1
|
Adán N, Guzmán-Morales J, Ledesma-Colunga MG, Perales-Canales SI, Quintanar-Stéphano A, López-Barrera F, Méndez I, Moreno-Carranza B, Triebel J, Binart N, Martínez de la Escalera G, Thebault S, Clapp C. Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis. J Clin Invest 2013; 123:3902-3913. [PMID: 23908112 PMCID: PMC3754268 DOI: 10.1172/jci69485] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/06/2013] [Indexed: 02/05/2023] Open
Abstract
Chondrocytes are the only cells in cartilage, and their death by apoptosis contributes to cartilage loss in inflammatory joint diseases, such as rheumatoid arthritis (RA). A putative therapeutic intervention for RA is the inhibition of apoptosis-mediated cartilage degradation. The hormone prolactin (PRL) frequently increases in the circulation of patients with RA, but the role of hyperprolactinemia in disease activity is unclear. Here, we demonstrate that PRL inhibits the apoptosis of cultured chondrocytes in response to a mixture of proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) by preventing the induction of p53 and decreasing the BAX/BCL-2 ratio through a NO-independent, JAK2/STAT3-dependent pathway. Local treatment with PRL or increasing PRL circulating levels also prevented chondrocyte apoptosis evoked by injecting cytokines into the knee joints of rats, whereas the proapoptotic effect of cytokines was enhanced in PRL receptor-null (Prlr(-/-)) mice. Moreover, eliciting hyperprolactinemia in rats before or after inducing the adjuvant model of inflammatory arthritis reduced chondrocyte apoptosis, proinflammatory cytokine expression, pannus formation, bone erosion, joint swelling, and pain. These results reveal the protective effect of PRL against inflammation-induced chondrocyte apoptosis and the therapeutic potential of hyperprolactinemia to reduce permanent joint damage and inflammation in RA.
Collapse
MESH Headings
- Animals
- Apoptosis
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/physiopathology
- Cartilage, Articular/pathology
- Cartilage, Articular/physiopathology
- Cells, Cultured
- Chondrocytes/physiology
- Cytokines/physiology
- Dopamine Antagonists/pharmacology
- Haloperidol/pharmacology
- Janus Kinase 2/metabolism
- Male
- Mice
- Mice, Knockout
- Nitric Oxide/physiology
- Prolactin/physiology
- Rats
- Rats, Inbred Lew
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptors, Prolactin/metabolism
- STAT3 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Norma Adán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
INSERM U693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Jessica Guzmán-Morales
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
INSERM U693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Maria G. Ledesma-Colunga
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
INSERM U693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Sonia I. Perales-Canales
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
INSERM U693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Andrés Quintanar-Stéphano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
INSERM U693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Fernando López-Barrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
INSERM U693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Isabel Méndez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
INSERM U693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Bibiana Moreno-Carranza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
INSERM U693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Jakob Triebel
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
INSERM U693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Nadine Binart
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
INSERM U693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Gonzalo Martínez de la Escalera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
INSERM U693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Stéphanie Thebault
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
INSERM U693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
INSERM U693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Tao J, Oladimeji P, Rider L, Diakonova M. PAK1-Nck regulates cyclin D1 promoter activity in response to prolactin. Mol Endocrinol 2011; 25:1565-78. [PMID: 21719533 DOI: 10.1210/me.2011-0062] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prolactin (PRL) is critical for alveolar proliferation and differentiation in normal mammary development and is also implicated in breast cancer. PRL influences cell proliferation and growth by altering the expression of cyclin D1. Cyclin D1 expression is directly regulated by PRL through the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5-mediated transcriptional activation of the cyclin D1 promoter. A p21-activated serine-threonine kinase (PAK)1 has also been implicated in the regulation of cyclin D1 gene expression. We have previously demonstrated that JAK2 directly phosphorylates PAK1 and extend these data here to demonstrate that PAK1 activates the cyclin D1 promoter in response to PRL. We show that mutation of PAK1 Tyr 153, 201, and 285 (sites of JAK2 phosphorylation; PAK1 Y3F) decreases both PAK1 nuclear translocation in response to PRL and PRL-induced cyclin D1 promoter activity by 55%. Mutation of the PAK1 nuclear localization signals decreases PRL-induced cyclin D1 promoter activity by 46%. A PAK1 Y3F mutant lacking functional nuclear localization signals decreases PRL-induced cyclin D1 activity by 68%, suggesting that there is another PAK1-dependent mechanism to activate the cyclin D1 promoter. We have found that adapter protein Nck sequesters PAK1 in the cytoplasm and that coexpression of both PAK1 and Nck inhibits the amplifying effect of PRL-induced PAK1 on cyclin D1 promoter activity (95% inhibition). This inhibition is partially abolished by disruption of PAK1-Nck binding. We propose two PAK1-dependent mechanisms to activate cyclin D1 promoter activity in response to PRL: via nuclear translocation of tyrosyl-phosphorylated PAK1 and via formation of a Nck-PAK1 complex that sequesters PAK1 in the cytoplasm.
Collapse
Affiliation(s)
- Jing Tao
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606-3390, USA
| | | | | | | |
Collapse
|
3
|
c-Cbl-mediated degradation of TRAIL receptors is responsible for the development of the early phase of TRAIL resistance. Cell Signal 2010; 22:553-63. [PMID: 19932172 DOI: 10.1016/j.cellsig.2009.11.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 11/13/2009] [Indexed: 12/22/2022]
Abstract
We previously reported two modes of development of acquired TRAIL resistance: early phase and late phase [1]. In these studies, we observed that greater Akt activity and the expression of Bcl-xL were related mainly to the late phase of acquired TRAIL resistance. Recently we became aware of a possible mechanism of early phase TRAIL resistance development through internalization and degradation of TRAIL receptors (DR4 and DR5). Our current studies demonstrate that TRAIL receptors rapidly diminish at the membrane as well as the cytoplasm within 4h after TRAIL exposure, but recover completely after one or two days. Our studies also reveal that Cbl, a ubiquitously expressed cytoplasmic adaptor protein, is responsible for the rapid degradation of TRAIL receptors; Cbl binds to them and induces monoubiquitination of these receptors concurrent with their degeneration soon after TRAIL exposure, creating the early phase of acquired TRAIL resistance.
Collapse
|
4
|
Baxter FO, Neoh K, Tevendale MC. The beginning of the end: death signaling in early involution. J Mammary Gland Biol Neoplasia 2007; 12:3-13. [PMID: 17340185 DOI: 10.1007/s10911-007-9033-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mammary gland involution occurs in two distinct phases: an early, reversible phase, involving extensive apoptosis of the secretory alveolar epithelium without major changes in gland architecture, and a later, irreversible phase, involving remodelling of the gland to its pre-pregnancy state. Multiple signalling pathways are known to be important during early involution, however the precise triggers remain elusive. This review summarizes the roles of a number of key pathways (NF-kappaB, PI(3)K, Stat3, and TGFbeta) in the first phase of involution.
