1
|
Tan JL, Major AT, Smith CA. Mini review: Asymmetric Müllerian duct development in the chicken embryo. Front Cell Dev Biol 2024; 12:1347711. [PMID: 38380340 PMCID: PMC10877723 DOI: 10.3389/fcell.2024.1347711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Müllerian ducts are paired embryonic tubes that give rise to the female reproductive tract. In humans, the Müllerian ducts differentiate into the Fallopian tubes, uterus and upper portion of the vagina. In birds and reptiles, the Müllerian ducts develop into homologous structures, the oviducts. The genetic and hormonal regulation of duct development is a model for understanding sexual differentiation. In males, the ducts typically undergo regression during embryonic life, under the influence of testis-derived Anti-Müllerian Hormone, AMH. In females, a lack of AMH during embryogenesis allows the ducts to differentiate into the female reproductive tract. In the chicken embryo, a long-standing model for development and sexual differentiation, Müllerian duct development in females in asymmetric. Only the left duct forms an oviduct, coincident with ovary formation only on the left side of the body. The right duct, together with the right gonad, becomes vestigial. The mechanism of this avian asymmetry has never been fully resolved, but is thought to involve local interplay between AMH and sex steroid hormones. This mini-review re-visits the topic, highlighting questions in the field and proposing a testable model for asymmetric duct development. We argue that current molecular and imaging techniques will shed new light on this curious asymmetry. Information on asymmetric duct development in the chicken model will inform our understanding of sexual differentiation in vertebrates more broadly.
Collapse
Affiliation(s)
| | | | - Craig A. Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Moses MM, Mullen RD, Idowu DI, Maye P, Jamin SP, Behringer RR. A transgenic bacterial artificial chromosome approach to identify regulatory regions that direct Amhr2 and Osterix expression in Müllerian duct mesenchyme. Front Cell Dev Biol 2022; 10:1006087. [PMID: 36313563 PMCID: PMC9597298 DOI: 10.3389/fcell.2022.1006087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
A transgenic mouse approach using bacterial artificial chromosomes (BAC) was used to identify regulatory regions that direct Müllerian duct expression for Amhr2 and Osterix (Osx, also known as Sp7). Amhr2 encodes the receptor that mediates anti-Müllerian hormone (AMH) signaling for Müllerian duct regression in male embryos. Amhr2 is expressed in the Müllerian duct mesenchyme of both male and female embryos. A ∼147-kb BAC clone containing the Amhr2 locus was used to generate transgenic mice. The transgene was able to rescue the block in Müllerian duct regression of Amhr2-null males, suggesting that the BAC clone contains regulatory sequences active in male embryos. Osx is expressed in the developing skeleton of male and female embryos but is also an AMH-induced gene that is expressed in the Müllerian duct mesenchyme exclusively in male embryos. Osx-Cre transgenic mice were previously generated using a ∼204-kb BAC clone. Crosses of Osx-Cre mice to Cre-dependent lacZ reporter mice resulted in reporter expression in the developing skeleton and in the Müllerian duct mesenchyme of male but not female embryos. Osx-Cherry transgenic mice were previously generated using a 39-kb genomic region surrounding the Osx locus. Osx-Cherry embryos expressed red fluorescence in the developing skeleton and Müllerian duct mesenchyme of male but not female embryos. In addition, female Osx-Cherry embryos ectopically expressing human AMH from an Mt1-AMH transgene activated red fluorescence in the Müllerian duct mesenchyme. These results suggest that the 39-kb region used to generate Osx-Cherry contains male-specific Müllerian duct mesenchyme regulatory sequences that are responsive to AMH signaling. These BAC transgenic mouse approaches identify two distinct regions that direct Müllerian duct mesenchyme expression and contribute fundamental knowledge to define a gene regulatory network for sex differentiation.
