsuda index, early phase ISR (0 to 30 minutes), and parameters of β-cell function were lower in O-IGT than in Y-NGT subjects but not in O-NGT subjects. GLP-1 concentrations were elevated in both older groups [GLP-1 area under the curve (AUC)0-120 was 2.8 ± 0.1 in Y-NGT, 3.8 ± 0.5 in O-NGT, and 3.7 ± 0.4 nmol/L∙120 minutes in O-IGT subjects; P < 0.05], whereas GIP secretion was higher in O-NGT than in Y-NGT subjects (GIP AUC0-120 was 4.7 ± 0.3 in Y-NGT, 6.0 ± 0.4 in O-NGT, and 4.8 ± 0.3 nmol/L∙120 minutes in O-IGT subjects; P < 0.05). CONCLUSIONS Aging is associated with an exaggerated GLP-1 secretory response. However, it was not sufficient to increase insulin first-phase release in O-IGT and overcome insulin resistance.
Collapse
Affiliation(s)
- José de Jesús Garduno-Garcia
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
- Texas Diabetes Institute, San Antonio, Texas
| | - Amalia Gastaldelli
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
- Institute of Clinical Physiology, Pisa, Italy
- Correspondence and Reprint Requests: Nicolas Musi, MD, Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, 15355 Lambda Drive, San Antonio, Texas 78245. E-mail: ; or Amalia Gastaldelli, PhD, Institute of Clinical Physiology, CNR, via Moruzzi, 56124 Pisa, Italy. E-mail:
| | - Ralph A DeFronzo
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
- Texas Diabetes Institute, San Antonio, Texas
| | - Raweewan Lertwattanarak
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
- Texas Diabetes Institute, San Antonio, Texas
| | | | - Nicolas Musi
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
- San Antonio Geriatric Research, Education and Clinical Center, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas
- Correspondence and Reprint Requests: Nicolas Musi, MD, Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, 15355 Lambda Drive, San Antonio, Texas 78245. E-mail: ; or Amalia Gastaldelli, PhD, Institute of Clinical Physiology, CNR, via Moruzzi, 56124 Pisa, Italy. E-mail:
| |
Collapse
|
22
|
Burt Solorzano CM, Knudsen KL, Anderson AD, Hutchens EG, Collins JS, Patrie JT, Marshall JC, McCartney CR. Insulin Resistance, Hyperinsulinemia, and LH: Relative Roles in Peripubertal Obesity-Associated Hyperandrogenemia. J Clin Endocrinol Metab 2018; 103:2571-2582. [PMID: 29897474 PMCID: PMC6692879 DOI: 10.1210/jc.2018-00131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/17/2018] [Indexed: 11/19/2022]
Abstract
CONTEXT Peripubertal obesity is associated with variable hyperandrogenemia, but precise mechanisms remain unclear. OBJECTIVE To assess insulin resistance, hyperinsulinemia, and LH roles in peripubertal obesity-associated hyperandrogenemia. DESIGN Cross-sectional analysis. SETTING Academic clinical research unit. PARTICIPANTS Eleven obese (body mass index for age ≥95%) peripubertal girls. INTERVENTION Blood samples were taken during a mixed-meal tolerance test (1900 to 2100), overnight (2100 to 0700), while fasting (0700 to 0900), and during an 80 mU/m2/min hyperinsulinemic-euglycemic clamp (0900 to 1100). MAIN OUTCOME MEASURES The dependent variable was morning free testosterone level; independent variables were insulin sensitivity index (ISI), estimated 24-hour insulin, and estimated 24-hour LH levels. RESULTS All participants demonstrated insulin resistance and hyperinsulinemia. ISI, but not estimated 24-hour insulin level, correlated positively with morning free testosterone level when correcting for estimated 24-hour LH level and Tanner stage (rs = 0.68, P = 0.046). The correlation between estimated 24-hour LH and free testosterone levels approached significance after adjusting for estimated 24-hour insulin level and Tanner stage (rs = 0.63, P = 0.067). Estimated 24-hour insulin level did not correlate with free testosterone level after adjusting for estimated 24-hour LH level and Tanner stage (rs = 0.47, P = 0.20). CONCLUSION In insulin-resistant obese girls with hyperinsulinemia, free testosterone levels correlated positively with insulin sensitivity and, likely, circulating LH concentrations but not with circulating insulin levels. In the setting of relatively uniform hyperinsulinemia, variable steroidogenic-cell insulin sensitivity may correlate with metabolic insulin sensitivity and contribute to variable free testosterone concentrations.
