1
|
Chaudhari S, Dey Pereira S, Asare-Warehene M, Naha R, Kabekkodu SP, Tsang BK, Satyamoorthy K. Comorbidities and inflammation associated with ovarian cancer and its influence on SARS-CoV-2 infection. J Ovarian Res 2021; 14:39. [PMID: 33632295 PMCID: PMC7906086 DOI: 10.1186/s13048-021-00787-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide is a major public health concern. Cancer patients are considered a vulnerable population to SARS-CoV-2 infection and may develop several COVID-19 symptoms. The heightened immunocompromised state, prolonged chronic pro-inflammatory milieu coupled with comorbid conditions are shared in both disease conditions and may influence patient outcome. Although ovarian cancer (OC) and COVID-19 are diseases of entirely different primary organs, both diseases share similar molecular and cellular characteristics in their microenvironment suggesting a potential cooperativity leading to poor outcome. In COVID-19 related cases, hospitalizations and deaths worldwide are lower in women than in males; however, comorbidities associated with OC may increase the COVID-19 risk in women. The women at the age of 50-60 years are at greater risk of developing OC as well as SARS-CoV-2 infection. Increased levels of gonadotropin and androgen, dysregulated renin-angiotensin-aldosterone system (RAAS), hyper-coagulation and chronic inflammation are common conditions observed among OC and severe cases of COVID-19. The upregulation of common inflammatory cytokines and chemokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-2, IL-6, IL-10, interferon-γ-inducible protein 10 (IP-10), granulocyte colony-stimulating factor (G-CSF), monocyte chemoattractant protein-1 (MCP-1), macrophage colony-stimulating factor (M-CSF), among others in the sera of COVID-19 and OC subjects suggests potentially similar mechanism(s) involved in the hyper-inflammatory condition observed in both disease states. Thus, it is conceivable that the pathogenesis of OC may significantly contribute to the potential infection by SARS-CoV-2. Our understanding of the influence and mechanisms of SARS-CoV-2 infection on OC is at an early stage and in this article, we review the underlying pathogenesis presented by various comorbidities of OC and correlate their influence on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Satyajit Dey Pereira
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Meshach Asare-Warehene
- Chronic Disease Program, Ottawa Hospital Research Institute and Department of Obstetrics & Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Ritam Naha
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Benjamin K Tsang
- Chronic Disease Program, Ottawa Hospital Research Institute and Department of Obstetrics & Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: The anger of inflammation. Cytokine 2020; 133:155151. [PMID: 32544563 PMCID: PMC7260598 DOI: 10.1016/j.cyto.2020.155151] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Patients with COVID-19 who require ICU admission might have the cytokine storm. It is a state of out-of-control release of a variety of inflammatory cytokines. The molecular mechanism of the cytokine storm has not been explored extensively yet. The attachment of SARS-CoV-2 spike glycoprotein with angiotensin-converting enzyme 2 (ACE2), as its cellular receptor, triggers complex molecular events that leads to hyperinflammation. Four molecular axes that may be involved in SARS-CoV-2 driven inflammatory cytokine overproduction are addressed in this work. The virus-mediated down-regulation of ACE2 causes a burst of inflammatory cytokine release through dysregulation of the renin-angiotensin-aldosterone system (ACE/angiotensin II/AT1R axis), attenuation of Mas receptor (ACE2/MasR axis), increased activation of [des-Arg9]-bradykinin (ACE2/bradykinin B1R/DABK axis), and activation of the complement system including C5a and C5b-9 components. The molecular clarification of these axes will elucidate an array of therapeutic strategies to confront the cytokine storm in order to prevent and treat COVID-19 associated acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Mehdi Mahmudpour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shokrollah Farrokhi
- Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Future Studies Group, The Academy of Medical Sciences of the I.R., Iran.
| |
Collapse
|
3
|
Epigenetic silencing of IRF1 dysregulates type III interferon responses to respiratory virus infection in epithelial to mesenchymal transition. Nat Microbiol 2017; 2:17086. [PMID: 28581456 PMCID: PMC5501188 DOI: 10.1038/nmicrobiol.2017.86] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 04/25/2017] [Indexed: 12/11/2022]
Abstract
Chronic oxidative injury produced by airway disease triggers TGFβ-mediated epigenetic reprogramming known as the epithelial-mesenchymal transition (EMT). We observe that EMT silences protective mucosal interferon (IFN)-I/-III production associated with enhanced rhinovirus (RV) and respiratory syncytial virus(RSV) replication. Mesenchymal transitioned cells are defective in inducible interferon regulatory factor (IRF)1 expression by occluding RelA and IRF3 access to the promoter. IRF1 is necessary for expression of type III IFNs (IFNLs-1 and 2/3). Induced by the EMT, Zinc Finger E-Box Binding Homeobox 1 (ZEB1) binds and silences IRF1. Ectopic ZEB1 is sufficient for IRF1 silencing, whereas ZEB1 knockdown partially restores IRF1-IFNL upregulation. ZEB1 silences IRF1 through the catalytic activity of the Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit (EZH2), forming repressive H3K27(me3) marks. We observe that IRF1 expression is mediated by ZEB1 de-repression; our study demonstrates how airway remodeling/fibrosis is associated with a defective mucosal antiviral response through ZEB1-initiated epigenetic silencing.
Collapse
|
4
|
A peptide vaccine targeting angiotensin II attenuates the cardiac dysfunction induced by myocardial infarction. Sci Rep 2017; 7:43920. [PMID: 28266578 PMCID: PMC5339733 DOI: 10.1038/srep43920] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022] Open
Abstract
A peptide vaccine targeting angiotensin II (Ang II) was recently developed as a novel treatment for hypertension to resolve the problem of noncompliance with pharmacotherapy. Ang II plays a crucial role in the pathogenesis of cardiac remodeling after myocardial infarction (MI), which causes heart failure. In the present study, we examined whether the Ang II vaccine is effective in preventing heart failure. The injection of the Ang II vaccine in a rat model of MI attenuated cardiac dysfunction in association with an elevation in the serum anti-Ang II antibody titer. Furthermore, any detrimental effects of the Ang II vaccine were not observed in the rats that underwent sham operations. Treatment with immunized serum from Ang II vaccine-injected rats significantly suppressed post-MI cardiac dysfunction in MI rats and Ang II-induced remodeling-associated signaling in cardiac fibroblasts. Thus, our present study demonstrates that the Ang II vaccine may provide a promising novel therapeutic strategy for preventing heart failure.
Collapse
|
5
|
2,3,5,4'-Tetrahydroxystilbene-2-O- β-D-glucoside Promotes Expression of the Longevity Gene Klotho. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3128235. [PMID: 27885332 PMCID: PMC5112329 DOI: 10.1155/2016/3128235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022]
Abstract
The longevity gene klotho has numerous physiological functions, such as regulating calcium and phosphorus levels, delaying senescence, improving cognition, reducing oxidative stress, and protecting vascular endothelial cells. This study tested whether 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG), a small molecule with antiaging effects, regulates the expression and physiological effects of klotho. Our results showed that THSG dose-dependently increased the luciferase reporter activity of the klotho gene, reversed the decrease in mRNA and protein expression of klotho which was induced by angiotensin II in NRK-52E renal tubular epithelial cells, and increased klotho mRNA expression in the cerebral cortex, hippocampus, testis, and kidney medulla of spontaneously hypertensive rats. THSG also reduced the number of senescent cells induced by angiotensin II and improved the antioxidant capacity and enhanced the bone strength in vivo. Based on klotho's role in promoting cognition, regulating bone metabolism, and improving renal function, the effect of THSG on klotho expression will be beneficial to the functional improvement or enhancement of the expressed organs or tissues.
