1
|
Jefferson TB, Wang T, Jefferson WN, Li Y, Hamilton KJ, Wade PA, Williams CJ, Korach KS. Multiple tissue-specific epigenetic alterations regulate persistent gene expression changes following developmental DES exposure in mouse reproductive tissues. Epigenetics 2023; 18:2139986. [PMID: 36328762 PMCID: PMC9980695 DOI: 10.1080/15592294.2022.2139986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Clinically, developmental exposure to the endocrine disrupting chemical, diethylstilboestrol (DES), results in long-term male and female infertility. Experimentally, developmental exposure to DES results in abnormal reproductive tract phenotypes in male and female mice. Previously, we reported that neonatal DES exposure causes ERα-mediated aberrations in the transcriptome and in DNA methylation in seminal vesicles (SVs) of adult mice. However, only a subset of DES-altered genes could be explained by changes in DNA methylation. We hypothesized that alterations in histone modification may also contribute to the altered transcriptome during SV development. To test this idea, we performed a series of genome-wide analyses of mouse SVs at pubertal and adult developmental stages in control and DES-exposed wild-type and ERα knockout mice. Neonatal DES exposure altered ERα-mediated mRNA and lncRNA expression in adult SV, including genes encoding chromatin-modifying proteins that can impact histone H3K27ac modification. H3K27ac patterns, particularly at enhancers, and DNA methylation were reprogrammed over time during normal SV development and after DES exposure. Some of these reprogramming changes were ERα-dependent, but others were ERα-independent. A substantial number of DES-altered genes had differential H3K27ac peaks at nearby enhancers. Comparison of gene expression changes, H3K27ac marks and DNA methylation marks between adult SV and adult uterine tissue from ovariectomized mice neonatally exposed to DES revealed that most of the epigenetic changes and altered genes were distinct in the two tissues. These findings indicate that the effects of developmental DES exposure cause reprogramming of reproductive tract tissue differentiation through multiple epigenetic mechanisms.
Collapse
Affiliation(s)
- Tanner B. Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Wendy N. Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Katherine J. Hamilton
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Paul A. Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Carmen J. Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Kenneth S. Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| |
Collapse
|
2
|
Zhan T, Cui S, Shou H, Gao L, Lu S, Zhang C, Zhuang S. Transcriptome aberration in mice uterus associated with steroid hormone response and inflammation induced by dioxybenzone and its metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117294. [PMID: 33971472 DOI: 10.1016/j.envpol.2021.117294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/28/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Benzophenone-type UV filters have been implicated in multiple adverse reproductive outcomes, yet the underlying processes and molecular targets on the female reproductive tract remain largely unknown. Herein, we investigated the effect of dioxybenzone, one of the widely used congeners, and its demethylated (M1) and hydroxylated (M2) metabolites on transcriptome profiles of ICR mice uterus and identified potential cellular targets in human endometrial stromal cells (HESCs) separated from normal endometrium tissues. Dioxybenzone, M1 and M2 (20 mg/kg bw/d) significantly induced transcriptome aberration with the induction of 683, 802, and 878 differentially expressed genes mainly involved in cancer, reproductive system disease and inflammatory disease. Compared to dioxybenzone, M1 and M2 exhibited a transcriptome profile more similar to estradiol in mice uterus, and subsequently promoted thicker endometrial columnar epithelial layer through upregulation of estrogen receptor target genes-Sprr2s. Dioxybenzone, M1 and M2 (0.1 or 1 μM) also exhibited estrogenic disrupting effect via increasing the mRNA expressions and production of the growth factors responsible for epithelial proliferation, including Fgfs and Igf-1 in HESCs. Additionally, the mRNA expressions of several inflammatory cytokines especially IL-1β in mice uterus and HESCs was significantly upregulated by dioxybenzone and its metabolites. Overall, we revealed that dioxybenzone and its metabolites triggered transcriptome perturbation dually associated with abnormal steroid hormone response and inflammation, both as key determinants to reproductive health risks.
Collapse
Affiliation(s)
- Tingjie Zhan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shixuan Cui
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huafeng Shou
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Leilei Gao
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Shaoyong Lu
- Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston, Clear Lake, TX, 77058, USA
| | - Shulin Zhuang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Evaluation of Development of the Rat Uterus as a Toxicity Biomarker. Methods Mol Biol 2021. [PMID: 33423230 DOI: 10.1007/978-1-0716-1091-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The developing uterus is highly sensitive to a brief exposure to different substances, in particular those with endocrine-disrupting activity. Thus, exposure to environmental, nutritional, chemical, and other xenobiotic factors affecting signaling events during critical organizational periods can alter the normal course of uterine development with lasting consequences. In this chapter, we provide an experimental protocol to evaluate the development of the rat uterus as a toxicity biomarker at two different developmental time points: (1) the neonatal period, on postnatal day (PND) 8, and (2) the prepubertal period, on PND21. In this experimental approach, we propose to assess: (1) uterine morphology and cytodifferentiation, (2) uterine cell proliferation, and (3) the expression of proteins involved in uterine organogenetic differentiation. All these morphological and molecular markers are useful tools to determine the consequences of exposure to toxicants with the potential to disrupt the uterine development.
Collapse
|
4
|
Sarin H. Pressure regulated basis for gene transcription by delta-cell micro-compliance modeled in silico: Biphenyl, bisphenol and small molecule ligand models of cell contraction-expansion. PLoS One 2020; 15:e0236446. [PMID: 33021979 PMCID: PMC7537880 DOI: 10.1371/journal.pone.0236446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Molecular diameter, lipophilicity and hydrophilicity exclusion affinity limits exist for small molecule carrier-mediated diffusion or transport through channel pores or interaction with the cell surface glycocalyx. The molecular structure lipophilicity limit for non-specific carrier-mediated transmembrane diffusion through polarity-selective transport channels of the cell membrane is Lexternal structure ∙ Hpolar group-1 of ≥ 1.07. The cell membrane channel pore size is > 0.752 and < 0.758 nm based on a 3-D ellipsoid model (biphenyl), and within the molecular diameter size range 0.744 and 0.762 nm based on a 2-D elliptical model (alkanol). The adjusted van der Waals diameter (vdWD, adj; nm) for the subset of halogenated vapors is predictive of the required MAC for anesthetic potency at an initial (-) Δ Cmicro effect. The molecular structure L ∙ Hpolar group-1 for Neu5Ac is 0.080, and the L ∙ Hpolar group-1 interval range for the cell surface glycocalyx hydrophilicity barrier interaction is 0.101 (Saxitoxin, Stx; Linternal structure ∙ Hpolar group-1) - 0.092 (m-xylenediamine, Lexternal structure · Hpolar group). Differential predictive effective pressure mapping of gene activation or repression reveals that p-dioxin exposure results in activation of AhR-Erβ (Arnt)/Nrf-2, Pparδ, Errγ (LxRα), Dio3 (Dio2) and Trα limbs, and due to high affinity Dio2 and Dio3 (OH-TriCDD, Lext · H-1: 1.91–4.31) exothermy-antagonism (Δ contraction) with high affinity T4/rT3-TRα-mediated agonism (Δ expansion). co-planar PCB metabolite exposure (Lext · H-1: 1.95–3.91) results in activation of AhR (Erα/β)/Nrf2, Rev-Erbβ, Errα, Dio3 (Dio2) and Trα limbs with a Δ Cmicro contraction of 0.89 and Δ Cmicro expansion of 1.05 as compared to p-dioxin. co-, ortho-planar PCB metabolite exposure results in activation of Car/PxR, Pparα (Srebf1,—Lxrβ), Arnt (AhR-Erβ), AR, Dio1 (Dio2) and Trβ limbs with a Δ Cmicro contraction of 0.73 and Δ Cmicro expansion of 1.18 (as compared to p-dioxin). Bisphenol A exposure (Lext struct ∙ H-1: 1.08–1.12, BPA–BPE, Errγ; BPAF, Lext struct ∙ H-1: 1.23, CM Erα, β) results in increased duration at Peff for Timm8b (Peff 0.247) transcription and in indirect activation of the AhR/Nrf-2 hybrid pathway with decreased duration at Peff 0.200 (Nrf1) and increased duration at Peff 0.257 (Dffa). The Bpa/Bpaf convergent pathway Cmicro contraction-expansion response increase in the lower Peff interval is 0.040; in comparison, small molecule hormone Δ Cmicro contraction-expansion response increases in the lower Peff intervals for gene expression ≤ 0.168 (Dex· GR) ≥ 0.156 (Dht · AR), with grade of duration at Peff (min·count) of 1.33x105 (Dex/Cort) and 1.8–2.53x105 (Dht/R1881) as compared to the (-) coupled (+) Δ CmicroPeff to 0.136 (Wnt5a, Esr2) with applied DES (1.86x106). The subtype of trans-differentiated cell as a result of an applied toxin or toxicant is predictable by delta-Cmicro determined by Peff mapping. Study findings offer additional perspective on the basis for pressure regulated gene transcription by alterations in cell micro-compliance (Δ contraction-expansion, Cmicro), and are applicable for the further predictive modeling of gene to gene transcription interactions, and small molecule modulation of cell effective pressure (Peff) and its potential.