Collapse
Affiliation(s)
- Fiona O Baxter
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | | | |
Collapse
|
5
|
Munugalavadla V, Borneo J, Ingram DA, Kapur R. p85alpha subunit of class IA PI-3 kinase is crucial for macrophage growth and migration. Blood 2005; 106:103-9. [PMID: 15769893 PMCID: PMC1895121 DOI: 10.1182/blood-2004-10-4041] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Macrophages play an essential role in defending against invading pathogens by migrating to the sites of infection, removing apoptotic cells, and secreting inflammatory cytokines. The molecular mechanisms whereby macrophages regulate these processes are poorly understood. Using bone marrow-derived macrophages (BMMs) deficient in the expression of p85alpha-subunit of class IA phosphatidylinositol 3 (PI-3) kinase, we demonstrate 50% reduction in proliferation in response to macrophage-colony-stimulating factor (M-CSF) as well as granulocyte macrophage-colony-stimulating factor (GM-CSF) compared with wild-type controls. Furthermore, p85alpha-/- BMMs demonstrate a significant reduction in migration in a wound-healing assay compared with wild-type controls. The reduction in migration due to p85alpha deficiency in BMMs is associated with reduced adhesion and directed migration on fibronectin and vascular cell adhesion molecule-1. In addition, deficiency of p85alpha in BMMs also results in defective phagocytosis of sheep red blood cells. Biochemically, loss of p85alpha in BMMs results in reduced activation of Akt and Rac, but not Erk (extracellular signal-related kinase) mitogen-activated protein (MAP) kinase. Taken together, our results provide genetic evidence for the importance of p85alpha in regulating both actin- and growth-based functions in macrophages, and provide a potential therapeutic target for the treatment of diseases involving macrophages, including inflammation.
Collapse
Affiliation(s)
- Veerendra Munugalavadla
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
6
|
Grossmann AH, Kolibaba KS, Willis SG, Corbin AS, Langdon WS, Deininger MWN, Druker BJ. Catalytic domains of tyrosine kinases determine the phosphorylation sites within c-Cbl. FEBS Lett 2005; 577:555-62. [PMID: 15556646 DOI: 10.1016/j.febslet.2004.10.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/08/2004] [Accepted: 10/11/2004] [Indexed: 10/26/2022]
Abstract
Catalytic (SH1) domains of protein tyrosine kinases (PTKs) demonstrate specificity for peptide substrates. Whether SH1 domains differentiate between tyrosines in a physiological substrate has not been confirmed. Using purified proteins, we studied the ability of Syk, Fyn, and Abl to differentiate between tyrosines in a common PTK substrate, c-Cbl. We found that each kinase produced a distinct pattern of c-Cbl phosphorylation, which altered the phosphotyrosine-dependent interactions between c-Cbl and CrkL or phosphatidylinositol 3'-kinase (PI3-K). Our data support the concept that SH1 domains determine the final sites of phosphorylation once PTKs reach their target proteins.
Collapse
Affiliation(s)
- A H Grossmann
- Department of Hematology & Medical Oncology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L592 Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18:189-218. [PMID: 14737178 DOI: 10.1038/sj.leu.2403241] [Citation(s) in RCA: 524] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The roles of the JAK/STAT, Raf/MEK/ERK and PI3K/Akt signal transduction pathways and the BCR-ABL oncoprotein in leukemogenesis and their importance in the regulation of cell cycle progression and apoptosis are discussed in this review. These pathways have evolved regulatory proteins, which serve to limit their proliferative and antiapoptotic effects. Small molecular weight cell membrane-permeable drugs that target these pathways have been developed for leukemia therapy. One such example is imatinib mesylate, which targets the BCR-ABL kinase as well as a few structurally related kinases. This drug has proven to be effective in the treatment of CML patients. However, leukemic cells have evolved mechanisms to become resistant to this drug. A means to combat drug resistance is to target other prominent signaling components involved in the pathway or to inhibit BCR-ABL by other mechanisms. Treatment of imatinib-resistant leukemia cells with drugs that target Ras (farnysyl transferase inhibitors) or with the protein destabilizer geldanamycin has proven to be a means to inhibit the growth of resistant cells. This review will tie together three important signal transduction pathways involved in the regulation of hematopoietic cell growth and indicate how their expression is dysregulated by the BCR-ABL oncoprotein.
Collapse
Affiliation(s)
- L S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | |
Collapse
|
8
|
Goh ELK, Zhu T, Leong WY, Lobie PE. c-Cbl is a negative regulator of GH-stimulated STAT5-mediated transcription. Endocrinology 2002; 143:3590-603. [PMID: 12193575 DOI: 10.1210/en.2002-220374] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously demonstrated that cellular stimulation with GH results in the formation of a multiprotein signaling complex. One component of this multiprotein signaling complex is the adapter molecule c-Cbl. Here we have examined the role of c-Cbl in the mechanism of GH signal transduction. Forced expression of c-Cbl in NIH3T3 cells did not alter GH-stimulated Janus kinase 2 tyrosine phosphorylation nor GH-stimulated p44/42 MAPK activation and consequent Elk-1- mediated transcription. c-Cbl overexpression did, however, result in enhanced and prolonged GH-stimulated activation of phosphatidylinositol 3-kinase. Forced expression of c-Cbl did not affect GH-stimulated STAT5 tyrosine phosphorylation, nuclear translocation, nor binding to DNA but markedly abrogated GH-stimulated STAT5-mediated transactivation. c-Cbl overexpression resulted in increased ubiquitination and proteosomal degradation of STAT5 and increased degradation of GH-stimulated tyrosine phosphorylated STAT5. Cellular pretreatment with the proteosomal inhibitor MG132 reversed the effect of c-Cbl overexpression with prolonged duration of GH-stimulated STAT5 tyrosine phosphorylation and restoration of STAT5-mediated transcription. Thus, c-Cbl is a negative regulator of GH-stimulated STAT5-mediated transcription by direction of STAT5 for proteosomal degradation.
Collapse
Affiliation(s)
- Eyleen L K Goh
- Institute of Molecular and Cell Biology, National University of Singapore, Singapore 117609
| | | | | | | |
Collapse
|
9
|
Kassenbrock CK, Hunter S, Garl P, Johnson GL, Anderson SM. Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. J Biol Chem 2002; 277:24967-75. [PMID: 11994282 DOI: 10.1074/jbc.m201026200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Stimulation of T47D cells with epidermal growth factor (EGF) results in the activation of the intrinsic tyrosine kinases of the receptor and the phosphorylation of multiple cellular proteins including the receptor, scaffold molecules such as c-Cbl, adapter molecules such as Shc, and the serine/threonine protein kinase Akt. We demonstrate that EGF stimulation of T47D cells results in the activation of the Src protein-tyrosine kinase and that the Src kinase inhibitor PP1 blocks the EGF-induced phosphorylation of c-Cbl but not the activation/phosphorylation of the EGF receptor itself. PP1 also blocks EGF-induced ubiquitination of the EGF receptor, which is presumably mediated by phosphorylated c-Cbl. Src is associated with c-Cbl, and we have previously demonstrated that the Src-like kinase Fyn can phosphorylate c-Cbl at a preferred binding site for the p85 subunit of phosphatidylinositol 3'-kinase. PP1 treatment blocks EGF-induced activation of the anti-apoptotic protein kinase Akt suggesting that Src may regulate activation of Akt, perhaps by a Src --> c-Cbl --> phosphatidylinositol 3'-kinase --> Akt pathway.