Collapse
|
6
|
O'Leary R, Penrose H, Miyata K, Satou R. Macrophage-derived IL-6 contributes to ANG II-mediated angiotensinogen stimulation in renal proximal tubular cells. Am J Physiol Renal Physiol 2016; 310:F1000-7. [PMID: 27009340 PMCID: PMC4983453 DOI: 10.1152/ajprenal.00482.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/14/2016] [Indexed: 11/22/2022] Open
Abstract
The development of ANG II-dependent hypertension involves increased infiltration of macrophages (MΦ) and T cells into the kidney and the consequent elevation of intrarenal cytokines including IL-6, which facilitates the progression of hypertension and associated kidney injury. Intrarenal renin-angiotensin system (RAS) activation, including proximal tubular angiotensinogen (AGT) stimulation, has also been regarded as a cardinal mechanism contributing to these diseases. However, the interaction between immune cells and intrarenal RAS activation has not been fully delineated. Therefore, the present study investigated whether ANG II-treated MΦ induce AGT upregulation in renal proximal tubular cells (PTCs). MΦ were treated with 0-10(-6) M ANG II for up to 48 h. PTCs were incubated with the collected medium from MΦ. In ANG II-treated MΦ, IL-6 mRNA and protein levels were increased (1.86 ± 0.14, protein level, ratio to control); moreover, IL-6 levels were higher than TNF-α and IL-1β in culture medium isolated from ANG II-treated MΦ. Elevated AGT expression (1.69 ± 0.04, ratio to control) accompanied by phosphorylated STAT3 were observed in PTCs that received culture medium from ANG II-treated MΦ. The addition of a neutralizing IL-6 antibody to the collected medium attenuated phosphorylation of STAT3 and AGT augmentation in PTCs. Furthermore, a JAK2 inhibitor also suppressed STAT3 phosphorylation and AGT augmentation in PTCs. These results demonstrate that ANG II-induced IL-6 elevation in MΦ enhances activation of the JAK-STAT pathway and consequent AGT upregulation in PTCs, suggesting involvement of an immune response in driving intrarenal RAS activity.
Collapse
Affiliation(s)
- Ryan O'Leary
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Harrison Penrose
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kayoko Miyata
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ryousuke Satou
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
7
|
Crowley SD. Linking angiotensin II to nuclear factor-κ light chain enhancer of activated B cells-induced cardiovascular damage: bad CARMAs. Hypertension 2014; 64:933-4. [PMID: 25185129 DOI: 10.1161/hypertensionaha.114.04047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Steven D Crowley
- From the Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, NC.
| |
Collapse
|
8
|
Thomas CM, Yong QC, Rosa RM, Seqqat R, Gopal S, Casarini DE, Jones WK, Gupta S, Baker KM, Kumar R. Cardiac-specific suppression of NF-κB signaling prevents diabetic cardiomyopathy via inhibition of the renin-angiotensin system. Am J Physiol Heart Circ Physiol 2014; 307:H1036-45. [PMID: 25085967 DOI: 10.1152/ajpheart.00340.2014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation of NF-κB signaling in the heart may be protective or deleterious depending on the pathological context. In diabetes, the role of NF-κB in cardiac dysfunction has been investigated using pharmacological approaches that have a limitation of being nonspecific. Furthermore, the specific cellular pathways by which NF-κB modulates heart function in diabetes have not been identified. To address these questions, we used a transgenic mouse line expressing mutated IκB-α in the heart (3M mice), which prevented activation of canonical NF-κB signaling. Diabetes was developed by streptozotocin injections in wild-type (WT) and 3M mice. Diabetic WT mice developed systolic and diastolic cardiac dysfunction by the 12th week, as measured by echocardiography. In contrast, cardiac function was preserved in 3M mice up to 24 wk of diabetes. Diabetes induced an elevation in cardiac oxidative stress in diabetic WT mice but not 3M mice compared with nondiabetic control mice. In diabetic WT mice, an increase in the phospholamban/sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 ratio and decrease in ryanodine receptor expression were observed, whereas diabetic 3M mice showed an opposite effect on these parameters of Ca(2+) handling. Significantly, renin-angiotensin system activity was suppressed in diabetic 3M mice compared with an increase in WT animals. In conclusion, these results demonstrate that inhibition of NF-κB signaling in the heart prevents diabetes-induced cardiac dysfunction through preserved Ca(2+) handling and inhibition of the cardiac renin-angiotensin system.
Collapse
Affiliation(s)
- Candice M Thomas
- Division of Molecular Cardiology, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Baylor Scott & White Health, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas
| | - Qian Chen Yong
- Division of Molecular Cardiology, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Baylor Scott & White Health, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas
| | - Rodolfo M Rosa
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil; and
| | - Rachid Seqqat
- Division of Molecular Cardiology, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Baylor Scott & White Health, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas
| | - Shanthi Gopal
- Central Texas Veterans Health Care System, Temple, Texas
| | - Dulce E Casarini
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil; and
| | - W Keith Jones
- Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois
| | - Sudhiranjan Gupta
- Division of Molecular Cardiology, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Baylor Scott & White Health, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas
| | - Kenneth M Baker
- Division of Molecular Cardiology, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Baylor Scott & White Health, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas
| | - Rajesh Kumar
- Division of Molecular Cardiology, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Baylor Scott & White Health, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas;
| |
Collapse
|
9
|
Cao W, Xu J, Zhou ZM, Wang GB, Hou FF, Nie J. Advanced oxidation protein products activate intrarenal renin-angiotensin system via a CD36-mediated, redox-dependent pathway. Antioxid Redox Signal 2013; 18:19-35. [PMID: 22662869 PMCID: PMC3503474 DOI: 10.1089/ars.2012.4603] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS Activation of intrarenal renin-angiotensin system (RAS) has a detrimental effect on the progression of chronic kidney diseases (CKDs), although the regulation of intrarenal RAS remains unclear. The aim of the present study was to evaluate the role of advanced oxidation protein products (AOPPs) in intrarenal RAS activation. RESULTS AOPPs upregulated the expression of almost all components of RAS and increased activity of angiotensin-converting enzyme in cultured proximal tubular epithelial cells. The triggering effect of AOPP-albumin was 100-times stronger than that of unmodified albumin. The effect of AOPP-albumin was mainly mediated by a CD36-dependent, redox-sensitive signaling involving activation of protein kinase Cα, NADPH oxidase, and nuclear factor-κB/activation protein-1. Chronic AOPP-albumin loading in unilateral nephrectomy rats resulted in deposition of AOPPs in renal tubular cells accompanied with local RAS activation and functional perturbations such as increase in urinary albumin excretion. Accumulation of AOPPs was also detected in human renal tubular cells and correlated with expression of angiotensin II in renal biopsies from 19 patients with IgA nephropathy. INNOVATION AND CONCLUSION This study demonstrated for the first time that AOPPs modified albumin functions as a strong trigger of intrarenal RAS via a CD36-mediated, redox-dependent pathway. Given the fact that accumulation of AOPPs is prevalent in diabetes and CKD, targeting AOPPs could be a strategy for the therapeutic intervention of CKD. Antioxid. Redox Signal. 18, 19-35.