Collapse
Affiliation(s)
- Christine M Burt Solorzano
- Division of Endocrinology, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
- Center for Research in Reproduction, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Karen L Knudsen
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Amy D Anderson
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Eleanor G Hutchens
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jessicah S Collins
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - James T Patrie
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - John C Marshall
- Center for Research in Reproduction, University of Virginia School of Medicine, Charlottesville, Virginia
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Christopher R McCartney
- Center for Research in Reproduction, University of Virginia School of Medicine, Charlottesville, Virginia
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
- Correspondence and Reprint Requests: Christopher R. McCartney, MD, Center for Research in Reproduction, Box 800391, University of Virginia Health System, Charlottesville, Virginia 22908. E-mail:
| |
Collapse
|
23
|
Salehi M, Gastaldelli A, D’Alessio DA. Beta-cell sensitivity to glucose is impaired after gastric bypass surgery. Diabetes Obes Metab 2018; 20:872-878. [PMID: 29152839 PMCID: PMC5847451 DOI: 10.1111/dom.13165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/29/2017] [Accepted: 11/14/2017] [Indexed: 01/15/2023]
Abstract
AIMS Patients who have undergone Roux-en-Y gastric bypass surgery (GB) have exaggerated postprandial insulin secretion, which has been attributed to increased meal glucose appearance and enhanced incretin effect. Here, we sought to determine β-cell glucose sensitivity in the absence of meal stimulation and insulinotropic gut factors. MATERIALS AND METHODS A total of 12 non-diabetic subjects with prior GB, and 7 matched non-surgical control subjects with normal glucose tolerance were studied. Blood glucose and insulin secretion rates were measured during a graded glucose infusion at increasing and then decreasing rates. Insulin sensitivity (SI ) and glucose effectiveness (SG ) were determined by the minimal model. RESULTS GB subjects had SI comparable to that of control subjects. GB subjects had relative hyperglycaemia during the highest dose of glucose infusion associated with significantly reduced β-cell glucose sensitivity throughout both step-up (GB: 34 ± 6, CN: 82 ± 9 pmol min-1 mM-1 L, P < .0001) and step-down (GB: 31 ± 6, CN: 74 ± 9 pmol min-1 mM-1 L, P < .0001) phases of the glucose infusion. GB subjects also had reduced SG (GB: 0.04 ± 0.00, CN: 0.07 ± 0.01 min-1 , P = .004). CONCLUSION In the absence of enteric stimuli, β-cell sensitivity to changes in glycaemia is blunted among individuals with GB, indicating a significant shift in a fundamental property of β-cell function several years after surgery.
Collapse
Affiliation(s)
- Marzieh Salehi
- University of Cincinnati College of Medicine, Department of Medicine, Cincinnati, OH
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - David A. D’Alessio
- University of Cincinnati College of Medicine, Department of Medicine, Cincinnati, OH
| |
Collapse
|
24
|
Nowotny B, Kahl S, Klüppelholz B, Hoffmann B, Giani G, Livingstone R, Nowotny PJ, Stamm V, Herder C, Tura A, Pacini G, Hwang JH, Roden M. Circulating triacylglycerols but not pancreatic fat associate with insulin secretion in healthy humans. Metabolism 2018; 81:113-125. [PMID: 29273469 DOI: 10.1016/j.metabol.2017.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/08/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Loss of adequate insulin secretion for the prevailing insulin resistance is critical for the development of type 2 diabetes and has been suggested to result from circulating lipids (triacylglycerols [TG] or free fatty acids) and/or adipocytokines or from ectopic lipid storage in the pancreas. This study aimed to address whether circulating lipids, adipocytokines or pancreatic fat primarily associates with lower insulin secretion. SUBJECTS/METHODS Nondiabetic persons (n=73), recruited from the general population, underwent clinical examinations, fasting blood drawing to measure TG and adipocytokines and oral glucose tolerance testing (OGTT) to assess basal and dynamic insulin secretion and sensitivity indices. Magnetic resonance imaging and 1H-magnetic resonance spectroscopy were used to measure body fat distribution and ectopic fat content in liver and pancreas. RESULTS In age-, sex- and BMI-adjusted analyses, total and high-molecular-weight adiponectin were the strongest negative predictors of fasting beta-cell function (BCF; β=-0.403, p=0.0003 and β=-0.237, p=0.01, respectively) and adaptation index (AI; β=-0.210, p=0.006 and β=-0.133, p=0.02, respectively). Circulating TG, but not pancreatic fat content, related positively to BCF (β=0.375, p<0.0001) and AI (β=0.192, p=0.003). Similar results were obtained for the disposition index (DI). CONCLUSIONS The association of serum lipids and adiponectin with beta-cell function may represent a compensatory response to adapt for lower insulin sensitivity in nondiabetic humans.
