1
|
Xie YX, Yao H, Peng JF, Ni D, Liu WT, Li CQ, Yi GH. Insight into modulators of sphingosine-1-phosphate receptor and implications for cardiovascular therapeutics. J Drug Target 2024; 32:300-310. [PMID: 38269855 DOI: 10.1080/1061186x.2024.2309577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/21/2023] [Indexed: 01/26/2024]
Abstract
Cardiovascular disease is the leading cause of death worldwide, and it's of great importance to understand its underlying mechanisms and find new treatments. Sphingosine 1-phosphate (S1P) is an active lipid that exerts its effects through S1P receptors on the cell surface or intracellular signal, and regulates many cellular processes such as cell growth, cell proliferation, cell migration, cell survival, and so on. S1PR modulators are a class of modulators that can interact with S1PR subtypes to activate receptors or block their activity, exerting either agonist or functional antagonist effects. Many studies have shown that S1P plays a protective role in the cardiovascular system and regulates cardiac physiological functions mainly through interaction with cell surface S1P receptors (S1PRs). Therefore, S1PR modulators may play a therapeutic role in cardiovascular diseases. Here, we review five S1PRs and their functions and the progress of S1PR modulators. In addition, we focus on the effects of S1PR modulators on atherosclerosis, myocardial infarction, myocardial ischaemia/reperfusion injury, diabetic cardiovascular diseases, and myocarditis, which may provide valuable insights into potential therapeutic strategies for cardiovascular disease.
Collapse
Affiliation(s)
- Yu-Xin Xie
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Hui Yao
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Jin-Fu Peng
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Dan Ni
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Wan-Ting Liu
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Chao-Quan Li
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Guang-Hui Yi
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Nakazawa M, Tochinai R, Fujii W, Komori M, Yonezawa T, Momoi Y, Maeda S. Protective role of protease-activated receptor-2 in anaphylaxis model mice. PLoS One 2024; 19:e0283915. [PMID: 38635782 PMCID: PMC11025949 DOI: 10.1371/journal.pone.0283915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Anaphylaxis is a severe life-threatening hypersensitivity reaction induced by mast cell degranulation. Among the various mediators of mast cells, little is known about the role of tryptase. Therefore, we aimed to elucidate the role of protease-activating receptor-2 (PAR-2), a receptor activated by tryptase, in murine anaphylactic models using PAR-2-deficient mice and newly generated tryptase-deficient mice. Anaphylaxis was induced by IgE-dependent and IgE-independent mast cell degranulation in mice. PAR-2 deficiency exacerbated the decrease in body temperature and hypotension during anaphylaxis; however, the number of skin mast cells, degree of mast cell degranulation, and systemic and local vascular hyperpermeability were comparable in PAR-2 knockout and wild-type mice. Nitric oxide, which is produced by endothelial nitric oxide synthase (eNOS), is an indispensable vasodilator in anaphylaxis. In the lungs of anaphylactic mice, PAR-2 deficiency promoted eNOS expression and phosphorylation, suggesting a protective effect of PAR-2 against anaphylaxis by downregulating eNOS activation and expression. Based on the hypothesis that the ligand for PAR-2 in anaphylaxis is mast cell tryptase, tryptase-deficient mice were generated using CRISPR-Cas9. In wild-type mice, the PAR-2 antagonist exacerbated the body temperature drop due to anaphylaxis; however, the effect of the PAR-2 antagonist was abolished in tryptase-deficient mice. These results suggest that tryptase is a possible ligand of PAR-2 in anaphylaxis and that the tryptase/PAR-2 pathway attenuates the anaphylactic response in mice.
Collapse
Affiliation(s)
- Maho Nakazawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryota Tochinai
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mao Komori
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Momoi
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
González-Aretia D, Hernández-Coronado CG, Guzmán A, Medina-Moctezuma ZB, Gutiérrez CG, Rosales-Torres AM. Sphingosine-1-phosphate mediates FSH-induced cell viability but not steroidogenesis in bovine granulosa cells. Theriogenology 2024; 213:90-96. [PMID: 37820497 DOI: 10.1016/j.theriogenology.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Follicle-stimulating hormone (FSH) stimulates the proliferation, survival, and estradiol synthesis of granulosa cells by binding to their G protein-coupled receptors. Although FSH activates sphingosine kinase-1 (SPHK1) to induce sphingosine-1-phosphate (S1P) synthesis, which is required to mediate the proliferative and survival effect of this gonadotrophin, the mechanisms, and the role of S1P in estradiol synthesis have not been reported. This study aimed to evaluate the importance of FSH-induced S1P synthesis as a mediator of the effects of this gonadotrophin on granulosa cell viability and steroidogenesis and to determine if FSH-induced S1P synthesis depends on estradiol, cAMP, PKA, or PKC. To achieve these objectives, we tested the effects of FSH, a sphingosine kinase-1 inhibitor (SKI-178), estradiol and inhibitors of aromatase, cAMP, PKA, and PKC (Formestane, MDL-12330A, H-89 dihydrochloride hydrate and Calphostin C respectively), on granulosa cell viability, S1P and estradiol production, and the mRNA expression of CYP19A1 and STAR in four in vitro culture experiments. The addition of FSH (1 ng/mL) increased (P < 0.05) granulosa cells number and S1P concentration in the culture media. Conversely, the addition of SKI-178 (10 μM) reduced (P < 0.05) S1P concentration negating the effect of FSH on cell viability. Inhibition of PKC and PKA, but not cAMP, reduced (P < 0.05) S1P secretion of FSH treated granulosa cells. It is important to note that the reduction in S1P secretion was strong (49 %) with the use of the PKC inhibitor. The use of formestane (10 μg) did not modify (P > 0.05) S1P secretion in FSH-treated cells; however, the addition of 5 or 10 ng/mL of estradiol increased (P < 0.05) S1P secretion. Finally, FSH increased (P < 0.05) estradiol concentration in the culture media, but this effect was not blocked by the inhibition of S1P synthesis. Similarly, FSH, SKI-178 or their combination did not modify the mRNA expression of CYP19A1 and STAR. In conclusion, S1P synthesis is stimulated FSH in granulosa cells and mediated mainly by PKC. S1P in turn promotes the granulosa cell viability, however, this does not influence estradiol synthesis. Additionally, estradiol synthesis induced by FSH is not essential for S1P synthesis, however high estradiol concentration may stimulate S1P production by granulosa cells.
Collapse
Affiliation(s)
- David González-Aretia
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | | | - Adrián Guzmán
- Departamento Producción Agrícola y Animal, Universidad Autónoma Metropolitana unidad Xochimilco, Ciudad de México, Mexico
| | | | - Carlos G Gutiérrez
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana María Rosales-Torres
- Departamento Producción Agrícola y Animal, Universidad Autónoma Metropolitana unidad Xochimilco, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Maines LW, Keller SN, Smith CD. Opaganib (ABC294640) Induces Immunogenic Tumor Cell Death and Enhances Checkpoint Antibody Therapy. Int J Mol Sci 2023; 24:16901. [PMID: 38069222 PMCID: PMC10706694 DOI: 10.3390/ijms242316901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Antibody-based cancer drugs that target the checkpoint proteins CTLA-4, PD-1 and PD-L1 provide marked improvement in some patients with deadly diseases such as lung cancer and melanoma. However, most patients are either unresponsive or relapse following an initial response, underscoring the need for further improvement in immunotherapy. Certain drugs induce immunogenic cell death (ICD) in tumor cells in which the dying cells promote immunologic responses in the host that may enhance the in vivo activity of checkpoint antibodies. Sphingolipid metabolism is a key pathway in cancer biology, in which ceramides and sphingosine 1-phosphate (S1P) regulate tumor cell death, proliferation and drug resistance, as well as host inflammation and immunity. In particular, sphingosine kinases are key sites for manipulation of the ceramide/S1P balance that regulates tumor cell proliferation and sensitivity to radiation and chemotherapy. We and others have demonstrated that inhibition of sphingosine kinase-2 by the small-molecule investigational drug opaganib (formerly ABC294640) kills tumor cells and increases their sensitivities to other drugs and radiation. Because sphingolipids have been shown to regulate ICD, opaganib may induce ICD and improve the efficacy of checkpoint antibodies for cancer therapy. This was demonstrated by showing that in vitro treatment with opaganib increases the surface expression of the ICD marker calreticulin on a variety of tumor cell types. In vivo confirmation was achieved using the gold standard immunization assay in which B16 melanoma, Lewis lung carcinoma (LLC) or Neuro-2a neuroblastoma cells were treated with opaganib in vitro and then injected subcutaneously into syngeneic mice, followed by implantation of untreated tumor cells 7 days later. In all cases, immunization with opaganib-treated cells strongly suppressed the growth of subsequently injected tumor cells. Interestingly, opaganib treatment induced crossover immunity in that opaganib-treated B16 cells suppressed the growth of both untreated B16 and LLC cells and opaganib-treated LLC cells inhibited the growth of both untreated LLC and B16 cells. Next, the effects of opaganib in combination with a checkpoint antibody on tumor growth in vivo were assessed. Opaganib and anti-PD-1 antibody each slowed the growth of B16 tumors and improved mouse survival, while the combination of opaganib plus anti-PD-1 strongly suppressed tumor growth and improved survival (p < 0.0001). Individually, opaganib and anti-CTLA-4 antibody had modest effects on the growth of LLC tumors and mouse survival, whereas the combination of opaganib with anti-CTLA-4 substantially inhibited tumor growth and increased survival (p < 0.001). Finally, the survival of mice bearing B16 tumors was only marginally improved by opaganib or anti-PD-L1 antibody alone but was nearly doubled by the drugs in combination (p < 0.005). Overall, these studies demonstrate the ability of opaganib to induce ICD in tumor cells, which improves the antitumor activity of checkpoint antibodies.
Collapse
Affiliation(s)
| | | | - Charles D. Smith
- Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA 17036, USA; (L.W.M.)
| |
Collapse
|
5
|
Chen H, Haddadi N, Zhu X, Hatoum D, Chen S, Nassif NT, Lin Y, McGowan EM. Expression Profile of Sphingosine Kinase 1 Isoforms in Human Cancer Tissues and Cells: Importance and Clinical Relevance of the Neglected 1b-Isoform. JOURNAL OF ONCOLOGY 2022; 2022:2250407. [PMID: 36532885 PMCID: PMC9750787 DOI: 10.1155/2022/2250407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 09/28/2023]
Abstract
Background Overexpression of sphingosine kinase 1 (SphK1) is casually associated with many types of cancer, and inhibitors of SphK1 sensitize tumors to chemotherapy. SphK1 is expressed as two major isoforms, SphK1a and SphK1b. To date, no information has been reported on the SphK1 isoform expression profile and its clinical relevance. Objective The objective is to examine the expression profile of the SphK1a and SPhK1b isoforms in human cancer and noncancer tissues and cell lines and explore their clinical relevance. Methods We used PCR to qualitatively examine the expression profile of these two isoforms in breast, liver, and prostate cancer tissues plus paired adjacent tissues and in 11 cancer and normal cell lines (breast, cervical, bone, prostate, colon, brain, mesothelioma tumor and benign, and human kidney cells). Results We found that SphK1a was ubiquitously expressed in all cancer cells and tissues tested; in contrast, SphK1b was only expressed in selective cell types in breast, prostate, and lung cancer. Conclusions Our data suggest that SphK1a is important for generic SphK1/S1P functions, and SphK1b mediates specialized and/or unique pathways in a specific type of tissue and could be a biomarker for cancer. This discovery is important for future SphK1-related cancer research and may have clinical implications in drug development associated with SphK1-directed cancer treatment.
