1
|
Lentini G, Querqui A, Monti N, Bizzarri M. PCOS and Inositols - Advances and Lessons We are Learning. A Narrative Review. Drug Des Devel Ther 2025; 19:4183-4199. [PMID: 40420946 PMCID: PMC12104671 DOI: 10.2147/dddt.s524718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
Introduction This Expert Opinion covers recent updates in the use of Inositol in polycystic ovary syndrome (PCOS), highlighting the specific effects triggered upon ovarian steroidogenesis. Areas Covered An impressive body of evidence, obtained from molecular, animal and clinical studies, demonstrated the striking association between PCOS and the metabolism of myo-Inositol (myo-Ins) and its isomer D-Chiro-Inositol (DCI). Early investigations focused primarily on the metabolic consequences of inositol in modulating insulin transduction. However, recent advances disclosed that Inositols trigger direct effects on steroidogenesis. High DCI levels exacerbate androgen synthesis, and downregulate aromatase expression. Myo-Ins modulates insulin effects too, but exerts opposite actions on steroidogenesis, by increasing aromatase and FSH receptor expression. Clinical studies demonstrated myo-Ins efficacy, suggesting that an appropriate ratio in between myo-Ins/DCI (40:1) improves the reproductive function in PCOS women, even in absence of insulin resistance. Expert Opinion Inositol-based treatments in PCOS are gaining momentum, demonstrating safety and efficacy greater than those obtained with other pharmacological agents. The efficacy depends not only on the modulation of insulin sensitivity but also on the direct, steroidogenic effects upon the ovaries. Adequate adsorption of Inositol is a critical issue, and the association of α-Lactalbumin can significantly overcome this problem. However, if a treatment based on inositol could be equally effective on different phenotypes of PCOS needs a specific assessment.
Collapse
Affiliation(s)
- Guglielmo Lentini
- Department of Experimental Medicine, Space Biomedicine Laboratory, University Sapienza, Rome, Italy
| | - Alessandro Querqui
- Department of Experimental Medicine, Space Biomedicine Laboratory, University Sapienza, Rome, Italy
| | - Noemi Monti
- Department of Experimental Medicine, Space Biomedicine Laboratory, University Sapienza, Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Space Biomedicine Laboratory, University Sapienza, Rome, Italy
| |
Collapse
|
2
|
Cela E, De Alcubierre D, Sbardella E. Polycystic Ovary Syndrome in the Context of Pituitary Adenomas: Prevalence, Pathophysiology and Clinical Management. Clin Endocrinol (Oxf) 2025; 102:462-481. [PMID: 39718187 DOI: 10.1111/cen.15182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/07/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE Many review articles have explored data regarding the coexistence of specific types of pituitary adenomas (PAs) and polycystic ovary syndrome (PCOS), particularly focusing on the potential pathogenesis of this intersection and overlapping features. However, a comprehensive evaluation encompassing the full spectrum of PAs and their association with PCOS remains lacking. This review aims to provide a broad assessment of the interactions between these entities, emphasizing pathophysiological mechanisms, clinical presentations, diagnostic challenges and therapeutic implications. METHODS A comprehensive literature search was conducted in the PubMed/MEDLINE database, focusing primarily on publications from the years 2000 to 2024, while also including seminal papers from the 1950s. The reference lists of selected articles were also manually searched. Inclusion criteria encompassed review articles, retrospective studies, clinical trials, case reports and meta-analyses providing data on the pathogenesis, clinical features, diagnostic challenges and therapeutic approaches related to PCOS and different PAs. RESULTS PCOS and functioning PAs often exhibit overlapping clinical features, complicating diagnosis and management. PCOS may precede and delay the diagnosis of growth hormone (GH)-secreting adenomas. The prevalence of PCOS or its features in acromegaly is influenced by disease activity, while approximating 13% in cases with controlled disease. Excess GH and insulin-like growth factor 1 (IGF-1) adversely affect ovarian function through direct pathways and by inducing insulin resistance, contributing to acromegaly-associated PCOS. In Cushing's syndrome (CS), findings consistent with PCOS may be present in 46% of patients, with cortisol excess contributing to menstrual dysfunction, hyperandrogenism and insulin resistance. While the prevalence of PCOS in patients with prolactinomas remains under-researched, recent studies indicate a 2.8%-10% prevalence of prolactinomas in PCOS. Elevated prolactin (PRL) levels in these patients may promote insulin resistance, further contributing to PCOS pathogenesis. Moreover, increased androgen bioavailability may be observed in all three aforementioned adenomas. To date, no studies have provided prevalence data for PCOS in other types of PAs. CONCLUSIONS Distinct clinical features, along with biochemical evaluations and imaging, can help differentiate the presence of both PAs and PCOS. Moreover, excluding other mimicking disorders is essential for an accurate diagnosis of PCOS. The persistence or recurrence of menstrual dysfunction, hyperandrogenism and metabolic disturbances in patients with controlled functioning adenomas may indicate a coexisting PCOS diagnosis. Timely diagnosis may optimize management and improve long-term outcomes for both conditions. Future studies should focus on investigating the clinical differences between patients with co-occurring PCOS and PAs compared to those with PCOS alone, ideally in larger cohorts, to better understand unique diagnostic and therapeutic considerations.
Collapse
Affiliation(s)
- Esmeralda Cela
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Dario De Alcubierre
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Emilia Sbardella
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Su P, Chen C, Sun Y. Physiopathology of polycystic ovary syndrome in endocrinology, metabolism and inflammation. J Ovarian Res 2025; 18:34. [PMID: 39980043 PMCID: PMC11841159 DOI: 10.1186/s13048-025-01621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/08/2025] [Indexed: 02/22/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder characterized by elevated androgen levels, ovarian cysts, and impaired ovulation in females. This condition is closely linked with various reproductive health issues and has significant impacts on endocrine and metabolic pathways. Patients with PCOS commonly exhibit hyperandrogenaemia and insulin resistance, leading to complications such as acne, hirsutism, weight fluctuations, and metabolic disturbances, as well as an increased risk for type 2 diabetes, cardiovascular disease, and endometrial cancer. Although extensive research has identified several mechanistic aspects of PCOS, a thorough understanding of its pathophysiology remains incomplete. This review aims to provide a detailed analysis of the physiological and pathological aspects of PCOS, covering endocrine, metabolic, and inflammatory dimensions, to better elucidate its etiological framework.
Collapse
Affiliation(s)
- Pingping Su
- Wenzhou Graduate Joint Training Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gynecology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Chao Chen
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yun Sun
- Department of Gynecology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Yang Q, Jia S, Tao J, Zhang J, Fan Z. Multiple effects of kisspeptin on neuroendocrine, reproduction, and metabolism in polycystic ovary syndrome. J Neuroendocrinol 2025; 37:e13482. [PMID: 39694850 DOI: 10.1111/jne.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a highly prevalent and heterogeneous disease characterized by a combination of reproductive and endocrine abnormalities, often associated with metabolic and mental health disorders. The etiology and pathogenesis of PCOS remain unclear, but recent research has increasingly focused on the upstream mechanisms underlying its development. Among these, kisspeptin (KISS) signaling has emerged as a pivotal component in the regulation of the hypothalamic-pituitary-gonadal axis, with significant roles in reproductive function, energy regulation, and metabolism. Women with PCOS commonly exhibit disruptions in gonadotropin secretion, including elevated luteinizing hormone (LH) levels, imbalanced LH/follicle-stimulating hormone (FSH) ratios, and increased androgen levels, all of which are usually parallel with abnormal KISS signaling. Furthermore, alterations in the KISS/KISS1R system within the central and circulatory systems, as well as peripheral tissues, have been implicated in the development of PCOS. These changes affect multiple pathophysiological domains, including reproductive function, energy regulation, metabolic homeostasis, inflammatory response, and emotional disorders, and are further influenced by lifestyle and environmental factors. This review aims to comprehensively summarize the existing experimental and clinical evidence supporting these roles of KISS in PCOS, with the goal of establishing a foundation for future research and potential clinical applications.
Collapse
Affiliation(s)
- Qiaorui Yang
- Department of Gynecology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengxiao Jia
- Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Jing Tao
- Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Jinfu Zhang
- Department of Gynecology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gynecology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Zhenliang Fan
- Nephrology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
5
|
Pierret ACS, Patel AH, Daniels E, Comninos AN, Dhillo WS, Abbara A. Kisspeptin as a test of hypothalamic dysfunction in pubertal and reproductive disorders. Andrology 2025. [PMID: 39834030 DOI: 10.1111/andr.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The hypothalamic-pituitary-gonadal axis is regulated by the gonadotropin-releasing hormone pulse generator in the hypothalamus. This is comprised of neurons that secrete kisspeptin in a pulsatile manner to stimulate the release of GnRH, and, in turn, downstream gonadotropins from the pituitary gland, and subsequently sex steroids and gametogenesis from the gonads. Many reproductive disorders in both males and females are characterized by hypothalamic dysfunction, including functional disorders (such as age-related hypogonadism, obesity-related secondary hypogonadism, hyperprolactinemia, functional hypothalamic amenorrhea and polycystic ovary syndrome), structural pathologies (such as craniopharyngiomas or radiation or surgery-related hypothalamic dysfunction), and pubertal disorders (constitutional delay of growth and puberty and congenital hypogonadotropic hypogonadism). However, in many of these conditions, the relative contribution of hypothalamic dysfunction to the observed hypogonadism is unclear; as to date, there is no direct method of evaluating hypothalamic reproductive function in humans. Indeed, it is not possible to directly measure gonadotropin-releasing hormone levels in the hypothalamo-pituitary portal vessels, such that secondary (i.e., pituitary dysfunction) and tertiary (i.e., hypothalamic dysfunction) hypogonadism are often conflated as one entity. In this review, we examine the evidence for the use of kisspeptin as a method of directly evaluating hypothalamic reproductive dysfunction, and deliberate its potential future role in the evaluation of pubertal and reproductive disorders.
Collapse
Affiliation(s)
- Aureliane C S Pierret
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Aaran H Patel
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Elisabeth Daniels
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare Trust, London, UK
| |
Collapse
|
6
|
Wang S, Tan J, Wang C, Huang J, Zhou C. Free Androgen Index Might Not Be a Perfect Predictor of Infertility Outcomes in Patients with Polycystic Ovary Syndrome Undergoing Frozen Embryo Transfer:A Retrospective Cohort Study. Int J Womens Health 2024; 16:1349-1359. [PMID: 39135910 PMCID: PMC11318606 DOI: 10.2147/ijwh.s465541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Purpose It is well known that androgen excess impairs oocyte quality, endometrial receptivity and even embryo invasion to some extent. Free androgen index (FAI) is strongly recommended to evaluate active androgen. Previous studies have showed conflicting conclusions on the effect of hyperandrogenism on the pregnancy outcomes in patients with polycystic ovary syndrome (PCOS). This study aims to analyze the influence of hyperandrogenemia based on FAI on frozen embryo transfer (FET) outcomes in patients with PCOS. Patients and Methods Patients diagnosed with PCOS who underwent their first FET between January 2017 and April 2022 were stratified into two cohorts using FAI, a highly recommended parameter: PCOS with hyperandrogenemia (n=73) and PCOS without hyperandrogenemia (n=255). Basic and infertility characteristics were analyzed using Student's t-test or chi-square (χ2) statistics. Logistic regression analysis was performed to verify whether FAI was helpful in predicting pregnancy outcomes in women with PCOS. Results Body mass index (BMI), total gonadotropin (Gn), basal serum follicle-stimulating hormone (bFSH), basal serum testosterone (bT), sex hormone binding globulin (SHBG), and FAI were significantly different between the two groups. (P=0.005, P<0.001, P<0.001, P<0.001, and P<0.001, respectively). However, clinical pregnancies, abortions, and live births did not differ significantly. Further regression analyses showed that FAI was not related to clinical pregnancy, abortion, or live birth rates (adjusted odds ratio (OR)=0.978, 95% confidence interval (CI)=0.911-1.050, P=0.539; adjusted OR=1.033, 95% CI=0.914-1.168, P=0.604; and adjusted OR=0.976, 95% CI=0.911-1.047, P=0.499, respectively). Conclusion FAI was not associated with pregnancy outcomes in patients with PCOS; that is, it did not reflect any negative effects of hyperandrogenemia on pregnancy outcomes in patients with PCOS and was not an informative clinical parameter. Therefore, more attention should be paid to the factors that influence the accuracy of FAI in reflecting androgen levels in vivo, and further discussion is needed.