Collapse
Affiliation(s)
- Malcolm M. Moses
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Graduate Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Rachel D. Mullen
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Daniel I. Idowu
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Peter Maye
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Soazik P. Jamin
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Rennes, France
| | - Richard R. Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Graduate Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
3
|
Abstract
Anti-Müllerian Hormone (AMH) is a secreted glycoprotein hormone with critical roles in reproductive development and regulation. Its chemical and mechanistic similarities to members of the Transforming Growth Factor β (TGF-β) family have led to its placement within this signaling family. As a member of the TGF-β family, AMH exists as a noncovalent complex of a large N-terminal prodomain and smaller C-terminal mature signaling domain. To produce a signal, the mature domain will bind to the extracellular domains of two type I and two type II receptors which results in an intracellular SMAD signal. Interestingly, as will be discussed in this review, AMH possesses several unique characteristics which set it apart from other ligands within the TGF-β family. In particular, AMH has a dedicated type II receptor, Anti-Müllerian Hormone Receptor Type II (AMHR2), making this interaction intriguing mechanistically as well as therapeutically. Further, the prodomain of AMH has remained largely uncharacterized, despite being the largest prodomain within the family. Recent advancements in the field have provided valuable insight into the molecular mechanisms of AMH signaling, however there are still many areas of AMH signaling not understood. Herein, we will discuss what is known about the biochemistry of AMH and AMHR2, focusing on recent advances in understanding the unique characteristics of AMH signaling and the molecular mechanisms of receptor engagement.
Collapse
Affiliation(s)
- James A. Howard
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Kaitlin N. Hart
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Thomas B. Thompson
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
4
|
Kim JH, Yang YR, Kwon KS, Kim N. Anti-Müllerian Hormone Negatively Regulates Osteoclast Differentiation by Suppressing the Receptor Activator of Nuclear Factor-κB Ligand Pathway. J Bone Metab 2021; 28:223-230. [PMID: 34520656 PMCID: PMC8441534 DOI: 10.11005/jbm.2021.28.3.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Background Multiple members of the transforming growth factor-β (TGF-β) superfamily have well-established roles in bone homeostasis. Anti-Müllerian hormone (AMH) is a member of TGF-β superfamily of glycoproteins that is responsible for the regression of fetal Müllerian ducts and the transcription inhibition of gonadal steroidogenic enzymes. However, the involvement of AMH in bone remodeling is unknown. Therefore, we investigated whether AMH has an effect on bone cells as other TGF-β superfamily members do. Methods To identify the roles of AMH in bone cells, we administered AMH during osteoblast and osteoclast differentiation, cultured the cells, and then stained the cultured cells with Alizarin red and tartrate-resistant acid phosphatase, respectively. We analyzed the expression of osteoblast- or osteoclast-related genes using real-time polymerase chain reaction and western blot. Results AMH does not affect bone morphogenetic protein 2-mediated osteoblast differentiation but inhibits receptor activator of nuclear factor-κB (NF-κB) ligand-induced osteoclast differentiation. The inhibitory effect of AMH on osteoclast differentiation is mediated by IκB-NF-κB signaling. Conclusions AMH negatively regulates osteoclast differentiation without affecting osteoblast differentiation.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
5
|
Rodgers RJ, Abbott JA, Walters KA, Ledger WL. Translational Physiology of Anti-Müllerian Hormone: Clinical Applications in Female Fertility Preservation and Cancer Treatment. Front Endocrinol (Lausanne) 2021; 12:689532. [PMID: 34557157 PMCID: PMC8454407 DOI: 10.3389/fendo.2021.689532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
Background Whilst the ability of AMH to induce the regression of the Müllerian ducts in the male fetus is well appreciated, AMH has additional biological actions in relation to steroid biosynthesis and ovarian follicle dynamics. An understanding of the physiology of AMH illuminates the potential therapeutic utility of AMH to protect the ovarian reserve during chemotherapy and in the treatment of female malignancies. The translation of the biological actions of AMH into clinical applications is an emerging focus of research, with promising preliminary results. Objective and Rationale Studies indicate AMH restrains primordial follicle development, thus administration of AMH during chemotherapy may protect the ovarian reserve by preventing the mass activation of primordial follicles. As AMH induces regression of tissues expressing the AMH receptor (AMHRII), administration of AMH may inhibit growth of malignancies expressing AMHR II. This review evaluates the biological actions of AMH in females and appraises human clinical applications. Search Methods A comprehensive search of the Medline and EMBASE databases seeking articles related to the physiological functions and therapeutic applications of AMH was conducted in July 2021. The search was limited to studies published in English. Outcomes AMH regulates primordial follicle recruitment and moderates sex steroid production through the inhibition of transcription of enzymes in the steroid biosynthetic pathway, primarily aromatase and 17α-hydroxylase/17,20-lyase. Preliminary data indicates that administration of AMH to mice during chemotherapy conveys a degree of protection to the ovarian reserve. Administration of AMH at the time of ovarian tissue grafting has the potential to restrain uncontrolled primordial follicle growth during revascularization. Numerous studies demonstrate AMH induced regression of AMHR II expressing malignancies. As this action occurs via a different mechanism to traditional chemotherapeutic agents, AMH has the capacity to inhibit proliferation of chemo-resistant ovarian cancer cells and cancer stem cells. Wider Implications To date, AMH has not been administered to humans. Data identified in this review suggests administration of AMH would be safe and well tolerated. Administration of AMH during chemotherapy may provide a synchronistic benefit to women with an AMHR II expressing malignancy, protecting the ovarian reserve whilst the cancer is treated by dual mechanisms.