Collapse
Affiliation(s)
- Bettina Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany; Division of Endocrinology and Diabetology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany; Division of Endocrinology and Diabetology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Birgit Klüppelholz
- German Center for Diabetes Research, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Barbara Hoffmann
- IUF - Leibniz Research Institute for Environmental Medicine, Institute for Occupational, Social and Environmental Medicine, Heinrich-Heine University, Düsseldorf, Germany
| | - Guido Giani
- German Center for Diabetes Research, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Roshan Livingstone
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Peter J Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Valerie Stamm
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Andrea Tura
- Metabolic Unit, Institute of Neuroscience, CNR, Padova, Italy
| | - Giovanni Pacini
- Metabolic Unit, Institute of Neuroscience, CNR, Padova, Italy
| | - Jong-Hee Hwang
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany; Division of Endocrinology and Diabetology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany.
| |
Collapse
|
25
|
Hsiao PJ, Wu KL, Chiu SH, Chan JS, Lin YF, Wu CZ, Wu CC, Kao S, Fang TC, Lin SH, Chen JS. Impact of the use of anti-diabetic drugs on survival of diabetic dialysis patients: a 5-year retrospective cohort study in Taiwan. Clin Exp Nephrol 2017; 21:694-704. [PMID: 27599981 DOI: 10.1007/s10157-016-1330-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (DM) and associated complications are common in patients with chronic kidney disease (CKD) and can increase morbidity and mortality. A longitudinal 5-year observational study was conducted to investigate whether the use of anti-diabetic medications or not affected survival rates of diabetic dialysis patients. METHODS Using a data sample of a million patients from Taiwan's National Health Insurance Database, a retrospective cohort study surveyed patients with type 2 DM who began dialysis between 2002 and 2007. The study population was classified into groups using or not using anti-diabetic drugs. The group using anti-diabetic drugs was then categorized into 3 subgroups, including use of only oral hypoglycemic agents (OHAs), only insulin, and OHAs-combined insulin groups. Subjects of these four groups were followed 5 years or to date of death. Three major areas were analyzed: (1) demographic data and medical history; (2) survival prognosis and causes of death; and (3) effects on survival prognosis of different classes of OHAs. RESULTS A total of 912 patients fitting inclusion criteria were enrolled and followed-up for 5 years or to date of death. A total 465 patients died, and those not using anti-diabetic drugs (67.34 %) had a higher mortality rate than those using anti-diabetic drugs (46.42 %). After the multivariate analysis, group of OHAs-combined insulin had the lowest risk of death (HR 0.36, 95 % CI 0.27-0.47), followed by OHAs alone (HR 0.49, 95 % CI 0.38-0.63) and then insulin alone (HR 0.67, 95 % CI 0.51-0.88). To clarify four classes of OHAs (sulfonylurea, α-glucosidase inhibitors, meglitinide, and thiazolidinedione) are used in Taiwan for uremia patient with type 2 DM, and in our study, there were no significant differences in survival prognosis for the four drugs. Finally, the most common cause of death was infectious disease and there were no significant differences among the four groups. CONCLUSION This 5-year observational study results suggested that diabetic dialysis patients with anti-diabetic drugs had a lower risk of death compared with those without anti-diabetic drugs. Despite insulin therapy, appropriate OHAs should play an important role in treating these patients.