Collapse
Affiliation(s)
- Hongjie Chen
- Department of Traditional Chinese Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Xiaofeng Zhu
- Department of Transplant Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
- Public Health and College of Arts and Sciences, Phoenicia University, Daoudiye, Lebanon
| | - Size Chen
- Central Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Yiguang Lin
- Department of Traditional Chinese Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
- Central Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Eileen M. McGowan
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
- Central Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Petrusca DN, Lee KP, Galson DL. Role of Sphingolipids in Multiple Myeloma Progression, Drug Resistance, and Their Potential as Therapeutic Targets. Front Oncol 2022; 12:925807. [PMID: 35756630 PMCID: PMC9213658 DOI: 10.3389/fonc.2022.925807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is an incapacitating hematological malignancy characterized by accumulation of cancerous plasma cells in the bone marrow (BM) and production of an abnormal monoclonal protein (M-protein). The BM microenvironment has a key role in myeloma development by facilitating the growth of the aberrant plasma cells, which eventually interfere with the homeostasis of the bone cells, exacerbating osteolysis and inhibiting osteoblast differentiation. Recent recognition that metabolic reprograming has a major role in tumor growth and adaptation to specific changes in the microenvironmental niche have led to consideration of the role of sphingolipids and the enzymes that control their biosynthesis and degradation as critical mediators of cancer since these bioactive lipids have been directly linked to the control of cell growth, proliferation, and apoptosis, among other cellular functions. In this review, we present the recent progress of the research investigating the biological implications of sphingolipid metabolism alterations in the regulation of myeloma development and its progression from the pre-malignant stage and discuss the roles of sphingolipids in in MM migration and adhesion, survival and proliferation, as well as angiogenesis and invasion. We introduce the current knowledge regarding the role of sphingolipids as mediators of the immune response and drug-resistance in MM and tackle the new developments suggesting the manipulation of the sphingolipid network as a novel therapeutic direction for MM.
Collapse
Affiliation(s)
- Daniela N Petrusca
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kelvin P Lee
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Deborah L Galson
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, McGowan Institute for Regenerative Medicine, HCC Research Pavilion, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Montefusco D, Jamil M, Maczis MA, Schroeder W, Levi M, Ranjit S, Allegood J, Bandyopadhyay D, Retnam R, Spiegel S, Cowart LA. Sphingosine Kinase 1 Mediates Sexual Dimorphism in Fibrosis in a Mouse Model of NASH. Mol Metab 2022; 62:101523. [PMID: 35671973 PMCID: PMC9194589 DOI: 10.1016/j.molmet.2022.101523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Men with non-alcoholic fatty liver disease (NAFLD) are more likely to progress to nonalcoholic steatohepatitis (NASH) and liver fibrosis than women. However, the underlying molecular mechanisms of this dimorphism is unclear. We have previously shown that mice with global deletion of SphK1, the enzyme that produces the bioactive sphingolipid metabolite sphingosine 1-phosphate (S1P), were protected from development of NASH. The aim of this study was to elucidate the role of hepatocyte-specific SphK1 in development of NASH and to compare its contribution to hepatosteatosis in male and female mice. RESULTS We generated hepatocyte-specific SphK1 knockout mice (SphK1-hKO). Unlike the global knockout, SphK1-hKO male mice were not protected from diet-induced steatosis, inflammation, or fibrogenesis. In contrast, female SphK1-hKO mice were protected from inflammation. Surprisingly, however, in these female mice, there was a ∼10-fold increase in the fibrosis markers Col1α1 and 2-3 fold induction of alpha smooth muscle actin and the pro-fibrotic chemokine CCL5. Because increased fibrosis in female SphK1-hKO mice occurred despite an attenuated inflammatory response, we investigated the crosstalk between hepatocytes and hepatic stellate cells, central players in fibrosis. We found that estrogen stimulated release of S1P from female hepatocytes preventing TGFβ-induced expression of Col1α1 in HSCs via S1PR3. CONCLUSIONS The results revealed a novel pathway of estrogen-mediated cross-talk between hepatocytes and HSCs that may contribute to sex differences in NAFLD through an anti-fibrogenic function of the S1P/S1PR3 axis. This pathway is susceptible to pharmacologic manipulation, which may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- David Montefusco
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA.
| | - Maryam Jamil
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - Melissa A Maczis
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - William Schroeder
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, USA
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, USA
| | - Jeremy Allegood
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | | | - Reuben Retnam
- Virginia Commonwealth University Department of Biostatistics, VA, USA
| | - Sarah Spiegel
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - L Ashley Cowart
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA; Hunter Holmes McGuire VAMC, Richmond, VA, USA
| |
Collapse
|
8
|
Piazzesi A, Afsar SY, van Echten‐Deckert G. Sphingolipid metabolism in the development and progression of cancer: one cancer's help is another's hindrance. Mol Oncol 2021; 15:3256-3279. [PMID: 34289244 PMCID: PMC8637577 DOI: 10.1002/1878-0261.13063] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022] Open
Abstract
Cancer development is a multistep process in which cells must overcome a series of obstacles before they can become fully developed tumors. First, cells must develop the ability to proliferate unchecked. Once this is accomplished, they must be able to invade the neighboring tissue, as well as provide themselves with oxygen and nutrients. Finally, they must acquire the ability to detach from the newly formed mass in order to spread to other tissues, all the while evading an immune system that is primed for their destruction. Furthermore, increased levels of inflammation have been shown to be linked to the development of cancer, with sites of chronic inflammation being a common component of tumorigenic microenvironments. In this Review, we give an overview of the impact of sphingolipid metabolism in cancers, from initiation to metastatic dissemination, as well as discussing immune responses and resistance to treatments. We explore how sphingolipids can either help or hinder the progression of cells from a healthy phenotype to a cancerous one.
Collapse
Affiliation(s)
- Antonia Piazzesi
- LIMES Institute for Membrane Biology and Lipid BiochemistryUniversity of BonnGermany
| | - Sumaiya Yasmeen Afsar
- LIMES Institute for Membrane Biology and Lipid BiochemistryUniversity of BonnGermany
| | | |
Collapse
|
9
|
Hii LW, Chung FFL, Mai CW, Ng PY, Leong CO. Sphingosine Kinase 1 Signaling in Breast Cancer: A Potential Target to Tackle Breast Cancer Stem Cells. Front Mol Biosci 2021; 8:748470. [PMID: 34820423 PMCID: PMC8606534 DOI: 10.3389/fmolb.2021.748470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Sphingosine kinases (SPHKs) are conserved lipid enzymes that catalyze the formation of sphingosine-1-phosphate (S1P) through ATP-dependent phosphorylation of sphingosine. Two distinct SPHK isoforms, namely SPHK1 and SPHK2, have been identified to date, and the former has been implicated for its oncogenic roles in cancer development and progression. While SPHK1 signaling axis has been extensively studied in non-stem breast cancer cells, recent evidence has emerged to suggest a role of SPHK1 in regulating cancer stem cells (CSCs). With the clinical implications of CSCs in disease relapse and metastasis, it is believed that therapeutic approaches that can eradicate both non-stem cancer cells and CSCs could be a key to cancer cure. In this review, we first explore the oncogenic functions of sphingosine kinase 1 in human cancers and summarize current research findings of SPHK1 signaling with a focus on breast cancer. We also discuss the therapeutic potentials and perspectives of targeting SPHK1 signaling in breast cancer and cancer stem cells. We aim to offer new insights and inspire future studies looking further into the regulatory functions of SPHK1 in CSC-driven tumorigenesis, uncovering novel therapeutic avenues of using SPHK1-targeted therapy in the treatment of CSC-enriched refractory cancers.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Venkatraman G, Tang X, Du G, Parisentti AM, Hemmings DG, Brindley DN. Lysophosphatidate Promotes Sphingosine 1-Phosphate Metabolism and Signaling: Implications for Breast Cancer and Doxorubicin Resistance. Cell Biochem Biophys 2021; 79:531-545. [PMID: 34415509 PMCID: PMC11948428 DOI: 10.1007/s12013-021-01024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) promote vasculogenesis, angiogenesis, and wound healing by activating a plethora of overlapping signaling pathways that stimulate mitogenesis, cell survival, and migration. As such, maladaptive signaling by LPA and S1P have major effects in increasing tumor progression and producing poor patient outcomes after chemotherapy and radiotherapy. Many signaling actions of S1P and LPA are not redundant; each are vital in normal physiology and their metabolisms differ. In the present work, we studied how LPA signaling impacts S1P metabolism and signaling in MDA-MB-231 and MCF-7 breast cancer cells. LPA increased sphingosine kinase-1 (SphK1) synthesis and rapidly activated cytosolic SphK1 through association with membranes. Blocking phospholipase D activity attenuated the LPA-induced activation of SphK1 and the synthesis of ABCC1 and ABCG2 transporters that secrete S1P from cells. This effect was magnified in doxorubicin-resistant MCF-7 cells. LPA also facilitated S1P signaling by increasing mRNA expression for S1P1 receptors. Doxorubicin-resistant MCF-7 cells had increased S1P2 and S1P3 receptor expression and show increased LPA-induced SphK1 activation, increased expression of ABCC1, ABCG2 and greater S1P secretion. Thus, LPA itself and LPA-induced S1P signaling counteract doxorubicin-induced death of MCF-7 cells. We conclude from the present and previous studies that LPA promotes S1P metabolism and signaling to coordinately increase tumor growth and metastasis and decrease the effectiveness of chemotherapy and radiotherapy for breast cancer treatment.
