1
|
Moisoi N. Mitochondrial proteases modulate mitochondrial stress signalling and cellular homeostasis in health and disease. Biochimie 2024; 226:165-179. [PMID: 38906365 DOI: 10.1016/j.biochi.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Maintenance of mitochondrial homeostasis requires a plethora of coordinated quality control and adaptations' mechanisms in which mitochondrial proteases play a key role. Their activation or loss of function reverberate beyond local mitochondrial biochemical and metabolic remodelling into coordinated cellular pathways and stress responses that feedback onto the mitochondrial functionality and adaptability. Mitochondrial proteolysis modulates molecular and organellar quality control, metabolic adaptations, lipid homeostasis and regulates transcriptional stress responses. Defective mitochondrial proteolysis results in disease conditions most notably, mitochondrial diseases, neurodegeneration and cancer. Here, it will be discussed how mitochondrial proteases and mitochondria stress signalling impact cellular homeostasis and determine the cellular decision to survive or die, how these processes may impact disease etiopathology, and how modulation of proteolysis may offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Health and Social Care Innovations, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH, Leicester, UK.
| |
Collapse
|
2
|
Ghosh Dastidar R, Banerjee S, Lal PB, Ghosh Dastidar S. Multifaceted Roles of AFG3L2, a Mitochondrial ATPase in Relation to Neurological Disorders. Mol Neurobiol 2024; 61:3788-3808. [PMID: 38012514 PMCID: PMC11236935 DOI: 10.1007/s12035-023-03768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
AFG3L2 is a zinc metalloprotease and an ATPase localized in an inner mitochondrial membrane involved in mitochondrial quality control of several nuclear- and mitochondrial-encoded proteins. Mutations in AFG3L2 lead to diseases like slow progressive ataxia, which is a neurological disorder. This review delineates the cellular functions of AFG3L2 and its dysfunction that leads to major clinical outcomes, which include spinocerebellar ataxia type 28, spastic ataxia type 5, and optic atrophy type 12. It summarizes all relevant AFG3L2 mutations associated with the clinical outcomes to understand the detailed mechanisms attributable to its structure-related multifaceted roles in proteostasis and quality control. We face early diagnostic challenges of ataxia and optic neuropathy due to asymptomatic parents and variable clinical manifestations due to heterozygosity/homozygosity of AFG3L2 mutations. This review intends to promote AFG3L2 as a putative prognostic or diagnostic marker.
Collapse
Affiliation(s)
- Ranita Ghosh Dastidar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Saradindu Banerjee
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India
| | - Piyush Behari Lal
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Liu Y, Jiang JJ, Du SY, Mu LS, Fan JJ, Hu JC, Ye Y, Ding M, Zhou WY, Yu QH, Xia YF, Xu HY, Shi YJ, Qian SW, Tang Y, Li W, Dang YJ, Dong X, Li XY, Xu CJ, Tang QQ. Artemisinins ameliorate polycystic ovarian syndrome by mediating LONP1-CYP11A1 interaction. Science 2024; 384:eadk5382. [PMID: 38870290 DOI: 10.1126/science.adk5382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/19/2024] [Indexed: 06/15/2024]
Abstract
Polycystic ovary syndrome (PCOS), a prevalent reproductive disorder in women of reproductive age, features androgen excess, ovulatory dysfunction, and polycystic ovaries. Despite its high prevalence, specific pharmacologic intervention for PCOS is challenging. In this study, we identified artemisinins as anti-PCOS agents. Our finding demonstrated the efficacy of artemisinin derivatives in alleviating PCOS symptoms in both rodent models and human patients, curbing hyperandrogenemia through suppression of ovarian androgen synthesis. Artemisinins promoted cytochrome P450 family 11 subfamily A member 1 (CYP11A1) protein degradation to block androgen overproduction. Mechanistically, artemisinins directly targeted lon peptidase 1 (LONP1), enhanced LONP1-CYP11A1 interaction, and facilitated LONP1-catalyzed CYP11A1 degradation. Overexpression of LONP1 replicated the androgen-lowering effect of artemisinins. Our data suggest that artemisinin application is a promising approach for treating PCOS and highlight the crucial role of the LONP1-CYP11A1 interaction in controlling hyperandrogenism and PCOS occurrence.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing-Jing Jiang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shao-Yue Du
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200032, China
| | - Liang-Shan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-Jun Fan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Jun-Chi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Yao Ye
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Meng Ding
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei-Yu Zhou
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiu-Han Yu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yi-Fan Xia
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hong-Yu Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi-Jie Shi
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shu-Wen Qian
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yong-Jun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Ying Li
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cong-Jian Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Li H, Jiang Y, Liu M, Yu J, Feng X, Xu X, Wang H, Zhang J, Sun X, Yu Y. DNA methylation-mediated inhibition of MGARP is involved in impaired progeny testosterone synthesis in mice exposed to DBP in utero. ENVIRONMENTAL TOXICOLOGY 2023; 38:914-925. [PMID: 36602389 DOI: 10.1002/tox.23734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/18/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
The dibutyl phthalate (DBP) has been detected in fetuses and infants and can cause damage to the reproductive system in adulthood, but the exact mechanism remains unclear. Here, we aim to investigate the effects of intrauterine DBP exposure on offspring reproductive function and explore possible mechanisms. SPF C57BL/6 pregnant mice were given DBP (0.5, 5, 75 mg/kg/d) or corn oil from day 5 to day 19 by gavage. After weaning, the pups were fed a standard diet for 5 weeks. In addition, TM3 Leydig cell cultures were used to study the relevant mechanisms in vitro. The results showed that intrauterine DBP exposure could reduce sperm density and sperm motility, cause testicular tissue damage, down-regulate serum T and LH levels, and up-regulate serum FSH levels at 75 mg/kg/d. Western blot and methylation detection revealed intrauterine exposure to DBP down-regulated testosterone synthesis-related proteins StAR, P450scc, 3β-HSD, PKA, and PKC expression, while up-regulated the levels of methyltransferase proteins expression and DNA 5-methylcytosine (5mC) in testicular tissue of mouse offspring at 75 mg/kg/d. Further detection found in utero 75 mg/kg/d DBP exposure down-regulated MGARP protein expression, and induced incomplete methylation of the MGARP gene. An in vitro analysis showed that MGARP inhibition is involved in an impaired testosterone synthesis in TM3 cells. Cell culture results suggest that MGARP down-regulation may be involved in impaired testosterone production in monobutyl phthalate-treated cells. The present study revealed that 75 mg/kg/d DBP exposure in utero resulted in testosterone synthesis disorders and reproductive function impairment in mouse offspring, and the mechanism may be related to DNA methylation-mediated down-regulation of MGARP in the testis.