Collapse
Affiliation(s)
- Hemant Sarin
- Freelance Investigator in Translational Science and Medicine, Charleston, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
5
|
Jefferson WN, Padilla-Banks E, Suen AA, Royer LJ, Zeldin SM, Arora R, Williams CJ. Uterine Patterning, Endometrial Gland Development, and Implantation Failure in Mice Exposed Neonatally to Genistein. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:37001. [PMID: 32186404 PMCID: PMC7138129 DOI: 10.1289/ehp6336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Embryo implantation relies on precise hormonal regulation, associated gene expression changes, and appropriate female reproductive tract tissue architecture. Female mice exposed neonatally to the phytoestrogen genistein (GEN) at doses similar to those in infants consuming soy-based infant formulas are infertile due in part to uterine implantation defects. OBJECTIVES Our goal was to determine the mechanisms by which neonatal GEN exposure causes implantation defects. METHODS Female mice were exposed to GEN on postnatal days (PND)1-5 and uterine tissues collected on PND5, PND22-26, and during pregnancy. Analysis of tissue weights, morphology, and gene expression was performed using standard histology, confocal imaging with three-dimensional analysis, real-time reverse transcription polymerase chain reaction (real-time RT-PCR), and microarrays. The response of ovariectomized adults to 17 β -estradiol (E2) and artificial decidualization were measured. Leukemia inhibitory factor (LIF) injections were given intraperitoneally and implantation sites visualized. Gene expression patterns were compared with curated data sets to identify upstream regulators. RESULTS GEN-exposed mice exhibited reduced uterine weight gain in response to E2 treatment or artificial decidualization compared with controls; however, expression of select hormone responsive genes remained similar between the two groups. Uteri from pregnant GEN-exposed mice were posteriorized and had reduced glandular epithelium. Implantation failure was not rescued by LIF administration. Microarray analysis of GEN-exposed uteri during early pregnancy revealed significant overlap with several conditional uterine knockout mouse models, including Foxa2, Wnt4, and Sox17. These models exhibit reduced endometrial glands, features of posteriorization and implantation failure. Expression of Foxa2, Wnt4, and Sox17, as well as genes important for neonatal uterine differentiation (Wnt7a, Hoxa10, and Msx2), were severely disrupted on PND5 in GEN-exposed mice. DISCUSSION Our findings suggest that neonatal GEN exposure in mice disrupts expression of genes important for uterine development, causing posteriorization and diminished gland function during pregnancy that contribute to implantation failure. These findings could have implications for women who consumed soy-based formulas as infants. https://doi.org/10.1289/EHP6336.
Collapse
Affiliation(s)
- Wendy N. Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alisa A. Suen
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Lindsey J. Royer
- Department of Obstetrics, Gynecology, and Reproductive Biology, Institute for Quantitative Health Science and Engineering, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Sharon M. Zeldin
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology, and Reproductive Biology, Institute for Quantitative Health Science and Engineering, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Carmen J. Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
6
|
Duan H, Xiao L, Hu J, Zhang Y, Zhao X, Ge W, Jiang Y, Song L, Yang S, Luo W. Expression of oestrogen receptor, androgen receptor and progesterone nuclear receptor in sheep uterus during the oestrous cycle. Reprod Domest Anim 2019; 54:1305-1312. [PMID: 31188500 DOI: 10.1111/rda.13489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022]
Abstract
Oestrogen, androgen and progesterone are involved in the regulation of uterine physiological functions, with the participation of the following proteins: oestrogen receptor (ER), androgen receptor (AR) and progesterone nuclear receptor (PGR). In this study, we used immunohistochemistry to detect the localization of ERα, ERβ, AR and PGR in sheep uterus. Additionally, we used real-time polymerase chain reaction (RT-qPCR) and Western blot technique to analyse their expression profiles at different stages of sheep oestrous cycle in the endometrium and myometrium. Immunohistochemical analysis showed that ERα, ERβ, AR and PGR were present in sheep uterus in oestrus, mainly in the uterine luminal epithelium, stroma, gland and myometrium. Real-time polymerase chain reaction results showed that in the endometrium, ERα expression level was highest in oestrus. ERβ and PGR, instead, were highly expressed in pro-oestrus. In the myometrium, ERα was highly expressed in both oestrus and pro-oestrus, and ERβ was highly expressed in oestrus and dioestrus. Progesterone nuclear receptor expression was highest in oestrus, followed by metoestrus. In the endometrium, both receptors ERα and ERβ were abundant in pro-oestrus, while the maximum AR protein content was found in oestrus. At this stage of the oestrous cycle, PGR protein concentration in the myometrium was significantly lower than those observed in other stages. These results suggest that these receptors are important for sheep reproductive function, as their expression at mRNA and protein levels exhibits particular time- and tissue-specific profiles along the oestrous cycle.
Collapse
Affiliation(s)
- Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Longfei Xiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wenbo Ge
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yuting Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Liangli Song
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shanshan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wenze Luo
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Ikeda Y, Kato-Inui T, Tagami A, Maekawa M. Expression of progesterone receptor, estrogen receptors α and β, and kisspeptin in the hypothalamus during perinatal development of gonad-lacking steroidogenic factor-1 knockout mice. Brain Res 2019; 1712:167-179. [PMID: 30776325 DOI: 10.1016/j.brainres.2019.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 11/30/2022]
Abstract
Gonadal hormones contribute to brain sexual differentiation. We analyzed expression of progesterone receptor (PR), estrogen receptor-α (ERα), ERβ, and kisspeptin, in the preoptic area (POA) and/or the arcuate nucleus (ARC), in gonad-lacking steroidogenic factor-1 knockout (KO) mice during perinatal development. At postnatal-day (P) 0-P7, POA PR levels were higher in wild-type (WT) males compared with WT females, while those in KO males were lower than in WT males and similar to those in WT and KO females. At P14-P21, PR levels in all groups increased similarly. POA ERα levels were similar in all groups at embryonic-day (E) 15.5-P14. Those in WT but not KO males reduced during postnatal development to be significantly lower compared with females at P21. POA ERβ levels were higher in WT males than in WT females, while those in KO males were lower than in WT males and similar to those in WT and KO females at P0-P21. POA kisspeptin expression was female-biased in WT mice, while levels in KO females were lower compared with WT females and similar to those in WT and KO males. ARC kisspeptin levels were equivalent among groups at E15.5-P0. At P7-P21, ARC levels in WT but not KO males became lower compared with WT females. Diethylstilbestrol exposure during P0-P6 and P7-P13 increased POA PR and ERβ, and decreased POA ERα and ARC kisspeptin levels at P7 and/or P14 in both sexes of KO mice. These data further understanding of gonadal hormone action on neuronal marker expression during brain sexual development.
Collapse
Affiliation(s)
- Yayoi Ikeda
- Department of Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
| | - Tomoko Kato-Inui
- Koeki Zaidan Hojin Tokyo-to Igaku Sogo Kenkyujo, Regenerative Medicine Project 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Ayako Tagami
- Department of Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Mamiko Maekawa
- Department of Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| |
Collapse
|
8
|
Jefferson WN, Kinyamu HK, Wang T, Miranda AX, Padilla-Banks E, Suen AA, Williams CJ. Widespread enhancer activation via ERα mediates estrogen response in vivo during uterine development. Nucleic Acids Res 2018; 46:5487-5503. [PMID: 29648668 PMCID: PMC6009594 DOI: 10.1093/nar/gky260] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 01/07/2023] Open
Abstract
Little is known regarding how steroid hormone exposures impact the epigenetic landscape in a living organism. Here, we took a global approach to understanding how exposure to the estrogenic chemical, diethylstilbestrol (DES), affects the neonatal mouse uterine epigenome. Integration of RNA- and ChIP-sequencing data demonstrated that ∼80% of DES-altered genes had higher H3K4me1/H3K27ac signal in close proximity. Active enhancers, of which ∼3% were super-enhancers, had a high density of estrogen receptor alpha (ERα) binding sites and were correlated with alterations in nearby gene expression. Conditional uterine deletion of ERα, but not the pioneer transcription factors FOXA2 or FOXO1, prevented the majority of DES-mediated changes in gene expression and H3K27ac signal at target enhancers. An ERα dependent super-enhancer was located at the Padi gene locus and a topological connection to the Padi1 TSS was documented using 3C-PCR. Chromosome looping at this site was independent of ERα and DES exposure, indicating that the interaction is established prior to ligand signaling. However, enrichment of H3K27ac and transcriptional activation at this locus was both DES and ERα-dependent. These data suggest that DES alters uterine development and consequently adult reproductive function by modifying the enhancer landscape at ERα binding sites near estrogen-regulated genes.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - H Karimi Kinyamu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Adam X Miranda
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Elizabeth Padilla-Banks
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Alisa A Suen
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Carmen J Williams
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
9
|
Modonesi C, Oddone E, Panizza C, Gatta G. Childhood cancer and environmental integrity: a commentary and a proposal. Rev Saude Publica 2017; 51:29. [PMID: 28423135 PMCID: PMC5396496 DOI: 10.1590/s1518-8787.2017051006744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 06/25/2016] [Indexed: 01/04/2023] Open
Abstract
Improvements in the health standards of developed and developing societies depend primarily on the relationships between economy and environment. Recent long-term changes in the chemical composition of man-made environments may be linked to changes in the biology of human beings. Here we argue that children are at the greatest risk of being affected by the dangerous effects of these changes, with particular reference to cancer. The concept of cancer risk must be extended to new contexts. Considering the increasing rates of chemical pollution and its spreading in the environment, we illustrate a proposal aiming to protect the human health, in an intra- and intergenerational perspective. A surveillance system of occupational and residential exposures should be implemented to prevent cancer risk in embryos and children.