Collapse
Affiliation(s)
- C Kenneth Kassenbrock
- Department of Pathology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
10
|
Ahonen TJ, Härkönen PL, Rui H, Nevalainen MT. PRL signal transduction in the epithelial compartment of rat prostate maintained as long-term organ cultures in vitro. Endocrinology 2002; 143:228-38. [PMID: 11751614 DOI: 10.1210/endo.143.1.8576] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using long-term organ cultures of rat prostate tissue explants, we previously demonstrated that PRL both stimulates proliferation and acts as an androgen-independent suppressor of apoptosis in prostate epithelial cells, leading to epithelial hyperplasia. In this work we delineate intracellular signaling molecules activated by PRL in prostate tissue to identify candidate signaling proteins that are responsible for maintaining survival and proliferation of prostate epithelium in androgen-deprived growth environment. We now show that signal transducer and activator of transcription-5a (Stat5a) and Stat5b become tyrosine phosphorylated in response to PRL stimulation in rat prostate using prostate organ culture as an experimental model. Stat5 was translocated to the nuclei of epithelial cells of prostate tissue as demonstrated by immunohistochemistry. Furthermore, EMSA showed PRL-inducible binding of Stat5a homodimers and Stat5a/5b heterodimers to the PRL response element of the beta-casein gene promoter. Signaling molecules Stat3, Stat1, MAPK, or protein kinase B, which can be activated by PRL in other target cells, were not activated by PRL in prostate tissue. Furthermore, we show that Stat5a and Stat5b are continuously phosphorylated in rat prostate in vivo, although they are expressed to varying degree in separate lobes of rat prostate. Collectively, our results suggest that PRL signaling in rat prostate tissue is primarily transduced via Stat5a and Stat5b. The Stat5 pathway represents one candidate signaling mechanism, used by PRL and possibly other growth factors and cytokines, that supports the viability of prostate epithelial cells during long-term androgen deprivation.
Collapse
Affiliation(s)
- Tommi J Ahonen
- United States Military Cancer Institute, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
11
|
Frasor J, Barkai U, Zhong L, Fazleabas AT, Gibori G. PRL-induced ERalpha gene expression is mediated by Janus kinase 2 (Jak2) while signal transducer and activator of transcription 5b (Stat5b) phosphorylation involves Jak2 and a second tyrosine kinase. Mol Endocrinol 2001; 15:1941-52. [PMID: 11682625 DOI: 10.1210/mend.15.11.0722] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the rat corpus luteum of pregnancy, PRL stimulation of ER expression is a prerequisite for E2 to have any luteotropic effect. Previous work from our laboratory has established that PRL stimulates ERalpha expression at the level of transcription and that the transcription factor Stat5 (signal transducer and activator of transcription 5) mediates this stimulation. Since it is well established that PRL activates Stat5 through the tyrosine kinase, Janus kinase 2 (Jak2), the role of Jak2 in PRL regulation of ERalpha expression was investigated. In primary luteinized granulosa cells, the general tyrosine kinase inhibitors, genistein and AG18, and the Jak2 inhibitor, AG490, prevented PRL stimulation of ERalpha mRNA levels, suggesting that PRL signaling to the ERalpha gene requires Jak2 activity. However, using an antibody that recognizes the tyrosine-phosphorylated forms of both Stat5a and Stat5b (Y694/Y699), it was found that AG490 could inhibit PRL-induced Stat5a phosphorylation only and had little or no effect on Stat5b phosphorylation. These effects of AG490 were confirmed in COS cells overexpressing Stat5b. Also in COS cells, a kinase-negative Jak2 prevented PRL stimulation of ERalpha promoter activity and Stat5b phosphorylation while a constitutively active Jak2 could stimulate both in the absence of PRL. Furthermore, kinase-negative-Jak2, but not AG490, could inhibit Stat5b nuclear translocation and DNA binding. Therefore, it seems that in the presence of AG490, Stat5b remains phosphorylated, is located in the nucleus and capable of binding DNA, but is apparently transcriptionally inactive. These findings suggest that PRL may activate a second tyrosine kinase, other than Jak2, that is capable of phosphorylating Stat5b without inducing transcriptional activity. To investigate whether another signaling pathway is involved, the src kinase inhibitor PP2 and the phosphoinositol-3 kinase inhibitor (PI3K), LY294002, were used. Neither inhibitor alone had any major effect on PRL regulation of ERalpha promoter activity or on PRL-induced Stat5b phosphorylation. However, the combination of AG490 and LY294002 largely prevented PRL-induced Stat5b phosphorylation. These findings indicate that PRL stimulation of ERalpha expression requires Jak2 and also that PRL can induce Stat5b phosphorylation through two tyrosine kinases, Jak2 and one downstream of PI3K. Furthermore, these results suggest that the role of Jak2 in activating Stat5b may be through a mechanism other than simply inducing Stat5b phosphorylation.
Collapse
Affiliation(s)
- J Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
12
|
Tsygankov AY, Teckchandani AM, Feshchenko EA, Swaminathan G. Beyond the RING: CBL proteins as multivalent adapters. Oncogene 2001; 20:6382-402. [PMID: 11607840 DOI: 10.1038/sj.onc.1204781] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Following discovery of c-Cbl, a cellular form of the transforming retroviral protein v-Cbl, multiple Cbl-related proteins have been identified in vertebrate and invertebrate organisms. c-Cbl and its homologues are capable of interacting with numerous proteins involved in cell signaling, including various molecular adapters and protein tyrosine kinases. It appears that Cbl proteins play several functional roles, acting both as multivalent adapters and inhibitors of various protein tyrosine kinases. The latter function is linked, to a substantial extent, to the E3 ubiquitin-ligase activity of Cbl proteins. Experimental evidence for these functions, interrelations between them, and their biological significance are addressed in this review, with the main accent placed on the adapter functions of Cbl proteins.
Collapse
Affiliation(s)
- A Y Tsygankov
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, PA 19140, USA.
| | | | | | | |
Collapse
|
13
|
Tessier C, Prigent-Tessier A, Ferguson-Gottschall S, Gu Y, Gibori G. PRL antiapoptotic effect in the rat decidua involves the PI3K/protein kinase B-mediated inhibition of caspase-3 activity. Endocrinology 2001; 142:4086-94. [PMID: 11517188 DOI: 10.1210/endo.142.9.8381] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During gestation, the uterus undergoes severe changes to accommodate and protect the developing conceptus. In particular, stromal endometrial cells proliferate and differentiate to form the decidual tissue, which produces PRL. Once the conceptus begins to grow, extensive regression by apoptosis take place in the decidua coincident with the loss of the PRL receptor in this tissue. In this report we have established for the first time that PRL, acting through the long form of the PRL receptor and the PI3K pathway, exerts an antiapoptotic effect in rat decidua. We have also shown that protein kinase B phosphorylation on serine 473 as well as its nuclear translocation are stimulated by PRL in decidual cells. Moreover, we have found that caspase-3, a well known effector of apoptosis, becomes expressed and active in the rat decidua just at a time when this tissue undergoes extensive apoptosis. PRL was able to down-regulate both caspase-3 mRNA levels as well as activity. Furthermore, using a protein kinase B dominant-negative expression vector, we provide evidence that PRL inhibition of caspase-3 requires an intact protein kinase B pathway. Finally, we have also found that rat placental lactogen I and II dose-dependently inhibit caspase-3 mRNA, suggesting multiple sources of PRL in the hormonal control of rat decidual regression. In summary, the results of this study have defined an important role for decidual PRL in the normal progress of pregnancy, specifically in the regression and reorganization of the decidua.
Collapse
Affiliation(s)
- C Tessier
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
14
|
Hill KM, Huang Y, Yip SC, Yu J, Segall JE, Backer JM. N-terminal domains of the class ia phosphoinositide 3-kinase regulatory subunit play a role in cytoskeletal but not mitogenic signaling. J Biol Chem 2001; 276:16374-8. [PMID: 11278326 DOI: 10.1074/jbc.m006985200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositide (PI) 3-kinases are required for the acute regulation of the cytoskeleton by growth factors. We have shown previously that in the MTLn3 rat adenocarcinoma cells line, the p85/p110alpha PI 3-kinase is required for epidermal growth factor (EGF)-stimulated lamellipod extension and formation of new actin barbed ends at the leading edge of the cell. We have now examined the role of the p85alpha regulatory subunit in greater detail. Microinjection of recombinant p85alpha into MTLn3 cells blocked both EGF-stimulated mitogenic signaling and lamellipod extension. In contrast, a truncated p85(1-333), which lacks the SH2 and iSH2 domains and does not bind p110, had no effect on EGF-stimulated mitogenesis but still blocked EGF-stimulated lamellipod extension. Additional deletional analysis showed that the SH3 domain was not required for inhibition of lamellipod extension, as a construct containing only the proline-rich and breakpoint cluster region (BCR) homology domains was sufficient for inhibition. Although the BCR domain of p85 binds Rac, the effects of the p85 constructs were not because of a general inhibition of Rac signaling, because sorbitol-induced JNK activation in MTLn3 cells was not inhibited. These data show that the proline-rich and BCR homology domains of p85 are involved in the coupling of p85/p110 PI 3-kinases to regulation of the actin cytoskeleton. These data provide evidence of a distinct cellular function for the N-terminal domains of p85.