Collapse
Affiliation(s)
- Huan Li
- School of Public Health, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Beihua University, Jilin, China
| | - Yutong Jiang
- School of Traditional Chinese medicine, Southern Medical University, Guangzhou, China
| | - Minhui Liu
- School of Public Health, Beihua University, Jilin, China
| | - Jiaxin Yu
- School of Public Health, Beihua University, Jilin, China
| | - Xinyue Feng
- School of Public Health, Beihua University, Jilin, China
| | - Xiaolei Xu
- School of Public Health, Beihua University, Jilin, China
| | - Hongyan Wang
- School of Public Health, Beihua University, Jilin, China
| | - Jing Zhang
- School of Public Health, Beihua University, Jilin, China
| | - Xiuling Sun
- School of Public Health, Beihua University, Jilin, China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Manna PR, Ahmed AU, Molehin D, Narasimhan M, Pruitt K, Reddy PH. Hormonal and Genetic Regulatory Events in Breast Cancer and Its Therapeutics: Importance of the Steroidogenic Acute Regulatory Protein. Biomedicines 2022; 10:biomedicines10061313. [PMID: 35740335 PMCID: PMC9220045 DOI: 10.3390/biomedicines10061313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Estrogen promotes the development and survival of the majority of breast cancers (BCs). Aromatase is the rate-limiting enzyme in estrogen biosynthesis, and it is immensely expressed in both cancerous and non-cancerous breast tissues. Endocrine therapy based on estrogen blockade, by aromatase inhibitors, has been the mainstay of BC treatment in post-menopausal women; however, resistance to hormone therapy is the leading cause of cancer death. An improved understanding of the molecular underpinnings is the key to develop therapeutic strategies for countering the most prevalent hormone receptor positive BCs. Of note, cholesterol is the precursor of all steroid hormones that are synthesized in a variety of tissues and play crucial roles in diverse processes, ranging from organogenesis to homeostasis to carcinogenesis. The rate-limiting step in steroid biosynthesis is the transport of cholesterol from the outer to the inner mitochondrial membrane, a process that is primarily mediated by the steroidogenic acute regulatory (StAR) protein. Advances in genomic and proteomic technologies have revealed a dynamic link between histone deacetylases (HDACs) and StAR, aromatase, and estrogen regulation. We were the first to report that StAR is abundantly expressed, along with large amounts of 17β-estradiol (E2), in hormone-dependent, but not hormone-independent, BCs, in which StAR was also identified as a novel acetylated protein. Our in-silico analyses of The Cancer Genome Atlas (TCGA) datasets, for StAR and steroidogenic enzyme genes, revealed an inverse correlation between the amplification of the StAR gene and the poor survival of BC patients. Additionally, we reported that a number of HDAC inhibitors, by altering StAR acetylation patterns, repress E2 synthesis in hormone-sensitive BC cells. This review highlights the current understanding of molecular pathogenesis of BCs, especially for luminal subtypes, and their therapeutics, underlining that StAR could serve not only as a prognostic marker, but also as a therapeutic candidate, in the prevention and treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Pulak R. Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Correspondence: ; Tel.: +1-806-743-3573; Fax: +1-806-743-3143
| | - Ahsen U. Ahmed
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA;
| | - Deborah Molehin
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (D.M.); (K.P.)