Collapse
Affiliation(s)
- Senlan Wang
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Jifan Tan
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Can Wang
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Jia Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
7
|
Jaglan S, Tewari S, Singhal SR, Sharma RK. Impact of Polycystic Ovary Syndrome on Periodontal Status of Women of Adolescent and Adult Age Groups: A Cross-Sectional Study. Med Princ Pract 2024; 33:148-156. [PMID: 38211576 PMCID: PMC11095622 DOI: 10.1159/000536223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is identified as the most common endocrine disorder in reproductive-aged women, and symptoms of PCOS appear during the early pubertal age. There is a gap in knowledge in recognizing the status of gingival inflammation/periodontal destruction and high-sensitivity C-reactive protein levels (hsCRP) in adolescents versus adults with PCOS. This study aimed to observe the impact of PCOS on periodontal status and systemic inflammation in adolescents and compared them with adults with PCOS. METHODS A total of 100 newly diagnosed female subjects with PCOS were enrolled into two groups: adolescents (11-19 years, n = 50) and adult females (20-40 years, n = 50). Periodontal parameters, anthropometric parameters, PCOS phenotype, hirsutism score, and serum hsCRP levels were recorded. RESULTS High levels of mean hsCRP, gingival index, and bleeding on probing % were observed in adolescent and adult PCOS groups, though nonsignificant between the groups (p > 0.05). Significantly more sites with probing pocket depth 3-4 mm, higher mean clinical attachment level (CAL) and sites with CAL 1-2 mm, and high frequency of patients (n = 11) with periodontitis (stage 1) were observed in adults with PCOS compared to adolescents (p ≤ 0.05). Similar and predominant prevalence of PCOS phenotype A (66%) and moderate hirsutism (46% adolescents vs. 58% adults) were observed in both groups. CONCLUSION Similar levels of hsCRP and periodontal inflammation were found in adolescents and adults with PCOS. More periodontal tissue destruction was observed in adults with PCOS as compared to adolescents with PCOS.
Collapse
Affiliation(s)
- Swati Jaglan
- Department of Periodontics, Post Graduate Institute of Dental Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, India
| | - Shikha Tewari
- Department of Periodontics, Post Graduate Institute of Dental Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, India
| | - Savita Rani Singhal
- Department of Obstetrics and Gynecology, Post Graduate Institute of Medical Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, India
| | - Rajinder Kumar Sharma
- Department of Periodontics, Post Graduate Institute of Dental Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, India
| |
Collapse
|
8
|
Waghmare SV, Shanoo A. Polycystic Ovary Syndrome: A Literature Review With a Focus on Diagnosis, Pathophysiology, and Management. Cureus 2023; 15:e47408. [PMID: 38021970 PMCID: PMC10657909 DOI: 10.7759/cureus.47408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
In females with polycystic ovarian syndrome (PCOS), the most prevalent endocrine condition is chronic anovulation and hyperandrogenism. This illness influences females from conception to death, posing several risks to the health of a female, thus reducing the quality of life. It also increases the rates of mortality and morbidity. The first years of puberty are when PCOS symptoms first show. Menstrual irregularities, anovulation, and acne are features of both PCOS and typical puberty in females. There are many various phenotypes that fall under the same illness, so it is necessary to examine each one independently because they may need different treatments and result in different outcomes. Depending on the diagnostic criteria, approximately 6%-20% of females in the reproductive age group are believed to be affected by PCOS. As long as PCOS is still a syndrome, no single diagnostic indicator, such as hyperandrogenism or polycystic ovary (PCO), can be used to make a clinical diagnosis. The management of females with PCOS depends on the symptoms. These could include menstruation problems, androgen-related symptoms, or infertility caused by ovulatory disruption. In females with PCOS, anovulation is linked to low follicle-stimulating hormone (FSH) levels and a halt in antral follicle growth during the last stages of maturation. The condition may be treated surgically with laparoscopic ovarian drilling or medically with medications such as aromatase inhibitors, metformin, glucocorticoids, clomiphene citrate (CC), tamoxifen, or gonadotropins. Patients will experience different androgenic symptoms, such as hirsutism, acne, and/or baldness. Patients who appear with these troubling symptoms need to receive appropriate care. The review emphasizes the role it plays in the management of various conditions.
Collapse
Affiliation(s)
- Shrutika V Waghmare
- Department of Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amardeep Shanoo
- Department of Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
9
|
Moursi MO, Salem H, Ibrahim AR, Marzouk S, Al-Meraghi S, Al-Ajmi M, Al-Naimi A, Alansari L. The role of anti-Mullerian hormone and other correlates in patients with polycystic ovary syndrome. Gynecol Endocrinol 2023; 39:2247098. [PMID: 37573873 DOI: 10.1080/09513590.2023.2247098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Anti-Müllerian hormone (AMH) has recently emerged as a promising biomarker for the detection of polycystic ovarian morphology. In polycystic ovary syndrome (PCOS), an elevated level of AMH has been suggested to add value to the Rotterdam criteria in cases of diagnostic uncertainty. In this study, we evaluated the correlation between AMH and PCOS, and the potential role of AMH in PCOS diagnosis. METHODS A case-control study was performed on a total of 200 females, 100 of which were diagnosed with PCOS as per Rotterdam revised criteria (2003) and 100 as the control (non-PCOS group). Patient medical records were therefore retrieved for clinical, biochemical and ultrasound markers for PCOS diagnosis. Sensitivity, specificity, area under receiver operating characteristic (AUROC) curve, and multivariate linear regression models were applied to analyze our data. RESULTS Mean serum levels of LH and AMH, and LH/FSH ratio were significantly different between compared groups. In the PCOS group, the mean serum AMH level was 6.78 ng/mL and LH/FSH ratio was 1.53 while those of controls were 2.73 ng/mL and 0.53, respectively (p < .001). The most suitable compromise between 81% specificity and 79% sensitivity was obtained with a cutoff value of 3.75 ng/mL (26.78 pmol/L) serum AMH concentration for PCOS prediction, with an AUROC curve of 0.9691. CONCLUSION Serum AMH cutoff level of 3.75 ng/mL was identified as a convenient gauge for the prediction of PCOS and an adjuvant to the Rotterdam criteria.
Collapse
Affiliation(s)
- Moaz O Moursi
- Department of Internal Medicine, Hamad General Hospital, Doha, Qatar
| | - Haya Salem
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ayman R Ibrahim
- Department of Internal Medicine, Hamad General Hospital, Doha, Qatar
| | - Sandy Marzouk
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Sara Al-Meraghi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Maha Al-Ajmi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Alreem Al-Naimi
- Department of Medical Education, Hamad Medical Corporation, Doha, Qatar
| | - Lolwa Alansari
- Department of Obstetrics and Gynecology, Al-Wakra Hospital, Al-Wakrah,Qatar
| |
Collapse
|
10
|
Guo F, Fernando T, Zhu X, Shi Y. The overexpression of neurokinin B-neurokinin 3 receptor system exerts direct effects on the ovary under PCOS-like conditions to interfere with mitochondrial function. Am J Reprod Immunol 2023; 89:e13663. [PMID: 36453600 DOI: 10.1111/aji.13663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
PROBLEM The increased hypothalamic neurokinin B (NKB) level may contribute to the hyperactive LH pulse secretion in Polycystic ovary syndrome (PCOS). However, the expression and role of the neurokinin B-neurokinin 3 receptor (NKB-NK3R) system in the local ovarian tissue of PCOS have not been clarified. We constructed in vivo and in vitro models to elucidate the mechanism of the NKB-NK3R pathway in reproductive endocrine disorders of PCOS. METHOD OF STUDY The granulosa cell line-KGN cells were set in palmitic acid (PA) and dihydrotestosterone (DHT) to simulate the PCOS-like conditions. And we used the high-fat/high-glucose diet to build a PCOS-like mice model and neurokinin 3 receptor antagonist (NK3Ra) was administered to half of the mice. The expression of the NKB-NK3R system, mitochondrial functions, hormone levels, and inflammatory state was evaluated. RESULTS The PCOS-like stimulations induced the NKB-NK3R system and MAPK-ERK pathway overexpression in KGN cells, in an approximate dose and time-dependent manner. The NKB-NK3R system overactivated the MAPK-ERK pathway to increase NNT overexpression, disturb NADH/NADPH pools, aggravate the oxidation state, and decrease ATP production. With overexpression of the NKB-NK3R system in the local ovarian tissue, ovulatory dysfunction, progesterone deficiency, and pro-inflammatory states were apparent in PCOS-like mice. Antagonizing the receptor, NK3R, reversed the adverse reproductive endocrine phenotypes via improving mitochondrial dysfunction. CONCLUSIONS In addition to the central regulation, local ovarian overexpression of the NKB-NK3R system participated in the adverse reproductive endocrine phenotypes, supporting the therapeutic implications of NK3Ra for PCOS.
Collapse
Affiliation(s)
- Fei Guo
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Taniya Fernando
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaoyong Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingli Shi
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
11
|
Jiang Q, Miao R, Wang Y, Wang W, Zhao D, Niu Y, Ding Q, Li Y, Leung PCK, Wei D, Chen ZJ. ANGPTL4 inhibits granulosa cell proliferation in polycystic ovary syndrome by EGFR/JAK1/STAT3-mediated induction of p21. FASEB J 2023; 37:e22693. [PMID: 36607250 DOI: 10.1096/fj.202201246rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 01/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common, heterogenous endocrine disorders and is the leading cause of ovulatory obstacle associated with abnormal folliculogenesis. Dysfunction of ovarian granulosa cells (GCs) is recognized as a major factor that underlies abnormal follicle maturation. Angiopoietin-like 4 (ANGPTL4) expression in GCs differs between patients with and without PCOS. However, the role and mechanism of ANGPTL4 in impaired follicular development are still poorly understood. Here, the case-control study was designed to investigate the predictive value of ANGPTL4 in PCOS while cell experiments in vitro were set for mechanism research. Results found that ANGPTL4 levels in serum and in follicular fluid, and its expression in GCs, were upregulated in patients with PCOS. In KGN and SVOG cells, upregulation of ANGPTL4 inhibited the proliferation of GCs by blocking G1/S cell cycle progression, as well as the molecular activation of the EGFR/JAK1/STAT3 cascade. Moreover, the STAT3-dependent CDKN1A(p21) promoter increased CDKN1A transcription, resulting in remarkable suppression effect on GCs. Together, our results demonstrated that overexpression of ANGPTL4 inhibited the proliferation of GCs through EGFR/JAK1/STAT3-mediated induction of p21, thus providing a novel epigenetic mechanism for the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Qi Jiang
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Ruolan Miao
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yuhuan Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Wenqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Dingying Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yue Niu
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Qiaoqiao Ding
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| |
Collapse
|
12
|
Vyrides AA, El Mahdi E, Giannakou K. Ovulation induction techniques in women with polycystic ovary syndrome. Front Med (Lausanne) 2022; 9:982230. [PMID: 36035398 PMCID: PMC9411864 DOI: 10.3389/fmed.2022.982230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Anovulation is very common and has several different clinical manifestations, including amenorrhea, oligomenorrhea and abnormal uterine bleeding. Various mechanisms can cause anovulation. The clinical consequences and commonest chronic anovulatory disorder, polycystic ovary syndrome (PCOS), has a prevalence that ranges between 6 to 10% of the global population. While multiple causes can eventually result in PCOS, various methods have been described in the literature for its management, often without ascertaining the underlying cause. Ovulation Induction (OI) is a group of techniques that is used in women with PCOS who are looking to conceive and are unbale to do so with natural means. This narrative review presents a summary of the current evidence and available techniques for OI in women with PCOS, highlighting their performance and applicability.
Collapse
Affiliation(s)
- Andreas A. Vyrides
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Essam El Mahdi
- Department of Obstetrics and Gynecology, Newham University Hospital NHS Trust, London, United Kingdom
| | - Konstantinos Giannakou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
- *Correspondence: Konstantinos Giannakou
| |
Collapse
|
13
|
Moore AM. Impaired steroid hormone feedback in polycystic ovary syndrome: Evidence from preclinical models for abnormalities within central circuits controlling fertility. Clin Endocrinol (Oxf) 2022; 97:199-207. [PMID: 35349177 PMCID: PMC11289760 DOI: 10.1111/cen.14711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy and cause of infertility in women of reproductive age worldwide. Despite diagnostic features of anovulation, polycystic ovarian morphology, and high androgen secretion indicating the syndrome are the result of ovarian dysfunction, alterations to central neuroendocrine circuits that control reproductive capacity may drive PCOS symptoms. Resistance of gonadotrophin-releasing hormone (GnRH) neurons in the hypothalamus to inhibition by sex steroid hormone-negative feedback leads to a rapid frequency of pulsatile gonadotrophin secretion, which, in turn, drives the ovarian features of the disease. As GnRH neurons do not express steroid hormone receptors, impaired negative feedback is hypothesized to occur within an upstream network that controls GnRH pulse generation. This review will discuss the latest work from preclinical animal models of PCOS used to dissect the specific central mechanisms involved in impaired steroid hormone feedback. In particular, this review will focus on research that indicates neurons in the arcuate nucleus of the hypothalamus that express Kisspeptin, Neurokinin B and Dynorphin (KNDy cells) or γ-aminobutyric acid are targets of androgen-mediated impairment of steroid hormone feedback. Finally, this review will explore the development of therapeutic agents targeting neurons that control LH pulse frequency to resolve PCOS symptoms in the clinic.