Collapse
Affiliation(s)
- K M Hill
- Departments of Molecular Pharmacology and Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | |
Collapse
|
15
|
Hamilton E, Miller KM, Helm KM, Langdon WY, Anderson SM. Suppression of apoptosis induced by growth factor withdrawal by an oncogenic form of c-Cbl. J Biol Chem 2001; 276:9028-37. [PMID: 11113140 DOI: 10.1074/jbc.m009386200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The v-Cbl oncogene induces myeloid and B-cell leukemia; however, the mechanism by which transformation occurs is not understood. An oncogenic form of c-Cbl (Cbl-DeltaY371) was expressed in the interleukin-3 (IL-3)-dependent cell line 32Dcl3 to determine whether it was able to induce growth factor-independent proliferation. We were unable to isolate clones of transfected 32Dcl3 cells expressing Cbl-DeltaY371 that proliferated in the absence of IL-3. In contrast, 32Dcl3/Cbl-DeltaY371 cells did not undergo apoptosis like parental 32Dcl3 cells when cultured in the absence of IL-3. Both 32Dcl3 and 32D/CblDeltaY371 cells arrested in G(1) when cultured in the absence of IL-3. Approximately 18% of the 32Dcl3 cells cultured in the absence of IL-3 for 24 h were present in a sub-G(1) fraction, while only 4% of the 32D/Cbl-DeltaY371 and 2% of the 32D/Bcl-2 cells were found in a sub-G(1) fraction. There was no difference in the pattern of tyrosine-phosphorylated proteins observed following stimulation of either cell type with IL-3. The phosphorylation of JAK2, STAT5, and endogenous c-Cbl was identical in both cell types. No differences were detected in the activation of Akt, ERK1, or ERK2 in unstimulated or IL-3-stimulated 32D/Cbl-DeltaY371 cells compared with parental 32Dcl3 cells. Likewise, there was no difference in the pattern of phosphorylation of JAK2, STAT5, ERK1, ERK2, or Akt when 32Dcl3 and 32D/CblDY371 cells were withdrawn from medium containing IL-3. The protein levels of various Bcl-2 family members were examined in cells grown in the absence or presence of IL-3. We observed a consistent increased amount of Bcl-2 protein in five different clones of 32D/Cbl-DeltaY317 cells. These data suggest that the Cbl-DeltaY371 mutant may suppress apoptosis by a mechanism that involves the overexpression of Bcl-2. Consistent with this result, activation of caspase-3 was suppressed in 32D/Cbl-DeltaY371 cells cultured in the absence of IL-3 compared with 32Dcl3 cells cultured under the same conditions.
Collapse
Affiliation(s)
- E Hamilton
- Department of Pathology, University of Colorado Cancer Center, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Apoptosis plays important roles in mammary development from early embryonic formation of the mammary gland to the regression that follows cessation of cycling. The most dramatic occurrence of apoptosis is found during mammary involution. Most of the secretory epithelium in the lactating breast undergoes apoptosis as the mammary gland regresses and is reorganized for another cycle of lactation. We used the morphology, biochemical changes, and gene expression detected in apoptotic mammary epithelium during involution as a model for studying cell death during other stages of mammary development and for approaching the failure of apoptosis found in mammary hyperplasia. Morphological studies and gene expression have suggested that apoptosis during involution is comprised of two phases: an early limited apoptosis in response to hormone ablation and later protease promoted widespread apoptosis in response to altered cell-matrix interactions and loss of anchorage. We examined protein expression during involution for changes associated with loss of hormone stimulation and altered cell-matrix interactions. One of the proteins whose expression is able to inhibit apoptosis, and is altered during mammary epithelial cell was the serine-threonine protein kinase, Akt 1. Akt 1 activation is common to hormone, growth factor, and anchorage-mediated survival of epithelial cells. We found regulated expression of activated Akt 1 in the mammary gland during involution. Akt 1 activation peaked in pregnancy and lactation, and decreased significantly during apoptosis in mammary involution. Mechanisms of Akt 1 action include modulation of the ratio bcl-2 family members implicated in control of apoptosis. Bcl-2 family proteins were also expressed in pattern consistent with Akt 1 regulation. These observations led us to examine expression of activated Akt 1 and bcl-2 family proteins in premalignant hyperplasias. Akt 1 activation was increased; expression of anti-apoptotic proteins bcl-2 and bcl-x was strongly increased while pro-apoptotic bax was greatly diminished in three different lines of transplantable premalignant mammary hyperplasia. This data suggest that activation of Akt 1 by hormone- or anchorage-mediated pathways regulates survival of mammary epithelium and can contribute to initiation of neoplasia. These data suggest that perturbation of normal cell turnover can contribute to initiation of neoplasia.
Collapse
Affiliation(s)
- R Strange
- AMC Cancer Research Center, Center for Cancer Causation and Prevention, 1600 Pierce St., Denver, CO 80214, USA.
| | | | | | | |
Collapse
|
17
|
Ueki K, Algenstaedt P, Mauvais-Jarvis F, Kahn CR. Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85alpha regulatory subunit. Mol Cell Biol 2000; 20:8035-46. [PMID: 11027274 PMCID: PMC86414 DOI: 10.1128/mcb.20.21.8035-8046.2000] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoinositide (PI) 3-kinase is a key mediator of insulin-dependent metabolic actions, including stimulation of glucose transport and glycogen synthesis. The gene for the p85alpha regulatory subunit yields three splicing variants, p85alpha, AS53/p55alpha, and p50alpha. All three have (i) a C-terminal structure consisting of two Src homology 2 domains flanking the p110 catalytic subunit-binding domain and (ii) a unique N-terminal region of 304, 34, and 6 amino acids, respectively. To determine if these regulatory subunits differ in their effects on enzyme activity and signal transduction from insulin receptor substrate (IRS) proteins under physiological conditions, we expressed each regulatory subunit in fully differentiated L6 myotubes using adenovirus-mediated gene transfer with or without coexpression of the p110alpha catalytic subunit. PI 3-kinase activity associated with p50alpha was greater than that associated with p85alpha or AS53. Increasing the level of p85alpha or AS53, but not p50alpha, inhibited both phosphotyrosine-associated and p110-associated PI 3-kinase activities. Expression of a p85alpha mutant lacking the p110-binding site (Deltap85) also inhibited phosphotyrosine-associated PI 3-kinase activity but not p110-associated activity. Insulin stimulation of two kinases downstream from PI-3 kinase, Akt and p70 S6 kinase (p70(S6K)), was decreased in cells expressing p85alpha or AS53 but not in cells expressing p50alpha. Similar inhibition of PI 3-kinase, Akt, and p70(S6K) was observed, even when p110alpha was coexpressed with p85alpha or AS53. Expression of p110alpha alone dramatically increased glucose transport but decreased glycogen synthase activity. This effect was reduced when p110alpha was coexpressed with any of the three regulatory subunits. Thus, the three different isoforms of regulatory subunit can relay the signal from IRS proteins to the p110 catalytic subunit with different efficiencies. They also negatively modulate the PI 3-kinase catalytic activity but to different extents, dependent on the unique N-terminal structure of each isoform. These data also suggest the existence of a mechanism by which regulatory subunits modulate the PI 3-kinase-mediated signals, independent of the kinase activity, possibly through subcellular localization of the catalytic subunit or interaction with additional signaling molecules.