| | - Madhusudhanan Narasimhan
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (D.M.); (K.P.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
6
|
Huang J, Ren H, Chen A, Li T, Wang H, Jiang L, Zheng S, Qi H, Ji B, Wang X, Qu J, Zhao J, Qiu L. Perfluorooctane sulfonate induces suppression of testosterone biosynthesis via Sertoli cell-derived exosomal/miR-9-3p downregulating StAR expression in Leydig cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118960. [PMID: 35150797 DOI: 10.1016/j.envpol.2022.118960] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is associated with male reproductive disorder, but the related mechanisms are still unclear. In this study, we used in vivo and in vitro models to explore the role of Sertoli cell-derived exosomes (SC-Exo)/miR-9-3p/StAR signaling pathway on PFOS-induced suppression of testosterone biosynthesis. Forty male ICR mice were orally administrated PFOS (0.5-10 mg/kg/bw) for 4 weeks. Bodyweight, organ index, sperm count, reproductive hormones were evaluated. Primary Sertoli cells and Leydig cells were used to delineate the molecular mechanisms that mediate the effects of PFOS on testosterone biosynthesis. Our results demonstrated that PFOS dose-dependently induced a decrease in sperm count, low levels of testosterone, and damage in testicular interstitium morphology. In vitro models, PFOS significantly increased miR-9-3p levels in Sertoli cells and SC-Exo, accompanied by a decrease in testosterone secretion and StAR expression in Leydig cells when Leydig cells were exposed to SC-Exo. Meanwhile, inhibition of SC-Exo or miR-9-3p by their inhibitors significantly rescued PFOS-induced decreases in testosterone secretion and the mRNA and protein expression of the StAR gene in Leydig cells. In summary, the present study highlights the role of the SC-Exo/miR-9-3p/StAR signaling pathway in PFOS-induced suppression of testosterone biosynthesis, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
Collapse
Affiliation(s)
- Jiyan Huang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hang Ren
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Anni Chen
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Ting Li
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hongxia Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianlian Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Shaokai Zheng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Han Qi
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Binyan Ji
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Xipei Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China; Jiangsu Province-Hai'an People's Hospital, Hai'an City, Nantong City, 17 Zhongba Middle Road, (Affiliated Haian Hospital of Nantong University), PR China
| | - Jianhua Qu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Jianya Zhao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China.
| |
Collapse
|
7
|
Bose HS, Whittal RM, Marshall B, Rajapaksha M, Wang NP, Bose M, Perry EW, Zhao ZQ, Miller WL. A Novel Mitochondrial Complex of Aldosterone Synthase, Steroidogenic Acute Regulatory Protein, and Tom22 Synthesizes Aldosterone in the Rat Heart. J Pharmacol Exp Ther 2021; 377:108-120. [PMID: 33526603 DOI: 10.1124/jpet.120.000365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Aldosterone, which regulates renal salt retention, is synthesized in adrenocortical mitochondria in response to angiotensin II. Excess aldosterone causes myocardial injury and heart failure, but potential intracardiac aldosterone synthesis has been controversial. We hypothesized that the stressed heart might produce aldosterone. We used blue native gel electrophoresis, immunoblotting, protein crosslinking, coimmunoprecipitations, and mass spectrometry to assess rat cardiac aldosterone synthesis. Chronic infusion of angiotensin II increased circulating corticosterone levels 350-fold and induced cardiac fibrosis. Angiotensin II doubled and telmisartan inhibited aldosterone synthesis by heart mitochondria and cardiac production of aldosterone synthase (P450c11AS). Heart aldosterone synthesis required P450c11AS, Tom22 (a mitochondrial translocase receptor), and the intramitochondrial form of the steroidogenic acute regulatory protein (StAR); protein crosslinking and coimmunoprecipitation studies showed that these three proteins form a 110-kDa complex. In steroidogenic cells, extramitochondrial (37-kDa) StAR promotes cholesterol movement from the outer to inner mitochondrial membrane where cholesterol side-chain cleavage enzyme (P450scc) converts cholesterol to pregnenolone, thus initiating steroidogenesis, but no function has previously been ascribed to intramitochondrial (30-kDa) StAR; our data indicate that intramitochondrial 30-kDa StAR is required for aldosterone synthesis in the heart, forming a trimolecular complex with Tom22 and P450c11AS. This is the first activity ascribed to intramitochondrial StAR, but how this promotes P450c11AS activity is unclear. The stressed heart did not express P450scc, suggesting that circulating corticosterone (rather than intracellular cholesterol) is the substrate for cardiac aldosterone synthesis. Thus, the stressed heart produced aldosterone using a previously undescribed intramitochondrial mechanism that involves P450c11AS, Tom22, and 30-kDa StAR. SIGNIFICANCE STATEMENT: Prior studies of potential cardiac aldosterone synthesis have been inconsistent. This study shows that the stressed rat heart produces aldosterone by a novel mechanism involving aldosterone synthase, Tom22, and intramitochondrial steroidogenic acute regulatory protein (StAR) apparently using circulating corticosterone as substrate. This study establishes that the stressed rat heart produces aldosterone and for the first time identifies a biological role for intramitochondrial 30-kDa StAR.
Collapse
Affiliation(s)
- Himangshu S Bose
- Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia (H.S.B., M.R., N.P.W., Z.-Q.Z.); Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (R.M.W.); Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia (B.M., E.W.P.); Curtiss Healthcare, University of Florida Innovate Sid Martin Biotechbology Incubator, Gainesville, Florida (M.B.); Anderson Cancer Institute, Savannah, Georgia (H.S.B.); and Department of Pediatrics and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (W.L.M.)
| | - Randy M Whittal
- Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia (H.S.B., M.R., N.P.W., Z.-Q.Z.); Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (R.M.W.); Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia (B.M., E.W.P.); Curtiss Healthcare, University of Florida Innovate Sid Martin Biotechbology Incubator, Gainesville, Florida (M.B.); Anderson Cancer Institute, Savannah, Georgia (H.S.B.); and Department of Pediatrics and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (W.L.M.)