Collapse
Affiliation(s)
- Carlo Modonesi
- Department of Life Sciences. University of Parma. Parma, Italy.,Cancer Registry and Environmental Epidemiology Unit. Fondazione IRCCS Istituto Nazionale dei Tumori. Milano, Italy
| | - Enrico Oddone
- Department of Public Health. Experimental and Forensic Medicine. Occupational Medicine Unit. University of Pavia. Pavia, Italy
| | - Celestino Panizza
- Service for Occupational Safety and Prevention. Local Health Unit (ASL). Brescia, Italy
| | - Gemma Gatta
- Evaluative Epidemiology Unit. Fondazione IRCCS Istituto Nazionale dei Tumori. Milano, Italy
| |
Collapse
|
10
|
Suzuki A, Watanabe H, Mizutani T, Sato T, Ohta Y, Iguchi T. Global Gene Expression in Mouse Vaginae Exposed to Diethylstilbestrol at Different Ages. Exp Biol Med (Maywood) 2016; 231:632-40. [PMID: 16636312 DOI: 10.1177/153537020623100518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Estrogens regulate proliferation and differentiation of cells in target organs such as the female reproductive tract. In mature mice, estrogens stimulate cell proliferation, whereas ovariectomy results in atrophy of the female reproductive tract. In contrast, perinatal exposure to estrogens, including diethylstilbestrol (DES), induces persistent, ovary-independent vaginal stratification and cervico-vaginal tumors later in life. These effects are due to altered cell fate following DES exposure during a critical developmental period. The detailed mechanisms underlying the reversible and irreversible cell proliferation in vaginae induced by DES at different ages has not been clarified. Therefore, we examined differences in gene expression pattern using DNA microarray analysis in mouse vaginae 6 hrs after a single injection of 2 μg DES per gram of body weight, and proliferation of vaginal epithelial and stromal cells 24 hrs after the injection at postnatal days (PNDs) 0, 5, 20, and 70. After DES stimulation, vaginal epithelial and stromal cells showed cell proliferation at PNDs 20 and 70, and at PNDs 0 and 5, respectively. DNA microarray analysis exhibited 54 DES-induced genes and 9 DES-repressed genes in vaginae at PND 0, whereas more than 200 DES-induced genes were found in vaginae at PNDs 5 and 20, and 350 genes at PND 70. Clustering analysis of DES-induced genes in the vaginae at different ages revealed that genes induced by DES at PND 5 were closer to the adult type than that of PND 0. Genes related to keratinocyte differentiation, such as Gadd45α, p21, 14–3–3 sigma, small proline-rich protein 2f (Sprr2f), and Krupple-like factor 4 (Klf4), were induced by DES. The number of DES-induced genes during the critical period, PND 0, was smaller than those found after the critical period. These results give insight toward understanding the molecular mechanisms underlying the critical period in mouse vaginae.
Collapse
Affiliation(s)
- Atsuko Suzuki
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Msx1 and Msx2 function together in the regulation of primordial germ cell migration in the mouse. Dev Biol 2016; 417:11-24. [PMID: 27435625 PMCID: PMC5407493 DOI: 10.1016/j.ydbio.2016.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 11/23/2022]
Abstract
Primordial germ cells (PGCs) are a highly migratory cell population that gives rise to eggs and sperm. Much is known about PGC specification, but less about the processes that control PGC migration. In this study, we document a deficiency in PGC development in embryos carrying global homozygous null mutations in Msx1 and Msx2, both immediate downstream effectors of Bmp signaling pathway. We show that Msx1−/−;Msx2−/− mutant embryos have defects in PGC migration as well as a reduced number of PGCs. These phenotypes are also evident in a Mesp1-Cre-mediated mesoderm-specific mutant line of Msx1 and Msx2. Since PGCs are not marked in Mesp1-lineage tracing, our results suggest that Msx1 and Msx2 function cell non-autonomously in directing PGC migration. Consistent with this hypothesis, we noted an upregulation of fibronectin, well known as a mediator of cell migration, in tissues through which PGCs migrate. We also noted a reduction in the expression of Wnt5a and an increase in the expression in Bmp4 in such tissues in Msx1−/−;Msx2−/− mutants, both known effectors of PGC development.
Collapse
|
12
|
Jacquinet A, Millar D, Lehman A. Etiologies of uterine malformations. Am J Med Genet A 2016; 170:2141-72. [PMID: 27273803 DOI: 10.1002/ajmg.a.37775] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
Ranging from aplastic uterus (including Mayer-Rokitansky-Kuster-Hauser syndrome) to incomplete septate uterus, uterine malformations as a group are relatively frequent in the general population. Specific causes remain largely unknown. Although most occurrences ostensibly seem sporadic, familial recurrences have been observed, which strongly implicate genetic factors. Through the study of animal models, human syndromes, and structural chromosomal variation, several candidate genes have been proposed and subsequently tested with targeted methods in series of individuals with isolated, non-isolated, or syndromic uterine malformations. To date, a few genes have garnered strong evidence of causality, mainly in syndromic presentations (HNF1B, WNT4, WNT7A, HOXA13). Sequencing of candidate genes in series of individuals with isolated uterine abnormalities has been able to suggest an association for several genes, but confirmation of a strong causative effect is still lacking for the majority of them. We review the current state of knowledge about the developmental origins of uterine malformations, with a focus on the genetic variants that have been implicated or associated with these conditions in humans, and we discuss potential reasons for the high rate of negative results. The evidence for various environmental and epigenetic factors is also reviewed. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adeline Jacquinet
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Center for Human Genetics, Centre Hospitalier Universitaire and University of Liège, Liège, Belgium
| | - Debra Millar
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Child and Family Research Institute, Vancouver, Canada
| |
Collapse
|
13
|
Zama AM, Bhurke A, Uzumcu M. Effects of Endocrine-disrupting Chemicals on Female Reproductive Health. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874070701610010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are increasingly prevalent in the environment and the evidence demonstrates that they affect reproductive health, has been accumulating for the last few decades. In this review of recent literature, we present evidence of the effects of estrogen-mimicking EDCs on female reproductive health especially the ovaries and uteri. As representative EDCs, data from studies with a pharmaceutical estrogen, diethylstilbestrol (DES), an organochlorine pesticide methoxychlor (MXC), a phytoestrogen (genistein), and a chemical used in plastics, bisphenol a (BPA) have been presented. We also discuss the effects of a commonly found plasticizer in the environment, a phthalate (DEHP), even though it is not a typical estrogenic EDC. Collectively, these studies show that exposures during fetal and neonatal periods cause developmental reprogramming leading to adult reproductive disease. Puberty, estrous cyclicity, ovarian follicular development, and uterine functions are all affected by exposure to these EDCs. Evidence that epigenetic modifications are involved in the progression to adult disease is also presented.
Collapse
|
14
|
Yin Y, Lin C, Zhang I, Fisher AV, Dhandha M, Ma L. Homeodomain Transcription Factor Msx-2 Regulates Uterine Progenitor Cell Response to Diethylstilbestrol. ACTA ACUST UNITED AC 2015; 1. [PMID: 26457333 DOI: 10.19104/jstb.2015.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The fate of mouse uterine epithelial progenitor cells is determined between postnatal days 5 to 7. Around this critical time window, exposure to an endocrine disruptor, diethylstilbestrol (DES), can profoundly alter uterine cytodifferentiation. We have shown previously that a homeo domain transcription factor MSX-2 plays an important role in DES-responsiveness in the female reproductive tract (FRT). Mutant FRTs exhibited a much more severe phenotype when treated with DES, accompanied by gene expression changes that are dependent on Msx2. To better understand the role that MSX-2 plays in uterine response to DES, we performed global gene expression profiling experiment in mice lacking Msx2 By comparing this result to our previously published microarray data performed on wild-type mice, we extracted common and differentially regulated genes in the two genotypes. In so doing, we identified potential downstream targets of MSX-2, as well as genes whose regulation by DES is modulated through MSX-2. Discovery of these genes will lead to a better understanding of how DES, and possibly other endocrine disruptors, affects reproductive organ development.
Collapse
Affiliation(s)
- Yan Yin
- Division of Dermatology, Washington University School of Medicine, St. Louis, MO
| | - Congxing Lin
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Ivy Zhang
- Department of Dermatology, Saint Louis University School of Medicine, St. Louis, MO
| | | | | | | |
Collapse
|
15
|
Vigezzi L, Bosquiazzo VL, Kass L, Ramos JG, Muñoz-de-Toro M, Luque EH. Developmental exposure to bisphenol A alters the differentiation and functional response of the adult rat uterus to estrogen treatment. Reprod Toxicol 2015; 52:83-92. [PMID: 25666754 DOI: 10.1016/j.reprotox.2015.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
We assessed the long-term effect of perinatal exposure to bisphenol A (BPA) on the rat uterus and the uterine response to estrogen (E2) replacement therapy. BPA (0.5 or 50μg/kg/day) was administered in the drinking water from gestational day 9 until weaning. We studied the uterus of female offspring on postnatal day (PND) 90 and 360, and the uterine E2 response on PND460 (PND460-E2). On PND90, BPA-exposed rats showed altered glandular proliferation and α-actin expression. On PND360, BPA exposure increased the incidence of abnormalities in the luminal and glandular epithelium. On PND460-E2, the multiplicity of glands with squamous metaplasia increased in BPA50 while the incidence of glands with daughter glands increased in BPA0.5. The expression of steroid receptors, p63 and IGF-I was modified in BPA-exposed rats on PND460-E2. The long-lasting effects of perinatal exposure to BPA included induction of abnormalities in uterine tissue and altered response to E2 replacement therapy.
Collapse
Affiliation(s)
- Lucía Vigezzi
- Instituto de Salud y Ambiente del Litoral (ISAL) - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Verónica L Bosquiazzo
- Instituto de Salud y Ambiente del Litoral (ISAL) - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL) - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge G Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL) - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL) - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL) - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
16
|
Abstract
Environmental exposures have a significant influence on the chronic health conditions plaguing children and adults. Although the Developmental Origins of Health and Disease (DOHaD) paradigm historically has focused on nutrition, an expanding body of research specifically communicates the effects of chemical exposures on early-life development and the propagation of non-communicable disease across the lifespan. This paper provides an overview of 20 years of research efforts aimed at identifying critical windows of susceptibility to environmental exposures and the signaling changes and epigenetic influences associated with disease progression. DOHaD grants funded by the National Institute of Environmental Health Sciences (NIEHS) in 1991, 2001 and 2011 are identified by grant-analysis software, and each portfolio is analyzed for exposures, disease endpoints, windows of exposure, study design and impact on the field based on publication data. Results show that the 1991 and 2001 portfolios comprised metals, PCBs and air pollutants; however, by 2011, the portfolio has evolved to include or expand the variety of endocrine disruptors, pesticides/persistent organic pollutants and metals. An assortment of brain-health endpoints is most targeted across the portfolios, whereas reproduction and cancer increase steadily over the same time period, and new endpoints like obesity are introduced by 2011. With mounting evidence connecting early-life exposures to later-life disease, we conclude that it is critical to expand the original DOHaD concept to include environmental chemical exposures, and to continue a research agenda that emphasizes defining sensitive windows of exposure and the mechanisms that cause disease.