Collapse
Affiliation(s)
- K Ueki
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
18
|
Schwertfeger KL, Hunter S, Heasley LE, Levresse V, Leon RP, DeGregori J, Anderson SM. Prolactin stimulates activation of c-jun N-terminal kinase (JNK). Mol Endocrinol 2000; 14:1592-602. [PMID: 11043575 DOI: 10.1210/mend.14.10.0536] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In recent years the mitogen-activated protein (MAP) kinase family has expanded to include both c-jun N-terminal kinases (JNKs), and the p38/HOG1 family in addition to the extracellular regulated kinase (ERK) family. These kinases are activated by a variety of growth factors, as well as extra- and intracellular insults such as osmotic stress, UV light, and chemotherapeutic agents. Stimulation of the PRL-dependent Nb2 cell line with PRL results in the rapid activation of JNK as determined by the glutathione-S-transferase (GST)-jun kinase assay. Activation was maximal 30 min after stimulation with 50 nM rat PRL (rPRL) and decreased after that time. Dose response studies indicated that concentrations as low as 10 nM rPRL resulted in maximal activation. The interleukin-3 (IL-3)-dependent myeloid progenitor cell line 32Dcl3 was transfected with the long, Nb2, and short forms of the rat PRL receptor (rPRLR), as well as the long form of the human PRLR (hPRLR). The long and Nb2 forms of the PRLR were able to stimulate activation of JNK; however, the short form of the rPRLR was not. This corresponds with the inability of the short form of the rPRLR to stimulate proliferation of 32Dcl3 cells. Activation of JNK in 32Dcl3 cells expressing the long form of the hPRLR was maximal at 30 min after stimulation with 100 nM ovine PRL (oPRL) and declined after that time. Dose response studies indicated that activation of JNK was maximal after 30 min at a concentration of 10 nM, and the amount of activated JNK declined at the highest concentration of oPRL, 100 nM. Immunoblot analysis with an antibody that recognizes the activated (phosphorylated) forms of JNK1 and JNK2 indicated that both JNK1 and JNK2 isoforms were activated in 32D/hPRLR cells stimulated with oPRL. A recombinant human adenovirus expressing a kinase-inactive mutant of JNK1 (APF mutant) was used to determine the biological effect of blocking JNK activity in Nb2 cells. Expression of the JNK1-APF mutant inhibited cellular proliferation and induced DNA fragmentation typical of cells undergoing apoptosis. These data suggest that activation of JNKs may be important in mitogenic signaling and/or suppression of apoptosis in Nb2 cells.
Collapse
Affiliation(s)
- K L Schwertfeger
- Department of Pathology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Gout I, Middleton G, Adu J, Ninkina NN, Drobot LB, Filonenko V, Matsuka G, Davies AM, Waterfield M, Buchman VL. Negative regulation of PI 3-kinase by Ruk, a novel adaptor protein. EMBO J 2000; 19:4015-25. [PMID: 10921882 PMCID: PMC306608 DOI: 10.1093/emboj/19.15.4015] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2000] [Revised: 06/15/2000] [Accepted: 06/15/2000] [Indexed: 11/14/2022] Open
Abstract
Class I(A) phosphatidylinositol 3-kinase (PI 3-kinase) is a key component of important intracellular signalling cascades. We have identified an adaptor protein, Ruk(l), which forms complexes with the PI 3-kinase holoenzyme in vitro and in vivo. This interaction involves the proline-rich region of Ruk and the SH3 domain of the p85 alpha regulatory subunit of the class I(A) PI 3-kinase. In contrast to many other adaptor proteins that activate PI 3-kinase, interaction with Ruk(l) substantially inhibits the lipid kinase activity of the enzyme. Overexpression of Ruk(l) in cultured primary neurons induces apoptosis, an effect that could be reversed by co-expression of constitutively activated forms of the p110 alpha catalytic subunit of PI 3-kinase or its downstream effector PKB/Akt. Our data provide evidence for the existence of a negative regulator of the PI 3-kinase signalling pathway that is essential for maintaining cellular homeostasis. Structural similarities between Ruk, CIN85 and CD2AP/CMS suggest that these proteins form a novel family of adaptor molecules that are involved in various intracellular signalling pathways.
Collapse
Affiliation(s)
- I Gout
- Ludwig Institute for Cancer Research, Courtauld Building, 91 Riding House Street, London W1P 8BT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
McAveney KM, Book ML, Ling P, Chebath J, Yu-Lee L. Association of 2',5'-oligoadenylate synthetase with the prolactin (PRL) receptor: alteration in PRL-inducible stat1 (signal transducer and activator of transcription 1) signaling to the IRF-1 (interferon-regulatory factor 1) promoter. Mol Endocrinol 2000; 14:295-306. [PMID: 10674401 DOI: 10.1210/mend.14.2.0421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The PRL receptor (PRL-R) signals through the Janus tyrosine kinases (JAK) and other non-JAK tyrosine kinases, some of which are preassociated with the PRL-R. To clone PRL-R interacting proteins, the intracellular domain (ICD) of the long form of the PRL-R was used in a yeast two-hybrid screen of a human B cell cDNA library. One PRL-R interacting protein was identified as the 42-kDa form of the enzyme 2',5'-oligoadenylate synthetase (OAS). The in vivo interactions in yeast were further confirmed by an in vitro interaction assay and by coimmunoprecipitation in transfected mammalian cells. Functionally, OAS reduced the basal activity of two types of promoters in transiently transfected COS-1 cells. In the presence of PRL, OAS inhibited PRL induction of the immediate early IRF-1 (interferon-regulatory factor 1) promoter, but not PRL induction of the differentiation-specific beta-casein promoter, suggesting that OAS exerts specific effects on immediate early gene promoters. The inhibitory effects of OAS were accompanied by a reduction in PRL-inducible Stat1 (signal transducer and activator of transcription 1) DNA binding activity at the IRF-1 GAS (interferon-gamma-activated sequence) element. These results demonstrate a novel interaction of OAS with the PRL-R and suggest a role for OAS in modulating Stat1-mediated signaling to an immediate early gene promoter. Although previously characterized as a regulator of ribonuclease (RNase) L antiviral responses, OAS may have additional effects on cytokine receptor signal transduction pathways.
Collapse
Affiliation(s)
- K M McAveney
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030-3411, USA
| | | | | | | | | |
Collapse
|
21
|
Hooshmand-Rad R, Hájková L, Klint P, Karlsson R, Vanhaesebroeck B, Claesson-Welsh L, Heldin CH. The PI 3-kinase isoforms p110(alpha) and p110(beta) have differential roles in PDGF- and insulin-mediated signaling. J Cell Sci 2000; 113 Pt 2:207-14. [PMID: 10633072 DOI: 10.1242/jcs.113.2.207] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoinositide 3′-kinases constitute a family of lipid kinases implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. Phosphoinositide 3′-kinases that bind to the platelet-derived growth factor receptor are composed of two subunits: the p85 subunit acts as an adapter and couples the catalytic p110 subunit to the activated receptor. There are different isoforms of p85 as well as of p110, the individual roles of which have been elusive. Using microinjection of inhibitory antibodies specific for either p110(alpha) or p110(beta) we have investigated the involvement of the two p110 isoforms in platelet-derived growth factor- and insulin-induced actin reorganization in porcine aortic endothelial cells. We have found that antibodies against p110(alpha), but not antibodies against p110(beta), inhibit platelet-derived growth factor-stimulated actin reorganization, whereas the reverse is true for inhibition of insulin-induced actin reorganization. These data indicate that the two phosphoinositide 3′-kinase isoforms have distinct roles in signal transduction pathways induced by platelet-derived growth factor and insulin.