Collapse
Affiliation(s)
- Ganesh Venkatraman
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Guangwei Du
- Department of Integrative Biology & Pharmacology, University of Texas Health Science at Houston, Houston, TX, 77030, USA
| | - Amadeo M Parisentti
- Northern Ontario School of Medicine, Health Sciences North Research Institute, Sudbury, ON, P3E 2H2, Canada
| | - Denise G Hemmings
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
- Medical Microbiology and Immunology, Obstetrics and Gynecology, Women and Children's Health Research Institute, Li Ka Shing Institute of Virology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
11
|
Raut S, Kumar AV, Deshpande S, Khambata K, Balasinor NH. Sex hormones regulate lipid metabolism in adult Sertoli cells: A genome-wide study of estrogen and androgen receptor binding sites. J Steroid Biochem Mol Biol 2021; 211:105898. [PMID: 33845154 DOI: 10.1016/j.jsbmb.2021.105898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Optimal functioning of Sertoli cells is crucial for spermatogenesis which is under tight regulation of sex hormones, estrogen and androgen. Adult rat Sertoli cells expresses estrogen receptor beta (ERβ) and androgen receptor (AR), both of which regulate gene transcription by binding to the DNA. The present study is aimed to acquire a genome-wide map of estrogen- and androgen-regulated genes in adult Sertoli cells. ChIP-Seq was performed for ERβ and AR in Sertoli cells under physiological conditions. 30,859 peaks in ERβ and 9,594 peaks in AR were identified with a fold enrichment >2 fold. Pathway analysis for the genes revealed metabolic pathways to be significantly enriched. Since Sertoli cells have supportive functions and provide energy substrates to germ cells during spermatogenesis, significantly enriched metabolic pathways were explored further. Peaks of the genes involved in lipid metabolism, like fatty acid, glyceride, leucine, and sphingosine metabolism were validated. Motif analysis confirmed the presence of estrogen- and androgen-response elements (EREs and AREs). Moreover, transcript levels of enzymes involved in the lipid metabolic pathways were significantly altered in cultured Sertoli cells treated with estrogen and androgen receptor agonists, demonstrating functional significance of these binding sites. This study elucidates a mechanism by which sex hormones regulate lipid metabolism in Sertoli cells by transcriptionally controlling the expression of these genes, thereby shedding light on the roles of these hormones in male fertility.
Collapse
Affiliation(s)
- Sanketa Raut
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Anita V Kumar
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Sharvari Deshpande
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Kushaan Khambata
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Nafisa H Balasinor
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Mumbai, India.
| |
Collapse
|
12
|
Kim JH, Han J, Suk K. Protective Effects of Complement Component 8 Gamma Against Blood-Brain Barrier Breakdown. Front Physiol 2021; 12:671250. [PMID: 34149451 PMCID: PMC8209513 DOI: 10.3389/fphys.2021.671250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
The blood-brain barrier (BBB) regulates the traffic of micromolecules and macromolecules between the peripheral blood and the central nervous system, to maintain brain homeostasis. BBB disruption and dysfunction accompany a variety of neurological disorders and are closely related with the neuroinflammatory cascades that are triggered by leukocyte infiltration and glial activation. Here, we explored the role of complement component 8 gamma (C8G) in the maintenance of BBB integrity. Previously, C8G was shown to inhibit neuroinflammation by interfering with the sphingosine-1-phosphate (S1P)-S1PR2 interaction. The results of the present study revealed that C8G is localized in perivascular astrocytes, whereas S1PR2 is expressed in endothelial cells (ECs). In the lipopolysaccharide (LPS)-induced neuroinflammation model, the intracerebroventricular administration of the recombinant C8G protein protected the integrity of the BBB, whereas shRNA-mediated C8G knockdown enhanced BBB permeability and neutrophil infiltration. Using pharmacological agonists and antagonists of S1PR2, we demonstrated that C8G inhibited the inflammatory activation of ECs in culture by antagonizing S1PR2. In the in vitro BBB model, the addition of the recombinant C8G protein preserved endothelial integrity, whereas the knockdown of C8G exacerbated endothelial leakage under inflammatory conditions. Together, our findings indicate an important role for astrocytic C8G in protecting the BBB in the inflamed brain, suggesting a novel mechanism of cross talk between astrocytes and ECs in terms of BBB maintenance.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Jin Han
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
13
|
Velazquez FN, Zhang L, Viscardi V, Trocchia C, Hannun YA, Obeid LM, Snider AJ. Loss of sphingosine kinase 1 increases lung metastases in the MMTV-PyMT mouse model of breast cancer. PLoS One 2021; 16:e0252311. [PMID: 34043703 PMCID: PMC8158862 DOI: 10.1371/journal.pone.0252311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a very heterogeneous disease, and ~30% of breast cancer patients succumb to metastasis, highlighting the need to understand the mechanisms of breast cancer progression in order to identify new molecular targets for treatment. Sphingosine kinase 1 (SK1) has been shown to be upregulated in patients with breast cancer, and several studies have suggested its involvement in breast cancer progression and/or metastasis, mostly based on cell studies. In this work we evaluated the role of SK1 in breast cancer development and metastasis using a transgenic breast cancer model, mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT), that closely resembles the characteristics and evolution of human breast cancer. The results show that SK1 deficiency does not alter tumor latency or growth, but significantly increases the number of metastatic lung nodules and the average metastasis size in the lung of MMTV-PyMT mice. Additionally, analysis of Kaplan-Meier plotter of human disease shows that high SK1 mRNA expression can be associated with a better prognosis for breast cancer patients. These results suggest a metastasis-suppressing function for SK1 in the MMTV-PyMT model of breast cancer, and that its role in regulating human breast cancer progression and metastasis may be dependent on the breast cancer type.
Collapse
Affiliation(s)
- Fabiola N. Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Leiqing Zhang
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Valentina Viscardi
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Carolena Trocchia
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Lina M. Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Ashley J. Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sukocheva OA, Hu DG, Meech R, Bishayee A. Divergence of Intracellular Trafficking of Sphingosine Kinase 1 and Sphingosine-1-Phosphate Receptor 3 in MCF-7 Breast Cancer Cells and MCF-7-Derived Stem Cell-Enriched Mammospheres. Int J Mol Sci 2021; 22:4314. [PMID: 33919234 PMCID: PMC8122545 DOI: 10.3390/ijms22094314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 02/05/2023] Open
Abstract
Breast cancer MCF-7 cell-line-derived mammospheres were shown to be enriched in cells with a CD44+/CD24- surface profile, consistent with breast cancer stem cells (BCSC). These BCSC were previously reported to express key sphingolipid signaling effectors, including pro-oncogenic sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate receptor 3 (S1P3). In this study, we explored intracellular trafficking and localization of SphK1 and S1P3 in parental MCF-7 cells, and MCF-7 derived BCSC-enriched mammospheres treated with growth- or apoptosis-stimulating agents. Intracellular trafficking and localization were assessed using confocal microscopy and cell fractionation, while CD44+/CD24- marker status was confirmed by flow cytometry. Mammospheres expressed significantly higher levels of S1P3 compared to parental MCF-7 cells (p < 0.01). Growth-promoting agents (S1P and estrogen) induced SphK1 and S1P3 translocation from cytoplasm to nuclei, which may facilitate the involvement of SphK1 and S1P3 in gene regulation. In contrast, pro-apoptotic cytokine tumor necrosis factor α (TNFα)-treated MCF-7 cells demonstrated increased apoptosis and no nuclear localization of SphK1 and S1P3, suggesting that TNFα can inhibit nuclear translocation of SphK1 and S1P3. TNFα inhibited mammosphere formation and induced S1P3 internalization and degradation. No nuclear translocation of S1P3 was detected in TNFα-stimulated mammospheres. Notably, SphK1 and S1P3 expression and localization were highly heterogenous in mammospheres, suggesting the potential for a large variety of responses. The findings provide further insights into the understanding of sphingolipid signaling and intracellular trafficking in BCs. Our data indicates that the inhibition of SphK1 and S1P3 nuclear translocation represents a novel method to prevent BCSCs proliferation.
Collapse
Affiliation(s)
- Olga A. Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia; (D.G.H.); (R.M.)
| | - Robyn Meech
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia; (D.G.H.); (R.M.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
15
|
Motono N, Ueda Y, Shimasaki M, Iwai S, Iijima Y, Usuda K, Uramoto H. Prognostic Impact of Sphingosine Kinase 1 in Nonsmall Cell Lung Cancer. CLINICAL PATHOLOGY 2021; 14:2632010X20988531. [PMID: 33623898 PMCID: PMC7879003 DOI: 10.1177/2632010x20988531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/25/2020] [Indexed: 12/02/2022]
Abstract
Bioactive sphingolipid is clearly relevant to lung physiology. The relationship of the bioactive sphingolipid pathway to pulmonary disease has been studied in cellular, tissue, and animal model, including lung cancer models. The samples of 53 patients diagnosed with nonsmall cell lung carcinoma (NSCLC) between June 2009 and May 2014 at our hospital were analyzed. Immunohistochemical (IHC) analysis was performed. The degree of immunostaining was reviewed and scored. Using this method of assessment, we evaluated the IHC score of sphingosine kinase 1 (SPHK1), vimentin, E-cadherin, and Ki-67. Both invasive adenocarcinoma cell and squamous cell carcinoma cell were well stained by SPHK1, and fibroblasts were also well stained by SPHK1. Although the IHC score of SPHK1 was not significantly differed between invasive adenocarcinoma and squamous cell carcinoma, the IHC scores of fibroblast, vimentin, and Ki-67 were higher in squamous cell carcinoma than invasive adenocarcinoma. Correlation among IHC scores in each of invasive adenocarcinoma and squamous cell carcinoma was performed. SPHK1 had positive correlation with both fibroblast and Ki-67, and fibroblast and Ki-67 had also positive correlation in invasive adenocarcinoma. On the contrary, SPHK1 had no significant correlation with fibroblast, and had negative correlation with Ki-67 in squamous cell carcinoma. Although there was not significant prognostic difference in SPHK1 score (P = .09), IHC score high group tended to be worse on relapse-free survival. SPHK1 might be prognostic factor in lung-invasive adenocarcinoma and novel target for drug against lung-invasive adenocarcinoma.
Collapse
Affiliation(s)
- Nozomu Motono
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Yoshimichi Ueda
- Department of Pathology II, Kanazawa Medical University, Uchinada, Japan
| | - Miyako Shimasaki
- Department of Pathology II, Kanazawa Medical University, Uchinada, Japan
| | - Shun Iwai
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Yoshihito Iijima
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Katsuo Usuda
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
16
|
Follicle-stimulating hormone promotes the proliferation of epithelial ovarian cancer cells by activating sphingosine kinase. Sci Rep 2020; 10:13834. [PMID: 32796926 PMCID: PMC7428003 DOI: 10.1038/s41598-020-70896-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023] Open
Abstract
Follicle-stimulating hormone (FSH) is closely related to the pathogenesis and progression of epithelial ovarian cancer (EOC). However, until now, knowledge relating to FSH-driven signalling pathways that lead to the growth of EOC remained incomplete. We sought to explore whether sphingosine kinase (SphK) could mediate FSH-induced ovarian cancer cell proliferation and which pathway might be involved in this process. The expression of phospho-SphK1 and phospho-SphK2 was detected in sections of EOC tissues by Immunohistochemical staining, and clinical significances were analyzed by statistical analysis. EOC cells were treated with FSH or/and SKI-II. CCK8 assays and colony formation assays were used to investigate cell proliferation. Western blot was carried out to detect protein expression in EOC cell line after treated with FSH. Here, for the first time, we provide evidence that high expression levels of phospho-SphK1 and phospho-SphK2 were both prognostic indicators of overall survival (OS) in EOC. Additionally, the expression levels of both phospho-SphK1 and phospho-SphK2 were closely correlated with the expression level of follicle-stimulating hormone receptor (FSHR) in ovarian cancer tissues. FSH stimulated the phosphorylation of both SphK1 and SphK2 and was able to regulate the survival and growth of ovarian cancer cells by activating SphK1 and SphK2 through ERK1/2. Both isoenzymes of SphK were equally responsible for FSH-induced cell proliferation of EOC. Both Erk1/2 and Akt activation play important roles in mediating FSH-induced cell proliferation after phosphorylation of SphK. Moreover, our data demonstrated that S1P receptor 1 (S1PR1) and S1PR3, key components of the SphK signalling system, were involved in FSH-mediated proliferation of EOC. Taken together, the results of the current study revealed that SphK is an essential mediator in FSH-induced proliferation of ovarian cancer cells in EOC, which indicates a new signalling pathway that controls FSH-mediated growth in EOC and suggests a new strategy that pharmaceutically targets both isoenzymes of SphK for the management of ovarian cancer.