Collapse
Affiliation(s)
- Wei Cao
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Key Lab for Organ Failure Research, Ministry of Education, Research Institute of Nephrology, Guangdong Province, Guangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
10
|
Sousa T, Oliveira S, Afonso J, Morato M, Patinha D, Fraga S, Carvalho F, Albino-Teixeira A. Role of H(2)O(2) in hypertension, renin-angiotensin system activation and renal medullary disfunction caused by angiotensin II. Br J Pharmacol 2012; 166:2386-2401. [PMID: 22452317 PMCID: PMC3448901 DOI: 10.1111/j.1476-5381.2012.01957.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 02/20/2012] [Accepted: 03/08/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of the intrarenal renin-angiotensin system (RAS) and increased renal medullary hydrogen peroxide (H(2) O(2) ) contribute to hypertension. We examined whether H(2) O(2) mediated hypertension and intrarenal RAS activation induced by angiotensin II (Ang II). EXPERIMENTAL APPROACH Ang II (200 ng·kg(-1) ·min(-1) ) or saline were infused in Sprague Dawley rats from day 0 to day 14. Polyethylene glycol (PEG)-catalase (10 000 U·kg(-1) ·day(-1) ) was given to Ang II-treated rats, from day 7 to day 14. Systolic blood pressure was measured throughout the study. H(2) O(2) , angiotensin AT(1) receptor and Nox4 expression and nuclear factor-κB (NF-κB) activation were evaluated in the kidney. Plasma and urinary H(2) O(2) and angiotensinogen were also measured. KEY RESULTS Ang II increased H(2) O(2) , AT(1) receptor and Nox4 expression and NF-κB activation in the renal medulla, but not in the cortex. Ang II raised plasma and urinary H(2) O(2) levels, increased urinary angiotensinogen but reduced plasma angiotensinogen. PEG-catalase had a short-term antihypertensive effect and transiently suppressed urinary angiotensinogen. PEG-catalase decreased renal medullary expression of AT(1) receptors and Nox4 in Ang II-infused rats. Renal medullary NF-κB activation was correlated with local H(2) O(2) levels and urinary angiotensinogen excretion. Loss of antihypertensive efficacy was associated with an eightfold increase of plasma angiotensinogen. CONCLUSIONS AND IMPLICATIONS The renal medulla is a major target for Ang II-induced redox dysfunction. H(2) O(2) appears to be the key mediator enhancing intrarenal RAS activation and decreasing systemic RAS activity. The specific control of renal medullary H(2) O(2) levels may provide future grounds for the treatment of hypertension.
Collapse
Affiliation(s)
- T Sousa
- Departamento de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Acres OW, Satou R, Navar LG, Kobori H. Contribution of a nuclear factor-kappaB binding site to human angiotensinogen promoter activity in renal proximal tubular cells. Hypertension 2011; 57:608-13. [PMID: 21282554 DOI: 10.1161/hypertensionaha.110.165464] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intrarenal angiotensinogen (AGT) is expressed highly in renal proximal tubular cells (RPTCs) and contributes to the regulation of intrarenal angiotensin II levels. Inhibition of nuclear factor (NF)-κB suppressed human (h)AGT expression in human RPTCs. However, the presence and localization of an NF-κB binding site in the hAGT promoter region have not been determined. Therefore, this study was performed to demonstrate that an NF-κB binding site in the hAGT promoter region contributes to hAGT promoter activity in human RPTCs. The hAGT promoter region was cloned from -4358 to +122 and deletion analysis was performed. A possible NF-κB binding site was removed from the hAGT promoter region (M1) and mutated (M2). Human RPTCs were transfected, and hAGT promoter activity was determined by luciferase assay. The identity of DNA binding proteins from binding assays were determined by Western blot. Progressive 5'-end deletions demonstrated removal of a distal promoter element in hAGT_-2414/+122 reduced promoter activity (0.61 ± 0.12, ratio to hAGT_-4358/+122). Inhibition of NF-κB suppressed promoter activity in hAGT_-4358/+122 (0.51 ± 0.14, ratio to control) and hAGT_-3681/+122 (0.48 ± 0.06, ratio to control) but not in the construct without the NF-κB binding site. Promoter activity was reduced in the domain mutants M1 (0.57 ± 0.08, ratio to hAGT_-4358/+122) and M2 (0.61 ± 0.16, ratio to hAGT_-4358/+122). DNA binding levels of NF-κB protein were reduced in M1. These data demonstrate the functional importance of an NF-κB binding site in the hAGT promoter region, which contributes to hAGT promoter activity in human RPTCs.
Collapse
Affiliation(s)
- Omar W Acres
- Department of Medicine and Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA
| | | | | | | |
Collapse
|
12
|
Niehof M, Borlak J. HNF4alpha dysfunction as a molecular rational for cyclosporine induced hypertension. PLoS One 2011; 6:e16319. [PMID: 21298017 PMCID: PMC3029342 DOI: 10.1371/journal.pone.0016319] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 12/15/2010] [Indexed: 01/14/2023] Open
Abstract
Induction of tolerance against grafted organs is achieved by the immunosuppressive agent cyclosporine, a prominent member of the calcineurin inhibitors. Unfortunately, its lifetime use is associated with hypertension and nephrotoxicity. Several mechanism for cyclosporine induced hypertension have been proposed, i.e. activation of the sympathetic nervous system, endothelin-mediated systemic vasoconstriction, impaired vasodilatation secondary to reduction in prostaglandin and nitric oxide, altered cytosolic calcium translocation, and activation of the renin-angiotensin system (RAS). In this regard the molecular basis for undue RAS activation and an increased signaling of the vasoactive oligopeptide angiotensin II (AngII) remain elusive. Notably, angiotensinogen (AGT) is the precursor of AngII and transcriptional regulation of AGT is controlled by the hepatic nuclear factor HNF4alpha. To better understand the molecular events associated with cyclosporine induced hypertension, we investigated the effect of cyclosporine on HNF4alpha expression and activity and searched for novel HNF4alpha target genes among members of the RAS cascade. Using bioinformatic algorithm and EMSA bandshift assays we identified angiotensin II receptor type 1 (AGTR1), angiotensin I converting enzyme (ACE), and angiotensin I converting enzyme 2 (ACE2) as genes targeted by HNF4alpha. Notably, cyclosporine represses HNF4alpha gene and protein expression and its DNA-binding activity at consensus sequences to AGT, AGTR1, ACE, and ACE2. Consequently, the gene expression of AGT, AGTR1, and ACE2 was significantly reduced as evidenced by quantitative real-time RT-PCR. While RAS is composed of a sophisticated interplay between multiple factors we propose a decrease of ACE2 to enforce AngII signaling via AGTR1 to ultimately result in vasoconstriction and hypertension. Taken collectively we demonstrate cyclosporine to repress HNF4alpha activity through calcineurin inhibitor mediated inhibition of nuclear factor of activation of T-cells (NFAT) which in turn represses HNF4alpha that leads to a disturbed balance of RAS.
Collapse
Affiliation(s)
- Monika Niehof
- Center of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Jürgen Borlak
- Center of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Center of Pharmacology and Toxicology, Medical School of Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
13
|
Wu C, Lu H, Cassis LA, Daugherty A. Molecular and Pathophysiological Features of Angiotensinogen: A Mini Review. ACTA ACUST UNITED AC 2011; 4:183-190. [PMID: 22389749 DOI: 10.7156/v4i4p183] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The renin-angiotensin system is an essential regulatory system for blood pressure and fluid homeostasis. Angiotensinogen is the only known precursor of all the peptides generated in this system. While many of the basic understandings of angiotensinogen have come from research efforts to define its role in blood pressure regulation, novel pathophysiological functions of angiotensinogen have been discovered in the last two decades including kidney developmental abnormalities, atherosclerosis, and obesity. Despite the impressive advance in the understanding of angiotensinogen gene structure and protein functions, some fundamental questions remain unanswered. In this short review, we provide contemporary insights into the molecular characteristics of angiotensinogen and its pathophysiological features. In light of the recent progress, we emphasize some newly recognized functional features of angiotensinogen other than its regulation on blood pressure.