Collapse
|
17
|
Hendry WJ, Hariri HY, Alwis ID, Gunewardena SS, Hendry IR. Altered gene expression patterns during the initiation and promotion stages of neonatally diethylstilbestrol-induced hyperplasia/dysplasia/neoplasia in the hamster uterus. Reprod Toxicol 2014; 50:68-86. [PMID: 25242112 DOI: 10.1016/j.reprotox.2014.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/18/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Neonatal treatment of hamsters with diethylstilbestrol (DES) induces uterine hyperplasia/dysplasia/neoplasia (endometrial adenocarcinoma) in adult animals. We subsequently determined that the neonatal DES exposure event directly and permanently disrupts the developing hamster uterus (initiation stage) so that it responds abnormally when it is stimulated with estrogen in adulthood (promotion stage). To identify candidate molecular elements involved in progression of the disruption/neoplastic process, we performed: (1) immunoblot analyses and (2) microarray profiling (Affymetrix Gene Chip System) on sets of uterine protein and RNA extracts, respectively, and (3) immunohistochemical analysis on uterine sections; all from both initiation stage and promotion stage groups of animals. Here we report that: (1) progression of the neonatal DES-induced hyperplasia/dysplasia/neoplasia phenomenon in the hamster uterus involves a wide spectrum of specific gene expression alterations and (2) the gene products involved and their manner of altered expression differ dramatically during the initiation vs. promotion stages of the phenomenon.
Collapse
Affiliation(s)
- William J Hendry
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, United States.
| | - Hussam Y Hariri
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, United States
| | - Imala D Alwis
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, United States
| | - Sumedha S Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States; Bioinformatics Core, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Isabel R Hendry
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, United States
| |
Collapse
|
18
|
Bosquiazzo VL, Vigezzi L, Muñoz-de-Toro M, Luque EH. Perinatal exposure to diethylstilbestrol alters the functional differentiation of the adult rat uterus. J Steroid Biochem Mol Biol 2013; 138:1-9. [PMID: 23454116 DOI: 10.1016/j.jsbmb.2013.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
The exposure to endocrine disrupters and female reproductive tract disorders has not been totally clarified. The present study assessed the long-term effect of perinatal (gestation+lactation) exposure to diethylstilbestrol (DES) on the rat uterus and the effect of estrogen replacement therapy. DES (5μg/kg bw/day) was administered in the drinking water from gestational day 9 until weaning and we studied the uterus of young adult (PND90) and adult (PND360) females. To investigate whether perinatal exposure to DES modified the uterine response to a long-lasting estrogen treatment, 12-month-old rats exposed to DES were ovariectomized and treated with 17β-estradiol for 3 months (PND460). In young adult rats (PND90), the DES treatment decreased both the proliferation of glandular epithelial cells and the percentage of glandular perimeter occupied by α-smooth muscle actin-positive cells. The other tissue compartments remained unchanged. Cell apoptosis was not altered in DES-exposed females. In control adult rats (PND360), there were some morphologically abnormal uterine glands. In adult rats exposed to DES, the incidence of glands with cellular anomalies increased. In response to estrogens (PND460), the incidence of cystic glands increased in the DES group. We observed glands with daughter glands and conglomerates of glands only on PND460 and in response to estrogen replacement therapy, independently of DES exposure. The p63 isoforms were expressed without changes on PND460. Estrogen receptors α and β showed no changes, while the progesterone receptor decreased in the subepithelial stroma of DES-exposed animals with estrogen treatment. The long-lasting effects of perinatal exposure to DES included the induction of abnormalities in uterine tissues of aged female rats and an altered response of the adult uterus to estradiol.
Collapse
Affiliation(s)
- Verónica L Bosquiazzo
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | | | | |
Collapse
|
19
|
Zulfahmi S, Yazan LS, Ithnin H, Armania N. The improvement of in vivo model (Balb/c mice) for cervical carcinogenesis using diethylstilbestrol (DES). ACTA ACUST UNITED AC 2013; 65:1083-9. [PMID: 23726752 DOI: 10.1016/j.etp.2013.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/09/2013] [Accepted: 04/23/2013] [Indexed: 11/25/2022]
Abstract
Cervical cancer is the most common gynecological cancer and one of the major causes of female cancer-related death worldwide particularly in developing countries. Thus far, there are a few in vivo models have been developed in investigating this type of cancer. In this study, we induced cervical cancer in Balb/c mice by exploiting the carcinogenic property of diestylstilbestrol (DES). The Balb/c pregnant mice were given subcutaneous (SC) injection of 67μg/kg body weight of DES on GD 13, and the mice gave birth approximately at gestation day 19-22. Female offspring were reared and the body weight was recorded once weekly. The female offspring were sacrificed at age of 5 months. Upon termination, blood was collected in a plain tube via cardiac puncture and the reproductive tracts were collected and weighed. The reproductive tract sections were stained using H&E for observation of pathological changes. The progression of disease state was monitored by measuring the level of serum interleukin (IL-6) using the Mouse IL-6 ELISA Assay Kit (BD OptEIA™, USA). All parameters were compared with Not-induced group. The outcome of this study demonstrated a significant difference in body weight gain, reproductive organ weight, diameter of cervix and the level of serum IL-6 in the Induced group as compared to the Not-induced group (P<0.05). Histopathological findings revealed the presence of adenosis only in the Induced group. It shows that DES could be employed as an agent to induce cervical carcinogenesis in animal model. In addition to that, new potential anti-cancer agents from various sources could be further evaluated using this technique.
Collapse
Affiliation(s)
- Said Zulfahmi
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia; Faculty of Dentistry, Universiti Sains Islam Malaysia, Jalan Pandan Indah, 55100 Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
20
|
Yamashita S, Kudo A, Kawakami H, Okada Y. Mechanisms of Angiogenic Suppression in Uteri Exposed to Diethylstilbestrol Neonatally in the Mouse1. Biol Reprod 2013; 88:116. [DOI: 10.1095/biolreprod.112.106443] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
21
|
Lin C, Hindes A, Burns CJ, Koppel AC, Kiss A, Yin Y, Ma L, Blumenberg M, Khnykin D, Jahnsen FL, Crosby SD, Ramanan N, Efimova T. Serum response factor controls transcriptional network regulating epidermal function and hair follicle morphogenesis. J Invest Dermatol 2012; 133:608-617. [PMID: 23151848 DOI: 10.1038/jid.2012.378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Serum response factor (SRF) is a transcription factor that regulates the expression of growth-related immediate-early, cytoskeletal, and muscle-specific genes to control growth, differentiation, and cytoskeletal integrity in different cell types. To investigate the role for SRF in epidermal development and homeostasis, we conditionally knocked out SRF in epidermal keratinocytes. We report that SRF deletion disrupted epidermal barrier function leading to early postnatal lethality. Mice lacking SRF in epidermis displayed morphogenetic defects, including an eye-open-at-birth phenotype and lack of whiskers. SRF-null skin exhibited abnormal morphology, hyperplasia, aberrant expression of differentiation markers and transcriptional regulators, anomalous actin organization, enhanced inflammation, and retarded hair follicle (HF) development. Transcriptional profiling experiments uncovered profound molecular changes in SRF-null E17.5 epidermis and revealed that many previously identified SRF target CArG box-containing genes were markedly upregulated in SRF-null epidermis, indicating that SRF may function to repress transcription of a subset of its target genes in epidermis. Remarkably, when transplanted onto nude mice, engrafted SRF-null skin lacked hair but displayed normal epidermal architecture with proper expression of differentiation markers, suggesting that although keratinocyte SRF is essential for HF development, a cross-talk between SRF-null keratinocytes and the surrounding microenvironment is likely responsible for the barrier-deficient mutant epidermal phenotype.
Collapse
Affiliation(s)
- Congxing Lin
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Anna Hindes
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Carole J Burns
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Aaron C Koppel
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Alexi Kiss
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Yan Yin
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Liang Ma
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Miroslav Blumenberg
- R. O. Perelman Department of Dermatology, NYU School of Medicine, New York, New York, USA
| | - Denis Khnykin
- Department of Pathology and Centre for Immune Regulation, University Hospital and University of Oslo, Oslo, Norway
| | - Frode L Jahnsen
- Department of Pathology and Centre for Immune Regulation, University Hospital and University of Oslo, Oslo, Norway
| | - Seth D Crosby
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Narendrakumar Ramanan
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Tatiana Efimova
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
22
|
Dose-related estrogen effects on gene expression in fetal mouse prostate mesenchymal cells. PLoS One 2012; 7:e48311. [PMID: 23144751 PMCID: PMC3483223 DOI: 10.1371/journal.pone.0048311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/24/2012] [Indexed: 01/09/2023] Open
Abstract
Developmental exposure of mouse fetuses to estrogens results in dose-dependent permanent effects on prostate morphology and function. Fetal prostatic mesenchyme cells express estrogen receptor alpha (ERα) and androgen receptors and convert stimuli from circulating estrogens and androgens into paracrine signaling to regulate epithelial cell proliferation and differentiation. To obtain mechanistic insight into the role of different doses of estradiol (E2) in regulating mesenchymal cells, we examined E2-induced transcriptomal changes in primary cultures of fetal mouse prostate mesenchymal cells. Urogenital sinus mesenchyme cells were obtained from male mouse fetuses at gestation day 17 and exposed to 10 pM, 100 pM or 100 nM E2 in the presence of a physiological concentration of dihydrotestosterone (0.69 nM) for four days. Gene ontology studies suggested that low doses of E2 (10 pM and 100 pM) induce genes involved in morphological tissue development and sterol biosynthesis but suppress genes involved in growth factor signaling. Genes involved in cell adhesion were enriched among both up-regulated and down-regulated genes. Genes showing inverted-U-shape dose responses (enhanced by E2 at 10 pM E2 but suppressed at 100 pM) were enriched in the glycolytic pathway. At the highest dose (100 nM), E2 induced genes enriched for cell adhesion, steroid hormone signaling and metabolism, cytokines and their receptors, cell-to-cell communication, Wnt signaling, and TGF- β signaling. These results suggest that prostate mesenchymal cells may regulate epithelial cells through direct cell contacts when estrogen level is low whereas secreted growth factors and cytokines might play significant roles when estrogen level is high.