Collapse
Affiliation(s)
- Aleisha M Moore
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| |
Collapse
|
14
|
McCartney CR, Campbell RE, Marshall JC, Moenter SM. The role of gonadotropin-releasing hormone neurons in polycystic ovary syndrome. J Neuroendocrinol 2022; 34:e13093. [PMID: 35083794 PMCID: PMC9232905 DOI: 10.1111/jne.13093] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 01/28/2023]
Abstract
Given the critical central role of gonadotropin-releasing hormone (GnRH) neurons in fertility, it is not surprising that the GnRH neural network is implicated in the pathology of polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility. Although many symptoms of PCOS relate most proximately to ovarian dysfunction, the central reproductive neuroendocrine system ultimately drives ovarian function through its regulation of anterior pituitary gonadotropin release. The typical cyclical changes in frequency of GnRH release are often absent in women with PCOS, resulting in a persistent high-frequency drive promoting gonadotropin changes (i.e., relatively high luteinizing hormone and relatively low follicle-stimulating hormone concentrations) that contribute to ovarian hyperandrogenemia and ovulatory dysfunction. However, the specific mechanisms underpinning GnRH neuron dysfunction in PCOS remain unclear. Here, we summarize several preclinical and clinical studies that explore the causes of aberrant GnRH secretion in PCOS and the role of disordered GnRH secretion in PCOS pathophysiology.
Collapse
Affiliation(s)
- Christopher R. McCartney
- Center for Research in Reproduction and Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Rebecca E. Campbell
- Centre for Neuroendocrinology and Department of PhysiologySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - John C. Marshall
- Center for Research in Reproduction and Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Suzanne M. Moenter
- Departments of Molecular & Integrative PhysiologyInternal MedicineObstetrics and GynecologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
15
|
Seminara SB, Topaloglu AK. Review of human genetic and clinical studies directly relevant to GnRH signalling. J Neuroendocrinol 2022; 34:e13080. [PMID: 34970798 PMCID: PMC9299506 DOI: 10.1111/jne.13080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/28/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
Abstract
GnRH is the pivotal hormone in controlling the hypothalamic-pituitary gonadal (HPG) axis in humans and other mammalian species. GnRH function is influenced by a multitude of known and still unknown environmental and genetic factors. Molecular genetic studies on human families with hypogonadotropic hypogonadism over the past two decades have been instrumental in delineating the kisspeptin and neurokinin B signalling, which integrally modulates GnRH release from the hypothalamus. The identification of kisspeptin and neurokinin B ligand-receptor gene pair mutations in patients with absent puberty have paved the way to a greater understanding of the central regulation of the HPG cascade. In this article, we aim to review the literature on the genetic and clinical aspects of GnRH and its receptor, as well as the two ligand-receptor sets directly pertinent to the function of GnRH hormone signalling, kisspeptin/ kisspeptin receptor and NKB/NK3R.
Collapse
Affiliation(s)
- Stephanie B. Seminara
- Reproductive Endocrine Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - A. Kemal Topaloglu
- Division of Pediatric Endocrinology, Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
16
|
Coyle CS, Prescott M, Handelsman DJ, Walters KA, Campbell RE. Chronic androgen excess in female mice does not impact luteinizing hormone pulse frequency or putative GABAergic inputs to GnRH neurons. J Neuroendocrinol 2022; 34:e13110. [PMID: 35267218 PMCID: PMC9286661 DOI: 10.1111/jne.13110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
Polycystic ovary syndrome (PCOS) is associated with androgen excess and, frequently, hyperactive pulsatile luteinizing hormone (LH) secretion. Although the origins of PCOS are unclear, evidence from pre-clinical models implicates androgen signalling in the brain in the development of PCOS pathophysiology. Chronic exposure of female mice to dihydrotestosterone (DHT) from 3 weeks of age drives both reproductive and metabolic impairments that are ameliorated by selective androgen receptor (AR) loss from the brain. This suggests centrally driven mechanisms in hyperandrogen-mediated PCOS-like pathophysiology that remain to be defined. Acute prenatal DHT exposure can also model the hyperandrogenism of PCOS, and this is accompanied by increased LH pulse frequency and increased GABAergic innervation of gonadotrophin-releasing hormone (GnRH) neurons. We aimed to determine the impact of chronic exposure of female mice to DHT, which models the hyperandrogenism of PCOS, on pulsatile LH secretion and putative GABAergic input to GnRH neurons. To do this, GnRH-green fluorescent protein (GFP) female mice received either DHT or blank capsules for 90 days from postnatal day 21 (n = 6 or 7 per group). Serial tail-tip blood sampling was used to measure LH dynamics and perfusion-fixed brains were collected and immunolabelled for vesicular GABA transporter (VGAT) to assess putative GABAergic terminals associated with GFP-labelled GnRH neurons. As expected, chronic DHT resulted in acyclicity and significantly increased body weight. However, no differences in LH pulse frequency or the density of VGAT appositions to GnRH neurons were identified between ovary-intact DHT-treated females and controls. Chronic DHT exposure significantly increased the number of AR expressing cells in the hypothalamus, whereas oestrogen receptor α-expressing neuron number was unchanged. Therefore, although chronic DHT exposure from 3 weeks of age increases AR expressing neurons in the brain, the GnRH neuronal network changes and hyperactive LH secretion associated with prenatal androgen excess are not evident. These findings suggest that unique central mechanisms are involved in the reproductive impairments driven by exposure to androgen excess at different developmental stages.
Collapse
Affiliation(s)
- Chris S. Coyle
- Centre for Neuroendocrinology and Department of PhysiologySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - Melanie Prescott
- Centre for Neuroendocrinology and Department of PhysiologySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - David J Handelsman
- Andrology LaboratoryANZAC Research InstituteConcord HospitalUniversity of SydneySydneyNSWAustralia
| | - Kirsty A. Walters
- Fertility and Research CentreSchool of Women’s and Children’s HealthUniversity of New South WalesSydneyNSWAustralia
| | - Rebecca E. Campbell
- Centre for Neuroendocrinology and Department of PhysiologySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
17
|
Kim SH, Lundgren JA, Patrie JT, Burt Solorzano CM, McCartney CR. Acute progesterone feedback on gonadotropin secretion is not demonstrably altered in estradiol-pretreated women with polycystic ovary syndrome. Physiol Rep 2022; 10:e15233. [PMID: 35384387 PMCID: PMC8981178 DOI: 10.14814/phy2.15233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023] Open
Abstract
Women with polycystic ovary syndrome (PCOS) demonstrate gonadotropin-releasing hormone (GnRH) pulse generator resistance to suppression with 7 days of progesterone and estradiol administration. It remains unknown whether such women demonstrate impairments in acute progesterone negative feedback on LH pulse frequency or progesterone positive feedback on gonadotropin release. This was a randomized, double-blind, placebo-controlled crossover study designed to test the hypothesis that acute, progesterone-related suppression of LH pulse frequency and progesterone-related augmentation of gonadotropin release are impaired in PCOS. Twelve normally cycling women and 12 women with PCOS completed study. Volunteers were pretreated with transdermal estradiol (0.2 mg/day) for 3 days and then underwent a frequent blood sampling study (20:00-20:00 h), during which they received micronized progesterone (100 mg) or placebo at 06:00 h. In a second study admission, volunteers received the intervention they did not receive during the first admission, but the protocol was otherwise identical. The primary outcome measures were LH secretory characteristics and circulating gonadotropin concentrations. Exogenous progesterone did not reduce LH pulse frequency in either group. Mean LH, pulsatile LH secretion, LH pulse mass, and mean FSH increased more with progesterone compared to placebo in both groups. Although trends toward less pronounced changes in LH pulse mass and pulsatile LH secretion were observed in the PCOS group, these differences were not statistically significant. In summary, exogenous progesterone did not suppress LH pulse frequency within 12 hours in estradiol-pretreated women, and the positive feedback effect of progesterone on gonadotropin release was not demonstrably impaired in PCOS. NEW & NOTEWORTHY: This study indicated that exogenous progesterone does not reduce LH pulse frequency within 12 h in women with PCOS, but progesterone acutely increased gonadotropin in these women. This study suggested that progesterone-related augmentation of gonadotropin release may be impaired in PCOS compared to normally cycling women, but this finding was not statistically significant.
Collapse
Affiliation(s)
- Su Hee Kim
- Center for Research in ReproductionUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Division of EndocrinologyDepartment of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Jessica A. Lundgren
- Center for Research in ReproductionUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Division of EndocrinologyDepartment of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - James T. Patrie
- Department of Public Health SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Christine M. Burt Solorzano
- Center for Research in ReproductionUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Division of EndocrinologyDepartment of PediatricsUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Christopher R. McCartney
- Center for Research in ReproductionUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Division of EndocrinologyDepartment of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| |
Collapse
|
18
|
Chauvin S, Cohen-Tannoudji J, Guigon CJ. Estradiol Signaling at the Heart of Folliculogenesis: Its Potential Deregulation in Human Ovarian Pathologies. Int J Mol Sci 2022; 23:ijms23010512. [PMID: 35008938 PMCID: PMC8745567 DOI: 10.3390/ijms23010512] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/26/2023] Open
Abstract
Estradiol (E2) is a major hormone controlling women fertility, in particular folliculogenesis. This steroid, which is locally produced by granulosa cells (GC) within ovarian follicles, controls the development and selection of dominant preovulatory follicles. E2 effects rely on a complex set of nuclear and extra-nuclear signal transduction pathways principally triggered by its nuclear receptors, ERα and ERβ. These transcription factors are differentially expressed within follicles, with ERβ being the predominant ER in GC. Several ERβ splice isoforms have been identified and display specific structural features, which greatly complicates the nature of ERβ-mediated E2 signaling. This review aims at providing a concise overview of the main actions of E2 during follicular growth, maturation, and selection in human. It also describes the current understanding of the various roles of ERβ splice isoforms, especially their influence on cell fate. We finally discuss how E2 signaling deregulation could participate in two ovarian pathogeneses characterized by either a follicular arrest, as in polycystic ovary syndrome, or an excess of GC survival and proliferation, leading to granulosa cell tumors. This review emphasizes the need for further research to better understand the molecular basis of E2 signaling throughout folliculogenesis and to improve the efficiency of ovarian-related disease therapies.
Collapse
|
19
|
Emanuel RHK, Roberts J, Docherty PD, Lunt H, Campbell RE, Möller K. A review of the hormones involved in the endocrine dysfunctions of polycystic ovary syndrome and their interactions. Front Endocrinol (Lausanne) 2022; 13:1017468. [PMID: 36457554 PMCID: PMC9705998 DOI: 10.3389/fendo.2022.1017468] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) affects up to 20% of women but remains poorly understood. It is a heterogeneous condition with many potential comorbidities. This review offers an overview of the dysregulation of the reproductive and metabolic systems associated with PCOS. Review of the literature informed the development of a comprehensive summarizing 'wiring' diagram of PCOS-related features. This review provides a justification for each diagram aspect from the relevant academic literature, and explores the interactions between the hypothalamus, ovarian follicles, adipose tissue, reproductive hormones and other organ systems. The diagram will provide an efficient and useful tool for those researching and treating PCOS to understand the current state of knowledge on the complexity and variability of PCOS.
Collapse
Affiliation(s)
- Rebecca H. K. Emanuel
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Josh Roberts
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Paul D. Docherty
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
- *Correspondence: Paul D. Docherty,
| | - Helen Lunt
- Diabetes Services, Te Whatu Ora Waitaha Canterbury, Canterbury, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Rebecca E. Campbell
- School of Biomedical Sciences, Department of Physiology, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Knut Möller
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| |
Collapse
|
20
|
Liu X, Xu M, Qian M, Yang L. CYP17 T/C (rs74357) gene polymorphism contributes to polycystic ovary syndrome susceptibility: evidence from a meta-analysis. Endocr Connect 2021; 10:R305-R316. [PMID: 34788226 PMCID: PMC8679930 DOI: 10.1530/ec-21-0327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022]
Abstract
The cytochrome P450 family 17 (CYP17) is associated with hyperandrogenism in women, and the association between CYP17 gene polymorphism and the risk of polycystic ovary syndrome (PCOS) is not definitive. In order to determine whether the CYP17 T/C (rs74357) gene polymorphism is an exposure risk for PCOS, a comprehensive meta-analysis summarizing 19 studies was performed. The pooled odds ratio (OR) and the corresponding 95% CI were measured under five genetic models, and the stratified analyses by ethnicity, Hardy-Weinberg equilibrium, testosterone levels and BMI in controls were carried out to identify the causes of substantial heterogeneity. The overall results validated that the CYP17 T/C (rs74357) gene polymorphism was significantly associated with PCOS risk in four genetic models. Moreover, the outcomes of subgroup analysis by ethnicity indicated that the frequencies of the C allele of CYP17 T/C (rs74357) polymorphism were markedly higher in women from Asia than in Caucasians (T vs C: OR 0.85, 95% CI = 0.74-0.99, P < 0.05). Therefore, these findings suggested that the CYP17 T/C (rs74357) gene polymorphism played an indispensable part in increasing the susceptibility of PCOS when carrying the C allele, which proposed that the polymorphism of the CYP17 gene may be a predictive factor for the risk of PCOS or an important pathway in PCOS-associated metabolic and hormonal dysregulation.