Collapse
Affiliation(s)
- Congqing Wu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
14
|
Doyon P, Servant MJ. Tumor necrosis factor receptor-associated factor-6 and ribosomal S6 kinase intracellular pathways link the angiotensin II AT1 receptor to the phosphorylation and activation of the IkappaB kinase complex in vascular smooth muscle cells. J Biol Chem 2010; 285:30708-18. [PMID: 20659889 PMCID: PMC2945565 DOI: 10.1074/jbc.m110.126433] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of NF-κB transcription factors by locally produced angiotensin II (Ang II) is proposed to be involved in chronic inflammatory reactions leading to atherosclerosis development. However, a clear understanding of the signaling cascades coupling the Ang II AT1 receptors to the activation of NF-κB transcription factors is still lacking. Using primary cultured aortic vascular smooth muscle cells, we show that activation of the IKK complex and NF-κB transcription factors by Ang II is regulated by phosphorylation of the catalytic subunit IKKβ on serine residues 177 and 181 in the activation T-loop. The use of pharmacological inhibitors against conventional protein kinases C (PKCs), mitogen-activated/extracellular signal-regulated kinase (MEK) 1/2, ribosomal S6 kinase (RSK), and silencing RNA technology targeting PKCα, IKKβ subunit, tumor growth factor β-activating kinase-1 (TAK1), the E3 ubiquitin ligase tumor necrosis factor receptor-associated factor-6 (TRAF6), and RSK isoforms, demonstrates the requirement of two distinct signaling pathway for the phosphorylation of IKKβ and the activation of the IKK complex by Ang II. Rapid phosphorylation of IKKβ requires a second messenger-dependent pathway composed of PKCα-TRAF6-TAK1, whereas sustained phosphorylation and activation of IKKβ requires the MEK1/2-ERK1/2-RSK pathway. Importantly, simultaneously targeting components of these two pathways completely blunts the phosphorylation of IKKβ and the proinflammatory effect of the octapeptide. This is the first report demonstrating activation of TAK1 by the AT1R. We propose a model whereby TRAF6-TAK1 and ERK-RSK intracellular pathways independently and sequentially converge to the T-loop phosphorylation for full activation of IKKβ, which is an essential step in the proinflammatory activity of Ang II.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Cell Line
- Enzyme Activation/drug effects
- Humans
- I-kappa B Kinase/metabolism
- Inflammation/metabolism
- Inflammation/pathology
- MAP Kinase Kinase 1/antagonists & inhibitors
- MAP Kinase Kinase 1/metabolism
- MAP Kinase Kinase 2/antagonists & inhibitors
- MAP Kinase Kinase 2/metabolism
- MAP Kinase Kinase Kinases/antagonists & inhibitors
- MAP Kinase Kinase Kinases/metabolism
- MAP Kinase Signaling System
- Mitogen-Activated Protein Kinase 3/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 3/metabolism
- Models, Biological
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phosphorylation/drug effects
- Protein Kinase C-alpha/antagonists & inhibitors
- Protein Kinase C-alpha/metabolism
- Protein Kinase Inhibitors/pharmacology
- Rats
- Receptor, Angiotensin, Type 1/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Second Messenger Systems
- TNF Receptor-Associated Factor 6/metabolism
Collapse
Affiliation(s)
- Priscilla Doyon
- From the Faculty of Pharmacy and Groupe de Recherche Universitaire sur le Médicament, Université de Montréal, Montreal H3C 3J7, Canada
| | - Marc J. Servant
- From the Faculty of Pharmacy and Groupe de Recherche Universitaire sur le Médicament, Université de Montréal, Montreal H3C 3J7, Canada
- Holds a Canada Research Chair in signalling networks in inflammation. To whom correspondence should be addressed: C.P. 6128, succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada. Tel.: 514-343-7966; Fax: 514-343-7073; E-mail:
| |
Collapse
|
15
|
Ateeq B, Tomlins SA, Chinnaiyan AM. AGTR1 as a therapeutic target in ER-positive and ERBB2-negative breast cancer cases. Cell Cycle 2010; 8:3794-5. [PMID: 19934656 DOI: 10.4161/cc.8.23.9976] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
16
|
Satou R, Gonzalez-Villalobos RA, Miyata K, Ohashi N, Urushihara M, Acres OW, Navar LG, Kobori H. IL-6 augments angiotensinogen in primary cultured renal proximal tubular cells. Mol Cell Endocrinol 2009; 311:24-31. [PMID: 19583994 PMCID: PMC2739253 DOI: 10.1016/j.mce.2009.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 01/13/2023]
Abstract
In human kidneys, the mechanisms underlying angiotensinogen (AGT) augmentation by interleukin 6 (IL-6) are poorly understood and the only information available is in HK-2, immortalized human renal proximal tubular epithelial cells. Therefore, the present study was performed to elucidate the effects of IL-6 on AGT expression in primary cultured human renal proximal tubular epithelial cells (RPTEC) after characterization of HK-2 and RPTEC. RPTEC showed low basal AGT mRNA (11+/-1%) and protein (7.0+/-0.9%) expression, high IL-6 receptor (IL-6R) expression (282+/-17%), and low basal NF-kappaB (43+/-7%) and STAT3 (43+/-7%) activities compared to those in HK-2. In RPTEC, AGT mRNA and protein expressions were enhanced by IL-6 (172+/-31% and 378+/-39%, respectively). This AGT augmentation was attenuated by an IL-6R antibody. STAT3 phosphorylation (366+/-55% at 30min) and translocation were enhanced by IL-6. The AGT augmentation was attenuated by a STAT3 inhibitor. These data indicate that IL-6 increases AGT expression via STAT3 pathway in RPTEC.
Collapse
Affiliation(s)
- Ryousuke Satou
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Georgescu EF, Ionescu R, Niculescu M, Mogoanta L, Vancica L. Angiotensin-receptor blockers as therapy for mild-to-moderate hypertension-associated non-alcoholic steatohepatitis. World J Gastroenterol 2009; 15:942-54. [PMID: 19248193 PMCID: PMC2653406 DOI: 10.3748/wjg.15.942] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate insulin resistance, cytolysis and non-alcoholic steatohepatitis (NASH) score (NAS) using the Kleiner and Brunt criteria in 54 patients with NASH and mild-to-moderate hypertension, treated with telmisartan vs valsartan for 20 mo.
METHODS: All patients met the NCEP-ATP III criteria for metabolic syndrome. Histology confirmed steatohepatitis, defined as a NAS greater than five up to 3 wk prior inclusion, using the current criteria. Patients with viral hepatitis, chronic alcohol intake, drug abuse or other significant immune or metabolic hepatic pathology were excluded. Subjects were randomly assigned either to the valsartan (V) group (standard dose 80 mg o.d., n = 26), or to the telmisartan (T) group (standard dose 20 mg o.d., n = 28). Treatment had to be taken daily at the same hour with no concomitant medication or alcohol consumption allowed. Neither the patient nor the medical staff was aware of treatment group allocation. Paired liver biopsies obtained at inclusion (visit 1) and end of treatment (EOT) were assessed by a single blinded pathologist, not aware of patient or treatment group. Blood pressure, BMI, ALT, AST, HOMA-IR, plasma triglycerides (TG) and total cholesterol (TC) were evaluated at inclusion and every 4 mo until EOT (visit 6).