Collapse
Affiliation(s)
- Rachael Jean Rodgers
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
6
|
Chauvin M, Garambois V, Choblet S, Colombo PE, Chentouf M, Gros L, De Brauwere DP, Duonor-Cerutti M, Dumas K, Robert B, Jarlier M, Martineau P, Navarro-Teulon I, Pépin D, Chardès T, Pèlegrin A. Anti-Müllerian hormone concentration regulates activin receptor-like kinase-2/3 expression levels with opposing effects on ovarian cancer cell survival. Int J Oncol 2021; 59:43. [PMID: 34013359 PMCID: PMC8131086 DOI: 10.3892/ijo.2021.5223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/11/2021] [Indexed: 11/27/2022] Open
Abstract
Anti‑Müllerian hormone (AMH) type II receptor (AMHRII) and the AMH/AMHRII signaling pathway are potential therapeutic targets in ovarian carcinoma. Conversely, the role of the three AMH type I receptors (AMHRIs), namely activin receptor‑like kinase (ALK)2, ALK3 and ALK6, in ovarian cancer remains to be clarified. To determine the respective roles of these three AMHRIs, the present study used four ovarian cancer cell lines (COV434‑AMHRII, SKOV3‑AMHRII, OVCAR8, KGN) and primary cells isolated from tumor ascites from patients with ovarian cancer. The results demonstrated that ALK2 and ALK3 may be the two main AMHRIs involved in AMH signaling at physiological endogenous and supraphysiological exogenous AMH concentrations, respectively. Supraphysiological AMH concentrations (25 nM recombinant AMH) were associated with apoptosis in all four cell lines and decreased clonogenic survival in COV434‑AMHRII and SKOV3‑AMHRII cells. These biological effects were induced via ALK3 recruitment by AMHRII, as ALK3‑AMHRII dimerization was favored at increasing AMH concentrations. By contrast, ALK2 was associated with AMHRII at physiological endogenous concentrations of AMH (10 pM). Based on these results, tetravalent IgG1‑like bispecific antibodies (BsAbs) against AMHRII and ALK2, and against AMHRII and ALK3 were designed and evaluated. In vivo, COV434‑AMHRII tumor cell xenograft growth was significantly reduced in all BsAb‑treated groups compared with that in the vehicle group (P=0.018 for BsAb 12G4‑3D7; P=0.001 for all other BsAbs). However, the growth of COV434‑AMHRII tumor cell xenografts was slower in mice treated with the anti‑AMRII‑ALK2 BsAb 12G4‑2F9 compared with that in animals that received a control BsAb that targeted AMHRII and CD5 (P=0.048). These results provide new insights into type I receptor specificity in AMH signaling pathways and may lead to an innovative therapeutic approach to modulate AMH signaling using anti‑AMHRII/anti‑AMHRI BsAbs.