| | - Brendan Marshall
- Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia (H.S.B., M.R., N.P.W., Z.-Q.Z.); Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (R.M.W.); Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia (B.M., E.W.P.); Curtiss Healthcare, University of Florida Innovate Sid Martin Biotechbology Incubator, Gainesville, Florida (M.B.); Anderson Cancer Institute, Savannah, Georgia (H.S.B.); and Department of Pediatrics and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (W.L.M.)
| | - Maheshinie Rajapaksha
- Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia (H.S.B., M.R., N.P.W., Z.-Q.Z.); Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (R.M.W.); Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia (B.M., E.W.P.); Curtiss Healthcare, University of Florida Innovate Sid Martin Biotechbology Incubator, Gainesville, Florida (M.B.); Anderson Cancer Institute, Savannah, Georgia (H.S.B.); and Department of Pediatrics and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (W.L.M.)
| | - Ning Ping Wang
- Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia (H.S.B., M.R., N.P.W., Z.-Q.Z.); Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (R.M.W.); Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia (B.M., E.W.P.); Curtiss Healthcare, University of Florida Innovate Sid Martin Biotechbology Incubator, Gainesville, Florida (M.B.); Anderson Cancer Institute, Savannah, Georgia (H.S.B.); and Department of Pediatrics and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (W.L.M.)
| | - Madhuchanda Bose
- Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia (H.S.B., M.R., N.P.W., Z.-Q.Z.); Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (R.M.W.); Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia (B.M., E.W.P.); Curtiss Healthcare, University of Florida Innovate Sid Martin Biotechbology Incubator, Gainesville, Florida (M.B.); Anderson Cancer Institute, Savannah, Georgia (H.S.B.); and Department of Pediatrics and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (W.L.M.)
| | - Elizabeth W Perry
- Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia (H.S.B., M.R., N.P.W., Z.-Q.Z.); Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (R.M.W.); Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia (B.M., E.W.P.); Curtiss Healthcare, University of Florida Innovate Sid Martin Biotechbology Incubator, Gainesville, Florida (M.B.); Anderson Cancer Institute, Savannah, Georgia (H.S.B.); and Department of Pediatrics and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (W.L.M.)
| | - Zhi-Qing Zhao
- Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia (H.S.B., M.R., N.P.W., Z.-Q.Z.); Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (R.M.W.); Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia (B.M., E.W.P.); Curtiss Healthcare, University of Florida Innovate Sid Martin Biotechbology Incubator, Gainesville, Florida (M.B.); Anderson Cancer Institute, Savannah, Georgia (H.S.B.); and Department of Pediatrics and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (W.L.M.)
| | - Walter L Miller
- Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia (H.S.B., M.R., N.P.W., Z.-Q.Z.); Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (R.M.W.); Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia (B.M., E.W.P.); Curtiss Healthcare, University of Florida Innovate Sid Martin Biotechbology Incubator, Gainesville, Florida (M.B.); Anderson Cancer Institute, Savannah, Georgia (H.S.B.); and Department of Pediatrics and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (W.L.M.)
| |
Collapse
|
8
|
Gibellini L, De Gaetano A, Mandrioli M, Van Tongeren E, Bortolotti CA, Cossarizza A, Pinti M. The biology of Lonp1: More than a mitochondrial protease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:1-61. [PMID: 32475470 DOI: 10.1016/bs.ircmb.2020.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Initially discovered as a protease responsible for degradation of misfolded or damaged proteins, the mitochondrial Lon protease (Lonp1) turned out to be a multifaceted enzyme, that displays at least three different functions (proteolysis, chaperone activity, binding of mtDNA) and that finely regulates several cellular processes, within and without mitochondria. Indeed, LONP1 in humans is ubiquitously expressed, and is involved in regulation of response to oxidative stress and, heat shock, in the maintenance of mtDNA, in the regulation of mitophagy. Furthermore, its proteolytic activity can regulate several biochemical pathways occurring totally or partially within mitochondria, such as TCA cycle, oxidative phosphorylation, steroid and heme biosynthesis and glutamine production. Because of these multiple activities, Lon protease is highly conserved throughout evolution, and mutations occurring in its gene determines severe diseases in humans, including a rare syndrome characterized by Cerebral, Ocular, Dental, Auricular and Skeletal anomalies (CODAS). Finally, alterations of LONP1 regulation in humans can favor tumor progression and aggressiveness, further highlighting the crucial role of this enzyme in mitochondrial and cellular homeostasis.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Van Tongeren
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Andrea Cossarizza
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
9
|
Deshwal S, Fiedler KU, Langer T. Mitochondrial Proteases: Multifaceted Regulators of Mitochondrial Plasticity. Annu Rev Biochem 2020; 89:501-528. [PMID: 32075415 DOI: 10.1146/annurev-biochem-062917-012739] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are essential metabolic hubs that dynamically adapt to physiological demands. More than 40 proteases residing in different compartments of mitochondria, termed mitoproteases, preserve mitochondrial proteostasis and are emerging as central regulators of mitochondrial plasticity. These multifaceted enzymes limit the accumulation of short-lived, regulatory proteins within mitochondria, modulate the activity of mitochondrial proteins by protein processing, and mediate the degradation of damaged proteins. Various signaling cascades coordinate the activity of mitoproteases to preserve mitochondrial homeostasis and ensure cell survival. Loss of mitoproteases severely impairs the functional integrity of mitochondria, is associated with aging, and causes pleiotropic diseases. Understanding the dual function of mitoproteases as regulatory and quality control enzymes will help unravel the role of mitochondrial plasticity in aging and disease.