RESULTS: At EOT we noticed a significant decrease in ALT levels vs inclusion in all patients and this decrease did not differ significantly in group T vs group V. HOMA-IR significantly decreased at EOT vs inclusion in all patients but in group T, the mean HOMA-IR decrease per month was higher than in group V. NAS significantly diminished at EOT in all patients with a higher decrease in group T vs group V.
CONCLUSION: Angiotensin receptor blockers seem to be efficient in hypertension-associated NASH. Telmisartan showed a higher efficacy regarding insulin resistance and histology, perhaps because of its specific PPAR-gamma ligand effect.
Collapse
|
18
|
Satou R, Gonzalez-Villalobos RA, Miyata K, Ohashi N, Katsurada A, Navar LG, Kobori H. Costimulation with angiotensin II and interleukin 6 augments angiotensinogen expression in cultured human renal proximal tubular cells. Am J Physiol Renal Physiol 2008; 295:F283-F289. [PMID: 18463317 PMCID: PMC2494515 DOI: 10.1152/ajprenal.00047.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Accepted: 05/04/2008] [Indexed: 12/16/2022] Open
Abstract
Augmented intrarenal ANG II stimulates IL-6, which contributes to renal injury. The expression of intrarenal angiotensinogen (AGT) is enhanced by increased intrarenal ANG II in human renin/human AGT double transgenic mice. ANG II also augments AGT expression in hepatocytes and cardiac myocytes. However, the mechanisms underlying AGT augmentation by ANG II and the contribution of IL-6 to this system are poorly understood. This study was performed in human renal proximal tubular epithelial cells (HRPTECs) to test the hypothesis that IL-6 contributes to the upregulation of AGT expression by ANG II. Human kidney-2 (HK-2) cells, immortalized HRPTECs, were incubated with 10(-7) M ANG II and/or 10 ng/ml IL-6 for up to 24 h. AGT mRNA and protein expressions were measured by real-time RT-PCR and ELISA, respectively. The activities of NF-kappaB and STAT3 were evaluated by Western blotting and EMSA. Stimulation with either ANG II or IL-6 did not significantly alter AGT mRNA or protein expression. In contrast, costimulation with ANG II and IL-6 significantly increased AGT mRNA and protein expressions (1.26 +/- 0.10 and 1.16 +/- 0.13 over control, respectively). Olmesartan, an ANG II type 1 receptor blocker, and an IL-6 receptor antibody individually inhibited this synergistic effect. NF-kappaB was also activated by costimulation with ANG II and IL-6. Phosphorylation and activity of STAT3 were increased by stimulation with IL-6 alone and by costimulation. The present study indicates that IL-6 plays an important role in ANG II-mediated augmentation of AGT expression in human renal proximal tubular cells.
Collapse
Affiliation(s)
- Ryousuke Satou
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
RelA Ser276 phosphorylation is required for activation of a subset of NF-kappaB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes. Mol Cell Biol 2008; 28:3623-38. [PMID: 18362169 DOI: 10.1128/mcb.01152-07] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
NF-kappaB plays a central role in cytokine-inducible inflammatory gene expression. Previously we empirically determined the identity of 92 members of the genetic network under direct NF-kappaB/RelA control that show marked heterogeneity in magnitude of transcriptional induction and kinetics of peak activation. To investigate this network further, we have applied a recently developed two-step chromatin immunoprecipitation assay that accurately reflects association and disassociation of RelA binding to its chromatin targets. Although inducible RelA binding occurs with similar kinetics on all NF-kappaB-dependent genes, serine 276 (Ser(276))-phosphorylated RelA binding is seen primarily on a subset of genes that are rapidly induced by tumor necrosis factor (TNF), including Gro-beta, interleukin-8 (IL-8), and IkappaBalpha. Previous work has shown that TNF-inducible RelA Ser(276) phosphorylation is controlled by a reactive oxygen species (ROS)-protein kinase A signaling pathway. To further understand the role of phospho-Ser(276) RelA in target gene expression, we inhibited its formation by ROS scavengers and antioxidants, treatments that disrupt phospho-Ser(276) formation but not the translocation and DNA binding of nonphosphorylated RelA. Here we find that phospho-Ser(276) RelA is required only for activation of IL-8 and Gro-beta, with IkappaBalpha being unaffected. These data were confirmed in experiments using RelA(-/-) murine embryonic fibroblasts reconstituted with a RelA Ser(276)Ala mutation. In addition, we observe that phospho-Ser(276) RelA binds the positive transcription elongation factor b (P-TEFb), a complex containing the cyclin-dependent kinase 9 (CDK-9) and cyclin T1 subunits. Inhibition of P-TEFb activity by short interfering RNA (siRNA)-mediated knockdown shows that the phospho-Ser(276) RelA-P-TEFb complex is required for IL-8 and Gro-beta gene activation but not for IkappaBalpha gene activation. These studies indicate that TNF induces target gene expression by heterogeneous mechanisms. One is mediated by phospho-Ser(276) RelA formation and chromatin targeting of P-TEFb controlling polymerase II (Pol II) recruitment and carboxy-terminal domain phosphorylation on the IL-8 and Gro-beta genes. The second involves a phospho-Ser(276) RelA-independent activation of genes preloaded with Pol II, exemplified by the IkappaBalpha gene. Together, these data suggest that the binding kinetics, selection of genomic targets, and mechanisms of promoter induction by RelA are controlled by a phosphorylation code influencing its interactions with coactivators and transcriptional elongation factors.
Collapse
|
20
|
Li XC, Zhuo JL. Nuclear factor-kappaB as a hormonal intracellular signaling molecule: focus on angiotensin II-induced cardiovascular and renal injury. Curr Opin Nephrol Hypertens 2008; 17:37-43. [PMID: 18090668 PMCID: PMC2278240 DOI: 10.1097/mnh.0b013e3282f2903c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Nuclear factor-kappaB (NF-kappaB) has recently emerged as a novel intracellular signaling molecule for hormones, cytokines, chemokines, and growth factors. The purpose of this article is to highlight the role of NF-kappaB as an intracellular signaling for angiotensin II and clinical perspectives of targeting NF-kappaB signaling in treating hypertensive and renal diseases. RECENT FINDINGS A selective review of recently published work provides strong evidence that activation of NF-kappaB signaling by angiotensin II mediates the detrimental effects of angiotensin II on the transcription of cytokines, chemokines and growth factors. Angiotensin II stimulates AT1 receptors to activate NF-kappaB signaling via both canonical (classical) and noncanonical (alternative) pathways. Intracellular angiotensin II may also induce NF-kappaB activation and transactivation of target genes. Nearly 800 NF-kappaB inhibitors have been described, but none has advanced to clinical trials. However, angiotensin converting enzyme inhibitors and AT1 blockers are beneficial in treating angiotensin II-induced hypertensive and renal injury in part by inhibiting NF-kappaB activation. SUMMARY Angiotensin II induces the transcription of cytokines, chemokines and growth factors, leading to target organ injury. These responses to angiotensin II are caused primarily by AT1 receptor-activated NF-kappaB signaling. Targeting NF-kappaB signaling with angiotensin converting enzyme inhibitors, AT1 blockers, and specific NF-kappaB inhibitors may represent a novel approach in treating angiotensin II-induced hypertensive and renal diseases.