Collapse
Affiliation(s)
- Xingyan Liu
- Department of Obstetrics & Gynecology, General Hospital of PLA Eastern Theater (Nanjing General Hospital of Nanjing Military Command), Command, Nanjing, China
| | - Mei Xu
- Department of Obstetrics & Gynecology, General Hospital of PLA Eastern Theater (Nanjing General Hospital of Nanjing Military Command), Command, Nanjing, China
| | - Min Qian
- Department of Obstetrics & Gynecology, General Hospital of PLA Eastern Theater (Nanjing General Hospital of Nanjing Military Command), Command, Nanjing, China
| | - Lindong Yang
- Department of Obstetrics & Gynecology, General Hospital of PLA Eastern Theater (Nanjing General Hospital of Nanjing Military Command), Command, Nanjing, China
| |
Collapse
|
21
|
Zheng B, Meng J, Zhu Y, Ding M, Zhang Y, Zhou J. Melatonin enhances SIRT1 to ameliorate mitochondrial membrane damage by activating PDK1/Akt in granulosa cells of PCOS. J Ovarian Res 2021; 14:152. [PMID: 34758863 PMCID: PMC8582167 DOI: 10.1186/s13048-021-00912-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial injury in granulosa cells (GCs) is associated with the pathophysiological mechanism of polycystic ovary syndrome (PCOS). Melatonin reduces the mitochondrial injury by enhancing SIRT1 (NAD-dependent deacetylase sirtuin-1), while the mechanism remains unclear. Mitochondrial membrane potential is a universal selective indicator of mitochondrial function. In this study, mitochondrial swelling and membrane defect mitochondria in granulosa cells were observed from PCOS patients and DHT-induced PCOS-like mice, and the cytochrome C level in the cytoplasm and the expression of BAX (BCL2-associated X protein) in mitochondria were significantly increased in GCs, with p-Akt decreased, showing mitochondrial membrane was damaged in GCs of PCOS. Melatonin treatment decreased mitochondrial permeability transition pore (mPTP) opening and increased the JC-1 (5,5′,6,6′-tetrachloro1,1′,3,3′-tetramethylbenzimidazolylcarbocyanine iodide) aggregate/monomer ratio in the live KGN cells treated with DHT, indicating melatonin mediates mPTP to increase mitochondrial membrane potential. Furthermore, we found melatonin decreased the levels of cytochrome C and BAX in DHT-induced PCOS mice. PDK1/Akt played an essential role in improving the mitochondrial membrane function, and melatonin treatment increased p-PDK 1 and p-Akt in vivo and in vitro. The SIRT1 was also increased with melatonin treatment, while knocking down SIRT1 mRNA inhibiting the protective effect of melatonin to activate PDK1/Akt. In conclusion, melatonin enhances SIRT1 to ameliorate mitochondrial membrane damage by activating PDK1/Akt in granulosa cells of PCOS.
Collapse
Affiliation(s)
- Bo Zheng
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 32, Nanjing, 210008, China
| | - Junan Meng
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 32, Nanjing, 210008, China
| | - Yuan Zhu
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 32, Nanjing, 210008, China
| | - Min Ding
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 32, Nanjing, 210008, China
| | - Yuting Zhang
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 32, Nanjing, 210008, China
| | - Jianjun Zhou
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 32, Nanjing, 210008, China.
| |
Collapse
|
22
|
Li H, Guo Y, Deng J, Fischer H, Weedin EA, Burks HR, Craig LB, Yu X. Increased testosterone and proinflammatory cytokines in patients with polycystic ovary syndrome correlate with elevated GnRH receptor autoantibody activity assessed by a fluorescence resonance energy transfer-based bioassay. Endocrine 2021; 74:163-171. [PMID: 34013495 PMCID: PMC8440388 DOI: 10.1007/s12020-021-02761-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/07/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE The recently identified agonistic autoantibodies (AAb) to the gonadotropin-releasing hormone receptor (GnRHR) are a novel investigative and therapeutic target for polycystic ovary syndrome (PCOS). In this study, we used a new cell-based fluorescence resonance energy transfer (FRET) bioassay to analyze serum GnRHR-AAb activity and examine its relationship with testosterone and proinflammatory cytokines in patients with PCOS. METHODS Serum samples from 33 PCOS patients, 39 non-PCOS ovulatory infertile controls and 30 normal controls were tested for GnRHR-AAb activity and proinflammatory cytokines in a FRET-based bioassay and multiplex bead-based immunoassay, respectively. Correlation was analyzed using the Spearman's correlation test. RESULTS Serum GnRHR-AAb activity was significantly higher in the PCOS patients than for the ovulatory infertile (p < 0.05) and normal (p < 0.01) controls. GnRHR-AAb were positive in 39% of PCOS patients, 10% of ovulatory infertile controls, and 0% of normal controls. PCOS IgG-induced GnRHR activation was specifically blocked by the GnRHR antagonist cetrorelix. Serum levels of proinflammatory cytokines interleukin-2, interleukin-6, interferon-γ, and tumor necrosis factor-α were significantly increased in PCOS patients compared with ovulatory infertile and normal controls (p < 0.01). Correlation analysis demonstrated positive correlations of GnRHR-AAb activity with testosterone and proinflammatory cytokine levels in the PCOS group. CONCLUSIONS Elevated GnRHR-AAb activity, as assessed by a new FRET assay, is associated with increased testosterone and proinflammatory cytokines in PCOS, suggesting autoimmune activation of GnRHR may contribute to the pathogenesis of this common disorder.
Collapse
Affiliation(s)
- Hongliang Li
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yankai Guo
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jielin Deng
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hayley Fischer
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elizabeth A Weedin
- Section of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Heather R Burks
- Section of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - LaTasha B Craig
- Section of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xichun Yu
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
23
|
Stener-Victorin E, Deng Q. Epigenetic inheritance of polycystic ovary syndrome - challenges and opportunities for treatment. Nat Rev Endocrinol 2021; 17:521-533. [PMID: 34234312 DOI: 10.1038/s41574-021-00517-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the main cause of female infertility worldwide and is associated with a substantially increased lifetime risk of comorbidities, including type 2 diabetes mellitus, psychiatric disorders and gynaecological cancers. Despite its high prevalence (~15%) and substantial economic burden, the aetiology of PCOS remains elusive. The genetic loci linked to PCOS so far account for only ~10% of its heritability, which is estimated at 70%. However, growing evidence suggests that altered epigenetic and developmental programming resulting from hormonal dysregulation of the maternal uterine environment contributes to the pathogenesis of PCOS. Male as well as female relatives of women with PCOS are also at an increased risk of developing PCOS-associated reproductive and metabolic disorders. Although PCOS phenotypes are highly heterogenous, hyperandrogenism is thought to be the principal driver of this condition. Current treatments for PCOS are suboptimal as they can only alleviate some of the symptoms; preventative and targeted treatments are sorely needed. This Review presents an overview of the current understanding of the aetiology of PCOS and focuses on the developmental origin and epigenetic inheritance of this syndrome.
Collapse
Affiliation(s)
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Fraser GL, Obermayer-Pietsch B, Laven J, Griesinger G, Pintiaux A, Timmerman D, Fauser BCJM, Lademacher C, Combalbert J, Hoveyda HR, Ramael S. Randomized Controlled Trial of Neurokinin 3 Receptor Antagonist Fezolinetant for Treatment of Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2021; 106:e3519-e3532. [PMID: 34000049 PMCID: PMC8372662 DOI: 10.1210/clinem/dgab320] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 12/14/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS), a highly prevalent endocrine disorder characterized by hyperandrogenism, is the leading cause of anovulatory infertility. OBJECTIVE This proof-of-concept study evaluated clinical efficacy and safety of the neurokinin 3 (NK3) receptor antagonist fezolinetant in PCOS. METHODS This was a phase 2a, randomized, double-blind, placebo-controlled, multicenter study (EudraCT 2014-004409-34). The study was conducted at 5 European clinical centers. Women with PCOS participated in the study. Interventions included fezolinetant 60 or 180 mg/day or placebo for 12 weeks. The primary efficacy end point was change in total testosterone. Gonadotropins, ovarian hormones, safety and tolerability were also assessed. RESULTS Seventy-three women were randomly assigned, and 64 participants completed the study. Adjusted mean (SE) changes in total testosterone from baseline to week 12 for fezolinetant 180 and 60 mg/day were -0.80 (0.13) and -0.39 (0.12) nmol/L vs -0.05 (0.10) nmol/L with placebo (P < .001 and P < .05, respectively). Adjusted mean (SE) changes from baseline in luteinizing hormone (LH) for fezolinetant 180 and 60 mg/d were -10.17 (1.28) and -8.21 (1.18) vs -3.16 (1.04) IU/L with placebo (P < .001 and P = .002); corresponding changes in follicle-stimulating hormone (FSH) were -1.46 (0.32) and -0.92 (0.30) vs -0.57 (0.26) IU/L (P = .03 and P = .38), underpinning a dose-dependent decrease in the LH-to-FSH ratio vs placebo (P < .001). Circulating levels of progesterone and estradiol did not change significantly vs placebo (P > .10). Fezolinetant was well tolerated. CONCLUSION Fezolinetant had a sustained effect to suppress hyperandrogenism and reduce the LH-to-FSH ratio in women with PCOS.
Collapse
Affiliation(s)
- Graeme L Fraser
- Correspondence: Graeme L. Fraser, PhD, EPICS Therapeutics, 47 Rue Adrienne Bolland, 6041 Gosselies, Belgium.
| | | | - Joop Laven
- Erasmus MC, 3015 Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Singh N, Mishra N, Dogra Y. Do basal Luteinizing Hormone and Luteinizing Hormone/Follicle-Stimulating Hormone Ratio Have Significance in Prognosticating the Outcome of In vitro Fertilization Cycles in Polycystic Ovary Syndrome? J Hum Reprod Sci 2021; 14:21-27. [PMID: 34083988 PMCID: PMC8057154 DOI: 10.4103/jhrs.jhrs_96_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/16/2020] [Accepted: 01/25/2021] [Indexed: 11/26/2022] Open
Abstract
Context: Tonic hypersecretion of luteinizing hormone (LH) appears to impact both fertility and pregnancy outcomes in women with polycystic ovary syndrome (PCOS). Aim: Whether high basal day 2/3 serum LH levels and day 2/3 LH/follicle-stimulating hormone (FSH) ratio affect in vitro fertilization (IVF) cycle outcomes in PCOS patients undergoing controlled ovarian hyperstimulation using gonadotropin-releasing hormone (GnRH) antagonists. Settings and Design: A retrospective cohort study was conducted in Assisted Reproductive Technique Center, Department of Obstetrics and Gynaecology, at a tertiary care institute, on PCOS patients undergoing IVF/intracytoplasmic sperm injection (ICSI) using GnRH antagonist protocol with human chorionic gonadotropin trigger between January 2014 to December 2019. Methods and Material: Data related to patient's age, body mass index, day 2/3 serum FSH, serum LH, day 2/3 LH/FSH ratio, and infertility treatment-related variables were collected from the patient record files. IVF cycle characteristics, number of oocytes retrieved, number of embryos transferred were also recorded. The clinical pregnancy rate per embryo transfer was calculated. Statistical Analysis: Statistical software SPSS IBM version 24.0 was used to analyze the data. Descriptive statistics such as mean, standard deviation , and range values were calculated. To compare the difference between the groups, the paired t-test was applied for continuous variables and the Chi-square test for categorical variables. A value of P < 0.05 was considered statistically significant. Results: High basal day 2/3 LH level and day 2/3 LH/FSH ratio have no statistically significant effect on embryos formed, embryo transferred, and clinical pregnancy rate. However, fertilization rates were significantly less in these groups. Conclusion: The elevated basal day 2/3 LH and LH/FSH ratio do not impair the outcome of GnRH antagonist protocol treated IVF/ICSI cycles in PCOS women.