Collapse
|
17
|
Abstract
Sphingosine-1-phosphate (S1P) can regulate several physiological and pathological processes. S1P signaling via its cell surface receptor S1PR1 has been shown to enhance tumorigenesis and stimulate growth, expansion, angiogenesis, metastasis, and survival of cancer cells. S1PR1-mediated tumorigenesis is supported and amplified by activation of downstream effectors including STAT3, interleukin-6, and NF-κB networks. S1PR1 signaling can also trigger various other signaling pathways involved in carcinogenesis including activation of PI3K/AKT, MAPK/ERK1/2, Rac, and PKC/Ca, as well as suppression of cyclic adenosine monophosphate (cAMP). It also induces immunological tolerance in the tumor microenvironment, while the immunosuppressive function of S1PR1 can also lead to the generation of pre-metastatic niches. Some tumor cells upregulate S1PR1 signaling pathways, which leads to drug resistant cancer cells, mainly through activation of STAT3. This signaling pathway is also implicated in some inflammatory conditions leading to the instigation of inflammation-driven cancers. Furthermore, it can also increase survival via induction of anti-apoptotic pathways, for instance, in breast cancer cells. Therefore, S1PR1 and its signaling pathways can be considered as potential anti-tumor therapeutic targets, alone or in combination therapies. Given the oncogenic nature of S1PR1 and its distribution in a variety of cancer cell types along with its targeting advantages over other molecules of this family, S1PR1 should be considered a favorable target in therapeutic approaches to cancer. This review describes the role of S1PR1 in cancer development and progression, specifically addressing breast cancer, glioma, and hematopoietic malignancies. We also discuss the potential use of S1P signaling modulators as therapeutic targets in cancer therapy.
Collapse
|
18
|
Alshaker H, Thrower H, Pchejetski D. Sphingosine Kinase 1 in Breast Cancer-A New Molecular Marker and a Therapy Target. Front Oncol 2020; 10:289. [PMID: 32266132 PMCID: PMC7098968 DOI: 10.3389/fonc.2020.00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
It is now well-established that sphingosine kinase 1 (SK1) plays a significant role in breast cancer development, progression, and spread, whereas SK1 knockdown can reverse these processes. In breast cancer cells and tumors, SK1 was shown to interact with various pathways involved in cell survival and chemoresistance, such as nuclear factor-kappa B (NFκB), Notch, Ras/MAPK, PKC, and PI3K. SK1 is upregulated by estrogen signaling, which, in turn, confers cancer cells with resistance to tamoxifen. Sphingosine-1-phosphate (S1P) produced by SK1 has been linked to tumor invasion and metastasis. Both SK1 and S1P are closely linked to inflammation and adipokine signaling in breast cancer. In human tumors, high SK1 expression has been linked with poorer survival and prognosis. SK1 is upregulated in triple negative tumors and basal-like subtypes. It is often associated with high phosphorylation levels of ERK1/2, SFK, LYN, AKT, and NFκB. Higher tumor SK1 mRNA levels were correlated with poor response to chemotherapy. This review summarizes the up-to-date evidence and discusses the therapeutic potential for the SK1 inhibition in breast cancer, with emphasis on the mechanisms of chemoresistance and combination with other therapies such as gefitinib or docetaxel. We have outlined four key areas for future development, including tumor microenvironment, combination therapies, and nanomedicine. We conclude that SK1 may have a potential as a target for precision medicine, its high expression being a negative prognostic marker in ER-negative breast cancer, as well as a target for chemosensitization therapy.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| | - Hannah Thrower
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
19
|
Mobini K, Banakar E, Tamaddon G, Mohammadi-Bardbori A. 6-Formylindolo[3,2-b]carbazole (FICZ) Enhances The Expression of Tumor Suppressor miRNAs, miR-22, miR-515-5p, and miR-124-3p in MCF-7 Cells. CELL JOURNAL 2019; 22:115-120. [PMID: 31606975 PMCID: PMC6791069 DOI: 10.22074/cellj.2020.6549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/21/2019] [Indexed: 11/22/2022]
Abstract
Objective microRNAs (miRNAs) play bifunctional roles in the initiation and progression of cancer, and recent evidence
has confirmed that unusual expression of miRNAs is required for the progress of breast cancer. The regulatory role of
aryl hydrocarbon receptor (AhR) and its endogenous ligand, 6-formylindolo[3,2-b]carbazole (FICZ) on the expression
of tumor suppressor miRNAs, miR-22, miR-515-5p and miR-124-3p, as well as their association with the estrogen
receptor alpha (ERα) were the aims of this study.
Materials and Methods In this experimental study, the expression levels of miR-22, miR-515-5p, miR-124-3p and
miR-382-5p in MCF-7 cells were determined using the quantificational real time polymerase chain reaction (qRT-PCR)
assay.
Results Our results revealed that miR-22, miR-515-5p, and miR-124-3p expressions were significantly increased in
cells transfected with ERα siRNA. Our data also showed that miR-22, miR 515-5p, and miR-124-3p expression levels
were significantly increased following FICZ treatment. Here, we found that AhR/ERα cross-talk plays a critical role in
the expression of miR-22, miR-515-5p and miR-124-3p in MCF-7 cells.
Conclusion Overall, our data demonstrated that FICZ, as an AhR agonist could induce the expression of tumor
suppressor miRNAs, miR-22, miR-515-5p, and miR-124-3p; thus, FICZ might be regarded as a potential therapeutic
agent for breast cancer treatment.
Collapse
Affiliation(s)
- Keivan Mobini
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Banakar
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Tamaddon
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.ElectronicAddress:
| |
Collapse
|
20
|
Nakazawa M, Maeda S, Yokoyama N, Nakagawa T, Yonezawa T, Ohno K, Matsuki N. Sphingosine-1-phosphate (S1P) signaling regulates the production of intestinal IgA and its potential role in the pathogenesis of canine inflammatory bowel disease. J Vet Med Sci 2019; 81:1249-1258. [PMID: 31341112 PMCID: PMC6785611 DOI: 10.1292/jvms.19-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a common gastrointestinal disease in dogs. Decreased production of intestinal immunoglobulin A (IgA) has been suggested as a possible pathogenesis in a
subset of canine IBD; however, the underlying cause remains unclear. Sphingosine-1-phosphate (S1P) is a lipid mediator that regulates intestinal IgA production by controlling lymphocyte
trafficking in mice. The objectives of this study were to clarify the role of S1P in IgA production in dogs and to evaluate the expression of S1P-related molecules in dogs with IBD. First,
an S1P receptor antagonist was administrated to five healthy dogs. The S1P receptor antagonist significantly decreased the IgA concentration in sera and feces but did not affect the IgG
concentration. Moreover, the immunoreactivity of intestinal IgA was significantly decreased by S1P signal blockade. These results indicate that S1P signaling specifically regulates the
intestinal IgA production in dogs. Subsequently, the intestinal S1P concentration and the expression of S1P-related molecules were measured in dogs with IBD and healthy dogs. The intestinal
concentration of S1P was significantly lower in dogs with IBD than in healthy dogs. In addition, the gene expression levels of S1P receptor (S1P1) and S1P synthase
(SK1) were significantly lower in dogs with IBD than in healthy dogs. Taken together, these observations suggest that decreased S1P production, likely caused by a lower
expression of S1P synthetase, leads to attenuation of S1P/S1P1 signaling pathway and the production of intestinal IgA in dogs with IBD.
Collapse
Affiliation(s)
- Maho Nakazawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nozomu Yokoyama
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taisuke Nakagawa
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koichi Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoaki Matsuki
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
21
|
Maczis MA, Maceyka M, Waters MR, Newton J, Singh M, Rigsby MF, Turner TH, Alzubi MA, Harrell JC, Milstien S, Spiegel S. Sphingosine kinase 1 activation by estrogen receptor α36 contributes to tamoxifen resistance in breast cancer. J Lipid Res 2018; 59:2297-2307. [PMID: 30315000 DOI: 10.1194/jlr.m085191] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/04/2018] [Indexed: 01/01/2023] Open
Abstract
In breast cancer, 17β-estradiol (E2) plays critical roles mainly by binding to its canonical receptor, estrogen receptor (ER) α66, and eliciting genomic effects. E2 also triggers rapid, nongenomic responses. E2 activates sphingosine kinase 1 (SphK1), increasing sphingosine-1-phosphate (S1P) that binds to its receptors, leading to important breast cancer signaling. However, the E2 receptor responsible for SphK1 activation has not yet been identified. Here, we demonstrate in triple-negative breast cancer cells, which lack the canonical ERα66 but express the novel splice variant ERα36, that ERα36 is the receptor responsible for E2-induced activation of SphK1 and formation and secretion of S1P and dihydro-S1P, the ligands for S1PRs. Tamoxifen, the first-line endocrine therapy for breast cancer, is an antagonist of ERα66, but an agonist of ERα36, and, like E2, activates SphK1 and markedly increases secretion of S1P. A major problem with tamoxifen therapy is development of acquired resistance. We found that tamoxifen resistance correlated with increased SphK1 and ERα36 expression in tamoxifen-resistant breast cancer cells, in patient-derived xenografts, and in endocrine-resistant breast cancer patients. Our data also indicate that targeting this ERα36 and SphK1 axis may be a therapeutic option to circumvent endocrine resistance and improve patient outcome.