Collapse
Affiliation(s)
- Xiao C. Li
- Laboratory of Receptor and Signal Transduction, Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital
| | - Jia L. Zhuo
- Laboratory of Receptor and Signal Transduction, Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
21
|
Nunn AVW, Bell J, Barter P. The integration of lipid-sensing and anti-inflammatory effects: how the PPARs play a role in metabolic balance. NUCLEAR RECEPTOR 2007; 5:1. [PMID: 17531095 PMCID: PMC1899481 DOI: 10.1186/1478-1336-5-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 05/25/2007] [Indexed: 01/10/2023]
Abstract
The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors that have a role in embryonic development, but are primarily known for modulating energy metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently, there is no consensus as to the overall combined function of PPARs and why they evolved. We hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection, but the latter increases oxidative stress and may reduce median survival (functional longevity). In a sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum, where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species, ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore postulate that inflammation-induced PPAR downregulation engenders many of the signs and symptoms of the metabolic syndrome, which shares many features with the acute phase response (APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related inflammatory signal induced by excessive calories and reduced physical activity, which normally couples energy storage with the ability to mount an immune response. This is further worsened when pancreatic decompensation occurs, resulting in gluco-oxidative stress and lipotoxicity, increased inflammatory insulin resistance and oxidative stress. Reactivating PPARs may restore a metabolic balance and help to adapt the phenotype to a modern lifestyle.
Collapse
Affiliation(s)
- Alistair VW Nunn
- Molecular Imaging Group, Medical Research Council Clinical Sciences Centre, Imperial College, Hammersmith Campus, London W12 0HS, UK
| | - Jimmy Bell
- Molecular Imaging Group, Medical Research Council Clinical Sciences Centre, Imperial College, Hammersmith Campus, London W12 0HS, UK
| | - Philip Barter
- The Heart Research Institute, Camperdown, Sydney, NSW 2050, Australia
| |
Collapse
|
22
|
McAllister-Lucas LM, Ruland J, Siu K, Jin X, Gu S, Kim DSL, Kuffa P, Kohrt D, Mak TW, Nuñez G, Lucas PC. CARMA3/Bcl10/MALT1-dependent NF-kappaB activation mediates angiotensin II-responsive inflammatory signaling in nonimmune cells. Proc Natl Acad Sci U S A 2006; 104:139-44. [PMID: 17101977 PMCID: PMC1766317 DOI: 10.1073/pnas.0601947103] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Angiotensin II (Ang II) is a peptide hormone that, like many cytokines, acts as a proinflammatory agent and growth factor. After injury to the liver, the hormone assists in tissue repair by stimulating hepatocytes and hepatic stellate cells to synthesize extracellular matrix proteins and secrete secondary cytokines and by stimulating myofibroblasts to proliferate. However, under conditions of chronic liver injury, all of these effects conspire to promote pathologic liver fibrosis. Much of this effect of Ang II results from activation of the proinflammatory NF-kappaB transcription factor in response to stimulation of the type 1 Ang II receptor, a G protein-coupled receptor. Here, we characterize a previously undescribed signaling pathway mediating Ang II-dependent activation of NF-kappaB, which is composed of three principal proteins, CARMA3, Bcl10, and MALT1. Blocking the function of any of these proteins, through the use of either dominant-negative mutants, RNAi, or gene targeting, effectively abolishes Ang II-dependent NF-kappaB activation in hepatocytes. In addition, Bcl10(-/-) mice show defective hepatic cytokine production after Ang II treatment. Evidence also is presented that this pathway activates NF-kappaB through ubiquitination of IKKgamma, the regulatory subunit of the IkappaB kinase complex. These results elucidate a concrete series of molecular events that link ligand activation of the type 1 Ang II receptor to stimulation of the NF-kappaB transcription factor. These findings also uncover a function of the CARMA, Bcl10, and MALT1 proteins in cells outside the immune system.
Collapse
Affiliation(s)
| | - Jürgen Ruland
- Third Medical Department, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 Munich, Germany; and
| | - Katy Siu
- Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Xiaohong Jin
- Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Shufang Gu
- Departments of *Pediatrics and Communicable Diseases and
| | - David S. L. Kim
- Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Peter Kuffa
- Departments of *Pediatrics and Communicable Diseases and
| | - Dawn Kohrt
- Departments of *Pediatrics and Communicable Diseases and
| | - Tak W. Mak
- Campbell Family Institute for Breast Cancer Research, Toronto, ON, Canada M5G 2C1
| | - Gabriel Nuñez
- Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Peter C. Lucas
- Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Hai T, Yeung ML, Wood TG, Wei Y, Yamaoka S, Gatalica Z, Jeang KT, Brasier AR. An alternative splice product of IkappaB kinase (IKKgamma), IKKgamma-delta, differentially mediates cytokine and human T-cell leukemia virus type 1 tax-induced NF-kappaB activation. J Virol 2006; 80:4227-41. [PMID: 16611882 PMCID: PMC1472011 DOI: 10.1128/jvi.80.9.4227-4241.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/08/2006] [Indexed: 01/30/2023] Open
Abstract
NF-kappaB is an inducible transcription factor mediating innate immune responses whose activity is controlled by the multiprotein IkappaB kinase (IKK) "signalsome". The core IKK consists of two catalytic serine kinases, IKKalpha and IKKbeta, and a noncatalytic subunit, IKKgamma. IKKgamma is required for IKK activity by mediating kinase oligomerization and serving to couple the core catalytic subunits to upstream mitogen-activated protein 3-kinase cascades. We have discovered an alternatively spliced IKKgamma mRNA isoform, encoding an in-frame deletion of exon 5, termed IKKgamma-delta. Using a specific reverse transcription-PCR assay, we find that IKKgamma-delta is widely expressed in cultured human cells and normal human tissues. Because IKKgamma-Delta protein is lacking a critical coiled-coil domain important in protein-protein interactions, we sought to determine its signaling properties by examining its ability to self associate, couple to activators of the canonical pathway, and mediate human T-cell leukemia virus type 1 (HTLV-1) Tax-induced NF-kappaB activity. Coimmunoprecipitation and confocal colocalization assays indicate IKKgamma-delta has strong homo- and heterotypic association with wild-type (WT) IKKgamma and, like IKKgamma WT, associates with the IKKbeta kinase. Similarly, IKKgamma-delta mediates IKK kinase activity and downstream NF-kappaB-dependent transcription in response to tumor necrosis factor (TNF) and the NF-kappaB-inducing kinase-IKKalpha signaling pathway. Surprisingly, however, in contrast to IKKgamma WT, IKKgamma-delta is not able to mediate HTLV-1 Tax-induced NF-kappaB-dependent transcription, even though IKKgamma-delta binds and colocalizes with Tax. These observations suggest that IKKgamma-delta is a functionally distinct alternatively spliced mRNA product differentially mediating TNF-induced, but not Tax-induced, signals converging on the IKK signalsome. Differing levels of IKKgamma-delta expression, therefore, may affect signal transduction cascades coupling to IKK.