Collapse
Affiliation(s)
- Neeta Singh
- Department of Obstetrics and Gynaecology, ART Center, All India Institute of Medical Sciences, New Delhi, India
| | - Neha Mishra
- Department of Obstetrics and Gynaecology, Government Institute of Medical Sciences, Greater Noida, Uttar Pradesh, India
| | - Yogita Dogra
- Department of Obstetrics and Gynaecology, ART Center, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
26
|
Zhao X, Feng X, Zhao X, Jiang Y, Li X, Niu J, Meng X, Wu J, Xu G, Hou L, Wang Y. How to Screen and Prevent Metabolic Syndrome in Patients of PCOS Early: Implications From Metabolomics. Front Endocrinol (Lausanne) 2021; 12:659268. [PMID: 34149613 PMCID: PMC8207510 DOI: 10.3389/fendo.2021.659268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/11/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex reproductive endocrine disorder. And metabolic syndrome (MS) is an important bridge for PCOS patients to develop other diseases, such as diabetes and coronary heart disease. Our aim was to study the potential metabolic characteristics of PCOS-MS and identify sensitive biomarkers so as to provide targets for clinical screening, diagnosis, and treatment. METHODS In this study, 44 PCOS patients with MS, 34 PCOS patients without MS, and 32 healthy controls were studied. Plasma samples of subjects were tested by ultraperformance liquid chromatography (UPLC) system combined with LTQ-orbi-trap mass spectrometry. The changes of metabolic characteristics from PCOS to PCOS-MS were systematically analyzed. Correlations between differential metabolites and clinical characteristics of PCOS-MS were assessed. Differential metabolites with high correlation were further evaluated by the receiver operating characteristic (ROC) curve to identify their sensitivity as screening indicators. RESULTS There were significant differences in general characteristics, reproductive hormone, and metabolic parameters in the PCOS-MS group when compared with the PCOS group and healthy controls. We found 40 differential metabolites which were involved in 23 pathways when compared with the PCOS group. The metabolic network further reflected the metabolic environment, including the interaction between metabolic pathways, modules, enzymes, reactions, and metabolites. In the correlation analysis, there were 11 differential metabolites whose correlation coefficient with clinical parameters was greater than 0.4, which were expected to be taken as biomarkers for clinical diagnosis. Besides, these 11 differential metabolites were assessed by ROC, and the areas under curve (AUCs) were all greater than 0.7, with a good sensitivity. Furthermore, combinational metabolic biomarkers, such as glutamic acid + leucine + phenylalanine and carnitine C 4: 0 + carnitine C18:1 + carnitine C5:0 were expected to be sensitive combinational biomarkers in clinical practice. CONCLUSION Our study provides a new insight to understand the pathogenesis mechanism, and the discriminating metabolites may help screen high-risk of MS in patients with PCOS and provide sensitive biomarkers for clinical diagnosis.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoling Feng
- Department of Gynecology, the First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinjie Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yuepeng Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianna Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jingyun Niu
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Meng
- Department of Gynecology, the First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Wu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lihui Hou
- Department of Gynecology, the First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Ying Wang, ; Lihui Hou,
| | - Ying Wang
- Department of Gynecology, the First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Ying Wang, ; Lihui Hou,
| |
Collapse
|
27
|
Liao B, Qiao J, Pang Y. Central Regulation of PCOS: Abnormal Neuronal-Reproductive-Metabolic Circuits in PCOS Pathophysiology. Front Endocrinol (Lausanne) 2021; 12:667422. [PMID: 34122341 PMCID: PMC8194358 DOI: 10.3389/fendo.2021.667422] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease. PCOS patients are characterized by hyperandrogenemia, anovulation, and metabolic dysfunction. Hypothalamus-pituitary-ovary axis imbalance is considered as an important pathophysiology underlying PCOS, indicating that central modulation, especially the abnormal activation of hypothalamic GnRH neurons plays a vital role in PCOS development. Increased GnRH pulse frequency can promote LH secretion, leading to ovarian dysfunction and abnormal sex steroids synthesis. By contrast, peripheral sex steroids can modulate the action of GnRH neurons through a feedback effect, which is impaired in PCOS, thus forming a vicious cycle. Additionally, hypothalamic GnRH neurons not only serve as the final output pathway of central control of reproductive axis, but also as the central connection point where reproductive function and metabolic state inter-regulate with each other. Metabolic factors, such as insulin resistance and obesity in PCOS patients can regulate GnRH neurons activity, and ultimately regulate reproductive function. Besides, gut hormones act on both brain and peripheral organs to modify metabolic state. Gut microbiota disturbance is also related to many metabolic diseases and has been reported to play an essential part in PCOS development. This review concludes with the mechanism of central modulation and the interaction between neuroendocrine factors and reproductive or metabolic disorders in PCOS development. Furthermore, the role of the gut microenvironment as an important part involved in the abnormal neuronal-reproductive-metabolic circuits that contribute to PCOS is discussed, thus offering possible central and peripheral therapeutic targets for PCOS patients.
Collapse
Affiliation(s)
- Baoying Liao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Yanli Pang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
- *Correspondence: Yanli Pang,
| |
Collapse
|
28
|
Abstract
(1) Background: Myoinositol (MI) and D-chiro-inositol (DCI) are involved in a number of biochemical pathways within oocytes having a role in oocyte maturation, fertilization, implantation, and post-implantation development. Both inositols have a role in insulin signaling and hormonal synthesis in the ovaries. (2) Methods: Literature search (with key words: inositols, myo-inositol, d-chiro-inositol, PCOS) was done in PubMed until Sept. 2020 and 197 articles were identified, of which 47 were of clinical trials (35 randomized controlled trials). (3) Results: Many studies have demonstrated that in patients with polycystic ovarian syndrome (PCOS) MI treatment improved ovarian function and fertility, decreased the severity of hyperandrogenism including acne and hirsutism, positively affected metabolic aspects, and modulated various hormonal parameters deeply involved in the reproductive axis function and ovulation. Thus treating with MI has become a novel method to ameliorate PCOS symptoms, improve spontaneous ovulation, or induce ovulation. The current review is focused on the effects of MI and DCI alone or in combination with other agents on the pathological features of PCOS with focus on insulin resistance and adverse metabolic outcomes. (4) Conclusions: The available clinical data suggest that MI, DCI, and their combination in physiological ratio 40:1 with or without other compound could be beneficial for improving metabolic, hormonal, and reproductive aspects of PCOS.
Collapse
Affiliation(s)
- Zdravko Kamenov
- Department of Internal Medicine, Clinic of Endocrinology University Hospital Alexandrovska, Medical University—Sofia, 1431 Sofia, Bulgaria;
| | | |
Collapse
|
29
|
Choi JH, Jang M, Kim EJ, Lee MJ, Park KS, Kim SH, In JG, Kwak YS, Park DH, Cho SS, Nah SY, Cho IH, Bae CS. Korean Red Ginseng alleviates dehydroepiandrosterone-induced polycystic ovarian syndrome in rats via its antiinflammatory and antioxidant activities. J Ginseng Res 2020; 44:790-798. [PMID: 33192122 PMCID: PMC7655494 DOI: 10.1016/j.jgr.2019.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Beneficial effects of Korean Red Ginseng (KRG) on polycystic ovarian syndrome (PCOS) remains unclear. METHODS We examined whether pretreatment (daily from 2 hours before PCOS induction) with KRG extract in water (KRGE; 75 and 150 mg/kg/day, p.o.) could exert a favorable effect in a dehydroepiandrosterone (DHEA)-induced PCOS rat model. RESULTS Pretreatment with KRGE significantly inhibited the elevation of body and ovary weights, the increase in number and size of ovarian cysts, and the elevation of serum testosterone and estradiol levels induced by DHEA. Pretreatment with KRGE also inhibited macrophage infiltration and enhanced mRNA expression levels of chemokines [interleukin (IL)-8, monocyte chemoattractant protein-1), proinflammatory cytokines (IL-1β, IL-6), and inducible nitric oxide synthase in ovaries induced by DHEA. It also prevented the reduction in mRNA expression of growth factors (epidermal growth factor, transforming growth factor-beta (EGF, TGF-β)) related to inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell pathway and stimulation of the nuclear factor erythroid-derived 2-related factor 2 pathway. Interestingly, KRGE or representative ginsenosides (Rb1, Rg1, and Rg3(s)) inhibited the activity of inflammatory enzymes cyclooxygenase-2 and iNOS, cytosolic p-IkB, and nuclear p-nuclear factor kappa-light-chain-enhancer of activated B in lipopolysaccharide-induced RAW264.7 cells, whereas they increased nuclear factor erythroid-derived 2-related factor 2 nuclear translocation. CONCLUSION These results provide that KRGE could prevent DHEA-induced PCOS via antiinflammatory and antioxidant activities. Thus, KRGE may be used in preventive and therapeutic strategies for PCOS-like symptoms.
Collapse
Affiliation(s)
- Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Jeong Kim
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Min Jung Lee
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Kyoung Sun Park
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Seung-Hyun Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jun-Gyo In
- Laboratory of Analysis R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Yi-Seong Kwak
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Dae-Hun Park
- Department of Nursing, Dongshin University, Naju, Jeonnam, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
30
|
Gao Z, Ma X, Liu J, Ge Y, Wang L, Fu P, Liu Z, Yao R, Yan X. Troxerutin protects against DHT-induced polycystic ovary syndrome in rats. J Ovarian Res 2020; 13:106. [PMID: 32921318 PMCID: PMC7489018 DOI: 10.1186/s13048-020-00701-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023] Open
Abstract
The exact pathogenesis of polycystic ovary syndrome (PCOS), the most common neuroendocrine disorder in women of reproductive age, has not been fully elucidated. Recent studies suggested that chronic inflammation and neurotransmitter disorder involved in the progress of PCOS. Troxerutin, a natural flavonoid, was reported to possess neuroprotective effect in several disease models by inhibiting inflammation or enhancing neurotrophic factor. In this study, we investigated the possible protective effect and mechanism of troxerutin in a dihydrotestosterone (DHT)-induced rat model of PCOS. The PCOS rat models were treated with troxerutin at a dose of 150 mg/kg or 300 mg/kg for up to 4 weeks. Results showed that 300 mg/kg troxerutin significantly decreased the body weight gain and improved the pathological changes of ovary induced by DHT. Meanwhile, the elevated gonadotrophin-releasing hormone (GnRH), gonadotrophin and testosterone in the serum of PCOS rats were reduced with the treatment of troxerutin. The expression of kisspeptin and NKB in arcuate nucleus and their receptors kiss1r and NK3r in GnRH positive neurons of median eminence were markedly decreased in troxerutin-treated rats. Of note, the GnRH inhibitory regulator GABA and stimulatory regulator glutamate were also restored to the normal level by troxerutin. The present study indicated that troxerutin may exhibit a protective effect in PCOS rat model via regulating neurotransmitter release.
Collapse
Affiliation(s)
- Zixuan Gao
- Department of Histology and Embryology, Xuzhou Medical University, Xuzhou, 221009, PR China.,Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221009, PR China
| | - Xiaochen Ma
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221009, PR China.,Clinical Center of Reproductive Medicine, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221000, PR China
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221009, PR China
| | - Yuhang Ge
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221009, PR China.,Department of Human Anatomy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Lei Wang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221009, PR China
| | - Ping Fu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221009, PR China
| | - Zhian Liu
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221009, PR China.
| | - Xiaonan Yan
- Clinical Center of Reproductive Medicine, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221000, PR China.
| |
Collapse
|
31
|
Nicolaides NC, Matheou A, Vlachou F, Neocleous V, Skordis N. Polycystic ovarian syndrome in adolescents: From diagnostic criteria to therapeutic management. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020085. [PMID: 32921781 PMCID: PMC7717007 DOI: 10.23750/abm.v91i3.10162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/23/2022]
Abstract
Polycystic ovarian syndrome is a common endocrinologic condition diagnosed in women of childbearing age. It is primarily associated with androgen excess and ovarian dysfunction, which contribute to menstrual irregularity, oligo-anovulation, infertility, hirsutism and acne. It is associated with several systemic conditions, including type 2 diabetes mellitus, cardiovascular disease, obesity and neuropsychological disorders. The exact pathophysiology and clinical features are highly variable and, thus, there is still controversy in defining the diagnostic criteria. In this review, we outline the main diagnostic criteria, discuss the mechanisms involved in the complex pathogenesis, and present the associated clinical manifestations and therapeutic management of the syndrome in adolescents.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
| | | | - Florentia Vlachou
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK.
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; School of Medicine, University of Nicosia, Nicosia, Cyprus; Division of Paediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus.
| |
Collapse
|
32
|
Marshall CJ, Prescott M, Campbell RE. Investigating the NPY/AgRP/GABA to GnRH Neuron Circuit in Prenatally Androgenized PCOS-Like Mice. J Endocr Soc 2020; 4:bvaa129. [PMID: 33094210 PMCID: PMC7566551 DOI: 10.1210/jendso/bvaa129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), the most common form of anovulatory infertility, is associated with altered signaling within the hormone-sensitive neuronal network that regulates gonadotropin-releasing hormone (GnRH) neurons, leading to a pathological increase in GnRH secretion. Circuit remodeling is evident between GABAergic neurons in the arcuate nucleus (ARN) and GnRH neurons in a murine model of PCOS. One-third of ARN GABA neurons co-express neuropeptide Y (NPY), which has a known yet complex role in regulating GnRH neurons and reproductive function. Here, we investigated whether the NPY-expressing subpopulation (NPYARN) of ARN GABA neurons (GABAARN) is also affected in prenatally androgenized (PNA) PCOS-like NPYARN reporter mice [Agouti-related protein (AgRP)-Cre;τGFP]. PCOS-like mice and controls were generated by exposure to di-hydrotestosterone or vehicle (VEH) in late gestation. τGFP-expressing NPYARN neuron fiber appositions with GnRH neurons and gonadal steroid hormone receptor expression in τGFP-expressing NPYARN neurons were assessed using confocal microscopy. Although GnRH neurons received abundant close contacts from τGFP-expressing NPYARN neuron fibers, the number and density of putative inputs was not affected by prenatal androgen excess. NPYARN neurons did not co-express progesterone receptor or estrogen receptor α in either PNA or VEH mice. However, the proportion of NPYARN neurons co-expressing the androgen receptor was significantly elevated in PNA mice. Therefore, NPYARN neurons are not remodeled by prenatal androgen excess like the wider GABAARN population, indicating GABA-to-GnRH neuron circuit remodeling occurs in a presently unidentified non-NPY/AgRP population of GABAARN neurons. NPYARN neurons do, however, show independent changes in the form of elevated androgen sensitivity.