Collapse
Affiliation(s)
- Soni Deshwal
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany;
| | - Kai Uwe Fiedler
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany;
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
10
|
Tugaeva KV, Sluchanko NN. Steroidogenic Acute Regulatory Protein: Structure, Functioning, and Regulation. BIOCHEMISTRY (MOSCOW) 2019; 84:S233-S253. [PMID: 31213205 DOI: 10.1134/s0006297919140141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Steroidogenesis takes place mainly in adrenal and gonadal cells that produce a variety of structurally similar hormones regulating numerous body functions. The rate-limiting stage of steroidogenesis is cholesterol delivery to the inner mitochondrial membrane, where it is converted by cytochrome P450scc into pregnenolone, a common precursor of all steroid hormones. The major role of supplying mitochondria with cholesterol belongs to steroidogenic acute regulatory protein (STARD1). STARD1, which is synthesized de novo as a precursor containing mitochondrial localization sequence and sterol-binding domain, significantly accelerates cholesterol transport and production of pregnenolone. Despite a tremendous interest in STARD1 fueled by its involvement in hereditary diseases and extensive efforts of numerous laboratories worldwide, many aspects of STARD1 structure, functioning, and regulation remain obscure and debatable. This review presents current concepts on the structure of STARD1 and other lipid transfer proteins, the role of STARD1 in steroidogenesis, and the mechanism of its functioning, as well as identifies the most controversial and least studied questions related to the activity of this protein.
Collapse
Affiliation(s)
- K V Tugaeva
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia. .,Lomonosov Moscow State University, Biological Faculty, Department of Biochemistry, Moscow, 119234, Russia
| | - N N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia. .,Lomonosov Moscow State University, Biological Faculty, Department of Biophysics, Moscow, 119991, Russia
| |
Collapse
|
11
|
Medwid S, Guan H, Yang K. Bisphenol A stimulates steroidogenic acute regulatory protein expression via an unknown mechanism in adrenal cortical cells. J Cell Biochem 2019; 120:2429-2438. [PMID: 30206973 DOI: 10.1002/jcb.27574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023]
Abstract
Bisphenol A (BPA) is one of the most widespread endocrine disrupting chemicals in the environment. Exposure to BPA is known to be associated with disruption of steroidogenesis in reproductive tissues, but little is known about its effects on the adrenal gland. We previously showed that prenatal BPA exposure resulted in elevated plasma corticosterone levels concomitant with increased adrenal levels of steroidogenic acute regulatory protein (StAR), the rate-limiting step in steroidogenesis, in adult female mouse offspring. However, the molecular mechanisms underlying the BPA-induced StAR protein expression in the adrenal gland remain unknown. Therefore, the current study was designed to address this important question using the human cortical cell line, H295A cells, as an in vitro model system. We found that: (1) BPA increased StAR protein levels in a dose-dependent manner; (2) both estrogen receptor alpha (ERα)- and ERβ-specific agonists mimicked while the ER antagonist ICI abrogated the stimulatory effects of BPA on StAR protein levels; and (3) BPA did not alter StAR messenger RNA, 37kDa preprotein or protein half-life. Taken together, these findings demonstrate that BPA increases StAR protein levels through an unknown mechanism independent of StAR gene transcription, translation, and protein half-life. Furthermore, such effects are likely mediated by ERα and/or ERβ.
Collapse
Affiliation(s)
- Samantha Medwid
- Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Children's Health Research Institute & Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Haiyan Guan
- Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Children's Health Research Institute & Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Kaiping Yang
- Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Children's Health Research Institute & Lawson Health Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
12
|
Sun D, Dong W, Jin B, Chen G, Cai B, Deng W, Cui Y, Jin Y. Mechanisms of Yangjing Capsule in Leydig Cell Apoptosis and Testosterone Synthesis via Promoting StAR Expression. Biol Pharm Bull 2018; 41:1401-1405. [DOI: 10.1248/bpb.b18-00205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dalin Sun
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University
| | | | - Baofang Jin
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University
| | - Guanghui Chen
- Hebei Provincial Hospital of Traditional Chinese Medicine
| | - Bin Cai
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University
| | - Weimin Deng
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University
| | - Yihan Jin
- Medical College of Qinghai University
| |
Collapse
|
13
|
Lebeau J, Rainbolt TK, Wiseman RL. Coordinating Mitochondrial Biology Through the Stress-Responsive Regulation of Mitochondrial Proteases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:79-128. [PMID: 30072094 PMCID: PMC6402875 DOI: 10.1016/bs.ircmb.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are localized throughout mitochondria and function as critical regulators of all aspects of mitochondrial biology. As such, the activities of these proteases are sensitively regulated through transcriptional and post-translational mechanisms to adapt mitochondrial function to specific cellular demands. Here, we discuss the stress-responsive mechanisms responsible for regulating mitochondrial protease activity and the implications of this regulation on mitochondrial function. Furthermore, we describe how imbalances in the activity or regulation of mitochondrial proteases induced by genetic, environmental, or aging-related factors influence mitochondria in the context of disease. Understanding the molecular mechanisms by which cells regulate mitochondrial function through alterations in protease activity provide insights into the contributions of these proteases in pathologic mitochondrial dysfunction and reveals new therapeutic opportunities to ameliorate this dysfunction in the context of diverse classes of human disease.