Collapse
Affiliation(s)
- Po-Jen Hsiao
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Kun-Lin Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Szu-Han Chiu
- Division of Metabolism, and Endocrinology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Jenq-Shyong Chan
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Shuang Ho Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ze Wu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - SenYeong Kao
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Te-Chao Fang
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Jin-Shuen Chen
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan.
| |
Collapse
|
26
|
Gastaldelli A, Gaggini M, DeFronzo R. Glucose kinetics: an update and novel insights into its regulation by glucagon and GLP-1. Curr Opin Clin Nutr Metab Care 2017; 20:300-309. [PMID: 28463898 DOI: 10.1097/mco.0000000000000384] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Glucagon and GLP-1 share the same origin (i.e., proglucagon); primarily GLP-1 is generated from intestinal L-cells and glucagon from pancreatic α-cell, but intestinal glucagon and pancreatic GLP-1 secretion is likely. Glucose kinetics are tightly regulated by pancreatic hormones insulin and glucagon, but other hormones, including glucagon-like peptide-1 (GLP-1), also play an important role. The purpose of this review is to describe the recent findings on the mechanisms by which these two hormones regulate glucose kinetics. RECENT FINDINGS Recent findings showed new important mechanisms of action of glucagon and GLP-1 in the regulation of glucose metabolism. Knock out of glucagon receptors protects against hyperglycemia without causing hypoglycemia. GLP-1 not only stimulates insulin secretion, but it has also an independent effect on the liver and inhibits glucose production. Moreover, when coinfused with glucagon, GLP-1 limits the hyperglycemic effects. Both hormones have also central effects on gastric emptying (delayed), intestinal motility (reduced), and satiety (increased). SUMMARY The implications of these findings are very important for the management of type 2 diabetes given that GLP-1 receptor agonist are currently approved for the treatment of hyperglycemia and glucagon receptor antagonists and GLP-1/glucagon dual agonists are under development.
Collapse
Affiliation(s)
- Amalia Gastaldelli
- aCardiometabolic Risk Laboratory, Institute of Clinical Physiology, National Research Council, Pisa, Italy bUniversity of Texas Health Science Center at San Antonio, TX, USA
| | | | | |
Collapse
|
27
|
Gastaldelli A, Gaggini M, DeFronzo RA. Role of Adipose Tissue Insulin Resistance in the Natural History of Type 2 Diabetes: Results From the San Antonio Metabolism Study. Diabetes 2017; 66:815-822. [PMID: 28052966 DOI: 10.2337/db16-1167] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/29/2016] [Indexed: 12/30/2022]
Abstract
In the transition from normal glucose tolerance (NGT) to type 2 diabetes mellitus (T2DM), the role of β-cell dysfunction and peripheral insulin resistance (IR) is well established. However, the impact of dysfunctional adipose tissue has not been fully elucidated. The aim of this study was to evaluate the role of resistance to the antilipolytic effect of insulin (adipose tissue IR [Adipo-IR]) in a large group of subjects with NGT, impaired glucose tolerance (IGT), and T2DM. Three hundred two subjects with varying glucose tolerance received an oral glucose tolerance test (OGTT) and euglycemic insulin clamp. We evaluated Adipo-IR (fasting and mean OGTT plasma free fatty acid [FFA] × insulin concentrations), peripheral IR (1/[Matsuda index] and (M/I)-1 value), and β-cell function (calculated as the ratio of the increment in plasma insulin to glucose [OGTT/IR (ΔI/ΔG ÷ IR)]). Fasting Adipo-IR was increased twofold in obese subjects with NGT and IGT versus lean subjects with NGT (8.0 ± 1.1 and 9.2 ± 0.7 vs. 4.1 ± 0.3, respectively) and threefold in subjects with T2DM (11.9 ± 0.6; P < 0.001). Progressive decline in ΔI/ΔG ÷ IR was associated with a progressive impairment in FFA suppression during OGTT, whereas the rise in mean plasma glucose concentration only became manifest when subjects became overtly diabetic. The progressive decline in β-cell function that begins in individuals with NGT is associated with a progressive increase in FFA and fasting Adipo-IR.