Collapse
Affiliation(s)
- R Hooshmand-Rad
- Ludwig Institute for Cancer Research, BMC, Box 595, S-751 24 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
22
|
Bartkiewicz M, Houghton A, Baron R. Leucine zipper-mediated homodimerization of the adaptor protein c-Cbl. A role in c-Cbl's tyrosine phosphorylation and its association with epidermal growth factor receptor. J Biol Chem 1999; 274:30887-95. [PMID: 10521482 DOI: 10.1074/jbc.274.43.30887] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 120-kDa proto-oncogenic protein c-Cbl is a multidomain adaptor protein that is phosphorylated in response to the stimulation of a broad range of cell surface receptors and participates in the assembly of signaling complexes that are formed as a result of the activation of various signal transduction pathways. Several structural features of c-Cbl, including the phosphotyrosine-binding domain, proline-rich domain, and motifs containing phosphotyrosine and phosphoserine residues, mediate the association of c-Cbl with other components of these complexes. In addition to those domains that have been demonstrated to play a role in the binding of c-Cbl to other signaling molecules, c-Cbl also contains a RING finger motif and a putative leucine zipper. In this study, we demonstrate that the previously identified putative leucine zipper mediates the formation of Cbl homodimers. Using the yeast two-hybrid system, we show that deletion of the leucine zipper domain is sufficient to abolish Cbl homodimerization, while Cbl mutants carrying extensive N-terminal truncations retain the ability to dimerize with the full-length Cbl. The requirement of the leucine zipper for the homodimerization of Cbl was confirmed by in vitro binding assays, using deletion variants of the C-terminal half of Cbl with and without the leucine zipper domain, and in cells using Myc and green fluorescent protein (GFP) N-terminal-tagged Cbl variants. In cells, the deletion of the leucine zipper caused a decrease in both the tyrosine phosphorylation of Cbl and its association with the epidermal growth factor receptor following stimulation with epidermal growth factor, thus demonstrating a role for the leucine zipper in c-Cbl's signaling functions. Thus, the leucine zipper domain enables c-Cbl to homodimerize, and homodimerization influences Cbl's signaling function, modulating the activity of Cbl itself and/or affecting Cbl's associations with other signaling proteins in the cell.
Collapse
Affiliation(s)
- M Bartkiewicz
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
23
|
Beeton CA, Das P, Waterfield MD, Shepherd PR. The SH3 and BH domains of the p85alpha adapter subunit play a critical role in regulating class Ia phosphoinositide 3-kinase function. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 1999; 1:153-7. [PMID: 10356365 DOI: 10.1006/mcbr.1999.0124] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the role of the SH3 and BH domains in the function of the p85alpha adapter/regulatory subunit of PI 3-kinase. In these studies epitope-tagged adapter subunit constructs containing wild-type p85alpha, p85alpha lacking the SH3 domain (deltaSH3-p85alpha), or p85alpha lacking the Rac-GAP/BCR homology (BH) domain (deltaBH-p85alpha) were coexpressed with either the p110alpha or p110beta PI 3-kinase catalytic subunit in HEK293 cells. The deletion of either BH or SH3 domains had no effect on the intrinsic activity of the PI 3-kinase heterodimers. However, the ability of activated Rac to stimulate PI 3-kinase activity was only observed in heterodimers containing the p85alpha and deltaSH3-p85alpha, indicating that rac binding to the BH domain is responsible for rac-induced stimulation of class Ia PI 3-kinase. We also investigated the effect of SH3 and BH domain deletion on the ability of insulin to induce recruitment of these constructs into phosphotyrosine-containing signaling complexes. We find that p85alpha expressed alone is poorly recruited into such signaling complexes. However, when coexpressed with catalytic subunit, the p85alpha adapter subunit is recruited to an extent similar to that of endogenous p85alpha. Maximal insulin stimulation caused a similar level of recruitment of p85alpha, deltaSH3-p85alpha, and deltaBH-p85alpha to signaling complexes when these adapter subunits were coexpressed with catalytic subunit. However, there was a higher level of basal association of the deltaSH3-p85alpha and deltaBH-p85alpha with tyrosine-phosphorylated proteins, meaning that the insulin-induced fold increase in recruitment was lower for these forms of the adapter. These results indicate that the N-terminal domains of p85alpha play a critical role in the way the adapter subunit responds to growth factor stimulation.
Collapse
Affiliation(s)
- C A Beeton
- Department of Biochemistry and Molecular Biology, University College London, United Kingdom
| | | | | | | |
Collapse
|
24
|
Lee RC, Walters JA, Reyland ME, Anderson SM. Constitutive activation of the prolactin receptor results in the induction of growth factor-independent proliferation and constitutive activation of signaling molecules. J Biol Chem 1999; 274:10024-34. [PMID: 10187780 DOI: 10.1074/jbc.274.15.10024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability to induce the oncogenic activation of the human prolactin receptor (PRLR) was examined by deleting 178 amino acids of the extracellular ligand-binding domain. Expression of this deletion mutant in the interleukin-3 (IL-3)-dependent murine myeloid cell line 32Dcl3 resulted in the induction of growth factor-independent proliferation. Parental 32Dcl3 cells proliferated only in the presence of exogenous murine IL-3 (mIL-3), while 32Dcl3 cells transfected with the long form of the human PRLR were able to proliferate in response to mIL-3, ovine prolactin, or human PRL. Cells expressing the Delta178 deletion mutant contained numerous phosphotyrosine-containing proteins in the absence of stimulation with either mIL-3 or ovine prolactin. Growth factor stimulation increased the number of proteins phosphorylated and the intensity of phosphorylation. These proteins included constitutively phosphorylated Janus kinase 2, signal transducer and activator of transcription 5, and SHC. Activated extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2) were observed in unstimulated 32Dcl3 cells expressing the Delta178 mutant. Likewise, transfection of Nb2 cells with the Delta178 deletion mutant induced growth factor-independent proliferation and constitutive activation of Janus kinase 2, ERK1, and ERK2. In addition to the induction of a growth factor-independent state, the expression of the Delta178 deletion mutant also suppressed the apoptosis that occurs when 32Dcl3 cells are cultured in the absence of growth factors such as IL-3. These data suggest that the constitutive activation of the PRLR can be achieved by deletion of the ligand binding domain and that this mutation leads to the oncogenic activation of the receptor as determined by the ability of the receptor to induce growth factor-independent proliferation of factor-dependent hematopoietic cells.