Collapse
Affiliation(s)
- Melissa A Maczis
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael Maceyka
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael R Waters
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Jason Newton
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Manjulata Singh
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Madisyn F Rigsby
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Tia H Turner
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Mohammad A Alzubi
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - J Chuck Harrell
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sheldon Milstien
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
22
|
Ng ML, Yarla NS, Menschikowski M, Sukocheva OA. Regulatory role of sphingosine kinase and sphingosine-1-phosphate receptor signaling in progenitor/stem cells. World J Stem Cells 2018; 10:119-133. [PMID: 30310531 PMCID: PMC6177561 DOI: 10.4252/wjsc.v10.i9.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/27/2018] [Accepted: 08/05/2018] [Indexed: 02/06/2023] Open
Abstract
Balanced sphingolipid signaling is important for the maintenance of homeostasis. Sphingolipids were demonstrated to function as structural components, second messengers, and regulators of cell growth and survival in normal and disease-affected tissues. Particularly, sphingosine kinase 1 (SphK1) and its product sphingosine-1-phosphate (S1P) operate as mediators and facilitators of proliferation-linked signaling. Unlimited proliferation (self-renewal) within the regulated environment is a hallmark of progenitor/stem cells that was recently associated with the S1P signaling network in vasculature, nervous, muscular, and immune systems. S1P was shown to regulate progenitor-related characteristics in normal and cancer stem cells (CSCs) via G-protein coupled receptors S1Pn (n = 1 to 5). The SphK/S1P axis is crucially involved in the regulation of embryonic development of vasculature and the nervous system, hematopoietic stem cell migration, regeneration of skeletal muscle, and development of multiple sclerosis. The ratio of the S1P receptor expression, localization, and specific S1P receptor-activated downstream effectors influenced the rate of self-renewal and should be further explored as regeneration-related targets. Considering malignant transformation, it is essential to control the level of self-renewal capacity. Proliferation of the progenitor cell should be synchronized with differentiation to provide healthy lifelong function of blood, immune systems, and replacement of damaged or dead cells. The differentiation-related role of SphK/S1P remains poorly assessed. A few pioneering investigations explored pharmacological tools that target sphingolipid signaling and can potentially confine and direct self-renewal towards normal differentiation. Further investigation is required to test the role of the SphK/S1P axis in regulation of self-renewal and differentiation.
Collapse
Affiliation(s)
- Mei Li Ng
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney NSW 2050, Australia
| | - Nagendra S Yarla
- Department of Biochemistry and Bioinformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Andhra Pradesh, India
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden D-01307, Germany
| | - Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park SA 5042, Australia.
| |
Collapse
|
23
|
Sukocheva OA. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming. Int J Mol Sci 2018; 19:420. [PMID: 29385066 PMCID: PMC5855642 DOI: 10.3390/ijms19020420] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 02/05/2023] Open
Abstract
Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER) positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1) and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P) in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR) and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| |
Collapse
|
24
|
White C, Alshaker H, Cooper C, Winkler M, Pchejetski D. The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget 2018; 7:23106-27. [PMID: 27036015 PMCID: PMC5029614 DOI: 10.18632/oncotarget.7145] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
FTY720 (Fingolimod) is a clinically approved immunomodulating therapy for multiple sclerosis that sequesters T-cells to lymph nodes through functional antagonism of sphingosine-1-phosphate 1 receptor. FTY720 also demonstrates a proven efficacy in multiple in vitro and in vivo cancer models, suggesting a potential therapeutic role in cancer patients. A potential anticancer mechanism of FTY720 is through the inhibition of sphingosine kinase 1, a proto-oncogene with in vitro and clinical cancer association. In addition, FTY720's anticancer properties may be attributable to actions on several other molecular targets. This study focuses on reviewing the emerging evidence regarding the anticancer properties and molecular targets of FTY720. While the clinical transition of FTY720 is currently limited by its immune suppression effects, studies aiming at FTY720 delivery and release together with identifying its key synergetic combinations and relevant patient subsets may lead to its rapid introduction into the clinic.
Collapse
Affiliation(s)
| | - Heba Alshaker
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.,School of Medicine, University of East Anglia, Norwich, UK
| | - Colin Cooper
- School of Medicine, University of East Anglia, Norwich, UK
| | - Matthias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
25
|
The Role of Sphingosine-1-Phosphate and Ceramide-1-Phosphate in Inflammation and Cancer. Mediators Inflamm 2017; 2017:4806541. [PMID: 29269995 PMCID: PMC5705877 DOI: 10.1155/2017/4806541] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Accepted: 08/30/2017] [Indexed: 01/02/2023] Open
Abstract
Inflammation is part of our body's response to tissue injury and pathogens. It helps to recruit various immune cells to the site of inflammation and activates the production of mediators to mobilize systemic protective processes. However, chronic inflammation can increase the risk of diseases like cancer. Apart from cytokines and chemokines, lipid mediators, particularly sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), contribute to inflammation and cancer. S1P is an important player in inflammation-associated colon cancer progression. On the other hand, C1P has been recognized to be involved in cancer cell growth, migration, survival, and inflammation. However, whether C1P is involved in inflammation-associated cancer is not yet established. In contrast, few studies have also suggested that S1P and C1P are involved in anti-inflammatory pathways regulated in certain cell types. Ceramide is the substrate for ceramide kinase (CERK) to yield C1P, and sphingosine is phosphorylated to S1P by sphingosine kinases (SphKs). Biological functions of sphingolipid metabolites have been studied extensively. Ceramide is associated with cell growth inhibition and enhancement of apoptosis while S1P and C1P are associated with enhancement of cell growth and survival. Altogether, S1P and C1P are important regulators of ceramide level and cell fate. This review focuses on S1P and C1P involvement in inflammation and cancer with emphasis on recent progress in the field.
Collapse
|
26
|
"Dicing and Splicing" Sphingosine Kinase and Relevance to Cancer. Int J Mol Sci 2017; 18:ijms18091891. [PMID: 28869494 PMCID: PMC5618540 DOI: 10.3390/ijms18091891] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
Sphingosine kinase (SphK) is a lipid enzyme that maintains cellular lipid homeostasis. Two SphK isozymes, SphK1 and SphK2, are expressed from different chromosomes and several variant isoforms are expressed from each of the isozymes, allowing for the multi-faceted biological diversity of SphK activity. Historically, SphK1 is mainly associated with oncogenicity, however in reality, both SphK1 and SphK2 isozymes possess oncogenic properties and are recognized therapeutic targets. The absence of mutations of SphK in various cancer types has led to the theory that cancer cells develop a dependency on SphK signaling (hyper-SphK signaling) or “non-oncogenic addiction”. Here we discuss additional theories of SphK cellular mislocation and aberrant “dicing and splicing” as contributors to cancer cell biology and as key determinants of the success or failure of SphK/S1P (sphingosine 1 phosphate) based therapeutics.
Collapse
|
27
|
Hatoum D, Haddadi N, Lin Y, Nassif NT, McGowan EM. Mammalian sphingosine kinase (SphK) isoenzymes and isoform expression: challenges for SphK as an oncotarget. Oncotarget 2017; 8:36898-36929. [PMID: 28415564 PMCID: PMC5482707 DOI: 10.18632/oncotarget.16370] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
The various sphingosine kinase (SphK) isoenzymes (isozymes) and isoforms, key players in normal cellular physiology, are strongly implicated in cancer and other diseases. Mutations in SphKs, that may justify abnormal physiological function, have not been recorded. Nonetheless, there is a large and growing body of evidence demonstrating the contribution of gain or loss of function and the imbalance in the SphK/S1P rheostat to a plethora of pathological conditions including cancer, diabetes and inflammatory diseases. SphK is expressed as two isozymes SphK1 and SphK2, transcribed from genes located on different chromosomes and both isozymes catalyze the phosphorylation of sphingosine to S1P. Expression of each SphK isozyme produces alternately spliced isoforms. In recent years the importance of the contribution of SpK1 expression to treatment resistance in cancer has been highlighted and, additionally, differences in treatment outcome appear to also be dependent upon SphK isoform expression. This review focuses on an exciting emerging area of research involving SphKs functions, expression and subcellular localization, highlighting the complexity of targeting SphK in cancer and also comorbid diseases. This review also covers the SphK isoenzymes and isoforms from a historical perspective, from their first discovery in murine species and then in humans, their role(s) in normal cellular function and in disease processes, to advancement of SphK as an oncotarget.
Collapse
Affiliation(s)
- Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Eileen M. McGowan
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| |
Collapse
|
28
|
The Role of Drebrin in Cancer Cell Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:375-389. [DOI: 10.1007/978-4-431-56550-5_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Ghosal P, Sukocheva OA, Wang T, Mayne GC, Watson DI, Hussey DJ. Effects of chemotherapy agents on Sphingosine-1-Phosphate receptors expression in MCF-7 mammary cancer cells. Biomed Pharmacother 2016; 81:218-224. [PMID: 27261597 DOI: 10.1016/j.biopha.2016.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 02/05/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a potent bioactive sphingolipid involved in the regulation of cell proliferation and cancer progression. Increased expression of S1P receptors has been detected in advanced breast tumours with poor prognosis suggesting that S1P receptors might control tumour response to chemotherapy. However, it remains unclear how the levels of S1P receptor expression are influenced by chemotherapy agents. Western immunoblotting, PCR analysis and fluorescent microscopy techniques were used in this study to analyze expression patterns of S1P receptors 2 and 3 (S1P2/S1P3) in MCF-7 breast adenocarcinoma cells treated by Tamoxifen (TAM) and/or Medroxyprogesterone acetate (MPA). We found that TAM/MPA induce downregulation of S1P3 receptors, but stimulate expression of S1P2. According to cell viability and caspase activity analyses, as expected, TAM activated apoptosis. We also detected TAM/MPA-induced autophagy marked by formation of macroautophagosomes and increased level of Beclin 1. Combined application of TAM and MPA resulted in synergistic apoptosis- and autophagy-stimulating effects. Assessed by fluorescent microscopy with autophagosome marker LAMP-2, changes in S1P receptor expression coincided with activation of autophagy, suggestively, directing breast cancer cells towards death. Further studies are warranted to explore the utility of manipulation of S1P2 and S1P3 receptor expression as a novel treatment approach.
Collapse
Affiliation(s)
- P Ghosal
- Flinders University Department of Surgery & Flinders Centre for Innovation in Cancer, Flinders Medical Centre, Bedford Park, 5042, South Australia, Australia
| | - O A Sukocheva
- Flinders University Department of Surgery & Flinders Centre for Innovation in Cancer, Flinders Medical Centre, Bedford Park, 5042, South Australia, Australia.
| | - T Wang
- Flinders University Department of Surgery & Flinders Centre for Innovation in Cancer, Flinders Medical Centre, Bedford Park, 5042, South Australia, Australia
| | - G C Mayne
- Flinders University Department of Surgery & Flinders Centre for Innovation in Cancer, Flinders Medical Centre, Bedford Park, 5042, South Australia, Australia
| | - D I Watson
- Flinders University Department of Surgery & Flinders Centre for Innovation in Cancer, Flinders Medical Centre, Bedford Park, 5042, South Australia, Australia
| | - D J Hussey
- Flinders University Department of Surgery & Flinders Centre for Innovation in Cancer, Flinders Medical Centre, Bedford Park, 5042, South Australia, Australia
| |
Collapse
|
30
|
Sukocheva O, Wadham C, Gamble J, Xia P. Sphingosine-1-phosphate receptor 1 transmits estrogens' effects in endothelial cells. Steroids 2015; 104:237-245. [PMID: 26476183 DOI: 10.1016/j.steroids.2015.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/29/2015] [Accepted: 10/11/2015] [Indexed: 02/08/2023]
Abstract
We have previously reported that the steroid hormone estrogens stimulate activation of sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate (S1P) receptors in breast cancer cells. Both estrogens and S1P are potent biological modulators of endothelial function in vasculature able to activate multiple effectors, including endothelial nitric oxide synthase (eNOS). In this study we report that treatment of endothelial cells (ECs) with 17β-estradiol (E2) resulted in a rapid, transient, and dose-dependent increase in SphK activity and increased S1P production. The effect was not reproduced by the inactive E2 analogue 17α-E2. Expression of the dominant-negative mutant SphK1(G82D) or transfection of SphK1-targeted siRNA in ECs caused not only a defect in SphK activation by E2, but also a significant inhibition of E2-induced activation of Akt/eNOS. Furthermore, E2 treatment induced internalization of plasma membrane S1P1 receptor, accompanied with an increase in the amount of cytosolic S1P1. By down-regulating S1P1 receptor expression, the S1P1-specific antisense oligonucleotides significantly inhibited E2-induced activation of Akt/eNOS in ECs. E2-induced EC migration and tube formation were also inhibited by S1P1 down-regulation. Thus, the findings indicate an important role of the SphK1/S1P1 pathway in mediating estrogen signaling and its actions in vasculature.