Collapse
Affiliation(s)
- Christopher J Marshall
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Melanie Prescott
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
33
|
Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 2020; 41:bnaa010. [PMID: 32310267 PMCID: PMC7279705 DOI: 10.1210/endrev/bnaa010] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
More than 1 out of 10 women worldwide are diagnosed with polycystic ovary syndrome (PCOS), the leading cause of female reproductive and metabolic dysfunction. Despite its high prevalence, PCOS and its accompanying morbidities are likely underdiagnosed, averaging > 2 years and 3 physicians before women are diagnosed. Although it has been intensively researched, the underlying cause(s) of PCOS have yet to be defined. In order to understand PCOS pathophysiology, its developmental origins, and how to predict and prevent PCOS onset, there is an urgent need for safe and effective markers and treatments. In this review, we detail which animal models are more suitable for contributing to our understanding of the etiology and pathophysiology of PCOS. We summarize and highlight advantages and limitations of hormonal or genetic manipulation of animal models, as well as of naturally occurring PCOS-like females.
Collapse
Affiliation(s)
| | - Vasantha Padmanabhan
- Departments of Pediatrics, Obstetrics and Gynecology, and Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Kirsty A Walters
- Fertility & Research Centre, School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences and Education, University of Skövde, Skövde, Sweden
| | - Paolo Giacobini
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, California
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
34
|
Composition of Royal Jelly (RJ) and Its Anti-Androgenic Effect on Reproductive Parameters in a Polycystic Ovarian Syndrome (PCOS) Animal Model. Antioxidants (Basel) 2020; 9:antiox9060499. [PMID: 32517356 PMCID: PMC7346114 DOI: 10.3390/antiox9060499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Royal jelly (RJ) has been shown to contribute its positive effects upon imbalance in the reproductive system. However, it remains unknown as to whether RJ has an anti-androgenic effect on reproductive parameters in a polycystic ovarian syndrome (PCOS) animal model. Composition of RJ was assessed by phytochemical screening and the LC–MS method. Forty immature female rats (3 weeks, 40–50 g) were randomly divided into five groups (n = 8 per group), i.e., control, testosterone (T), T+100RJ (100 mg/kg/day), T+200RJ (200 mg/kg/day RJ), and T+400RJ (400 mg/kg/day RJ) groups. Hyperandrogenism was induced by daily subcutaneous injection of T propionate for 3 weeks, followed by oral RJ for 4 weeks. The T+200RJ group had a significantly higher follicle-stimulating hormone level, and significantly lower luteinizing hormone, testosterone, and estradiol levels in comparison to the T group. Malondialdehyde level and glutathione peroxidase activity were significantly lower, while total antioxidant capacity level was significantly higher in the T+200RJ group compared to the T group. Histologically, the T+200RJ group showed recovery of various stages of ovarian follicular development. RJ at 200 mg/kg/day for 4 weeks significantly improved reproductive parameters in PCOS rats partly due to its anti-androgenic effect through antioxidant action and probably due to modulation on estrogenic activity, which needs further study to evaluate its exact mechanism of action.
Collapse
|
35
|
Esparza LA, Schafer D, Ho BS, Thackray VG, Kauffman AS. Hyperactive LH Pulses and Elevated Kisspeptin and NKB Gene Expression in the Arcuate Nucleus of a PCOS Mouse Model. Endocrinology 2020; 161:5730164. [PMID: 32031594 PMCID: PMC7341557 DOI: 10.1210/endocr/bqaa018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/05/2020] [Indexed: 11/19/2022]
Abstract
Polycystic ovary syndrome (PCOS), a common reproductive disorder in women, is characterized by hyperandrogenemia, chronic anovulation, cystic ovarian follicles, and luteinizing hormone (LH) hyper-pulsatility, but the pathophysiology isn't completely understood. We recently reported a novel mouse model of PCOS using chronic letrozole (LET; aromatase inhibitor). Letrozole-treated females demonstrate multiple PCOS-like phenotypes, including polycystic ovaries, anovulation, and elevated circulating testosterone and LH, assayed in "one-off" measures. However, due to technical limitations, in vivo LH pulsatile secretion, which is elevated in PCOS women, was not previously studied, nor were the possible changes in reproductive neurons. Here, we used recent technical advances to examine in vivo LH pulse dynamics of freely moving LET female mice versus control and ovariectomized (OVX) mice. We also determined whether neural gene expression of important reproductive regulators such as kisspeptin, neurokinin B (NKB), and dynorphin, is altered in LET females. Compared to controls, LET females exhibited very rapid, elevated in vivo LH pulsatility, with increased pulse frequency, amplitude, and basal levels, similar to PCOS women. Letrozole-treated mice also had markedly elevated Kiss1, Tac2, and Pdyn expression and increased Kiss1 neuronal activation in the hypothalamic arcuate nucleus. Notably, the hyperactive LH pulses and increased kisspeptin neuron measures of LET mice were not as elevated as OVX females. Our findings indicate that LET mice, like PCOS women, have markedly elevated LH pulsatility, which likely drives increased androgen secretion. Increased hypothalamic kisspeptin and NKB levels may be fundamental contributors to the hyperactive LH pulse secretion in the LET PCOS-like condition and, perhaps, in PCOS women.
Collapse
Affiliation(s)
- Lourdes A Esparza
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Danielle Schafer
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Brian S Ho
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Varykina G Thackray
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California
- Correspondence: Dr. Alexander S. Kauffman, Department of Reproductive Medicine, Leichtag Building, Room 3A-15, University of California San Diego, 9500 Gilman Drive #0674, La Jolla, California 92093. E-mail:
| |
Collapse
|
36
|
Al-Qaissi A, Alqarni S, Javed Z, Atkin SL, Sathyapalan T, Vince RV, Madden LA. The CD105:CD106 microparticle ratio is CD106 dominant in polycystic ovary syndrome compared to type 2 diabetes and healthy subjects. Endocrine 2019; 66:220-225. [PMID: 31456040 PMCID: PMC6838044 DOI: 10.1007/s12020-019-02059-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/12/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND A retrospective analysis was carried out from patients and controls during the past 5 years from a series of studies investigating endothelial microparticles (MP). METHODS In total, 319 samples from 207 individuals were included in this analysis, from patients with type 2 diabetes (T2D, n = 105), women with polycystic ovary syndrome (PCOS, n = 145) and healthy volunteers (n = 69). All data were generated via the same flow cytometry protocol with the same antibody clones. Endothelial markers CD105 (Endoglin) and CD106 (Vascular cell adhesion molecule-1) were used to enumerate MP in venous blood. RESULTS The ratio of CD105MP:CD106MP was significantly different between groups (F = 63.43, p < 0.0001). Women with PCOS were found to have a median CD105MP:CD106MP ratio of 0.40 (IQR 0.24-0.57), suggesting approximately two CD106MP were found per CD105MP. The T2D group showed a median ratio of 2.32 (1.51-3.69) whereas in healthy volunteers the ratio was 2.21 (1.63-3.55). Serum intercellular adhesion molecule-1 was also shown to be significantly increased in PCOS when compared with control or T2D groups (F = 14.5, p < 0.001). CONCLUSION These data suggest that women with PCOS have an altered endothelial MP release in favour of CD106. Thus a potential activated endothelial state exists in women with PCOS with a shift towards a predominantly CD106MP profile.
Collapse
Affiliation(s)
- Ahmed Al-Qaissi
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, The University of Hull, Hull, UK
| | - Saeed Alqarni
- Department of Biomedical Science, The University of Hull, Hull, UK
| | - Zeeshan Javed
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, The University of Hull, Hull, UK
| | | | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, The University of Hull, Hull, UK
| | - Rebecca V Vince
- Department of Sport, Health and Exercise Science, The University of Hull, Hull, UK
| | - Leigh A Madden
- Department of Biomedical Science, The University of Hull, Hull, UK.
| |
Collapse
|
37
|
Sun BZ, Kangarloo T, Adams JM, Sluss P, Chandler DW, Zava DT, McGrath JA, Umbach DM, Shaw ND. The Relationship Between Progesterone, Sleep, and LH and FSH Secretory Dynamics in Early Postmenarchal Girls. J Clin Endocrinol Metab 2019; 104:2184-2194. [PMID: 30649404 PMCID: PMC6482022 DOI: 10.1210/jc.2018-02400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/10/2019] [Indexed: 01/06/2023]
Abstract
CONTEXT During puberty, LH pulse frequency increases during sleep; in women, LH pulse frequency slows during sleep in the early/middle follicular phase (FP) of the menstrual cycle. The origin and significance of this developmental transition are unknown. OBJECTIVE To determine the relationship between progesterone (P4) exposure, sleep-related slowing of LH pulses in the FP, and the intercycle FSH rise, which promotes folliculogenesis, in early postmenarchal girls. METHODS 23 girls (gynecologic age 0.4 to 3.5 years) underwent hormone measurements and pelvic ultrasounds during two consecutive cycles and one frequent blood sampling study with concurrent polysomnography during the FP. RESULTS Subjects demonstrated one of four patterns during cycle 1 that represent a continuum of P4 exposure: ovulatory cycles with normal or short luteal phase lengths or anovulatory cycles ± follicle luteinization. Peak serum P4 and urine pregnanediol (Pd) in cycle 1 were inversely correlated with LH pulse frequency during sleep in the FP of cycle 2 (r = -0.5; P = 0.02 for both). The intercycle FSH rise and folliculogenesis in cycle 2 were maintained after anovulatory cycles without P4 or Pd exposure or nocturnal slowing of LH pulse frequency in the FP. CONCLUSIONS During late puberty, rising P4 levels from follicle luteinization and ovulation may promote a slower LH pulse frequency during sleep in the FP. However, a normal FSH rise and follicle growth can occur in the absence of P4-associated slowing. These studies therefore suggest that an immature LH secretory pattern during sleep is unlikely to contribute to menstrual irregularity in the early postmenarchal years.
Collapse
Affiliation(s)
- Bob Z Sun
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Tairmae Kangarloo
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Judith M Adams
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Patrick Sluss
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | - John A McGrath
- Social & Scientific Systems, Inc., Durham, North Carolina
| | - David M Umbach
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Natalie D Shaw
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
38
|
Tang R, Ding X, Zhu J. Kisspeptin and Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2019; 10:298. [PMID: 31156550 PMCID: PMC6530435 DOI: 10.3389/fendo.2019.00298] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/25/2019] [Indexed: 11/22/2022] Open
Abstract
Although the pathogenesis of Polycystic Ovary Syndrome (PCOS) is still unclear, the disturbance of hypothalamic-pituitary-gonadal (HPG) axis is suspected to be the main culprit in the development of PCOS. Kisspeptin, a hypothalamic peptide encoded by the KISS1 gene, is widely reported as a key factor in the regulation of luteinizing hormone (LH)/ follicular-stimulating hormone (FSH) secretion, which may be potentially involved with the development of PCOS. Objective: The objective of this study is to summarize the existing knowledge in the literature in terms of the circulating kisspeptin concentration in PCOS women, kisspeptin and metabolic profiles in PCOS women and kisspeptin expression in PCOS animal models. Method: A systematic literature search was conducted using "Pubmed," "Embase," "Web of Science" for all English language articles published up to July 2018 with the terms "PCOS," "Stein-Leventhal Syndrome," "Polycystic ovary syndrome," "metastins" and "kisspeptin". Conclusion: Overall, kisspeptin levels are higher in the PCOS population, which supports the hypothesis that an over-active KISS1 system leads to enhanced HPG-axis activity, thereby causing irregular menstrual cycles and excessive androgen release in PCOS women.
Collapse
Affiliation(s)
- Rong Tang
- Department of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaohong Ding
- The First Clinical Medical School, Wenzhou Medical University, Wenzhou, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Huang H, Kuang H, Sun F, Diamond MP, Legro RS, Coutifaris C, Alvero R, Robinson RD, Casson PR, Christman GM, Hansen KR, Santoro N, Eisenberg E, Zhang H. Lower prevalence of non-cavity-distorting uterine fibroids in patients with polycystic ovary syndrome than in those with unexplained infertility. Fertil Steril 2019; 111:1011-1019.e1. [PMID: 30926125 PMCID: PMC6487215 DOI: 10.1016/j.fertnstert.2019.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To study whether there is a difference in the prevalence of non-cavity-distorting uterine fibroids between infertile patients with polycystic ovary syndrome (PCOS) and those with unexplained infertility (UI). DESIGN A secondary analysis of data from three randomized clinical trials. SETTING Academic health centers. PATIENT(S) A total of 2,249 patients with normal uterine cavities. INTERVENTIONS(S) None. MAIN OUTCOME MEASURE(S) The presence or absence of non-cavity-distorting fibroids. RESULT(S) Compared with women with UI, those with PCOS were younger, had a higher body mass index, and were more likely to be Hispanic or African American, with a lower percentage of previous conception and live birth, a higher percentage of current smokers, a lower percentage of current alcohol users, and higher total testosterone, fasting insulin, and homeostasis-model-assessment insulin resistance. The prevalence of women with non-cavity-distorting uterine fibroids was lower in women with PCOS than in those with UI (6.7% vs. 12.4%); this result held after patients were divided into Black and non-Black or into three different body mass index groups. After adjustment for all the other variables in the final model, patients with PCOS had a significantly lower prevalence of fibroids than those with UI (odds ratio 0.54). No differences in the prevalence of non-cavity-distorting fibroids with any dimensions ≥4 cm or the volume of the largest fibroid was found between the two groups. CONCLUSION(S) A lower prevalence of non-cavity-distorting uterine fibroids was found in infertile women with PCOS than in those with UI.