Collapse
Affiliation(s)
- R C Lee
- Department of Pathology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
25
|
Saci A, Pain S, Rendu F, Bachelot-Loza C. Fc receptor-mediated platelet activation is dependent on phosphatidylinositol 3-kinase activation and involves p120(Cbl). J Biol Chem 1999; 274:1898-904. [PMID: 9890943 DOI: 10.1074/jbc.274.4.1898] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The platelet receptor for the Fc domain of IgGs (FcgammaRIIa) triggers intracellular signaling through protein tyrosine phosphorylations leading to platelet aggregation. In this study, we focused on the adaptor protein p120(cbl) (Cbl), which became tyrosine-phosphorylated after platelet activation induced by antibodies. Cbl phosphorylation was dependent on Fc receptor engagement. An association of Cbl with the p85 subunit of phosphatidylinositol 3-kinase (PI 3-K) occurred in parallel with Cbl tyrosine phosphorylation. We showed by in vitro experiments that Cbl/p85 association was mediated by the Src homology 3 domain of p85/PI 3-K and the proline-rich region of Cbl. Inhibition of PI 3-K activity by wortmannin led to the blockade of both platelet aggregation and serotonin release mediated by FcgammaRIIa engagement, whereas it only partly inhibited those induced by thrombin. Thus, PI 3-K may play a crucial role in the initiation of platelet responses after FcgammaRIIa engagement. Our results suggest that Cbl is involved in platelet signal transduction by the recruitment of PI 3-K to the FcgammaRIIa pathway, possibly by increasing PI 3-K activity.
Collapse
Affiliation(s)
- A Saci
- INSERM U428, Faculté de Pharmacie, Université Paris-V, 75270 Paris, France
| | | | | | | |
Collapse
|
26
|
Hunter S, Burton EA, Wu SC, Anderson SM. Fyn associates with Cbl and phosphorylates tyrosine 731 in Cbl, a binding site for phosphatidylinositol 3-kinase. J Biol Chem 1999; 274:2097-106. [PMID: 9890970 DOI: 10.1074/jbc.274.4.2097] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have investigated the interaction between Cbl and the Src-related tyrosine kinase Fyn. Fyn was observed to be constitutively associated with Cbl in lysates of several different cell types including the interleukin-3-dependent murine myeloid cell line 32Dcl3, and the prolactin-dependent rat thymoma cell line Nb2. Binding studies indicated that Cbl could bind to glutathione S-transferase (GST) fusion proteins encoding the unique, Src homology domain 3 (SH3), and SH2 domains of Fyn, Hck, or Lyn. Fusion proteins encoding either the SH3 or SH2 domains of Fyn bound to Cbl as effectively as the fusion protein encoding the unique, SH3, and SH2 domains of Fyn. The Fyn SH2 domain bound to both tyrosine-phosphorylated and nonphosphorylated Cbl, implying that this interaction might be phosphotyrosine-independent. Binding of the Fyn SH2 domain to Cbl was not disrupted by the addition of phosphotyrosine, phosphoserine, or phosphothreonine. A GST fusion protein encoding the proline-rich region of Cbl bound to Fyn present in a total cell lysate. Far Western blot analysis also indicated that the SH3 domain of Fyn bound preferentially to the proline-rich region of Cbl. The addition of [gamma-32P]ATP to either anti-Cbl immunoprecipitates or anti-Fyn immunoprecipitates resulted in the phosphorylation of both Cbl and Fyn as demonstrated by immunoprecipitation of the phosphorylated proteins with specific antisera. Fyn directly phosphorylated a GST fusion protein containing the C-terminal region of Cbl (GST-CBL-LZIP). In contrast, immunoprecipitated JAK2 was not able to phosphorylate this same region of Cbl. The GST-CBL-LZIP fusion protein contains a binding site for the SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase, which mapped to Tyr731, which is present in the sequence YEAM. Mutation of Tyr731 in GST-CBL-LZIP eliminated binding of the p85 subunit of phosphatidylinositol 3-kinase and substantially reduced the phosphorylation of this fusion protein by Fyn, despite the presence of four other tyrosine residues in this fusion protein. These data are consistent with the hypothesis that Cbl represents a substrate for Src-like kinases that are activated in response to the engagement of cell surface receptors, and that Src-like kinases are responsible for the phosphorylation of a tyrosine residue in Cbl that may regulate activation of phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- S Hunter
- Department of Pathology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
27
|
Zhu T, Goh EL, LeRoith D, Lobie PE. Growth hormone stimulates the formation of a multiprotein signaling complex involving p130(Cas) and CrkII. Resultant activation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK). J Biol Chem 1998; 273:33864-75. [PMID: 9837978 DOI: 10.1074/jbc.273.50.33864] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have demonstrated previously that growth hormone (GH) activates focal adhesion kinase (FAK), and this activation results in the tyrosine phosphorylation of two FAK substrates, namely paxillin and tensin. We now show here in Chinese hamster ovary cells stably transfected with rat GH receptor cDNA that human (h)GH induces the formation of a large multiprotein signaling complex centered around another FAK-associated protein, p130(Cas) and the adaptor protein CrkII. hGH stimulates the tyrosine phosphorylation of both p130(Cas) and CrkII, their association, and the association of multiple other tyrosine-phosphorylated proteins to the complex. Both the c-Src and c-Fyn tyrosine kinases are tyrosine phosphorylated and activated by cellular hGH stimulation and form part of the multiprotein signaling complex as does tensin, paxillin, IRS-1, the p85 subunit of phosphatidylinositol 3-kinase, C3G, SHC, Grb-2, and Sos-1. c-Cbl and Nck are also tyrosine-phosphorylated by cellular stimulation with hGH and associate with the p130(Cas)-CrkII complex. c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is activated in response to hGH in accordance with the formation of the abovementioned signaling complex, and hGH stimulated JNK/SAPK activity is increased in CrkII overexpressing NIH3T3 cells compared with vector transfected NIH3T3 cells. The formation of such a large multiprotein signaling complex by GH, with the resultant activation of multiple downstream effector molecules, may be central to many of the pleiotropic effects of GH.
Collapse
Affiliation(s)
- T Zhu
- Institute of Molecular and Cell Biology and Defence Medical Research Institute, National University of Singapore, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | | | |
Collapse
|
28
|
Wymann MP, Pirola L. Structure and function of phosphoinositide 3-kinases. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:127-50. [PMID: 9838078 DOI: 10.1016/s0005-2760(98)00139-8] [Citation(s) in RCA: 489] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phosphoinositide kinases (PI3Ks) play an important role in mitogenic signaling and cell survival, cytoskeletal remodeling, metabolic control and vesicular trafficking. Here we summarize the structure-function relationships delineating the activation process of class I PI3Ks involving various domains of adapter subunits, Ras, and interacting proteins. The resulting product, PtdIns(3,4,5)P3, targets Akt/protein kinase B (PKB), Bruton's tyrosine kinase (Btk), phosphoinositide-dependent kinases (PDK), integrin-linked kinase (ILK), atypical protein kinases C (PKC), phospholipase Cgamma and more. Surface receptor-activated PI3Ks function in mammals, insects, nematodes and slime mold, but not yeast. While many members of the class II family have been identified and characterized biochemically, it is presently unknown how these C2-domain containing PI3Ks are activated, and which PI substrate they phosphorylate in vivo. PtdIns 3-P is produced by Vps34p/class III PI3Ks and operates via the PtdIns 3-P-binding proteins early endosomal antigen (EEA1), yeast Vac1p, Vps27p, Pip1p in lysosomal protein targeting. Besides the production of D3 phosphorylated lipids, PI3Ks have an intrinsic protein kinase activity. For trimeric GTP-binding protein-activated PI3Kgamma, protein kinase activity seems to be sufficient to trigger mitogen-activated protein kinase (MAPK). Recent disruption of PI3K genes in slime mold, Caenorhabditis elegans, Drosophila melanogaster and mice further underlines the importance of PI3K signaling systems and elucidates the role of PI3K signaling in multicellular organisms.