Collapse
|
23
|
β-Catenin signaling regulates Foxa2 expression during endometrial hyperplasia formation. Oncogene 2012; 32:3477-82. [PMID: 22945641 DOI: 10.1038/onc.2012.376] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/20/2012] [Accepted: 07/09/2012] [Indexed: 01/10/2023]
Abstract
The Wnt/β-catenin signaling is essential for various organogenesis and is often implicated during tumorigenesis. Dysregulated β-catenin signaling is associated with the formation of endometrial adenocarcinomas (EACs), which is considered as the common form of endometrial cancer in women. In the current study, we investigate the downstream target of Wnt/β-catenin signaling in the uterine epithelia and the mechanism leading to the formation of endometrial hyperplasia. We report that conditional ablation and activation of β-catenin in the uterine epithelia lead to aberrant epithelial structures and endometrial hyperplasia formation, respectively. We demonstrate that β-catenin regulates Foxa2 with its candidate upstream region for the uterine epithelia. Furthermore, knockdown of Foxa2 leads to defects in cell cycle regulation, suggesting a possible function of Foxa2 in the control of cell proliferation. We also observe that β-catenin and Foxa2 expression levels are augmented in the human specimens of complex atypical endometrial hyperplasia, which is considered to have a greater risk of progression to EACs. Thus, our study indicates that β-catenin regulates Foxa2 expression, and this interaction is possibly essential to control cell cycle progression during endometrial hyperplasia formation. Altogether, the augmented expression levels of β-catenin and Foxa2 are essential features during the formation of endometrial hyperplasia.
Collapse
|
24
|
Yin Y, Lin C, Veith GM, Chen H, Dhandha M, Ma L. Neonatal diethylstilbestrol exposure alters the metabolic profile of uterine epithelial cells. Dis Model Mech 2012; 5:870-80. [PMID: 22679223 PMCID: PMC3484869 DOI: 10.1242/dmm.009076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Developmental exposure to diethylstilbestrol (DES) causes reproductive tract malformations, affects fertility and increases the risk of clear cell carcinoma of the vagina and cervix in humans. Previous studies on a well-established mouse DES model demonstrated that it recapitulates many features of the human syndrome, yet the underlying molecular mechanism is far from clear. Using the neonatal DES mouse model, the present study uses global transcript profiling to systematically explore early gene expression changes in individual epithelial and mesenchymal compartments of the neonatal uterus. Over 900 genes show differential expression upon DES treatment in either one or both tissue layers. Interestingly, multiple components of peroxisome proliferator-activated receptor-γ (PPARγ)-mediated adipogenesis and lipid metabolism, including PPARγ itself, are targets of DES in the neonatal uterus. Transmission electron microscopy and Oil-Red O staining further demonstrate a dramatic increase in lipid deposition in uterine epithelial cells upon DES exposure. Neonatal DES exposure also perturbs glucose homeostasis in the uterine epithelium. Some of these neonatal DES-induced metabolic changes appear to last into adulthood, suggesting a permanent effect of DES on energy metabolism in uterine epithelial cells. This study extends the list of biological processes that can be regulated by estrogen or DES, and provides a novel perspective for endocrine disruptor-induced reproductive abnormalities.
Collapse
Affiliation(s)
- Yan Yin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
25
|
Filant J, Zhou H, Spencer TE. Progesterone inhibits uterine gland development in the neonatal mouse uterus. Biol Reprod 2012; 86:146, 1-9. [PMID: 22238285 DOI: 10.1095/biolreprod.111.097089] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Uterine glands and their secretions are required for conceptus (embryo/fetus and associated placenta) survival and development. In most mammals, uterine gland morphogenesis or adenogenesis is a uniquely postnatal event; however, little is known about the mechanisms governing the developmental event. In sheep, progestin treatment of neonatal ewes permanently ablated differentiation of the endometrial glands. Similarly, progesterone (P4) inhibits adenogenesis in neonatal mouse uterus. Thus, P4 can be used as a tool to discover mechanisms regulating endometrial adenogenesis. Female pups were treated with sesame vehicle alone as a control or P4 from Postnatal Day 2 (PD 2) to PD 10, and reproductive tracts were examined on PD 5, 10, or 20. Endometrial glands were fully developed in control mice by PD 20 but not in P4-treated mice. All other uterine cell types appeared normal. Treatment with P4 stimulated proliferation of the stroma but suppressed proliferation of the luminal epithelium. Microarray analysis revealed that expression of genes were reduced (Car2, Fgf7, Fgfr2, Foxa2, Fzd10, Met, Mmp7, Msx1, Msx2, Wnt4, Wnt7a, Wnt16) and increased (Hgf, Ihh, Wnt11) by P4 in the neonatal uterus. These results support the idea that P4 inhibits endometrial adenogenesis in the developing neonatal uterus by altering expression of morphoregulatory genes and consequently disrupting normal patterns of cell proliferation and development.
Collapse
Affiliation(s)
- Justyna Filant
- Center for Reproductive Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | | | | |
Collapse
|
26
|
Daikoku T, Cha J, Sun X, Tranguch S, Xie H, Fujita T, Hirota Y, Lydon J, DeMayo F, Maxson R, Dey SK. Conditional deletion of Msx homeobox genes in the uterus inhibits blastocyst implantation by altering uterine receptivity. Dev Cell 2011; 21:1014-25. [PMID: 22100262 DOI: 10.1016/j.devcel.2011.09.010] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/31/2011] [Accepted: 09/20/2011] [Indexed: 12/15/2022]
Abstract
An effective bidirectional communication between an implantation-competent blastocyst and the receptive uterus is a prerequisite for mammalian reproduction. The blastocyst will implant only when this molecular cross-talk is established. Here we show that the muscle segment homeobox gene (Msh) family members Msx1 and Msx2, which are two highly conserved genes critical for epithelial-mesenchymal interactions during development, also play crucial roles in embryo implantation. Loss of Msx1/Msx2 expression correlates with altered uterine luminal epithelial cell polarity and affects E-cadherin/β-catenin complex formation through the control of Wnt5a expression. Application of Wnt5a in vitro compromised blastocyst invasion and trophoblast outgrowth on cultured uterine epithelial cells. The finding that Msx1/Msx2 genes are critical for conferring uterine receptivity and readiness to implantation could have clinical significance, because compromised uterine receptivity is a major cause of pregnancy failure in IVF programs.
Collapse
Affiliation(s)
- Takiko Daikoku
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Knapczyk-Stwora K, Durlej M, Bilinska B, Slomczynska M. Immunohistochemical studies on the proliferative marker Ki-67 and estrogen receptor alpha (ERα) in the uterus of neonatal and immature pigs following exposure to flutamide. Acta Histochem 2011; 113:534-41. [PMID: 20598360 DOI: 10.1016/j.acthis.2010.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/20/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
The development of uterine glands is characterized by the proliferation of epithelial cells and by estrogen receptor alpha (ERα) expression in the nascent glandular epithelium. It is known that androgen receptors are present in the porcine uterus during prenatal development and the neonatal window, when adenogenesis occurs. Therefore, the objective of the study was to determine whether the effects of maternal or neonatal administration of the anti-androgen, flutamide, could entail changes in the presence of ERα and proliferation of uterine cells in neonatal and three-month-old pigs. Following prenatal flutamide exposure, morphological differences and the acceleration of uterus differentiation marked by ERα expression in epithelial crypts were observed in the neonatal piglets. In the three-month-old pig uterus, the proliferation of stromal cells was observed only after prenatal exposure to flutamide, whereas ERα staining was weaker. The neonatal administration of flutamide caused a significant decrease in the proliferation of the surface epithelium and diminished intensity of ERα staining in the stromal cells of the uterus of three-month-old pigs, which paralleled decreased estrogen levels in these animals. Overall, prenatal flutamide exposure promoted growth and development of the neonatal porcine uterus. Moreover, in three-month-old pigs, flutamide application during the neonatal period decreased surface epithelium proliferation and stromal ERα expression, which confirmed the importance of epithelial-stromal interactions in the adenogenesis.
Collapse
|
28
|
Díaz-García C, Estella C, Perales-Puchalt A, Simón C. Reproductive medicine and inheritance of infertility by offspring: the role of fetal programming. Fertil Steril 2011; 96:536-45. [PMID: 21794856 DOI: 10.1016/j.fertnstert.2011.06.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To summarize the molecular processes involved in fetal programming, to describe how assisted reproduction technologies (ART) may affect the epigenetic pattern of the embryo, and to highlight the current knowledge of the role of perinatal events in the subsequent development of reproductive pathology affecting infertile patients. DESIGN A literature review of fetal programming of adulthood gynecologic diseases and ART. A Medline search was performed with the following keywords: (fetal programming OR epigenetics OR methylation OR acetylation) AND (IVF OR ART) AND (gynecology). Articles up to October 2010 were selected. Articles and recent reviews were classified by human and animals studies and also according to their experimental or observational design. SETTING University hospital research center. PATIENT(S) None. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) None. RESULT(S) Data from experimental animal models and case-control studies support the potential effect of ART in changing methylation patterns in gametes and embryos. However, these findings are not supported by population studies or experimental studies performed in human gametes/embryos. Experimental and epidemiologic studies support the hypothesis that some adult gynecologic diseases causing infertility may have a fetal origin. CONCLUSION(S) Although it seems clear that some adult gynecologic diseases causing infertility may have a fetal origin, there is insufficient evidence to confirm that ART is the origin of later onset, adulthood diseases. Further research in this field must be conducted.