Collapse
Affiliation(s)
- Justine Lebeau
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - T Kelly Rainbolt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
14
|
Lon in maintaining mitochondrial and endoplasmic reticulum homeostasis. Arch Toxicol 2018; 92:1913-1923. [DOI: 10.1007/s00204-018-2210-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/25/2018] [Indexed: 01/24/2023]
|
15
|
Mitohormesis, an Antiaging Paradigm. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:35-77. [DOI: 10.1016/bs.ircmb.2018.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
The heat shock protein 60 promotes progesterone synthesis in mitochondria of JEG-3 cells. Reprod Biol 2017; 17:154-161. [DOI: 10.1016/j.repbio.2017.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 11/22/2022]
|
17
|
Bota DA, Davies KJA. Mitochondrial Lon protease in human disease and aging: Including an etiologic classification of Lon-related diseases and disorders. Free Radic Biol Med 2016; 100:188-198. [PMID: 27387767 PMCID: PMC5183306 DOI: 10.1016/j.freeradbiomed.2016.06.031] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022]
Abstract
The Mitochondrial Lon protease, also called LonP1 is a product of the nuclear gene LONP1. Lon is a major regulator of mitochondrial metabolism and response to free radical damage, as well as an essential factor for the maintenance and repair of mitochondrial DNA. Lon is an ATP-stimulated protease that cycles between being bound (at the inner surface of the inner mitochondrial membrane) to the mitochondrial genome, and being released into the mitochondrial matrix where it can degrade matrix proteins. At least three different roles or functions have been ascribed to Lon: 1) Proteolytic digestion of oxidized proteins and the turnover of specific essential mitochondrial enzymes such as aconitase, TFAM, and StAR; 2) Mitochondrial (mt)DNA-binding protein, involved in mtDNA replication and mitogenesis; and 3) Protein chaperone, interacting with the Hsp60-mtHsp70 complex. LONP1 orthologs have been studied in bacteria, yeast, flies, worms, and mammals, evincing the widespread importance of the gene, as well as its remarkable evolutionary conservation. In recent years, we have witnessed a significant increase in knowledge regarding Lon's involvement in physiological functions, as well as in an expanding array of human disorders, including cancer, neurodegeneration, heart disease, and stroke. In addition, Lon appears to have a significant role in the aging process. A number of mitochondrial diseases have now been identified whose mechanisms involve various degrees of Lon dysfunction. In this paper we review current knowledge of Lon's function, under normal conditions, and we propose a new classification of human diseases characterized by a either over-expression or decline or loss of function of Lon. Lon has also been implicated in human aging, and we review the data currently available as well as speculating about possible interactions of aging and disease. Finally, we also discuss Lon as potential therapeutic target in human disease.
Collapse
Affiliation(s)
- Daniela A Bota
- Department of Neurology and Chao Family Comprehensive Cancer Center, UC Irvine School of Medicine, 200 S. Manchester Ave., Suite 206, Orange, CA 92868, USA.
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, Los Angeles, CA 90089-0191, USA; Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, & Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
18
|
Bohovych I, Khalimonchuk O. Sending Out an SOS: Mitochondria as a Signaling Hub. Front Cell Dev Biol 2016; 4:109. [PMID: 27790613 PMCID: PMC5061732 DOI: 10.3389/fcell.2016.00109] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Normal cellular physiology is critically dependent on numerous mitochondrial activities including energy conversion, cofactor and precursor metabolite synthesis, and regulation of ion and redox homeostasis. Advances in mitochondrial research during the last two decades provide solid evidence that these organelles are deeply integrated with the rest of the cell and multiple mechanisms are in place to monitor and communicate functional states of mitochondria. In many cases, however, the exact molecular nature of various mitochondria-to-cell communication pathways is only beginning to emerge. Here, we review various signals emitted by distressed or dysfunctional mitochondria and the stress-responsive pathways activated in response to these signals in order to restore mitochondrial function and promote cellular survival.
Collapse
Affiliation(s)
- Iryna Bohovych
- Department of Biochemistry, University of Nebraska-LincolnLincoln, NE, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-LincolnLincoln, NE, USA
- Nebraska Redox Biology Center, University of Nebraska-LincolnLincoln, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical CenterOmaha, NE, USA
| |
Collapse
|
19
|
Quirós PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 2016; 17:213-26. [PMID: 26956194 DOI: 10.1038/nrm.2016.23] [Citation(s) in RCA: 526] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria participate in crucial cellular processes such as energy harvesting and intermediate metabolism. Although mitochondria possess their own genome--a vestige of their bacterial origins and endosymbiotic evolution--most mitochondrial proteins are encoded in the nucleus. The expression of the mitochondrial proteome hence requires tight coordination between the two genomes to adapt mitochondrial function to the ever-changing cellular milieu. In this Review, we focus on the pathways that coordinate the communication between mitochondria and the nucleus during homeostasis and mitochondrial stress. These pathways include nucleus-to-mitochondria (anterograde) and mitochondria-to-nucleus (retrograde) communication, mitonuclear feedback signalling and proteostasis regulation, the integrated stress response and non-cell-autonomous communication. We discuss how mitonuclear communication safeguards cellular and organismal fitness and regulates lifespan.