Collapse
Affiliation(s)
- Amalia Gastaldelli
- University of Texas Health Science Center at San Antonio, San Antonio, TX
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Melania Gaggini
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Ralph A DeFronzo
- University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
28
|
Filipova E, Uzunova K, Kalinov K, Vekov T. Effects of pioglitazone therapy on blood parameters, weight and BMI: a meta-analysis. Diabetol Metab Syndr 2017; 9:90. [PMID: 29163673 PMCID: PMC5686837 DOI: 10.1186/s13098-017-0290-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is one of the most common diseases worldwide and insulin insufficiency and insulin resistance are two main metabolic issues connected with it. The dyslipidemia associated with insulin resistance and T2DM is characterized by higher triglycerides (TGs), higher very-low-density lipoprotein cholesterol and lower apo A1. Pioglitazone, a member of the thiazolidinedione class, with a proven antihyperglycemic effect, is known to positively influence insulin sensitivity and β-cell function and to have the potential to alter the lipid profile. METHODS The aim of our meta-analysis is to summarize and determine the influence of pioglitazone on the glycemic profile and lipoprotein metabolism as well as on weight and BMI in order to highlight the benefit of pioglitazone therapy in patients with T2DM. A comprehensive literature search was conducted through the electronic databases PubMed, MEDLINE, Scopus, PsyInfo, eLIBRARY.ru (from 2000 until February 2016) to identify studies that investigate the effect of pioglitazone on the glycemic and lipid profile and on the weight and BMI. We chose the random-effects method as the primary analysis. Forest plots depict estimated results from the studies included in the analysis and funnel plots are used to evaluate publication bias. Sensitivity analyses were performed in order to evaluate the degree of influence of the consequent elimination of each individual study on the final result. RESULTS Of the 1536 identified sources only 15 randomised trials were included in the meta-analysis. Pioglitazone treatment was associated with improvement in the glycemic profile. It reduced FPG levels by a mean of 1.1-2 mmol/l and HbA1c by a mean of 0.9-1.3%. Our results reaffirmed the hypothesis that pioglitazone has a positive influence on the lipid profile of T2DM patients with increase in TC and HDL, no significant changes in LDL and notable decrease in TGs. Results also showed that pioglitazone therapy led to increase in both weight and BMI (WMD 1.755, 95% CI 0.674 to 2.837 and 1.145, 95% CI 0.389 to 1.901 respectively). CONCLUSION Our results prove that the PPAR γ agonist pioglitazone has the potential to be beneficial to patients with T2DM.
Collapse
Affiliation(s)
- Elena Filipova
- Science Department, Tchaikapharma High Quality Medicines Inc., 1 G.M. Dimitrov Blvd, 1172 Sofia, Bulgaria
| | - Katya Uzunova
- Science Department, Tchaikapharma High Quality Medicines Inc., 1 G.M. Dimitrov Blvd, 1172 Sofia, Bulgaria
| | - Krassimir Kalinov
- Department of Informatics, New Bulgarian University, 21 Montevideo Str, 1618 Sofia, Bulgaria
| | - Toni Vekov
- Faculty of Pharmacy, Medical University, Pleven, Bulgaria
| |
Collapse
|
29
|
Kim SH, Silvers A, Viren J, Reaven GM. Relationship between insulin sensitivity and insulin secretion rate: not necessarily hyperbolic. Diabet Med 2016; 33:961-7. [PMID: 26670479 PMCID: PMC4911331 DOI: 10.1111/dme.13055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2015] [Indexed: 12/28/2022]
Abstract
AIMS There is general acceptance that the physiological relationship between insulin sensitivity and insulin secretion is hyperbolic. This conclusion has evolved from studies in which one test assessed both variables, and changes in plasma insulin concentration were used as a surrogate measure for insulin secretion rate. The aim of this study was to see if a hyperbolic relationship would also emerge when separate and direct measures were used to quantify both insulin sensitivity and insulin secretion rate. METHODS Steady-state plasma glucose (SSPG) was determined in 146 individuals without diabetes using the insulin suppression test, with 1/SSPG used to quantify insulin sensitivity. The graded-glucose infusion test was used to quantify insulin secretion rate. Plasma glucose and insulin concentrations obtained during an oral glucose tolerance test (OGTT) were used to calculate surrogate estimates of insulin action and insulin secretion rate. A hyperbolic relationship was assumed if the β coefficient was near -1 using the following model: log (insulin secretion measure) = constant + β × log (insulin sensitivity measure). RESULTS OGTT calculations of insulin sensitivity (Matsuda) and plasma insulin response [ratio of insulin/glucose area-under-the-curve (AUC) or insulin total AUC] provided the expected hyperbolic relationship [β = -0.95, 95% CI (-1.09, -0.82); -1.06 (-1.14, -0.98)]. Direct measurements of insulin sensitivity and insulin secretion rate did not yield the same curvilinear relationship [β = -1.97 (-3.19, -1.36)]. CONCLUSIONS These findings demonstrate that the physiological relationship between insulin sensitivity and insulin secretion rate is not necessarily hyperbolic, but will vary with the method(s) by which it is determined.