Collapse
Affiliation(s)
- César Díaz-García
- Department of Gynecology and Obstetrics, La Fe University Hospital, University of Valencia, Valencia, Spain.
| | | | | | | |
Collapse
|
29
|
Hayashi K, Yoshioka S, Reardon SN, Rucker EB, Spencer TE, DeMayo FJ, Lydon JP, MacLean JA. WNTs in the neonatal mouse uterus: potential regulation of endometrial gland development. Biol Reprod 2010; 84:308-19. [PMID: 20962251 DOI: 10.1095/biolreprod.110.088161] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The WNTs are secreted proteins that control essential developmental processes, such as embryonic patterning, cell growth, migration, and differentiation. In mice, three members of the Wnt gene family (Wnt4, Wnt5a, and Wnt7a) have been studied extensively in the female reproductive tract. The present study determined effects of postnatal day and exposure to diethylstilbestrol (DES) on Wnt and Fzd gene expression in the mouse uterus as well as the biological role of Wnt11 in postnatal mouse uterine development and function. Wnt4, Wnt5a, Wnt7a, Wnt7b, Wnt11, Wnt16, Fzd6, and Fzd10 were detected by in situ hybridization in the neonatal mouse uterus. In situ hybridization analyses revealed that Wnt4, Wnt5a, and Wnt16 were localized in the endometrial stroma, whereas Wnt7a, Wnt7b, Wnt11, Fzd6, and Fzd10 were in the uterine epithelia of neonatal mice. Exposure of mice to estrogen or estrogen receptor agonists during critical development periods inhibits endometrial adenogenesis. In the present study, DES-induced disruption of endometrial gland development was associated with reduction or suppression of Wnt4, Wnt5a, Wnt7a, Wnt11, Wnt16, and Fzd10. Ablation of Wnt11, an epithelial-expressed, DES-regulated gene, in the neonatal uterus did not affect endometrial adenogenesis or expression of other Wnt genes. Interestingly, Wnt11-deleted uteri had more endometrial glands on Postnatal Day 10. Although CTNNB1 expression was not affected by ablation of Wnt11, Vangl2 was inhibited in the uteri of Wnt11(d/d) mice. These results support the idea that a number of different Wnt genes are potential regulators for uterine morphogenesis; however, Wnt11 does not have a direct effect on uterine development.
Collapse
Affiliation(s)
- Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Epigenetics and chemical safety assessment. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2010; 705:83-95. [DOI: 10.1016/j.mrrev.2010.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/29/2010] [Accepted: 04/08/2010] [Indexed: 01/01/2023]
|
31
|
Zama AM, Uzumcu M. Epigenetic effects of endocrine-disrupting chemicals on female reproduction: an ovarian perspective. Front Neuroendocrinol 2010; 31:420-39. [PMID: 20609371 PMCID: PMC3009556 DOI: 10.1016/j.yfrne.2010.06.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/16/2010] [Accepted: 06/25/2010] [Indexed: 01/16/2023]
Abstract
The link between in utero and neonatal exposure to environmental toxicants, such as endocrine-disrupting chemicals (EDCs) and adult female reproductive disorders is well established in both epidemiological and animal studies. Recent studies examining the epigenetic mechanisms involved in mediating the effects of EDCs on female reproduction are gathering momentum. In this review, we describe the developmental processes that are susceptible to EDC exposures in female reproductive system, with a special emphasis on the ovary. We discuss studies with select EDCs that have been shown to have physiological and correlated epigenetic effects in the ovary, neuroendocrine system, and uterus. Importantly, EDCs that can directly target the ovary can alter epigenetic mechanisms in the oocyte, leading to transgenerational epigenetic effects. The potential mechanisms involved in such effects are also discussed.
Collapse
Affiliation(s)
- Aparna Mahakali Zama
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8525, USA
| | | |
Collapse
|
32
|
McIntyre RL, Levy JK, Roberts JF, Reep RL. Developmental uterine anomalies in cats and dogs undergoing elective ovariohysterectomy. J Am Vet Med Assoc 2010; 237:542-6. [DOI: 10.2460/javma.237.5.542] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Chiu HS, Szucsik JC, Georgas KM, Jones JL, Rumballe BA, Tang D, Grimmond SM, Lewis AG, Aronow BJ, Lessard JL, Little MH. Comparative gene expression analysis of genital tubercle development reveals a putative appendicular Wnt7 network for the epidermal differentiation. Dev Biol 2010; 344:1071-87. [PMID: 20510229 DOI: 10.1016/j.ydbio.2010.05.495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 04/23/2010] [Accepted: 05/15/2010] [Indexed: 02/08/2023]
Abstract
Here we describe the first detailed catalog of gene expression in the developing lower urinary tract (LUT), including epithelial and mesenchymal portions of the developing bladder, urogenital sinus, urethra, and genital tubercle (GT) at E13 and E14. Top compartment-specific genes implicated by the microarray data were validated using whole-mount in situ hybridization (ISH) over the entire LUT. To demonstrate the potential of this resource to implicate developmentally critical features, we focused on gene expression patterns and pathways in the sexually indeterminate, androgen-independent GT. GT expression patterns reinforced the proposed similarities between development of GT, limb, and craniofacial prominences. Comparison of spatial expression patterns predicted a network of Wnt7a-associated GT-enriched epithelial genes, including Gjb2, Dsc3, Krt5, and Sostdc1. Known from other contexts, these genes are associated with normal epidermal differentiation, with disruptions in Dsc3 and Gjb2 showing palmo-plantar keratoderma in the limb. We propose that this gene network contributes to normal foreskin, scrotum, and labial development. As several of these genes are known to be regulated by, or contain cis elements responsive to retinoic acid, estrogen, or androgen, this implicates this pathway in the later androgen-dependent development of the GT.
Collapse
Affiliation(s)
- Han Sheng Chiu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hong Y, Wang J, Zhang P, Yang S, Song K, Yu F, Liu W. Histopathological and gene expression analysis of mice exposed to diethylstilbestrol. Toxicol Mech Methods 2010; 20:105-11. [DOI: 10.3109/15376510903572631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Seo HW, Park KJ, Lee HC, Kim DY, Song YS, Lim JM, Song GH, Han JY. Physiological Effects of Diethylstilbestrol Exposure on the Development of the Chicken Oviduct. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2009. [DOI: 10.5187/jast.2009.51.6.485] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Lin C, Yin Y, Chen H, Fisher AV, Chen F, Rauchman M, Ma L. Construction and characterization of a doxycycline-inducible transgenic system in Msx2 expressing cells. Genesis 2009; 47:352-9. [PMID: 19370755 DOI: 10.1002/dvg.20506] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Homeobox gene Msx2 is widely expressed during both embryogenesis and postnatal development and plays important roles during organogenesis. We developed an Msx2-rtTA BAC transgenic line which can activate TetO-Cre expression in Msx2-expressing cells upon doxycycline (Dox) treatment. Using the Rosa26-LacZ (R26R) reporter line, we show that rtTA is activated in Msx2-expressing organs including the limb, heart, external genitalia, urogenital system, hair follicles and craniofacial regions. Moreover, we show that in body appendages, the transgene can be activated in different domains depending on the timing of Dox treatment. In addition, the transgene can also be effectively activated in adult tissues such as the hair follicle and the urogenital system. Taken together, this Msx2-rtTA;TetO-Cre system is a valuable tool for studying gene function in the development of the aforementioned organs in a temporal and spatially-restricted manner, as well as for tissue lineage tracing of Msx2-expressing cells. When induced postnatally, this system can also be used to study gene function in adult tissues without compromising normal development and patterning.
Collapse
Affiliation(s)
- Congxing Lin
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Ma L. Endocrine disruptors in female reproductive tract development and carcinogenesis. Trends Endocrinol Metab 2009; 20:357-63. [PMID: 19709900 PMCID: PMC2774851 DOI: 10.1016/j.tem.2009.03.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/20/2009] [Accepted: 03/24/2009] [Indexed: 02/07/2023]
Abstract
Growing concerns over endocrine disrupting chemicals (EDCs) and their effects on human fetal development and adult health have promoted research into the underlying molecular mechanisms of endocrine disruption. Gene targeting technology has allowed insight into the genetic pathways governing reproductive tract development and how exposure to EDCs during a critical developmental window can alter reproductive tract development, potentially forming the basis for adult diseases. This review primarily uses diethylstilbestrol (DES) as a model agent for EDCs and discusses the recent progress elucidating how DES and other EDCs affect murine female reproductive tract development and cancer at the molecular level.
Collapse
Affiliation(s)
- Liang Ma
- Division of Dermatology, Department of Medicine and Department of Developmental Biology Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
38
|
Hattis D, Chu M, Rahmioglu N, Goble R, Verma P, Hartman K, Kozlak M. A preliminary operational classification system for nonmutagenic modes of action for carcinogenesis. Crit Rev Toxicol 2009; 39:97-138. [PMID: 19009457 DOI: 10.1080/10408440802307467] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article proposes a system of categories for nonmutagenic modes of action for carcinogenesis. The classification is of modes of action rather than individual carcinogens, because the same compound can affect carcinogenesis in more than one way. Basically, we categorize modes of action as: (1) co-initiation (facilitating the original mutagenic changes in stem and progenitor cells that start the cancer process) (e.g. induction of activating enzymes for other carcinogens); (2) promotion (enhancing the relative growth vs differentiation/death of initiated clones (e.g. inhibition of growth-suppressing cell-cell communication); (3) progression (enhancing the growth, malignancy, or spread of already developed tumors) (e.g. suppression of immune surveillance, hormonally mediated growth stimulation for tumors with appropriate receptors by estrogens); and (4) multiphase (e.g., "epigenetic" silencing of tumor suppressor genes). A priori, agents that act at relatively early stages in the process are expected to manifest greater relative susceptibility in early life, whereas agents that act via later stage modes will tend to show greater susceptibility for exposures later in life.