Collapse
Affiliation(s)
- Hao Huang
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Hongying Kuang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Fangbai Sun
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia
| | - Richard S Legro
- Department of Obstetrics and Gynecology, Pennsylvania State University, Hershey, Pennsylvania
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Ruben Alvero
- Department of Obstetrics and Gynecology, University of Colorado, Denver, Colorado
| | - Randal D Robinson
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Peter R Casson
- Department of Obstetrics and Gynecology, University of Vermont, Burlington, Vermont
| | - Gregory M Christman
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Karl R Hansen
- University of Oklahoma College of Medicine, Oklahoma City, Oklahoma
| | - Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado, Denver, Colorado
| | - Esther Eisenberg
- Fertility and Infertility Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut.
| |
Collapse
|
40
|
Decreased Serum Level of Gamma-amino Butyric Acid in Egyptian Infertile Females with Polycystic Ovary Syndrome is Correlated with Dyslipidemia, Total Testosterone and 25(OH) Vitamin D Levels. J Med Biochem 2019; 38:512-518. [PMID: 31496917 PMCID: PMC6708297 DOI: 10.2478/jomb-2018-0051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is one of the most common female endocrine disorders around the world. Increasing evidence suggests that neurotransmitter Gamma-aminobutyric acid (GABA) is involved in the pathogenesis of PCOS through its central role in the hypothalamus. However, the peripheral role of GABA in PCOS has not been sufficiently investigated in spite of its existence in peripheral organs. First, the aim of this study is to, investigate serum GABA level in Egyptian PCOS patients. Second, to explore the correlation between serum GABA level with Body Mass Index (BMI), dyslipidemia, totaltestosterone and 25 (OH) vitamin D. Methods Eighty PCOS patients and eighty age-matched healthy females were included in this study. All parameters were assessed colourimetrically or with ELISA. Results PCOS patients exhibited significantly decreased serum GABA level compared to controls (p < 0.001). There was a significant positive correlation between serum GABA and 25(OH) vitamin D levels (r = 0.26, p = 0.018), and a significant negative correlation with total testosterone (r = - 0.3, p = 0.02), total cholesterol (TC) (r = - 0.31, p = 0.01) and LDL-Cholesterol (LDL-C) (r = - 0.23, p = 0.045), respectively. Conclusions The findings of this study suggest that disrupted GABA level in the peripheral circulation is an additional contributing factor to PCOS manifestations. GABA deficiency was correlated with 25 (OH) vitamin D deficiency, dyslipidemia, and total testosterone. Further investigations for GABA adjustment might provide a promising means for better management of PCOS symptoms.
Collapse
|
41
|
Ibáñez L, Oberfield SE, Witchel S, Auchus RJ, Chang RJ, Codner E, Dabadghao P, Darendeliler F, Elbarbary NS, Gambineri A, Garcia Rudaz C, Hoeger KM, López-Bermejo A, Ong K, Peña AS, Reinehr T, Santoro N, Tena-Sempere M, Tao R, Yildiz BO, Alkhayyat H, Deeb A, Joel D, Horikawa R, de Zegher F, Lee PA. An International Consortium Update: Pathophysiology, Diagnosis, and Treatment of Polycystic Ovarian Syndrome in Adolescence. Horm Res Paediatr 2018; 88:371-395. [PMID: 29156452 DOI: 10.1159/000479371] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
This paper represents an international collaboration of paediatric endocrine and other societies (listed in the Appendix) under the International Consortium of Paediatric Endocrinology (ICPE) aiming to improve worldwide care of adolescent girls with polycystic ovary syndrome (PCOS)1. The manuscript examines pathophysiology and guidelines for the diagnosis and management of PCOS during adolescence. The complex pathophysiology of PCOS involves the interaction of genetic and epigenetic changes, primary ovarian abnormalities, neuroendocrine alterations, and endocrine and metabolic modifiers such as anti-Müllerian hormone, hyperinsulinemia, insulin resistance, adiposity, and adiponectin levels. Appropriate diagnosis of adolescent PCOS should include adequate and careful evaluation of symptoms, such as hirsutism, severe acne, and menstrual irregularities 2 years beyond menarche, and elevated androgen levels. Polycystic ovarian morphology on ultrasound without hyperandrogenism or menstrual irregularities should not be used to diagnose adolescent PCOS. Hyperinsulinemia, insulin resistance, and obesity may be present in adolescents with PCOS, but are not considered to be diagnostic criteria. Treatment of adolescent PCOS should include lifestyle intervention, local therapies, and medications. Insulin sensitizers like metformin and oral contraceptive pills provide short-term benefits on PCOS symptoms. There are limited data on anti-androgens and combined therapies showing additive/synergistic actions for adolescents. Reproductive aspects and transition should be taken into account when managing adolescents.
Collapse
Affiliation(s)
- Lourdes Ibáñez
- Endocrinology, Hospital Sant Joan de Deu, Esplugues, Barcelona, Spain.,CIBERDEM, ISCIII, Madrid, Spain
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, CUMC, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| | - Selma Witchel
- Division of Pediatric Endocrinology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | | | - R Jeffrey Chang
- Department of Reproductive Medicine, UCSD School of Medicine, La Jolla, California, USA
| | - Ethel Codner
- Institute of Maternal and Child Research, University of Chile, School of Medicine, Santiago, Chile
| | - Preeti Dabadghao
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | | - Alessandra Gambineri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Cecilia Garcia Rudaz
- Division of Women, Youth and Children, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kathleen M Hoeger
- Department of OBGYN, University of Rochester Medical Center, Rochester, New York, USA
| | - Abel López-Bermejo
- Pediatric Endocrinology, Hospital de Girona Dr. Josep Trueta, Girona, Spain
| | - Ken Ong
- MRC Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Alexia S Peña
- The University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia
| | - Thomas Reinehr
- University of Witten/Herdecke, Vestische Kinder- und Jugendklinik, Pediatric Endocrinology, Diabetes, and Nutrition Medicine, Datteln, Germany
| | - Nicola Santoro
- Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Rachel Tao
- Division of Pediatric Endocrinology, CUMC, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| | - Bulent O Yildiz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| | - Haya Alkhayyat
- Medical University of Bahrain, BDF Hospital, Riffa, Bahrein
| | - Asma Deeb
- Mafraq Hospital, Abu Dhabi, United Arab Emirates
| | - Dipesalema Joel
- Department of Paediatrics and Adolescent Health, University of Botswana Teaching Hospital, Gaborone, Botswana
| | - Reiko Horikawa
- Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Francis de Zegher
- Department Pediatrics, University Hospital Gasthuisberg, Leuven, Belgium
| | - Peter A Lee
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
42
|
Ye J, Zhu W, Liu H, Mao Y, Jin F, Zhang J. Environmental exposure to triclosan and polycystic ovary syndrome: a cross-sectional study in China. BMJ Open 2018; 8:e019707. [PMID: 30337305 PMCID: PMC6196802 DOI: 10.1136/bmjopen-2017-019707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Polycystic ovary syndrome (PCOS) is the most common endocrinopathy of women at reproductive age. Although the aetiology of PCOS remains unclear, potential effects of environmental endocrine-disrupting compounds on the development of PCOS have drawn increasing attention. The aim of the current study was to examine the association between triclosan (TCS) and PCOS, and explore possible mechanisms on how TCS may contribute to the development of clinical manifestations of PCOS. DESIGN Cross-sectional study. SETTING This study was conducted in one tertiary-level hospital located in Zhejiang, China. PARTICIPANTS A total of 674 infertile women at 18-45 years of age were recruited in 2014-2015. Participants with (n=84) and without (n=212) PCOS with urinary TCS concentration available were included in the analyses. METHODS Urinary TCS concentration was measured using a high-performance liquid chromatography-electrospray ionisation tandem mass spectrometry. Logistic regression model was used to examine the association between TCS and PCOS. Fractional polynomial regression models were built to fit the potential non-linear relationship between TCS concentrations and luteinising hormone (LH) and LH/follicle stimulate hormone (FSH). RESULTS The PCOS group had significantly higher level of TCS concentration than the non-PCOS group (the median of TCS (IQR), μg/g creatinine: 1.49 (0.68-3.80) vs 1.06 (0.52-3.02), p=0.0407). Compared with the lowest tertile, the highest tertile of TCS concentration was associated with an increased odd of PCOS (OR 2.12, 95% CI 1.12 to 3.99). After adjusting for potential confounders, the significant association remained (OR 1.99, 95% CI 1.05 to 3.79). Positive relationships were found between TCS levels and LH and LH/FSH ratio in non-PCOS participants. CONCLUSIONS TCS exposure at a relatively low level is associated with PCOS in Chinese women. Further epidemiological studies are needed to confirm our finding, which may have important public health implications.
Collapse
Affiliation(s)
- Jiangfeng Ye
- Department of Clinical Epidemiology, Institute of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wenting Zhu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of Ministry of Education (Zhejiang University), Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Han Liu
- Ministry of Education–Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuchan Mao
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of Ministry of Education (Zhejiang University), Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Zhang
- Ministry of Education–Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health, Guilin Medical School, Guilin, Guangxi, China
| |
Collapse
|
43
|
Puttabyatappa M, Padmanabhan V. Ovarian and Extra-Ovarian Mediators in the Development of Polycystic Ovary Syndrome. J Mol Endocrinol 2018; 61:R161-R184. [PMID: 29941488 PMCID: PMC6192837 DOI: 10.1530/jme-18-0079] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder affecting women of reproductive age. The origin of PCOS is still not clear and appears to be a function of gene x environment interactions. This review addresses the current knowledge of the genetic and developmental contributions to the etiology of PCOS, the ovarian and extra-ovarian mediators of PCOS and the gaps and key challenges that need to be addressed in the diagnosis, treatment and prevention of PCOS.
Collapse
|
44
|
Kakadia N, Patel P, Deshpande S, Shah G. Effect of Vitex negundo L. seeds in letrozole induced polycystic ovarian syndrome. J Tradit Complement Med 2018; 9:336-345. [PMID: 31453130 PMCID: PMC6701941 DOI: 10.1016/j.jtcme.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 01/06/2023] Open
Abstract
The clinical management of PCOS is multifaceted but often unsatisfactory. The aim of the current study is to evaluate the effect of Vitex negundo L. in the letrozole-induced polycystic ovarian syndrome. Female Sprague-Dawley rats were divided into six groups, each containing 6 animals. Group I (Control) daily received 1% carboxymethylcellulose (CMC) suspension as a vehicle control. Letrozole (1 mg/kg) was administered per orally (p.o) for a period of 21 days for the induction of PCOS in Group II to VI. PCOS induced animals were treated with aqueous (Group III - 200 mg/kg and IV- 400 mg/kg) and hydroalcoholic extract (Group V- 200 mg/kg and VI- 400 mg/kg) of Vitex negundo up to 66 days using 0.5% w/v CMC as the vehicle. Body weight and estrous cycle phase were measured every day. Blood samples were collected on 0, 21 and 66 days for the measurement of fasting blood glucose, lipid profile, LH, FSH and hormonal level. Oral glucose tolerance test was performed to study insulin resistance effect. Toxicity markers; SGOT, SGPT, and creatinine also measured at the end of the study. The administration of Letrozole led to an abnormality in serum sex steroid profile, lipid profile, glucose and estrous cycle. It was able to successfully exert its protective effect by restoring parameters to the normal level and disappearance of cysts in ovaries. This can be attributed to phyto-components present in the extract. The aqueous and hydro-alcoholic extracts of seeds of Vitex negundo showed significant amelioration of Letrozole induced PCOS.
Collapse
Key Words
- CMC, Carboxymethylcellulose
- CPCSEA, Committee for the Purpose of Control And Supervision of Experiments on Animals
- DC, Disease control
- DHEA, Dehydroepiandrosterone
- Estrogen
- HCG, Human chorionic gonadotropin
- IAEC, Institutional Animal Ethics Committee
- Insulin resistance
- KBIPER, K. B. Institute of Pharmaceutical Education and Research
- LVG, Lallubhai Vrajlal Gandhi
- Letrozole
- NADH, Nicotinamide adenine dinucleotide
- NC, Normal control
- NPD, Normal pellet diet
- PCG, Pharmacognosy
- PCOS, Polycystic ovary syndrome
- Polycystic ovary syndrome
- VN, Vitex negundo L.