Collapse
Affiliation(s)
- Olga Sukocheva
- School of Health Sciences, Flinders University, SA, Australia.
| | | | | | - Pu Xia
- Department of Endocrinology, Zhongsan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Datta A, Loo SY, Huang B, Wong L, Tan SSL, Tan TZ, Lee SC, Thiery JP, Lim YC, Yong WP, Lam Y, Kumar AP, Yap CT. SPHK1 regulates proliferation and survival responses in triple-negative breast cancer. Oncotarget 2015; 5:5920-33. [PMID: 25153718 PMCID: PMC4171602 DOI: 10.18632/oncotarget.1874] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by unique aggressive behavior and lack of targeted therapies. Among the various molecular subtypes of breast cancer, it was observed that TNBCs express elevated levels of sphingosine kinase 1 (SPHK1) compared to other breast tumor subtypes. High levels of SPHK1 gene expression correlated with poor overall and progression- free survival, as well as poor response to Doxorubicin-based treatment. Inhibition of SPHK1 was found to attenuate ERK1/2 and AKT signaling and reduce growth of TNBC cells in vitro and in a xenograft SCID mouse model. Moreover, SPHK1 inhibition by siRNA knockdown or treatment with SKI-5C sensitizes TNBCs to chemotherapeutic drugs. Our findings suggest that SPHK1 inhibition, which effectively counteracts oncogenic signaling through ERK1/2 and AKT pathways, is a potentially important anti-tumor strategy in TNBC. A combination of SPHK1 inhibitors with chemotherapeutic agents may be effective against this aggressive subtype of breast cancer.
Collapse
Affiliation(s)
- Arpita Datta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Ser Yue Loo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore; Cancer Science Institute of Singapore, National University of Singapore
| | - Baohua Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Lingkai Wong
- Department of Chemistry, National University of Singapore, Singapore
| | - Sheryl S L Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore
| | - Soo-Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore; Department of Haematology-Oncology, National University Hospital, Singapore; National University Cancer Institute, Singapore
| | - Jean Paul Thiery
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore; Cancer Science Institute of Singapore, National University of Singapore; National University Cancer Institute, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore
| | - Yaw Chyn Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore; Department of Haematology-Oncology, National University Hospital, Singapore; National University Cancer Institute, Singapore
| | - Yulin Lam
- Department of Chemistry, National University of Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore; Cancer Science Institute of Singapore, National University of Singapore; National University Cancer Institute, Singapore; School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Western Australia; Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Celestial T Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; National University Cancer Institute, Singapore
| |
Collapse
|
32
|
Targeting Insulin-Like Growth Factor Binding Protein-3 Signaling in Triple-Negative Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26221601 PMCID: PMC4499383 DOI: 10.1155/2015/638526] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) is a key regulatory molecule of the IGF axis and can function in a tissue-specific way as both a tumor suppressor and promoter. Triple-negative breast cancer (TNBC) has high tumor expression of IGFBP-3 associated with markers of poor prognosis and, although accounting for 15-20% of all breast cancers, is responsible for disproportionate rates of morbidity and mortality. Because they lack estrogen and progesterone receptors and overexpression of HER2, TNBC are resistant to treatments that target these molecules, making the development of new therapies an important goal. In addition to frequent high expression of IGFBP-3, these tumors also express EGFR highly, but targeting EGFR signaling alone in TNBC has been of little success. Identification of a functional growth-stimulatory interaction between EGFR and IGFBP-3 signaling prompted investigation into cotargeting these pathways as a novel therapy for TNBC. This involves inhibition of both EGFR kinase activity and a mediator of IGFBP-3's stimulatory bioactivity, sphingosine kinase-1 (SphK1), and has shown promise in a preclinical setting. Functional interaction between EGFR and IGFBP-3 may also promote chemoresistance in TNBC, and delineating the mechanisms involved may identify additional targets for development of therapies in cancers that express both IGFBP-3 and EGFR.
Collapse
|
33
|
Rhee SH, Zhang P, Hunter K, Mama ST, Caraballo R, Holzberg AS, Seftel RH, Seftel AD, Echols KT, DiSanto ME. Pelvic organ prolapse is associated with alteration of sphingosine-1-phosphate/Rho-kinase signalling pathway in human vaginal wall. J OBSTET GYNAECOL 2015; 35:726-32. [DOI: 10.3109/01443615.2015.1004527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Yagoub D, Wilkins MR, Lay AJ, Kaczorowski DC, Hatoum D, Bajan S, Hutvagner G, Lai JH, Wu W, Martiniello-Wilks R, Xia P, McGowan EM. Sphingosine kinase 1 isoform-specific interactions in breast cancer. Mol Endocrinol 2014; 28:1899-915. [PMID: 25216046 DOI: 10.1210/me.2013-1423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sphingosine kinase 1 (SK1) is a signaling enzyme that catalyzes the formation of sphingosine-1-phosphate. Overexpression of SK1 is causally associated with breast cancer progression and resistance to therapy. SK1 inhibitors are currently being investigated as promising breast cancer therapies. Two major transcriptional isoforms, SK143 kDa and SK151 kDa, have been identified; however, the 51 kDa variant is predominant in breast cancer cells. No studies have investigated the protein-protein interactions of the 51 kDa isoform and whether the two SK1 isoforms differ significantly in their interactions. Seeking an understanding of the regulation and role of SK1, we used a triple-labeling stable isotope labeling by amino acids in cell culture-based approach to identify SK1-interacting proteins common and unique to both isoforms. Of approximately 850 quantified proteins in SK1 immunoprecipitates, a high-confidence list of 30 protein interactions with each SK1 isoform was generated via a meta-analysis of multiple experimental replicates. Many of the novel identified SK1 interaction partners such as supervillin, drebrin, and the myristoylated alanine-rich C-kinase substrate-related protein supported and highlighted previously implicated roles of SK1 in breast cancer cell migration, adhesion, and cytoskeletal remodeling. Of these interactions, several were found to be exclusive to the 43 kDa isoform of SK1, including the protein phosphatase 2A, a previously identified SK1-interacting protein. Other proteins such as allograft inflammatory factor 1-like protein, the latent-transforming growth factor β-binding protein, and dipeptidyl peptidase 2 were found to associate exclusively with the 51 kDa isoform of SK1. In this report, we have identified common and isoform-specific SK1-interacting partners that provide insight into the molecular mechanisms that drive SK1-mediated oncogenicity.
Collapse
Affiliation(s)
- Daniel Yagoub
- School of Biotechnology and Biomolecular Sciences (D.Y., M.R.W.), University of New South Wales, Sydney 2052, Australia; Centenary Institute (D.Y., A.L., D.G.K., P.X., E.M.M.), Sydney 2042, Australia; Translational Cancer Research Group (D.H., R.M.-W., E.M.M.), Faculty of Science, School of Medical and Molecular Biosciences, and Faculty of Engineering and Information Technology (S.B., G.H.), University of Technology Sydney, Sydney, New South Wales 2007, Australia; Department of Biochemistry (J.H.L., W.W.), Tufts University School of Medicine, Boston, Massachusetts 02111; Shanghai Medical School (P.X.), Fudan University, 200433 Shanghai, People's Republic of China; and Sydney Medical School (E.M.M.), The University of Sydney, Sydney 2006, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Aupperlee MD, Zhao Y, Tan YS, Leipprandt JR, Bennett J, Haslam SZ, Schwartz RC. Epidermal growth factor receptor (EGFR) signaling is a key mediator of hormone-induced leukocyte infiltration in the pubertal female mammary gland. Endocrinology 2014; 155:2301-13. [PMID: 24693965 PMCID: PMC4020926 DOI: 10.1210/en.2013-1933] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well documented that macrophages and eosinophils play important roles in normal murine pubertal mammary gland development. Although it is accepted that estrogen (E) and progesterone (P) are key players in mammary gland development, the roles these hormones might play in regulating the actions of leukocytes in that process is an understudied area. We show here that P and E, respectively, induce unique, but overlapping, sets of proinflammatory and angiogenic cytokines and chemokines, in the pubertal female BALB/c mammary gland, as well as induce infiltration of macrophages and eosinophils to the mammary periepithelium. This extends earlier studies showing P induction of proinflammatory products in pubertal and adult mammary epithelial organoids and P-induced in vivo infiltration of leukocytes to the adult mammary periepithelium. Importantly, epidermal growth factor receptor-signaling, which is likely mediated by amphiregulin (Areg), a downstream mediator of E and P, is both necessary and sufficient for both E- and P-induced recruitment of macrophages and eosinophils to the pubertal mammary periepithelium. We further show that receptor activator of nuclear factor κB ligand (RANKL), although not sufficient of itself to cause macrophage and eosinophil recruitment, contributes to an optimal response to P. The potency of Areg is highlighted by the fact that it is sufficient to induce macrophage and eosinophil recruitment at levels equivalent to that induced by either E or P. Our finding of a dominant role for Areg in hormonally induced leukocyte recruitment to the pubertal mammary gland parallels its dominance in regulating ductal outgrowth and its role in P-induced proliferation in the pubertal gland.