Collapse
Affiliation(s)
- S H Kim
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - G M Reaven
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
30
|
Santos JL, Yévenes I, Cataldo LR, Morales M, Galgani J, Arancibia C, Vega J, Olmos P, Flores M, Valderas JP, Pollak F. Development and assessment of the disposition index based on the oral glucose tolerance test in subjects with different glycaemic status. J Physiol Biochem 2015; 72:121-31. [PMID: 26660757 DOI: 10.1007/s13105-015-0458-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
Abstract
Insulin secretion and insulin sensitivity indexes are related by hyperbolic functions, allowing the calculation of the disposition index (DI) as the product of the acute insulin response (AIR) and the insulin sensitivity index (Si) from intravenous glucose tolerance test (IVGTT). Our objective was to develop an oral-DI based on the oral glucose tolerance test (OGTT) and to assess its association with glucose tolerance status. This research is structured in three studies. Study 1: OGTT were performed in 833 non-diabetic Chilean women (18-60 years) without family history of diabetes mellitus. Study 2: an independent group of n = 57 non-diabetic (18-46 years) without family history of diabetes mellitus carried out an OGTT and an abbreviated IVGTT. Study 3: a sample of 1674 Chilean adults (18-60 years) with different glycaemic status performed an OGTT. An adequate statistical fit for a rectangular hyperbola was found between the area under the curve of insulin-to-glucose ratio (AUCI/G-R) and the Matsuda ISI-COMP index (study 1). The oral-DI derived as AUCI/G-R × ISI-COMP was previously termed insulin-secretion-sensitivity index-2 (ISSI-2). ISSI-2 significantly correlated with DI from IVGTT (rho = 0.34; p = 0.009) (study 2). ISSI-2 shows important differences across groups of subjects with different glycaemic status (study 3). We have confirmed that ISSI-2 replicates the mathematical properties of DI, showing significant correlations with DI from the abbreviated MM-IVGTT. These results indicate that ISSI-2 constitutes a surrogate measure of insulin secretion relative to insulin sensitivity and emphasizes the pivotal role of impaired insulin secretion in the development of glucose homeostasis dysregulation.
Collapse
Affiliation(s)
- J L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile.
| | - I Yévenes
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - L R Cataldo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - M Morales
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - J Galgani
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - C Arancibia
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - J Vega
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - P Olmos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - M Flores
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - J P Valderas
- Departamento de Ciencias Médicas, Facultad de Medicina Odontología, Universidad de Antofagasta, Antofagasta, Chile
| | - F Pollak
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| |
Collapse
|
31
|
Ferrannini E, DeFronzo RA. Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes. Eur Heart J 2015; 36:2288-96. [PMID: 26063450 DOI: 10.1093/eurheartj/ehv239] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/16/2015] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by multiple pathophysiologic abnormalities. With time, multiple glucose-lowering medications are commonly required to reduce and maintain plasma glucose concentrations within the normal range. Type 2 diabetes mellitus individuals also are at a very high risk for microvascular complications and the incidence of heart attack and stroke is increased two- to three-fold compared with non-diabetic individuals. Therefore, when selecting medications to normalize glucose levels in T2DM patients, it is important that the agent not aggravate, and ideally even improve, cardiovascular risk factors (CVRFs) and reduce cardiovascular morbidity and mortality. In this review, we examine the effect of oral (metformin, sulfonylureas, meglitinides, thiazolidinediones, DPP4 inhibitors, SGLT2 inhibitors, and α-glucosidase inhibitors) and injectable (glucagon-like peptide-1 receptor agonists and insulin) glucose-lowering drugs on established CVRFs and long-term studies of cardiovascular outcomes. Firm evidence that in T2DM cardiovascular disease can be reversed or prevented by improving glycaemic control is still incomplete and must await large, long-term clinical trials in patients at low risk using modern treatment strategies, i.e., drug combinations designed to maximize HbA1c reduction while minimizing hypoglycaemia and excessive weight gain.
Collapse
Affiliation(s)
- Ele Ferrannini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Ralph A DeFronzo
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|