- VNA, Aqueous extract of Vitex negundo
- VNE, Hydroalcoholic extract of Vitex negundo
- Vitex negundo
Collapse
Affiliation(s)
- Nimisha Kakadia
- Department of Pharmacology and Pharmacy Practice, K. B. Institute of Pharmaceutical Education and Research, GH-6, Sector-23, Gandhinagar, 382023, Gujarat, India
| | - Payal Patel
- Department of Pharmacology and Pharmacy Practice, K. B. Institute of Pharmaceutical Education and Research, GH-6, Sector-23, Gandhinagar, 382023, Gujarat, India
| | - Shrikalp Deshpande
- Department of Pharmacology and Pharmacy Practice, K. B. Institute of Pharmaceutical Education and Research, GH-6, Sector-23, Gandhinagar, 382023, Gujarat, India
| | - Gaurang Shah
- Department of Pharmacology and Pharmacy Practice, K. B. Institute of Pharmaceutical Education and Research, GH-6, Sector-23, Gandhinagar, 382023, Gujarat, India
| |
Collapse
|
45
|
Espinoza JA, Alvarado W, Venegas B, Domínguez R, Morales-Ledesma L. Pharmacological sympathetic denervation prevents the development of polycystic ovarian syndrome in rats injected with estradiol valerate. Reprod Biol Endocrinol 2018; 16:86. [PMID: 30193590 PMCID: PMC6128994 DOI: 10.1186/s12958-018-0400-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The injection of estradiol valerate in female rats induces polycystic ovary syndrome, which is characterized by polycystic ovaries, anovulation, and hyperandrogenism. These characteristics have been associated with an increase in the ovarian concentration of norepinephrine, which occurs before establishing the polycystic ovary syndrome. The bilateral section of the superior ovarian nerve restores ovarian functions in animals with polycystic ovary syndrome. The superior ovarian nerve provides norepinephrine and vasoactive intestinal peptide to the ovary. An increase in the activity of both neurotransmitters has been associated with the development of polycystic ovary syndrome. The purpose of the present study was analyzed the participation of the noradrenergic nervous system in the development of polycystic ovary syndrome using guanethidine as a pharmacological tool that destroys peripheral noradrenergic nerve fibers. METHODS Fourteen-day old female rats of the CIIZ-V strain were injected with estradiol valerate or vehicle solution. Rats were randomly allotted to one of three guanethidine treatment groups for denervation: 1) guanethidine treatment at age 7 to 27-days, 2) guanethidine treatment at age 14 to 34- days, and 3) guanethidine treatment at age 70 to 90- days. All animals were sacrificed when presenting vaginal oestrus at age 90 to 94-days. The parameters analyzed were the number of ova shed by ovulating animals, the ovulation rate (i.e., the numbers of ovulating animals/the numbers of used animals), the serum concentration of progesterone, testosterone, oestradiol and the immunoreactivity for tyrosine hydroxylase enzyme. All data were analyzed statistically. A p-value of less than 0.05 was considered significant. RESULTS Our results show that the elimination of noradrenergic fibers before the establishment of polycystic ovary syndrome prevents two characteristics of the syndrome, blocking of ovulation and hyperandrogenism. We also found that in animals that have already developed polycystic ovary syndrome, sympathetic denervation restores ovulatory capacity, but it was not as efficient in reducing hyperandrogenism. CONCLUSION The results of the present study suggest that the noradrenergic fibers play a stimulant role in the establishment of polycystic ovary syndrome.
Collapse
Affiliation(s)
- Julieta A. Espinoza
- 0000 0001 2159 0001grid.9486.3Biology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM AP 9-020, CP 15000 México, DF Mexico
| | - Wendy Alvarado
- 0000 0001 2159 0001grid.9486.3Biology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM AP 9-020, CP 15000 México, DF Mexico
| | - Berenice Venegas
- 0000 0001 2112 2750grid.411659.eFacultad de Ciencias Biológicas de la Benemérita Universidad Autónoma de Puebla, Blvd. Valsequillo, Av. San Claudio, Edificio 112-A, Cd Universitaria, Col. Jardines de San Manuel, Puebla, Mexico
| | - Roberto Domínguez
- 0000 0001 2159 0001grid.9486.3Biology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM AP 9-020, CP 15000 México, DF Mexico
| | - Leticia Morales-Ledesma
- 0000 0001 2159 0001grid.9486.3Biology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM AP 9-020, CP 15000 México, DF Mexico
| |
Collapse
|
46
|
El-Shamy FF, El-Kholy SS, El-Rahman MMA. Effectiveness of Laser Acupoints on Women With Polycystic Ovarian Syndrome: A Randomized Controlled Trial. J Lasers Med Sci 2018; 9:113-120. [PMID: 30026896 DOI: 10.15171/jlms.2018.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: Polycystic ovarian syndrome (PCOS) is one of the most widely recognized reasons for infertility. The aim of this study was to examine the impact of laser acupuncture on PCOS women. Methods: Twenty-five PCOS women were randomly allocated to either the study group (SG; n=13), treated by laser acupuncture, or the control group (CG; n = 12). Blood hormonal levels and insulin resistance were measured at baseline and after 12 weeks of intervention. Results: The pre-intervention levels showed no statistically significant differences between SG and CG for baseline characteristics (P>0.05). After 12 weeks of intervention, within-group analyses showed that body mass index (BMI), blood hormonal levels, and insulin resistance were significantly decreased (P<0.05), while no significant changes in follicle-stimulating hormone (P>0.05) were recorded in the 2 groups. Between-groups analyses showed that most outcomes measures were significantly decreased (P<0.05) in SG compared with CG, with no significant changes in FSH and BMI (P>0.05). Conclusion: Laser acupuncture can be suggested as an effective management for PCOS women.
Collapse
Affiliation(s)
- Fayiz F El-Shamy
- Department of Physical Therapy for Women's Health, Faculty of Physical Therapy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sand S El-Kholy
- Department of Physiology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Marwa M Abd El-Rahman
- Department of Physical Therapy for Gynaecology and Obstetrics, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| |
Collapse
|
47
|
Lu C, Hutchens EG, Farhy LS, Bonner HG, Suratt PM, McCartney CR. Influence of Sleep Stage on LH Pulse Initiation in the Normal Late Follicular Phase and in Polycystic Ovary Syndrome. Neuroendocrinology 2018; 107:60-72. [PMID: 29506013 PMCID: PMC7053660 DOI: 10.1159/000488110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/03/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE During the early follicular phase, sleep-related luteinizing hormone (LH) pulse initiation is positively associated with brief awakenings but negatively associated with rapid eye movement (REM) sleep. The relationship between sleep architecture and LH pulse initiation has not been assessed in other cycle stages or in women with polycystic ovary syndrome (PCOS). DESIGN AND METHODS We performed concomitant frequent blood sampling (LH pulse analysis) and polysomnography on 8 normal women (cycle day 7-11) and 7 women with PCOS (at least cycle day 7). RESULTS In the normal women, the 5 min preceding LH pulses contained more wake epochs and fewer REM epochs than the 5 min preceding randomly determined time points (wake: 22.3 vs. 9.1%, p = 0.0111; REM: 4.4 vs. 18.8%, p = 0.0162). However, LH pulse initiation was not related to wake or REM epochs in PCOS; instead, the 5 min preceding LH pulses contained more slow-wave sleep (SWS) than the 5 min before random time points (20.9 vs. 6.7%, p = 0.0089). Compared to the normal subjects, the women with PCOS exhibited a higher REM-associated LH pulse frequency (p = 0.0443) and a lower proportion of wake epochs 0-5 min before LH pulses (p = 0.0205). CONCLUSIONS Sleep-related inhibition of LH pulse generation during the later follicular phase is normally weakened by brief awakenings and strengthened by REM sleep. In women with PCOS, LH pulse initiation is not appropriately discouraged by REM sleep and may be encouraged by SWS; these abnormalities may contribute to a high sleep-related LH pulse frequency in PCOS.
Collapse
Affiliation(s)
- Christine Lu
- University of Virginia School of Medicine, Charlottesville, Virginia
| | - Eleanor G. Hutchens
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
- Center for Research in Reproduction, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Leon S. Farhy
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
- University of Virginia Center for Diabetes Technology, Charlottesville, Virginia
| | - Heather G. Bonner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Paul M. Suratt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Christopher R. McCartney
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
- Center for Research in Reproduction, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
48
|
Dulka EA, Moenter SM. Prepubertal Development of Gonadotropin-Releasing Hormone Neuron Activity Is Altered by Sex, Age, and Prenatal Androgen Exposure. Endocrinology 2017; 158:3943-3953. [PMID: 28938422 PMCID: PMC5695838 DOI: 10.1210/en.2017-00768] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons regulate reproduction though pulsatile hormone release. Disruption of GnRH release as measured via luteinizing hormone (LH) pulses occurs in polycystic ovary syndrome (PCOS), and in young hyperandrogenemic girls. In adult prenatally androgenized (PNA) mice, which exhibit many aspects of PCOS, increased LH is associated with increased GnRH neuron action potential firing. How GnRH neuron activity develops over the prepubertal period and whether this is altered by sex or prenatal androgen treatment are unknown. We hypothesized GnRH neurons are active before puberty and that this activity is sexually differentiated and altered by PNA. Dams were injected with dihydrotestosterone (DHT) on days 16 to 18 post copulation to generate PNA mice. Action potential firing of GFP-identified GnRH neurons in brain slices from 1-, 2-, 3-, and 4-week-old and adult mice was monitored. GnRH neurons were active at all ages tested. In control females, activity increased with age through 3 weeks, then decreased to adult levels. In contrast, activity did not change in PNA females and was reduced at 3 weeks. Activity was higher in control females than males from 2 to 3 weeks. PNA did not affect GnRH neuron firing rate in males at any age. Short-term action potential patterns were also affected by age and PNA treatment. GnRH neurons are thus typically more active during the prepubertal period than adulthood, and PNA reduces prepubertal activity in females. Prepubertal activity may play a role in establishing sexually differentiated neuronal networks upstream of GnRH neurons; androgen-induced changes during this time may contribute to the adult PNA, and possibly PCOS, phenotype.
Collapse
Affiliation(s)
- Eden A. Dulka
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Suzanne M. Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
49
|
Abstract
The congenital adrenal hyperplasias comprise a family of autosomal recessive disorders that disrupt adrenal steroidogenesis. The most common form is due to 21-hydroxylase deficiency associated with mutations in the 21-hydroxylase gene, which is located at chromosome 6p21. The clinical features associated with each disorder of adrenal steroidogenesis represent a clinical spectrum that reflect the consequences of the specific mutations. Treatment goals include normal linear growth velocity and "on-time" puberty in affected children. For adolescent and adult women, treatment goals include regularization of menses, prevention of progression of hirsutism, and preservation of fertility. For adolescent and adult men, prevention and early treatment of testicular adrenal rest tumors is beneficial. In this article key aspects regarding pathophysiology, diagnosis, and treatment of congenital adrenal hyperplasia are reviewed.
Collapse
Affiliation(s)
- Selma Feldman Witchel
- Division of Pediatric Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
50
|
Kim HJ, Adams JM, Gudmundsson JA, Arason G, Pau CT, Welt CK. Polycystic ovary morphology: age-based ultrasound criteria. Fertil Steril 2017; 108:548-553. [PMID: 28807396 DOI: 10.1016/j.fertnstert.2017.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/08/2017] [Accepted: 07/06/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To determine age-based criteria for polycystic ovary morphology. DESIGN Cross-sectional, case-control design. SETTING Outpatient setting. SUBJECT(S) Women with polycystic ovary syndrome (PCOS) defined by hyperandrogenism and irregular menses (n = 544) and controls with regular menses and no evidence of hyperandrogenism (n = 666) participated. Parameters were tested in a second cohort of women with PCOS (n = 105) and controls (n = 32) meeting the same criteria. INTERVENTION(S) Subjects underwent a pelvic ultrasound documenting ovarian volume and maximum follicle number in a single plane. MAIN OUTCOME MEASURE(S) A receiver operating characteristic curve was constructed to determine the ovarian volume and follicle number with the best sensitivity and specificity to define PCOS for age groups at approximately 5-year intervals from age 18 to >44 years. RESULT(S) The best sensitivity and specificity were obtained using a threshold volume of 12 mL and 13 follicles for ages ≤24 years, 10 mL and 14 follicles for ages 25-29 years, 9 mL and 10 follicles for ages 30-34 years, 8 mL and 10 follicles for ages 35-39 years, 10 mL and 9 follicles for ages 40-44 years, and 6 mL and 7 follicles for ages >44 years. Data from a second cohort confirmed the need to decrease volume and follicle number with increasing age to diagnose PCOS. Polycystic ovary morphology was most accurate at predicting the PCOS diagnosis for women ages 30-39 years. CONCLUSION(S) The ovarian volume and follicle number threshold to define polycystic ovary morphology should be lowered starting at age 30.
Collapse
Affiliation(s)
- Hyun-Jun Kim
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts; Department of Obstetrics and Gynecology, School of Medicine, Konkuk University, ChungJu, South Korea
| | - Judith M Adams
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Jens A Gudmundsson
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavík, Iceland
| | | | - Cindy T Pau
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Corrine K Welt
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|