Collapse
Affiliation(s)
- Tao Hai
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1060, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Choudhary S, Boldogh S, Garofalo R, Jamaluddin M, Brasier AR. Respiratory syncytial virus influences NF-kappaB-dependent gene expression through a novel pathway involving MAP3K14/NIK expression and nuclear complex formation with NF-kappaB2. J Virol 2005; 79:8948-59. [PMID: 15994789 PMCID: PMC1168720 DOI: 10.1128/jvi.79.14.8948-8959.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 03/30/2005] [Indexed: 12/26/2022] Open
Abstract
A member of the Paramyxoviridae family of RNA viruses, respiratory syncytial virus (RSV), is a leading cause of epidemic respiratory tract infection in children. In children, RSV primarily replicates in the airway mucosa, a process that alters epithelial cell chemokine expression, thereby inducing airway inflammation. We investigated the role of the mitogen-activated protein kinase kinase kinase 14/NF-kappaB-inducing kinase (NIK) in the activation of NF-kappaB-dependent genes in alveolus-like A549 cells. RSV infection induces a time dependent increase of NIK mRNA and protein expression that peaks 12 to 24 h after viral exposure. Immunoprecipitation kinase assays indicate that NIK kinase activity is activated even more rapidly (within 6 h of RSV adsorption) associated with an endogenous approximately 50-kDa NF-kappaB2 substrate. Because NIK associates with IKKalpha to mediate processing of the 100-kDa NF-kappaB2 precursor into its 52-kDa DNA binding isoform ("p52"), the effects of RSV on NIK complex formation with IKKalpha and NF-kappaB2 were determined by coimmunoprecipitation assay. We find that NIK, IKKalpha, and both 100 kDa- and 52-kDa NF-kappaB2 isoforms strongly complex 15 h after exposure to RSV at times subsequent to NIK kinase activation. Western immunoblot and microaffinity DNA pull-down assays showed a parallel increase in nuclear translocation and DNA binding of the NF-kappaB2-Rel B complex. Interestingly, we make the novel observations that NIK also transiently translocates into the nucleus complexed with 52-kDa NF-kappaB2. Small interfering RNA-mediated NIK "knock-down" blocked RSV-inducible 52-kDa NF-kappaB2 processing and interfered with the early activation of a subset of NF-kappaB-dependent genes, indicating the importance of this activation pathway in the genomic NF-kappaB response to RSV. Together, these data indicate that RSV infection rapidly activates the noncanonical NF-kappaB activation pathway prior to the more potent canonical pathway activation. This appears to be through a novel mechanism involving induction of NIK kinase activity, expression, and nuclear translocation of a ternary complex with IKKalpha and processed NF-kappaB2.
Collapse
Affiliation(s)
- Sanjeev Choudhary
- Department of Medicine, The University of Texas Medical Branch, Galveston, TX 77555-1060, USA
| | | | | | | | | |
Collapse
|
25
|
Brasier AR, Spratt H, Wu Z, Boldogh I, Zhang Y, Garofalo RP, Casola A, Pashmi J, Haag A, Luxon B, Kurosky A. Nuclear heat shock response and novel nuclear domain 10 reorganization in respiratory syncytial virus-infected a549 cells identified by high-resolution two-dimensional gel electrophoresis. J Virol 2004; 78:11461-76. [PMID: 15479789 PMCID: PMC523268 DOI: 10.1128/jvi.78.21.11461-11476.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The pneumovirus respiratory syncytial virus (RSV) is a leading cause of epidemic respiratory tract infection. Upon entry, RSV replicates in the epithelial cytoplasm, initiating compensatory changes in cellular gene expression. In this study, we have investigated RSV-induced changes in the nuclear proteome of A549 alveolar type II-like epithelial cells by high-resolution two-dimensional gel electrophoresis (2DE). Replicate 2D gels from uninfected and RSV-infected nuclei were compared for changes in protein expression. We identified 24 different proteins by peptide mass fingerprinting after matrix-assisted laser desorption ionization-time of flight mass spectrometry (MS), whose average normalized spot intensity was statistically significant and differed by +/-2-fold. Notable among the proteins identified were the cytoskeletal cytokeratins, RNA helicases, oxidant-antioxidant enzymes, the TAR DNA binding protein (a protein that associates with nuclear domain 10 [ND10] structures), and heat shock protein 70- and 60-kDa isoforms (Hsp70 and Hsp60, respectively). The identification of Hsp70 was also validated by liquid chromatography quadropole-TOF tandem MS (LC-MS/MS). Separate experiments using immunofluorescence microscopy revealed that RSV induced cytoplasmic Hsp70 aggregation and nuclear accumulation. Data mining of a genomic database showed that RSV replication induced coordinate changes in Hsp family proteins, including the 70, 70-2, 90, 40, and 40-3 isoforms. Because the TAR DNA binding protein associates with ND10s, we examined the effect of RSV infection on ND10 organization. RSV induced a striking dissolution of ND10 structures with redistribution of the component promyelocytic leukemia (PML) and speckled 100-kDa (Sp100) proteins into the cytoplasm, as well as inducing their synthesis. Our findings suggest that cytoplasmic RSV replication induces a nuclear heat shock response, causes ND10 disruption, and redistributes PML and Sp100 to the cytoplasm. Thus, a high-resolution proteomics approach, combined with immunofluorescence localization and coupled with genomic response data, yielded unexpected novel insights into compensatory nuclear responses to RSV infection.
Collapse
Affiliation(s)
- Allan R Brasier
- Division of Endocrinology, MRB 8.138, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1060, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Haeberle HA, Casola A, Gatalica Z, Petronella S, Dieterich HJ, Ernst PB, Brasier AR, Garofalo RP. IkappaB kinase is a critical regulator of chemokine expression and lung inflammation in respiratory syncytial virus infection. J Virol 2004; 78:2232-41. [PMID: 14963119 PMCID: PMC369265 DOI: 10.1128/jvi.78.5.2232-2241.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the major etiologic agent of severe epidemic lower respiratory tract infections in infancy. Airway mucosal inflammation plays a critical role in the pathogenesis of RSV disease in both natural and experimental infections. RSV is among the most potent biological stimuli that induce the expression of inflammatory genes, including those encoding chemokines, but the mechanism(s) that controls virus-mediated airway inflammation in vivo has not been fully elucidated. Herein we show that the inoculation of BALB/c mice with RSV results in rapid activation of the multisubunit IkappaB kinase (IKK) in lung tissue. IKK transduces upstream activating signals into the rate-limiting phosphorylation (and proteolytic degradation) of IkappaBalpha, the inhibitory subunit that under normal conditions binds to the nuclear factor (NF)-kappaB complex and keeps it in an inactive cytoplasmic form. Mice treated intranasally with interleukin-10 or with a specific cell-permeable peptide that blocks the association of the catalytic subunit IKKbeta with the regulatory protein NEMO showed a striking reduction of lung NF-kappaB DNA binding activity, chemokine gene expression, and airway inflammation in response to RSV infection. These findings suggest that IKKbeta may be a potential target for the treatment of acute or chronic inflammatory diseases of the lung.