Collapse
Affiliation(s)
- Pedro M Quirós
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
20
|
Paz C, Cornejo Maciel F, Gorostizaga A, Castillo AF, Mori Sequeiros García MM, Maloberti PM, Orlando UD, Mele PG, Poderoso C, Podesta EJ. Role of Protein Phosphorylation and Tyrosine Phosphatases in the Adrenal Regulation of Steroid Synthesis and Mitochondrial Function. Front Endocrinol (Lausanne) 2016; 7:60. [PMID: 27375556 PMCID: PMC4899475 DOI: 10.3389/fendo.2016.00060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/25/2016] [Indexed: 12/17/2022] Open
Abstract
In adrenocortical cells, adrenocorticotropin (ACTH) promotes the activation of several protein kinases. The action of these kinases is linked to steroid production, mainly through steroidogenic acute regulatory protein (StAR), whose expression and activity are dependent on protein phosphorylation events at genomic and non-genomic levels. Hormone-dependent mitochondrial dynamics and cell proliferation are functions also associated with protein kinases. On the other hand, protein tyrosine dephosphorylation is an additional component of the ACTH signaling pathway, which involves the "classical" protein tyrosine phosphatases (PTPs), such as Src homology domain (SH) 2-containing PTP (SHP2c), and members of the MAP kinase phosphatase (MKP) family, such as MKP-1. PTPs are rapidly activated by posttranslational mechanisms and participate in hormone-stimulated steroid production. In this process, the SHP2 tyrosine phosphatase plays a crucial role in a mechanism that includes an acyl-CoA synthetase-4 (Acsl4), arachidonic acid (AA) release and StAR induction. In contrast, MKPs in steroidogenic cells have a role in the turn-off of the hormonal signal in ERK-dependent processes such as steroid synthesis and, perhaps, cell proliferation. This review analyzes the participation of these tyrosine phosphates in the ACTH signaling pathway and the action of kinases and phosphatases in the regulation of mitochondrial dynamics and steroid production. In addition, the participation of kinases and phosphatases in the signal cascade triggered by different stimuli in other steroidogenic tissues is also compared to adrenocortical cell/ACTH and discussed.
Collapse
Affiliation(s)
- Cristina Paz
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Fabiana Cornejo Maciel
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Gorostizaga
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana F. Castillo
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - M. Mercedes Mori Sequeiros García
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula M. Maloberti
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Ulises D. Orlando
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo G. Mele
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Cecilia Poderoso
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Ernesto J. Podesta
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- *Correspondence: Ernesto J. Podesta, ,
| |
Collapse
|
21
|
Graham A. Mitochondrial regulation of macrophage cholesterol homeostasis. Free Radic Biol Med 2015; 89:982-92. [PMID: 26416507 DOI: 10.1016/j.freeradbiomed.2015.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/28/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022]
Abstract
This review explores the relationship between mitochondrial structure and function in the regulation of macrophage cholesterol metabolism and proposes that mitochondrial dysfunction contributes to loss of the elegant homeostatic mechanisms which normally maintain cellular sterol levels within defined limits. Mitochondrial sterol 27-hydroxylase (CYP27A1) can generate oxysterol activators of liver X receptors which heterodimerise with retinoid X receptors, enhancing the transcription of ATP binding cassette transporters (ABCA1, ABCG1, and ABCG4), that can remove excess cholesterol via efflux to apolipoproteins A-1, E, and high density lipoprotein, and inhibit inflammation. The activity of CYP27A1 is regulated by the rate of supply of cholesterol substrate to the inner mitochondrial membrane, mediated by a complex of proteins. The precise identity of this dynamic complex remains controversial, even in steroidogenic tissues, but may include steroidogenic acute regulatory protein and the 18 kDa translocator protein, together with voltage-dependent anion channels, ATPase AAA domain containing protein 3A, and optic atrophy type 1 proteins. Certainly, overexpression of StAR and TSPO proteins can enhance macrophage cholesterol efflux to apoA-I and/or HDL, while perturbations in mitochondrial function, or changes in the expression of mitochondrial fusion proteins, alter the efficiency of cholesterol efflux. Molecules which can sustain or improve mitochondrial function or increase the activity of the protein complex involved in cholesterol transfer may have utility in resolving the problem of dysregulated macrophage cholesterol homeostasis, a condition which may contribute to inflammation, atherosclerosis, nonalcoholic steatohepatitis, osteoblastic bone resorption, and some disorders of the central nervous system.
Collapse
Affiliation(s)
- Annette Graham
- Department of Life Sciences, School of Health and Life Sciences, and Institute for Applied Health Research, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA, United Kingdom.
| |
Collapse
|
22
|
Pinti M, Gibellini L, Liu Y, Xu S, Lu B, Cossarizza A. Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell Mol Life Sci 2015; 72:4807-24. [PMID: 26363553 PMCID: PMC11113732 DOI: 10.1007/s00018-015-2039-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/01/2015] [Accepted: 09/07/2015] [Indexed: 11/26/2022]
Abstract
Lon protease is a nuclear DNA-encoded mitochondrial enzyme highly conserved throughout evolution, involved in the degradation of damaged and oxidized proteins of the mitochondrial matrix, in the correct folding of proteins imported in mitochondria, and in the maintenance of mitochondrial DNA. Lon expression is induced by various stimuli, including hypoxia and reactive oxygen species, and provides protection against cell stress. Lon down-regulation is associated with ageing and with cell senescence, while up-regulation is observed in tumour cells, and is correlated with a more aggressive phenotype of cancer. Lon up-regulation contributes to metabolic reprogramming observed in cancer, favours the switch from a respiratory to a glycolytic metabolism, helping cancer cell survival in the tumour microenvironment, and contributes to epithelial to mesenchymal transition. Silencing of Lon, or pharmacological inhibition of its activity, causes cell death in various cancer cells. Thus, Lon can be included in the growing class of proteins that are not responsible for oncogenic transformation, but that are essential for survival and proliferation of cancer cells, and that can be considered as a new target for development of anticancer drugs.