Collapse
Affiliation(s)
- Mark D Aupperlee
- Breast Cancer and the Environment Research Program, Departments of Physiology (M.D.A., Y.Z., Y.S.T., J.R.L., J.B., S.Z.H.) and Microbiology and Molecular Genetics (R.C.S.), Michigan State University, East Lansing, Michigan 48824
| | | | | | | | | | | | | |
Collapse
|
36
|
Benesch MGK, Tang X, Maeda T, Ohhata A, Zhao YY, Kok BPC, Dewald J, Hitt M, Curtis JM, McMullen TPW, Brindley DN. Inhibition of autotaxin delays breast tumor growth and lung metastasis in mice. FASEB J 2014; 28:2655-66. [DOI: 10.1096/fj.13-248641] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Matthew G. K. Benesch
- Signal Transduction Research GroupDepartment of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Xiaoyun Tang
- Signal Transduction Research GroupDepartment of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Tatsuo Maeda
- Exploration Research LaboratoriesOno Pharmaceuticals CompanyTsukubaJapan
| | - Akira Ohhata
- Medicinal Chemistry Research LaboratoriesOno Pharmaceuticals CompanyShimamotoJapan
| | - Yuan Y. Zhao
- Department of Agricultural, Food, and Nutritional ScienceUniversity of AlbertaEdmontonAlbertaCanada
| | - Bernard P. C. Kok
- Signal Transduction Research GroupDepartment of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Jay Dewald
- Signal Transduction Research GroupDepartment of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Mary Hitt
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Jonathan M. Curtis
- Department of Agricultural, Food, and Nutritional ScienceUniversity of AlbertaEdmontonAlbertaCanada
| | - Todd P. W. McMullen
- Department of SurgeryMackenzie Health Science CentreUniversity of AlbertaEdmontonAlbertaCanada
| | - David N. Brindley
- Signal Transduction Research GroupDepartment of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
37
|
Guo S, Yu Y, Zhang N, Cui Y, Zhai L, Li H, Zhang Y, Li F, Kan Y, Qin S. Higher level of plasma bioactive molecule sphingosine 1-phosphate in women is associated with estrogen. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:836-46. [PMID: 24603322 DOI: 10.1016/j.bbalip.2014.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/14/2022]
Abstract
Both sphingosine 1-phosphate (S1P) and estrogen have been documented to play endothelial protective roles. However, it remains unclear whether estrogen could regulate the anabolism of the bioactive molecule S1P and the underlying mechanisms. In this study, 108 healthy participants were separated into three age groups, and their plasma S1P levels were analyzed by liquid chromatography tandem mass spectrometry. Results showed that the plasma S1P levels were significantly higher in women than those in men within the age of 16-55years old and higher in pre-menopausal than post-menopausal women. The experiment in C57 BL/6 mice confirmed the gender difference of plasma S1P level. In vitro study demonstrated that after the stimulation of 17β-estradiol (E2), S1P levels both in EA.hy926 cells and the culture media were increased about 9 and 3 times, respectively; the mRNA expression, the protein level and the activity of sphingosine kinase (SphK) 1, not SphK2, were markedly increased; the mRNA and protein expression of ATP-binding cassette transporter (ABC) C1, G2 and S1P transporter spinster homolog 2 (Spns2) were significantly elevated; furthermore, the mRNA and protein expressions of S1P receptors (S1PRs) 1-2 were increased in a time-dependent manner. This study suggests that E2 markedly improves S1P synthesis by activating SphK1 and induces S1P export via activating ABCC1, G2 and Spns2 from endothelium system, which may consequently lead to the gender difference of plasma S1P in adult human and mouse. The results of this study suggest that E2 may exert its vasculoprotective function by activation of the SphK1-S1P-S1PR signaling axis.
Collapse
Affiliation(s)
- Shoudong Guo
- Key Laboratory of Atherosclerosis in Universities of Shandong Province, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China
| | - Yang Yu
- Key Laboratory of Atherosclerosis in Universities of Shandong Province, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China
| | - Nan Zhang
- Key Laboratory of Atherosclerosis in Universities of Shandong Province, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China
| | - Yingjie Cui
- Key Laboratory of Atherosclerosis in Universities of Shandong Province, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China
| | - Lei Zhai
- Key Laboratory of Atherosclerosis in Universities of Shandong Province, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China
| | - Helou Li
- The Affiliated Hospital of Taishan Medical University, Taian, 271000, China
| | - Ying Zhang
- Key Laboratory of Atherosclerosis in Universities of Shandong Province, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China
| | - Fuyu Li
- Key Laboratory of Atherosclerosis in Universities of Shandong Province, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China
| | - Yujie Kan
- Key Laboratory of Atherosclerosis in Universities of Shandong Province, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong Province, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China.
| |
Collapse
|
38
|
Abstract
The signaling pathways activated by the steroid hormone oestrogen include a variety of cytoplasmic second messengers linked to a multitude of tissue-specific effects. In the last decade, sphingolipids and their membrane receptors were added to the list of oestrogen-activated mediators. Oestrogen triggers the sphingolipid signalling cascade in various tissues including breast cancer. Extensive research has shown that sphingolipids are the key regulatory molecules in growth factor networks. Sphingolipids can control the rate of cell proliferation and the differentiation outcome during malignant transformation. In this study, we summarise novel experimental evidences linking sphingolipids to oestrogen-activated effects, highlight the role of sphingolipids in cancer cells and discuss new avenues for future research at the intersection between oestrogen and sphingolipid signalling.
Collapse
Affiliation(s)
- O Sukocheva
- Division of Surgery, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia Children's Cancer Institute Australia, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
39
|
Takabe K, Spiegel S. Export of sphingosine-1-phosphate and cancer progression. J Lipid Res 2014; 55:1839-46. [PMID: 24474820 DOI: 10.1194/jlr.r046656] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator that promotes cell survival, proliferation, migration, angiogenesis, lymphangiogenesis, and immune response; all are critical processes of cancer progression. Although some important roles of intracellular S1P have recently been uncovered, the majority of its biological effects are known to be mediated via activation of five specific G protein-coupled receptors [S1P receptor (S1PR)1-S1PR5] located on the cell surface. Secretion of S1P produced inside cells by sphingosine kinases can then signal through these receptors in autocrine, paracrine, and/or endocrine manners, coined "inside-out" signaling of S1P. Numerous studies suggest that secreted S1P plays important roles in cancer progression; thus, understanding the mechanism by which S1P is exported out of cells, particularly cancer cells, is both interesting and important. Here we will review the current understanding of the transport of S1P out of cancer cells and its potential roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA 23298 Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA 23298
| |
Collapse
|
40
|
Ruckhäberle E, Karn T, Denkert C, Loibl S, Ataseven B, Reimer T, Becker S, Holtrich U, Rody A, Darb-Esfahani S, Nekljudova V, von Minckwitz G. Predictive value of sphingosine kinase 1 expression in neoadjuvant treatment of breast cancer. J Cancer Res Clin Oncol 2013; 139:1681-9. [PMID: 23955546 DOI: 10.1007/s00432-013-1490-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/02/2013] [Indexed: 02/03/2023]
Abstract
PURPOSE Sphingolipids play important roles in apoptosis and cell proliferation. Sphingosine kinase 1 (SphK1) expression has a prognostic impact in primary breast cancer, but its predictive value is currently unknown. METHODS A total of 112 breast cancer specimens from a prospective neoadjuvant chemotherapy trial (GeparDuo) were studied. Using tissue microarrays of pre-treatment core cut biopsies, we determined the expression of SphK1 by immunohistochemistry. The upper quartile of the cohort according to an immune reactive score of SphK1 was used as cutoff for high expression. RESULTS We observed a larger number of samples with high SphK1 expression among ER-negative cancers (36.8 vs. 20.5 % among ER-positive cancers; Fisher test p = 0.073). Eighteen of the 112 patients demonstrated a pathological complete response. A significant predictive value for pathological complete response was observed for ER negativity (p = 0.003), young age (p = 0.037), and high tumor grade (p = 0.049). An increased pCR rate was observed in tumors with high SphK1 expression within the luminal subtype (26.7 vs. 5.8 %; Fisher test p = 0.040). No significant difference in survival was detected according to SphK1 expression. CONCLUSIONS Our results suggest that SphK1 may be a predictive factor for pCR after neoadjuvant treatment in luminal type breast cancers and warrants further investigation.
Collapse
Affiliation(s)
- Eugen Ruckhäberle
- Department of Obstetrics and Gynecology, Goethe University Frankfurt, Theodor-Stern Kai 7, 60590, Frankfurter, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pinho FG, Frampton AE, Nunes J, Krell J, Alshaker H, Jacob J, Pellegrino L, Roca-Alonso L, de Giorgio A, Harding V, Waxman J, Stebbing J, Pchejetski D, Castellano L. Downregulation of microRNA-515-5p by the estrogen receptor modulates sphingosine kinase 1 and breast cancer cell proliferation. Cancer Res 2013; 73:5936-48. [PMID: 23928990 DOI: 10.1158/0008-5472.can-13-0158] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sphingosine kinase 1 (SK1) plays an important role in estrogen-dependent breast tumorigenesis, but its regulation is poorly understood. A subset of microRNAs (miRNA, miR) is regulated by estrogen and contributes to cellular proliferation and cancer progression. Here, we describe that miR-515-5p is transcriptionally repressed by estrogen receptor α (ERα) and functions as a tumor suppressor in breast cancer. Its downregulation enhances cell proliferation and estrogen-dependent SK1 activity, mediated by a reduction of miR-515-5p posttranscriptional repression. Enforced expression of miR-515-5p in breast cancer cells causes a reduction in SK1 activity, reduced cell proliferation, and the induction of caspase-dependent apoptosis. Conversely, opposing effects occur with miR-515-5p inhibition and by SK1 silencing. Notably, we show that estradiol (E2) treatment downregulates miR-515-5p levels, whereas the antiestrogen tamoxifen causes a decrease in SK1, which is rescued by silencing miR-515-5p. Analysis of chromatin immunoprecipitation sequencing (ChIP-Seq) data reveals that miR-515-5p suppression is mediated by a direct interaction of ERα within its promoter. RNA-sequencing (RNA-Seq) analysis of breast cancer cells after overexpressing miR-515-5p indicates that it partly modulates cell proliferation by regulating the Wnt pathway. The clinical implications of this novel regulatory system are shown as miR-515-5p is significantly downregulated in ER-positive (n = 146) compared with ER-negative (n = 98) breast cancers. Overall, we identify a new link between ERα, miR-515-5p, proliferation, and apoptosis in breast cancer tumorigenesis.
Collapse
Affiliation(s)
- Filipa G Pinho
- Authors' Affiliations: Division of Oncology, Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM); Department of Medicine and HPB Surgical Unit, Department of Surgery & Cancer, Imperial College; Department of Oncology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London; and School of Medicine, University of East Anglia, Norwich, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Alshaker H, Sauer L, Monteil D, Ottaviani S, Srivats S, Böhler T, Pchejetski D. Therapeutic potential of targeting SK1 in human cancers. Adv Cancer Res 2013; 117:143-200. [PMID: 23290780 DOI: 10.1016/b978-0-12-394274-6.00006-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sphingosine kinase 1 (SK1) is a lipid enzyme with oncogenic properties that converts the proapoptotic lipids ceramide and sphingosine into the antiapoptotic lipid sphingosine-1-phosphate and activates the signal transduction pathways that lead to cell proliferation, migration, the activation of the inflammatory response, and the impairment of apoptosis. There is compelling evidence that SK1 activation contributes to cancer progression leading to increased oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization, and metastatic spread. High levels of SK1 expression or activity have been associated with a poor prognosis in several human cancers. Recent studies using cancer cell and mouse models demonstrate a significant potential for SK1-targeting therapies to synergize with the effects of chemotherapy and radiotherapy; however, until recently the absence of clinically applicable SK1 inhibitors has limited the translation of these findings into patients. With the recent discovery of SK1 inhibiting properties of a clinically approved drug FTY720 (Fingolimod), SK1 has gained significant attention from both clinicians and the pharmaceutical industry and it is hoped that trials of newly developed SK1 inhibitors may follow soon. This review provides an overview of the SK1 signaling, its relevance to cancer progression, and the potential clinical significance of targeting SK1 for improved local or systemic control of human cancers.