Collapse
Affiliation(s)
- Helene A Haeberle
- Department of Pediatrics, Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas 77555-0369, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang Y, Jamaluddin M, Wang S, Tian B, Garofalo RP, Casola A, Brasier AR. Ribavirin treatment up-regulates antiviral gene expression via the interferon-stimulated response element in respiratory syncytial virus-infected epithelial cells. J Virol 2003; 77:5933-47. [PMID: 12719586 PMCID: PMC154027 DOI: 10.1128/jvi.77.10.5933-5947.2003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a mucosa-restricted virus that is a leading cause of epidemic respiratory tract infections in children. RSV replication is a potent activator of the epithelial-cell genomic response, influencing the expression of a spectrum of cellular pathways, including proinflammatory chemokines of the CC, CXC, and CX(3)C subclasses. Ribavirin (1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide) is a nontoxic antiviral agent currently licensed for the treatment of severe RSV lower respiratory tract infections. Because ribavirin treatment reduces the cytopathic effect in infected cells, we used high-density microarrays to investigate the hypothesis that ribavirin modifies the virus-induced epithelial genomic response to replicating virus. Ribavirin treatment administered in concentrations of 10 to 100 micro g/ml potently inhibited RSV transcription, thereby reducing the level of RSV N transcripts to approximately 13% of levels in nontreated cells. We observed that in both the absence and the presence of ribavirin, RSV infection induced global alterations in the host epithelial cell, affecting approximately 49% of the approximately 6,650 expressed genes detectable by the microarray. Ribavirin influences the expression of only 7.5% of the RSV-inducible genes (total number of genes, 272), suggesting that the epithelial-cell genetic program initiated by viral infection is independent of high-level RSV replication. Hierarchical clustering of the ribavirin-regulated genes identified four expression patterns. In one group, ribavirin inhibited the expression of the RSV-inducible CC chemokines MIP-1 alpha and -1 beta, which are important in RSV-induced pulmonary pathology, and interferon (IFN), a cytokine important in the mucosal immune response. In a second group, ribavirin further up-regulated a set of RSV- and IFN-stimulated response genes (ISGs) encoding antiviral proteins (MxA and p56), complement products, acute-phase response factors, and the STAT and IRF transcription factors. Because IFN-beta expression itself was reduced in the ribavirin-treated cells, we further investigated the mechanism for up-regulation of the IFN-signaling pathway. Enhanced expression of IFI 6-16, IFI 9-27, MxA/p78, STAT-1 alpha, STAT-1 beta, IRF-7B, and TAP-1-LMP2 transcripts were independently reproduced by Northern blot analysis. Ribavirin-enhanced TAP-1-LMP2 expression was a transcriptional event where site mutations of the IFN-stimulated response element (ISRE) blocked RSV and ribavirin-inducible promoter activity. Furthermore, ribavirin up-regulated the transcriptional activity of a reporter gene selectively driven by the ISRE. In specific DNA pull-down assays, we observed that ribavirin enhanced RSV-induced STAT-1 binding to the ISRE. We conclude that ribavirin potentiates virus-induced ISRE signaling to enhance the expression of antiviral ISGs, suggesting a mechanism for the efficacy of combined treatment with ribavirin and IFN in other chronic viral diseases.
Collapse
Affiliation(s)
- Yuhong Zhang
- Department of Medicine, The University of Texas Medical Branch, Galveston, Texas 77555-1060, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Tian B, Zhang Y, Luxon BA, Garofalo RP, Casola A, Sinha M, Brasier AR. Identification of NF-kappaB-dependent gene networks in respiratory syncytial virus-infected cells. J Virol 2002; 76:6800-14. [PMID: 12050393 PMCID: PMC136270 DOI: 10.1128/jvi.76.13.6800-6814.2002] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a mucosa-restricted virus that is a leading cause of epidemic respiratory tract infections in children. In epithelial cells, RSV replication activates nuclear translocation of the inducible transcription factor nuclear factor kappaB (NF-kappaB) through proteolysis of its cytoplasmic inhibitor, IkappaB. In spite of a putative role in mediating virus-inducible gene expression, the spectrum of NF-kappaB-dependent genes induced by RSV infection has not yet been determined. To address this, we developed a tightly regulated cell system expressing a nondegradable, epitope-tagged IkappaBalpha isoform (Flag-IkappaBalpha Mut) whose expression could be controlled by exogenous addition of nontoxic concentrations of doxycycline. Flag-IkappaBalpha Mut expression potently inhibited IkappaBalpha proteolysis, NF-kappaB binding, and NF-kappaB-dependent gene transcription in cells stimulated with the prototypical NF-kappaB-activating cytokine tumor necrosis factor alpha (TNF-alpha) and in response to RSV infection. High-density oligonucleotide microarrays were then used to profile constitutive and RSV-induced gene expression in the absence or presence of Flag-IkappaBalpha Mut. Comparison of these profiles revealed 380 genes whose expression was significantly changed by the dominant-negative NF-kappaB. Of these, 236 genes were constitutive (not RSV regulated), and surprisingly, only 144 genes were RSV regulated, representing numerically approximately 10% of the total population of RSV-inducible genes at this time point. Hierarchical clustering of the 144 RSV- and Flag-IkappaBalpha Mut-regulated genes identified two discrete gene clusters. The first group had high constitutive expression, and its expression levels fell in response to RSV infection. In this group, constitutive mRNA expression was increased by Flag-IkappaBalpha Mut expression, and the RSV-induced decrease in expression was partly inhibited. In the second group, constitutive expression was very low (or undetectable) and, after RSV infection, expression levels strongly increased. In this group, NF-kappaB was required for RSV-inducible expression because Flag-IkappaBalpha Mut expression blocked their induction by RSV. This latter cluster includes chemokines, transcriptional regulators, intracellular proteins regulating translation and proteolysis, and secreted proteins (complement components and growth factor regulators). These data suggest that NF-kappaB action induces global cellular responses after viral infection.
Collapse
Affiliation(s)
- Bing Tian
- Department of Medicine, Sealy Center for Structural Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1060, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Lu Y, Jamieson L, Brasier AR, Fields AP. NF-kappaB/RelA transactivation is required for atypical protein kinase C iota-mediated cell survival. Oncogene 2001; 20:4777-92. [PMID: 11521190 DOI: 10.1038/sj.onc.1204607] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2000] [Revised: 05/03/2001] [Accepted: 05/09/2001] [Indexed: 01/07/2023]
Abstract
In chronic myelogenous leukemia (CML), the oncogene bcr-abl encodes a dysregulated tyrosine kinase that inhibits apoptosis. We showed previously that human erythroleukemia K562 cells are resistant to antineoplastic drug (taxol)-induced apoptosis through the atypical protein kinase C iota isozyme (PKC iota), a kinase downstream of Bcr-Abl. The mechanism(s) by which PKC iota mediates cell survival to taxol is unknown. Here we demonstrate that PKC iota requires the transcription factor nuclear factor-kappaB (NF-kappaB) to confer cell survival. At apoptosis-inducing concentrations, taxol weakly induces IkappaB(alpha) proteolysis and NF-kappaB translocation in K562 cells, but potently induces its transcriptional activity. Inhibition of NF-kappaB activity (by blocking IkappaB(alpha) degradation) significantly sensitizes cells to taxol-induced apoptosis. Likewise, K562 cells expressing antisense PKC iota mRNA or kinase dead PKC iota (PKC iota-KD) are sensitized to taxol; these cells are rescued from apoptosis by NF-kappaB overexpression. Expression of constitutively active PKC iota (PKC iota-CA) upregulates NF-kappaB transactivation and rescues cells from apoptosis in the absence of Bcr-Abl tyrosine kinase activity. Using a chimeric GAL4-RelA transactivator, we find that taxol potently activates GAL4-RelA-dependent transcription. This activation was further upregulated by expression of PKC iota-CA and inhibited by expression of PKC iota-KD. Our results indicate that RelA transactivation is an important downstream target of the PKC iota-mediated Bcr-Abl signaling pathway and is required for resistance to taxol-induced apoptosis.
Collapse
Affiliation(s)
- Y Lu
- Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas, TX 77555-1060, USA
| | | | | | | |
Collapse
|