Collapse
Affiliation(s)
- Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy.
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Yongzhang Liu
- School of Life Sciences, Institute of Biophysics, Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shan Xu
- School of Life Sciences, Institute of Biophysics, Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Bin Lu
- School of Life Sciences, Institute of Biophysics, Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
23
|
Bahat A, Perlberg S, Melamed-Book N, Isaac S, Eden A, Lauria I, Langer T, Orly J. Transcriptional activation of LON Gene by a new form of mitochondrial stress: A role for the nuclear respiratory factor 2 in StAR overload response (SOR). Mol Cell Endocrinol 2015; 408:62-72. [PMID: 25724481 DOI: 10.1016/j.mce.2015.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/19/2023]
Abstract
High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peri-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases.
Collapse
Affiliation(s)
- Assaf Bahat
- Department of Biological Chemistry at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shira Perlberg
- Department of Biological Chemistry at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Naomi Melamed-Book
- Bio-Imaging Unit at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sara Isaac
- Department of Cell & Developmental Biology at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Amir Eden
- Department of Cell & Developmental Biology at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ines Lauria
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Thomas Langer
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Joseph Orly
- Department of Biological Chemistry at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
24
|
Castillo AF, Orlando U, Helfenberger KE, Poderoso C, Podesta EJ. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis. Mol Cell Endocrinol 2015; 408:73-9. [PMID: 25540920 DOI: 10.1016/j.mce.2014.12.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 12/16/2022]
Abstract
The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroidogenesis, i.e. the delivery of cholesterol from the outer (OMM) to the inner (IMM) mitochondrial membrane. StAR is a 37-kDa protein with an N-terminal mitochondrial targeting sequence that is cleaved off during mitochondrial import to yield 30-kDa intramitochondrial StAR. StAR acts exclusively on the OMM and its activity is proportional to how long it remains on the OMM. However, the precise fashion and the molecular mechanism in which StAR remains on the OMM have not been elucidated yet. In this work we will discuss the role of mitochondrial fusion and StAR phosphorylation by the extracellular signal-regulated kinases 1/2 (ERK1/2) as part of the mechanism that regulates StAR retention on the OMM and activity.
Collapse
Affiliation(s)
- Ana F Castillo
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Ulises Orlando
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Katia E Helfenberger
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Cecilia Poderoso
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Ernesto J Podesta
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina.
| |
Collapse
|
25
|
Abstract
Recent advances in mitochondrial biology have revealed the high diversity and complexity of proteolytic enzymes that regulate mitochondrial function. We have classified mitochondrial proteases, or mitoproteases, on the basis of their function and location, and defined the human mitochondrial degradome as the complete set of mitoproteases that are encoded by the human genome. In addition to their nonspecific degradative functions, mitoproteases perform highly regulated proteolytic reactions that are important in mitochondrial function, integrity and homeostasis. These include protein synthesis, quality control, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Impaired or dysregulated function of mitoproteases is associated with ageing and with many pathological conditions such as neurodegenerative disorders, metabolic syndromes and cancer. A better understanding of the mitochondrial proteolytic landscape and its modulation may contribute to improving human lifespan and 'healthspan'.
Collapse
|
26
|
StAR Protein Stability in Y1 and Kin-8 Mouse Adrenocortical Cells. BIOLOGY 2015; 4:200-15. [PMID: 25749137 PMCID: PMC4381226 DOI: 10.3390/biology4010200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/13/2015] [Accepted: 02/20/2015] [Indexed: 01/30/2023]
Abstract
The steroidogenic acute regulatory protein (STAR) protein expression is required for cholesterol transport into mitochondria to initiate steroidogenesis in the adrenal and gonads. STAR is synthesized as a 37 kDa precursor protein which is targeted to the mitochondria and imported and processed to an intra-mitochondrial 30 kDa protein. Tropic hormone stimulation of the cAMP-dependent protein kinase A (PKA) signaling pathway is the major contributor to the transcriptional and post-transcriptional regulation of STAR synthesis. Many studies have focused on the mechanisms of cAMP-PKA mediated control of STAR synthesis while there are few reports on STAR degradation pathways. The objective of this study was to determine the effect of cAMP-PKA-dependent signaling on STAR protein stability. We have used the cAMP-PKA responsive Y1 mouse adrenocortical cells and the PKA-deficient Kin-8 cells to measure STAR phosphorylation and protein half-life. Western blot analysis and standard radiolabeled pulse-chase experiments were used to determine STAR phosphorylation status and protein half-life, respectively. Our data demonstrate that PKA-dependent STAR phosphorylation does not contribute to 30 kDa STAR protein stability in the mitochondria. We further show that inhibition of the 26S proteasome does not block precursor STAR phosphorylation or steroid production in Y1 cells. These data suggest STAR can maintain function and promote steroidogenesis under conditions of proteasome inhibition.
Collapse
|
27
|
Corporeau C, Tamayo D, Pernet F, Quéré C, Madec S. Proteomic signatures of the oyster metabolic response to herpesvirus OsHV-1 μVar infection. J Proteomics 2014; 109:176-87. [DOI: 10.1016/j.jprot.2014.06.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/18/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
|