Collapse
Affiliation(s)
- M P Wymann
- Institute of Biochemistry, University of Fribourg, Rue du Musée 5, CH-1700 Fribourg, Switzerland.
| | | |
Collapse
|
29
|
Abstract
The 120-kDa protein product of the c-Cbl proto-oncogene is a ubiquitously expressed cytoplasmic protein that is especially abundant in the thymus, indicating an important role for Cbl in thymic signalling. c-Cbl possesses a highly conserved N-terminal phosphotyrosine binding domain, a C3HC4 RING finger motif, multiple proline-rich motifs, and a number of potential tyrosine phosphorylation sites. Cbl is an early and prominent substrate of protein tyrosine kinases following stimulation of a variety of cell surface receptors, and forms constitutive and inducible associations with a wide range of signalling intermediates. Genetic studies of the Cbl homologue Sli-1 in Caenorhabitis elegans predicted a role for Cbl as a negative regulator of protein tyrosine kinase-mediated signalling pathways. Numerous studies have now shown that expression of Cbl and its oncogenic variants can indeed modulate signalling from activated protein tyrosine kinases. The present review highlights some of the recent developments in our understanding of Cbl function, with particular reference to its participation and possible roles in TCR-mediated signalling.
Collapse
Affiliation(s)
- C B Thien
- Department of Pathology, University of Western Australia, Nedlands, Australia
| | | |
Collapse
|
30
|
Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J 1998; 333 ( Pt 3):471-90. [PMID: 9677303 PMCID: PMC1219607 DOI: 10.1042/bj3330471] [Citation(s) in RCA: 705] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Insulin plays a key role in regulating a wide range of cellular processes. However, until recently little was known about the signalling pathways that are involved in linking the insulin receptor with downstream responses. It is now apparent that the activation of class 1a phosphoinositide 3-kinase (PI 3-kinase) is necessary and in some cases sufficient to elicit many of insulin's effects on glucose and lipid metabolism. The lipid products of PI 3-kinase act as both membrane anchors and allosteric regulators, serving to localize and activate downstream enzymes and their protein substrates. One of the major ways these lipid products of PI 3-kinase act in insulin signalling is by binding to pleckstrin homology (PH) domains of phosphoinositide-dependent protein kinase (PDK) and protein kinase B (PKB) and in the process regulating the phosphorylation of PKB by PDK. Using mechanisms such as this, PI 3-kinase is able to act as a molecular switch to regulate the activity of serine/threonine-specific kinase cascades important in mediating insulin's effects on endpoint responses.
Collapse
Affiliation(s)
- P R Shepherd
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
31
|
Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 1998; 19:225-68. [PMID: 9626554 DOI: 10.1210/edrv.19.3.0334] [Citation(s) in RCA: 1063] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PRL is an anterior pituitary hormone that, along with GH and PLs, forms a family of hormones that probably resulted from the duplication of an ancestral gene. The PRLR is also a member of a larger family, known as the cytokine class-1 receptor superfamily, which currently has more than 20 different members. PRLRs or binding sites are widely distributed throughout the body. In fact, it is difficult to find a tissue that does not express any PRLR mRNA or protein. In agreement with this wide distribution of receptors is the fact that now more than 300 separate actions of PRL have been reported in various vertebrates, including effects on water and salt balance, growth and development, endocrinology and metabolism, brain and behavior, reproduction, and immune regulation and protection. Clearly, a large proportion of these actions are directly or indirectly associated with the process of reproduction, including many behavioral effects. PRL is also becoming well known as an important regulator of immune function. A number of disease states, including the growth of different forms of cancer as well as various autoimmune diseases, appear to be related to an overproduction of PRL, which may act in an endocrine, autocrine, or paracrine manner, or via an increased sensitivity to the hormone. The first step in the mechanism of action of PRL is the binding to a cell surface receptor. The ligand binds in a two-step process in which site 1 on PRL binds to one receptor molecule, after which a second receptor molecule binds to site 2 on the hormone, forming a homodimer consisting of one molecule of PRL and two molecules of receptor. The PRLR contains no intrinsic tyrosine kinase cytoplasmic domain but associates with a cytoplasmic tyrosine kinase, JAK2. Dimerization of the receptor induces tyrosine phosphorylation and activation of the JAK kinase followed by phosphorylation of the receptor. Other receptor-associated kinases of the Src family have also been shown to be activated by PRL. One major pathway of signaling involves phosphorylation of cytoplasmic State proteins, which themselves dimerize and translocate to nucleus and bind to specific promoter elements on PRL-responsive genes. In addition, the Ras/Raf/MAP kinase pathway is also activated by PRL and may be involved in the proliferative effects of the hormone. Finally, a number of other potential mediators have been identified, including IRS-1, PI-3 kinase, SHP-2, PLC gamma, PKC, and intracellular Ca2+. The technique of gene targeting in mice has been used to develop the first experimental model in which the effect of the complete absence of any lactogen or PRL-mediated effects can be studied. Heterozygous (+/-) females show almost complete failure to lactate after the first, but not subsequent, pregnancies. Homozygous (-/-) females are infertile due to multiple reproductive abnormalities, including ovulation of premeiotic oocytes, reduced fertilization of oocytes, reduced preimplantation oocyte development, lack of embryo implantation, and the absence of pseudopregnancy. Twenty per cent of the homozygous males showed delayed fertility. Other phenotypes, including effects on the immune system and bone, are currently being examined. It is clear that there are multiple actions associated with PRL. It will be important to correlate known effects with local production of PRL to differentiate classic endocrine from autocrine/paracrine effects. The fact that extrapituitary PRL can, under some circumstances, compensate for pituitary PRL raises the interesting possibility that there may be effects of PRL other than those originally observed in hypophysectomized rats. The PRLR knockout mouse model should be an interesting system by which to look for effects activated only by PRL or other lactogenic hormones. On the other hand, many of the effects reported in this review may be shared with other hormones, cytokines, or growth factors and thus will be more difficult to study. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- C Bole-Feysot
- INSERM Unité 344-Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France
| | | | | | | | | |
Collapse
|
32
|
Dennehy KM, Broszeit R, Ferris WF, Beyers AD. Thymocyte activation induces the association of the proto-oncoprotein c-cbl and ras GTPase-activating protein with CD5. Eur J Immunol 1998; 28:1617-25. [PMID: 9603468 DOI: 10.1002/(sici)1521-4141(199805)28:05<1617::aid-immu1617>3.0.co;2-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies of knockout mice indicate that the glycoprotein CD5, which is expressed on Tcells, most thymocytes and a subset of B cells, down-regulates TCR- and B cell receptor (BCR)-mediated signaling. CD5 is associated with the TCR and BCR, and is phosphorylated on cytoplasmic tyrosine residues following antigen receptor ligation. Cross-linking of CD5 or pervanadate stimulation of thymocytes induces the association of a 120-kDa tyrosine-phosphorylated protein with CD5. The proto-oncoprotein c-cbl associates with CD5 in pervanadate-stimulated thymocytes, and reprecipitation analysis demonstrates that the major proportion of CD5-associated pp120 is c-cbl. The GTPase-activating protein for ras (ras GAP), which is not tyrosine phosphorylated following CD5 cross-linking, associates with CD5 in pervanadate-stimulated thymocytes. Using tyrosine-phosphorylated peptides we show that ras GAP interacts in an SH2-mediated manner with the phosphorylated Y429SQP sequence of CD5. Both c-cbl and ras GAP have been proposed to suppress receptor-mediated signaling, and may contribute to CD5-mediated suppression of TCR or BCR signaling.
Collapse
Affiliation(s)
- K M Dennehy
- MRC Centre for Molecular and Cellular Biology, University of Stellenbosch Medical School, Tygerberg, South Africa
| | | | | | | |
Collapse
|
33
|
Isolation and characterization of a second protein tyrosine phosphatase gene, PTP2, from Saccharomyces cerevisiae. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50194-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|