Collapse
Affiliation(s)
- Heba Alshaker
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The role of sphingolipids as bioactive signaling molecules that can regulate cell fate decisions puts them at center stage for cancer treatment and prevention. While ceramide and sphingosine have been established as antigrowth molecules, sphingosine-1-phosphate (S1P) offers a progrowth message to cells. The enzymes responsible for maintaining the balance between these "stop" or "go" signals are the sphingosine kinases (SK), SK1 and SK2. While the relative contribution of SK2 is still being elucidated and may involve an intranuclear role, a substantial amount of evidence suggests that regulation of sphingolipid levels by SK1 is an important component of carcinogenesis. Here, we review the literature regarding the role of SK1 as an oncogene that can function to enhance cancer cell viability and promote tumor growth and metastasis; highlighting the importance of developing specific SK1 inhibitors to supplement current cancer therapies.
Collapse
Affiliation(s)
- Linda A Heffernan-Stroud
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
44
|
Kawabori M, Kacimi R, Karliner JS, Yenari MA. Sphingolipids in cardiovascular and cerebrovascular systems: Pathological implications and potential therapeutic targets. World J Cardiol 2013; 5:75-86. [PMID: 23675553 PMCID: PMC3653015 DOI: 10.4330/wjc.v5.i4.75] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/01/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023] Open
Abstract
The sphingolipid metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P) and its enzyme sphingosine kinase (SphK) play an important role in the regulation of cell proliferation, survival, inflammation, and cell death. Ceramide and sphingosine usually inhibit proliferation and promote apoptosis, while its metabolite S1P phosphorylated by SphK stimulates growth and suppresses apoptosis. Because these metabolites are interconvertible, it has been proposed that it is not the absolute amounts of these metabolites but rather their relative levels that determine cell fate. The relevance of this “sphingolipid rheostat” and its role in regulating cell fate has been borne out by work in many labs using many different cell types and experimental manipulations. A central finding of these studies is that SphK is a critical regulator of the sphingolipid rheostat, as it not only produces the pro-growth, anti-apoptotic messenger S1P, but also decreases levels of pro-apoptotic ceramide and sphingosine. Activation of bioactive sphingolipid S1P signaling has emerged as a critical protective pathway in response to acute ischemic injury in both cardiac and cerebrovascular disease, and these observations have considerable relevance for future potential therapeutic targets.
Collapse
|
45
|
Aoyagi T, Nagahashi M, Yamada A, Takabe K. The role of sphingosine-1-phosphate in breast cancer tumor-induced lymphangiogenesis. Lymphat Res Biol 2013; 10:97-106. [PMID: 22984905 DOI: 10.1089/lrb.2012.0010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a potent sphingolipid metabolite that regulates a number of biological processes critical for cancer. S1P produced inside cancer cells is exported and exerts its extracellular functions by binding to its specific receptors in an autocrine, paracrine, and/or endocrine manner, which is known as inside-out signaling. S1P is also known to exert its intracellular functions especially in the inflammatory process, but its relevance to cancer biology remains to be elucidated. Recently, there have been growing interests in the role of S1P in breast cancer progression, including angiogenesis and lymphangiogenesis. Our group demonstrated that activation of sphingosine kinase 1, the enzyme that catalyzes the phosphorylation of sphingosine to S1P, is a key step of this process. In this review, we will cover our current knowledge on the role of S1P signaling pathway in breast cancer progression with an emphasis on its role in tumor-induced lymphangiogenesis.
Collapse
Affiliation(s)
- Tomoyoshi Aoyagi
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, Virginia 23298-0011, USA
| | | | | | | |
Collapse
|
46
|
Sukocheva O, Wadham C, Xia P. Estrogen defines the dynamics and destination of transactivated EGF receptor in breast cancer cells: role of S1P₃ receptor and Cdc42. Exp Cell Res 2013; 319:455-465. [PMID: 23142484 DOI: 10.1016/j.yexcr.2012.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 02/08/2023]
Abstract
Sphingosine-1-phosphate (S1P) receptors mediate transactivation of epidermal growth factor receptor (EGFR) by estrogen (E2). Here we report that the amount of intracellular EGFR remains elevated after stimulation of MCF-7 cells with E2 and S1P, although membrane-localized EGFR and S1P3 receptors are quickly internalized. Co-localization of internalized EGFR and LAMP-2 was lower in cells treated with E2/S1P, suggesting that endosomal EGFR might be directed for recycling instead of degradation. In addition, we found that E2/S1P activated Cdc42 and that knockdown of Cdc42 restores fast EGFR degradation after E2/S1P stimulation. Inhibition of S1P3 receptors prevented E2-induced activation of Cdc42, supporting the important role of the S1P receptor in E2 signaling. This is a novel mechanism further defining the effect of E2/S1P on the EGFR transactivation in breast cancer cells.
Collapse
Affiliation(s)
- O Sukocheva
- Flinders Centre for Cancer Prevention and Control, Division of Surgery, Flinders University, Bedford Park, SA 5042, Australia.
| | | | | |
Collapse
|
47
|
Gandy KAO, Obeid LM. Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. Handb Exp Pharmacol 2013:275-303. [PMID: 23563662 DOI: 10.1007/978-3-7091-1511-4_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sphingolipids have emerged as pleiotropic signaling molecules with roles in numerous cellular and biological functions. Defining the regulatory mechanisms governing sphingolipid metabolism is crucial in order to develop a complete understanding of the biological functions of sphingolipid metabolites. The sphingosine kinase/ sphingosine 1-phosphate pathway was originally thought to function in the irreversible breakdown of sphingoid bases; however, in the last few decades it has materialized as an extremely important signaling pathway involved in a plethora of cellular events contributing to both normal and pathophysiological events. Recognition of the SK/S1P pathway as a second messaging system has aided in the identification of many mechanisms of its regulation; however, a cohesive, global understanding of the regulatory mechanisms controlling the SK/S1P pathway is lacking. In this chapter, the role of the SK/S1P pathway as a second messenger is discussed, and its role in mediating TNF-α- and EGF-induced biologies is examined. This work provides a comprehensive look into the roles and regulation of the sphingosine kinase/ sphingosine 1-phosphate pathway and highlights the potential of the pathway as a therapeutic target.
Collapse
Affiliation(s)
- K Alexa Orr Gandy
- The Department of Molecular and Cellular Biology and Pathobiology, The Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
48
|
Dai L, Qi Y, Chen J, Kaczorowski D, Di W, Wang W, Xia P. Sphingosine kinase (SphK) 1 and SphK2 play equivalent roles in mediating insulin's mitogenic action. Mol Endocrinol 2013; 28:197-207. [PMID: 24422628 DOI: 10.1210/me.2013-1237] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Insulin, an established mitogen that promotes breast cancer cell growth, has been implicated in the link between obesity and an increased risk of breast cancer. However, the current understanding of signaling pathways that mediate the mitogenic action of insulin remains incomplete. Here we provide the first evidence that insulin is capable of activating both sphingosine kinase (SphK) 1 and SphK 2, two isoenzymes that often exhibit opposing effects in the regulation of cell survival and growth. Insulin stimulates the phosphorylation of both SphK1 and SphK2 in a similar time- and dose-dependent manner. Interestingly, both isoenzymes are responsible equally for insulin-induced cell cycle progression and proliferation of MCF7 breast cancer cells, although SphK1 and SphK2 display different roles in mediating insulin-induced ERK1/2 and Akt activation. Moreover, the sphingosine 1-phosphate receptor 3, a key component of the SphK signaling system, is important for insulin-mediated mitogenic action in breast cancer cells. Furthermore, insulin receptor and type 1 IGF receptor (IGF1R) are responsible for the insulin-promoted mitogenic action on MCF7 breast cancer cells. Notably, IGF1R mediates insulin-stimulated phosphorylation of both SphK1 and SphK2, whereas insulin receptor is involved only in SphK1, but not SphK2, activation. Collectively the current study illustrates a new signaling system controlling the mitogenic action of insulin in breast cancer cells, suggesting a new strategy that pharmaceutically targets both isoenzymes of SphK for the management of breast cancer.
Collapse
Affiliation(s)
- Lan Dai
- Signal Transduction Program (L.D., Y.Q., J.C., D.K., P.X.), Centenary Institute, The University of Sydney, Sydney 2006, Australia; Department of Obstetrics and Gynecology (L.D., W.D.), Renji Hospital, Jiao Tong University School of Medicine, Shanghai 200001, China; and Department of Endocrinology and Metabolism (W.W., P.X.), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Gault CR, Eblen ST, Neumann CA, Hannun YA, Obeid LM. Oncogenic K-Ras regulates bioactive sphingolipids in a sphingosine kinase 1-dependent manner. J Biol Chem 2012; 287:31794-803. [PMID: 22833671 DOI: 10.1074/jbc.m112.385765] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine kinase 1 (SK1) is an important enzyme involved in the production of the bioactive lipid sphingosine 1-phosphate (S1P). SK1 is overexpressed in many forms of cancer, however, the contribution of SK1 to cancer progression is still unclear. One of the best characterized mutations found in several forms of human cancer is an activating point mutation in the Ras oncogene, which disrupts its GTPase activity and leads to stimulation of the MEK/ERK pathway. Because SK1 activity and subcellular localization have been shown to be regulated by ERK, we wished to investigate the effect of oncogenic Ras, a potent activator of the Raf/MEK/ERK pathway, on the activity of SK1 and sphingolipid metabolism. Using HEK293T cells transiently transfected with the K-RasG12V oncogene and both wild type and Sphk1(-/-) mouse embryonic fibroblasts stably infected with retroviral K-RasG12V, we found that K-RasG12V increases the production of S1P and decreases the production of ceramide in a SK1-dependent manner. In addition, we found that expression of the K-RasG12V oncogene leads to plasma membrane localization of SK1 and a reduction in cytosolic levels of SK1. This effect is likely mediated by the Raf/MEK/ERK pathway as constitutively active B-Raf or MEK1 are able to activate SK1, but constitutively active Akt1 is not. We believe this research has important implications for how sphingolipids may be contributing to oncogenic transformation and provide some of the first evidence for oncogenes inducing specific changes in sphingolipid metabolism through SK1 regulation.
Collapse
Affiliation(s)
- Christopher R Gault
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401, USA
| | | | | | | | | |
Collapse
|