Collapse
Affiliation(s)
- D Hattis
- George Perkins Marsh Institute, Clark University, Worcester, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Bartol FF, Wiley AA, Bagnell CA. Epigenetic programming of porcine endometrial function and the lactocrine hypothesis. Reprod Domest Anim 2008; 43 Suppl 2:273-9. [PMID: 18638135 DOI: 10.1111/j.1439-0531.2008.01174.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epigenetic programs controlling development of the female reproductive tract (FRT) are influenced by the effects of naturally occurring bioactive agents on patterns of gene expression in FRT tissues during organizationally critical periods of foetal and perinatal life. Aberrations in such important cellular and molecular events, as may occur with exposure to natural or manmade steroid or peptide receptor-modulating agents, disrupt the developmental program and can change the developmental trajectory of FRT tissues, including the endometrium, with lasting consequences. In the pig, as in other mammals, maternal programming of FRT development begins pre-natally and is completed post-natally, when maternal effects on development can be communicated via signals transmitted in milk. Studies involving relaxin (RLX), a prototypic milk-borne morphoregulatory factor (MbF), serve as the basis for ongoing efforts to identify maternal programming events that affect uterine and cervical tissues in the neonatal pig. Data support the lactocrine hypothesis for delivery of MbFs to neonates as a specific consequence of nursing. Components of a maternally driven lactocrine mechanism for RLX-mediated signalling in neonatal FRT tissues, including evidence that milk-borne RLX is delivered into the neonatal circulation where it can act on RLX receptor (RXFP1)-positive neonatal tissues to affect their development, are in place in the pig. The fact that all newborn mammals drink milk extends the timeframe of maternal influence on neonatal development across many species. Thus, lactocrine transmission of milk-borne developmental signals is an element of the maternal epigenetic programming equation that deserves further study.
Collapse
Affiliation(s)
- F F Bartol
- Department of Animal Sciences and Anatomy, Auburn University, Auburn, AL 36849, USA.
| | | | | |
Collapse
|
40
|
Ikeda Y, Tanaka H, Esaki M. Effects of gestational diethylstilbestrol treatment on male and female gonads during early embryonic development. Endocrinology 2008; 149:3970-9. [PMID: 18436715 PMCID: PMC2488225 DOI: 10.1210/en.2007-1599] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To study the effects of gestational exposure to estrogen on early gonadal differentiation, pregnant mice were treated by sc injection of diethylstilbestrol (DES) or vehicle from embryonic day (E) 8.5 to E14.5, and gonads at E11.5, E12.5, and E14.5 were examined. Quantitative real-time RT-PCR and in situ hybridization revealed that mRNA levels of steroidogenic factor 1 (SF-1), a key regulator of gonadal differentiation, and several male gonad-specific genes, including Müllerian-inhibiting substance (MIS), steroidogenic acute regulatory protein, cholesterol side-chain cleavage cytochrome P450, and Cerebellin 1 precursor protein, were significantly decreased in the DES-treated testis, compared with the control testis at E12.5 and/or E14.5. Immunohistochemistry demonstrated that the staining intensities for SF-1 and MIS in Sertoli cells were apparently reduced in the DES-treated testis, compared with those of the controls, at E12.5 and E14.5. Because MIS, steroidogenic acute regulatory protein, cholesterol side-chain cleavage cytochrome P450, and Cerebellin 1 precursor protein are activated under the regulation of SF-1, the down-regulation of these factors may be due to reduced SF-1 expression. Immunohistochemistry for laminin-1 demonstrated that ovigerous cords in the DES-treated ovary were smaller than those in controls at E14.5. Moreover, the number of 5-bromo-2'deoxyuridine-5-monophosphate-labeled cells in the DES-treated testis was significantly reduced at E12.5 and E14.5, compared with controls, and that in the DES-treated ovary remained higher than that in the control ovary at E14.5. The results suggest that exogenous estrogens can alter sex-specific genetic pathways governing early differentiation and cell proliferation of both male and female gonads.
Collapse
Affiliation(s)
- Yayoi Ikeda
- Department of Histology and Cell Biology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | | | | |
Collapse
|
41
|
Lin C, Yin Y, Long F, Ma L. Tissue-specific requirements of beta-catenin in external genitalia development. Development 2008; 135:2815-25. [PMID: 18635608 DOI: 10.1242/dev.020586] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
External genitalia are body appendages specialized for internal fertilization. Their development can be divided into two phases, an early androgen-independent phase and a late androgen-dependent sexual differentiation phase. In the early phase, the embryonic anlage of external genitalia, the genital tubercle (GT), is morphologically identical in both sexes. Although congenital external genitalia malformations represent the second most common birth defect in humans, the genetic pathways governing early external genitalia development and urethra formation are poorly understood. Proper development of the GT requires coordinated outgrowth of the mesodermally derived mesenchyme and extension of the endodermal urethra within an ectodermal epithelial capsule. Here, we demonstrate that beta-catenin plays indispensable and distinct roles in each of the aforementioned three tissue layers in early androgen-independent GT development. WNT-beta-catenin signaling is required in the endodermal urethra to activate and maintain Fgf8 expression and direct GT outgrowth, as well as to maintain homeostasis of the urethra. Moreover, beta-catenin is required in the mesenchyme to promote cell proliferation. By contrast, beta-catenin is required in the ectoderm to maintain tissue integrity, possibly through cell-cell adhesion during GT outgrowth. The fact that both endodermal and ectodermal beta-catenin knockout animals develop severe hypospadias in both sexes raises the possibility that the deregulation of any of these functions can contribute to the etiology of congenital external genital defects in humans.
Collapse
Affiliation(s)
- Congxing Lin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
42
|
Yin Y, Huang WW, Lin C, Chen H, MacKenzie A, Ma L. Estrogen suppresses uterine epithelial apoptosis by inducing birc1 expression. Mol Endocrinol 2008; 22:113-25. [PMID: 17901126 PMCID: PMC2171041 DOI: 10.1210/me.2007-0295] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/18/2007] [Indexed: 12/30/2022] Open
Abstract
The decision whether or not a cell undergoes apoptosis is determined by the opposing forces of pro- and antiapoptotic effectors. Here we demonstrate genetically that estrogen can tip this balance toward cell survival in uterine epithelial cells by inducing the expression of baculoviral inhibitors of apoptosis repeat-containing 1 (Birc1), a family of antiapoptotic proteins. In neonatal mice, both 17beta-estradiol and the potent synthetic estrogen diethylstilbestrol strongly suppress uterine epithelial apoptosis while markedly elevating Birc1 transcript level in an estrogen receptor-alpha-dependent manner. The induction of Birc1 before any effect on apoptosis suppression and failure of diethylstilbestrol to completely inhibit apoptosis in Birc1a-deficient uterine epithelium indicate a functional role for Birc1a in estrogen-mediated apoptosis suppression. In ovariectomized adult mice, expression of Birc1 is also induced by ovarian hormones, suggesting a role for these proteins in normal uterine physiology. We propose that by binding to active caspases, Birc1 proteins can eliminate them through proteasome degradation. These results for the first time establish Birc1 proteins as functional targets of estrogen in suppressing apoptosis in the uterus.
Collapse
Affiliation(s)
- Yan Yin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
43
|
Kinyamu HK, Jefferson WN, Archer TK. Intersection of nuclear receptors and the proteasome on the epigenetic landscape. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:83-95. [PMID: 18095329 PMCID: PMC2482603 DOI: 10.1002/em.20360] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nuclear receptors (NRs) represent a class of transcription factors that associate with both positive and negative chromatin modifying complexes to activate or repress gene transcription. The 26S proteasome plays a major role in NR-regulated gene transcription by tightly regulating the levels of the receptor and coregulator complexes. Recent evidence suggests a robust nonproteolytic role for specific proteasome subunits in gene transcription mediated via alterations in specific histone modifications. The involvement of nuclear receptors and the proteasome with chromatin modifying complexes or proteins, particularly those that modify DNA and histone proteins, provides an opportunity to review two critical epigenetic mechanisms that control gene expression and heritable biological processes. Both nuclear receptors and the proteasome are targets of environmental factors including some which lead to epigenetic changes that can influence human diseases such as cancer. In this review, we will explore molecular mechanisms by which NR-mediated gene expression, under the control of the proteasome, can result in altered epigenetic landscapes.
Collapse
Affiliation(s)
| | | | - Trevor K. Archer
- Correspondence to: Trevor K. Archer, Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, 111 Alexander Drive, P.O. Box 12233 (MD C4−06), Research Triangle Park, NC 27709, USA. E-mail:
| |
Collapse
|
44
|
Newbold RR, Jefferson WN, Grissom SF, Padilla-Banks E, Snyder RJ, Lobenhofer EK. Developmental exposure to diethylstilbestrol alters uterine gene expression that may be associated with uterine neoplasia later in life. Mol Carcinog 2007; 46:783-96. [PMID: 17394237 PMCID: PMC2254327 DOI: 10.1002/mc.20308] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previously, we described a mouse model where the well-known reproductive carcinogen with estrogenic activity, diethylstilbestrol (DES), caused uterine adenocarcinoma following neonatal treatment. Tumor incidence was dose-dependent reaching >90% by 18 mo following neonatal treatment with 1000 microg/kg/d of DES. These tumors followed the initiation/promotion model of hormonal carcinogenesis with developmental exposure as initiator, and exposure to ovarian hormones at puberty as the promoter. To identify molecular pathways involved in DES-initiation events, uterine gene expression profiles were examined in prepubertal mice exposed to DES (1, 10, or 1000 microg/kg/d) on days 1-5 and compared to controls. Of more than 20 000 transcripts, approximately 3% were differentially expressed in at least one DES treatment group compared to controls; some transcripts demonstrated dose-responsiveness. Assessment of gene ontology annotation revealed alterations in genes associated with cell growth, differentiation, and adhesion. When expression profiles were compared to published studies of uteri from 5-d-old DES-treated mice, or adult mice treated with 17beta estradiol, similarities were seen suggesting persistent differential expression of estrogen responsive genes following developmental DES exposure. Moreover, several altered genes were identified in human uterine adenocarcinomas. Four altered genes [lactotransferrin (Ltf), transforming growth factor beta inducible (Tgfb1), cyclin D1 (Ccnd1), and secreted frizzled-related protein 4 (Sfrp4)], selected for real-time RT-PCR analysis, correlated well with the directionality of the microarray data. These data suggested altered gene expression profiles observed 2 wk after treatment ceased, were established at the time of developmental exposure and maybe related to the initiation events resulting in carcinogenesis.
Collapse
Affiliation(s)
- Retha R Newbold
- Developmental Endocrinology and Endocrine Disruptor Section, Laboratory of Molecular Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
45
|
Li S, Davis B. Evaluating rodent vaginal and uterine histology in toxicity studies. ACTA ACUST UNITED AC 2007; 80:246-52. [PMID: 17570136 DOI: 10.1002/bdrb.20120] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interpreting histopathology of the female rodent reproductive tract can be challenging in toxicity studies. However, diagnosis can be relatively uncomplicated with an understanding of the relationship between form and function. We describe this relationship for the rodent uterus and vagina and discuss some strategies to simplify diagnosis.
Collapse
Affiliation(s)
- Shaunfang Li
- Therapeutics Group, Neotropix Inc., Malvern, Pennsylvania, USA
| | | |
Collapse
|
46
|
Suzuki K, Haraguchi R, Ogata T, Barbieri O, Alegria O, Vieux-Rochas M, Nakagata N, Ito M, Mills AA, Kurita T, Levi G, Yamada G. Abnormal urethra formation in mouse models of split-hand/split-foot malformation type 1 and type 4. Eur J Hum Genet 2007; 16:36-44. [PMID: 17878916 DOI: 10.1038/sj.ejhg.5201925] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Urogenital birth defects are one of the common phenotypes observed in hereditary human disorders. In particular, limb malformations are often associated with urogenital developmental abnormalities, as the case for Hand-foot-genital syndrome displaying similar hypoplasia/agenesis of limbs and external genitalia. Split-hand/split-foot malformation (SHFM) is a syndromic limb disorder affecting the central rays of the autopod with median clefts of the hands and feet, missing central fingers and often fusion of the remaining ones. SHFM type 1 (SHFM1) is linked to genomic deletions or rearrangements, which includes the distal-less-related homeogenes DLX5 and DLX6 as well as DSS1. SHFM type 4 (SHFM4) is associated with mutations in p63, which encodes a p53-related transcription factor. To understand that SHFM is associated with urogenital birth defects, we performed gene expression analysis and gene knockout mouse model analyses. We show here that Dlx5, Dlx6, p63 and Bmp7, one of the p63 downstream candidate genes, are all expressed in the developing urethral plate (UP) and that targeted inactivation of these genes in the mouse results in UP defects leading to abnormal urethra formation. These results suggested that different set of transcription factors and growth factor genes play similar developmental functions during embryonic urethra formation. Human SHFM syndromes display multiple phenotypes with variations in addition to split hand foot limb phenotype. These results suggest that different genes associated with human SHFM could also be involved in the aetiogenesis of hypospadias pointing toward a common molecular origin of these congenital malformations.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Protein 7
- Bone Morphogenetic Proteins/deficiency
- Bone Morphogenetic Proteins/genetics
- Disease Models, Animal
- Foot Deformities, Congenital/embryology
- Foot Deformities, Congenital/genetics
- Gene Expression Regulation, Developmental
- Genitalia/embryology
- Hand Deformities, Congenital/embryology
- Hand Deformities, Congenital/genetics
- Homeodomain Proteins/genetics
- Humans
- Limb Deformities, Congenital/classification
- Limb Deformities, Congenital/embryology
- Limb Deformities, Congenital/genetics
- Mice
- Mice, Knockout
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Syndrome
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Transforming Growth Factor beta/deficiency
- Transforming Growth Factor beta/genetics
- Urethra/abnormalities
- Urethra/embryology
Collapse
Affiliation(s)
- Kentaro Suzuki
- Center for Animal Resources and Development, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dang VH, Choi KC, Hyun SH, Jeung EB. Analysis of gene expression profiles in the offspring of rats following maternal exposure to xenoestrogens. Reprod Toxicol 2007; 23:42-54. [PMID: 17011747 DOI: 10.1016/j.reprotox.2006.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 08/25/2006] [Accepted: 08/29/2006] [Indexed: 01/04/2023]
Abstract
Many environmental chemicals are known endocrine disruptors (EDs). These have the potential to alter endocrine systems via various mechanisms that include binding to hormone receptors, thereby either mimicking or blocking the hormone actions and causing abnormal gene expression. Here, to elucidate the molecular mechanism(s) underlying the detrimental effects associated with the estrogenicity of these chemicals, we determined whether gene profiles were altered in rats exposed to 4-tert-octyphenol (OP) and diethylstilbestrol (DES) in utero. Pregnant rats were treated with a high dose of OP (600 mg/kg BW per day) or DES (500 microg/kg BW per day) at gestational days (GD) 17, 18 and 19. Both dams and neonates were euthanized at lactation day (LD) 5. The transcript profiles of uterine tissue were compared in treated versus control in both maternal and neonatal sites using cDNA microarray to determine the expression levels of approximately 13,000 genes and expressed sequence tags (ESTs). The expression levels of some known estrogen-responsive genes, i.e., complement component 3, epidermal growth factor receptor or c-fos oncogene and calbindin 3, as well as some other randomly selected genes, including general transcription factor IIa, transcription factor 4 and lymphocyte specific 1, were increased by OP and/or DES treatment in the uteri of both maternal and neonate groups. However, the magnitude of these alterations in gene expression differed markedly between dams and neonates, most likely reflecting the temporal susceptibility of the reproductive tract to estrogenic chemicals. Importantly, the altered gene patterns identified by microarray analysis were confirmed by RT-PCR and real-time RT-PCR. Fifteen primers were designed to amplify specific altered genes. These genes were selected for validation because of their markedly increased expression levels and they were classified on the basis of gene ontology. Overall, a high correlation was observed between microarray and real-time PCR data. Taken together, these results indicate that placental exposure to OP or DES may cause temporal changes in gene expression in the uteri of dams and neonates. Moreover, these findings may provide useful indicators of the adverse effects of EDs and prove particularly important in elucidating the effects of xenoestrogens on estrogen-responsive tissues, such as the developing reproductive tract.
Collapse
Affiliation(s)
- Vu Hoang Dang
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | |
Collapse
|
48
|
Xenobiotics with estrogen or antiandrogen action — disruptors of the male reproductive system. Open Med (Wars) 2006. [DOI: 10.2478/s11536-006-0027-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractThe environmental and life-style changes associated with developing industry and agriculture, especially the exposure to endocrine disrupting chemicals (xenobiotics), are considered as causes of the increasing incidence of male reproductive system disorders. Most of the xenobiotics, which harmfully influence the male reproductive system, reveal estrogen-like (xenoestrogens) or anti-androgenic activity. Recent data have revealed physiological roles of estrogens in the male, however, there are evidences that estrogen-like substances may lead to many undesirable symptoms in the male i.e. gonadal dysgenesis, genital malformations, cryptorchidism, decreased fertility potential and testicular neoplastic changes. The number of xenoestrogens is still growing in the environment, whereas the mechanisms of their action are still not exactly known. They can be harmful not only to the present but potentially also to the next generations.
Collapse
|
49
|
Abstract
Endocrine-disrupting chemicals (EDCs) in the environment have been linked to human health and disease. This is particularly evident in compounds that mimic the effects of estrogens. Exposure to EDCs early in life can increase risk levels of compromised physical and mental health. Epigenetic mechanisms have been implicated in this process. Transgenerational consequences of EDC exposure is also discussed in both a proximate (mechanism) and ultimate (evolution) context as well as recent work suggesting how such transmission might become incorporated into the genome and subject to selection. We suggest a perspective for exploring and ultimately coming to understand diseases that may have environmental or endocrine origins.
Collapse
Affiliation(s)
- David Crews
- Section of Integrative Biology, 2400 Speedway, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
50
|
Yin Y, Lin C, Ma L. MSX2 promotes vaginal epithelial differentiation and wolffian duct regression and dampens the vaginal response to diethylstilbestrol. Mol Endocrinol 2006; 20:1535-46. [PMID: 16513791 PMCID: PMC1483067 DOI: 10.1210/me.2005-0451] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In utero exposure to diethylstilbestrol (DES) leads to patterning defects in the female reproductive tract (FRT) and a propensity to the development of vaginal adenocarcinomas in humans. In the mouse, DES treatment similarly induces a plethora of FRT developmental defects, including stratification of uterine epithelium and presence of glandular tissue in cervix and vagina. Uterine abnormalities are associated with repression of the homeobox gene Msx2, and DES leads to an altered uterine response in Msx2 mutants including a dilated uterine lumen. Here we investigate the role of Msx2 in normal vaginal development and in FRT response to DES. During vaginal development, Msx2 is required for Tgfbeta2 and Tgfbeta3 expression and for proper vaginal epithelial differentiation. Moreover, Msx2 is involved in caudal Wolffian duct regression by promoting apoptosis. Consistently, neonatal DES exposure represses Msx2 expression in the Wolffian duct epithelium and inhibits its apoptosis and subsequent regression. Intriguingly, although DES treatment also represses Msx2 expression in the vaginal epithelium, a much more severe DES-induced vaginal phenotype was observed in Msx2 mutant mice, including a complete failure of Müllerian vaginal epithelial stratification and a severely dilated vaginal lumen, accompanied by loss of p63 and water channel protein expression. These results demonstrate a critical role for Msx2 in counteracting the effect of DES on FRT patterning and suggest that the response to DES may be highly variable depending on the genotype of an individual.
Collapse
Affiliation(s)
- Yan Yin
- Division of Dermatology, Department of Medicine and
| | - Congxing Lin
- Division of Dermatology, Department of Medicine and
| | - Liang Ma
- Division of Dermatology, Department of Medicine and
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110
- †Author for correspondence: Liang Ma, Division of Dermatology, Department of Medicine, Washington University School of Medicine, Campus Box 8123, 660 South Euclid Avenue, St. Louis, MO 63110, Tel: (314) 454-8771, Fax: (314) 454-5626,
| |
Collapse
|