Collapse
Affiliation(s)
- Maëva Chauvin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Véronique Garambois
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Sylvie Choblet
- CNRS UPS3044 Baculovirus et Thérapie, F-30380 Saint-Christol-Lèz Alès, France
| | - Pierre-Emmanuel Colombo
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, F-34298 Montpellier, France
| | - Myriam Chentouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Laurent Gros
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | | | | | | | - Bruno Robert
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Marta Jarlier
- Institut Régional du Cancer de Montpellier, ICM, F-34298 Montpellier, France
| | - Pierre Martineau
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Isabelle Navarro-Teulon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - David Pépin
- Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Thierry Chardès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| |
Collapse
|
7
|
Structure of AMH bound to AMHR2 provides insight into a unique signaling pair in the TGF-β family. Proc Natl Acad Sci U S A 2021; 118:2104809118. [PMID: 34155118 PMCID: PMC8256043 DOI: 10.1073/pnas.2104809118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Anti-Müllerian hormone (AMH) plays a crucial role in male sex differentiation and female reproductive development. As such, AMH is widely used as a biomarker for measuring a woman’s fertility, estimating onset of menopause, and has been implicated in reproductive syndromes such as polycystic ovarian syndrome and premature ovarian failure. Despite its biological relevance, how AMH functions on the molecular level is not well understood. In this study, we show that AMH engages its receptor, AMHR2, using an extensive interface distinct from other type II receptors. Furthermore, we identify several regions in both AMH and AMHR2 that are responsible for specificity and required for AMH signaling. Anti-Müllerian hormone (AMH), or Müllerian-inhibiting substance, is a protein hormone that promotes Müllerian duct regression during male fetal sexual differentiation and regulation of folliculogenesis in women. AMH is a member of the transforming growth factor beta (TGF-β) family, which has evolved to signal through its own dedicated type II receptor, AMH receptor type II (AMHR2). Structures of other TGF-β family members have revealed how ligands infer specificity for their cognate receptors; however, it is unknown how AMH binds AMHR2 at the molecular level. Therefore, in this study, we solved the X-ray crystal structure of AMH bound to the extracellular domain of AMHR2 to a resolution of 2.6Å. The structure reveals that while AMH binds AMHR2 in a similar location to Activin and BMP ligand binding to their type II receptors, differences in both AMH and AMHR2 account for a highly specific interaction. Furthermore, using an AMH responsive cell-based luciferase assay, we show that a conformation in finger 1 of AMHR2 and a salt bridge formed by K534 on AMH and D81/E84 of AMHR2 are key to the AMH/AMHR2 interaction. Overall, our study highlights how AMH engages AMHR2 using a modified paradigm of receptor binding facilitated by modifications to the three-finger toxin fold of AMHR2. Furthermore, understanding these elements contributing to the specificity of binding will help in the design of agonists or antagonists or the selection of antibody therapies.
Collapse
|
8
|
Hart KN, Pépin D, Czepnik M, Donahoe PK, Thompson TB. Mutational Analysis of the Putative Anti-Müllerian Hormone (AMH) Binding Interface on its Type II Receptor, AMHR2. Endocrinology 2020; 161:5825248. [PMID: 32333774 PMCID: PMC7286617 DOI: 10.1210/endocr/bqaa066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/21/2020] [Indexed: 12/27/2022]
Abstract
Anti-Müllerian hormone (AMH) or Müllerian inhibiting substance is a unique member of the TGF-β family responsible for development and differentiation of the reproductive system. AMH signals through its own dedicated type II receptor, anti-Müllerian hormone receptor type II (AMHR2), providing an exclusive ligand-receptor pair within the broader TGF-β family. In this study, we used previous structural information to derive a model of AMH bound to AMHR2 to guide mutagenesis studies to identify receptor residues important for AMH signaling. Nonconserved mutations were introduced in AMHR2 and characterized in an AMH-responsive cell-based luciferase assay and native PAGE. Collectively, our results identified several residues important for AMH signaling within the putative ligand binding interface of AMHR2. Our results show that AMH engages AMHR2 at a similar interface to how activin and BMP class ligands bind the type II receptor, ACVR2B; however, there are significant molecular differences at the ligand interface of these 2 receptors, where ACVR2B is mostly hydrophobic and AMHR2 is predominately charged. Overall, this study shows that although the location of ligand binding on the receptor is similar to ACVR2A, ACVR2B, and BMPR2; AMHR2 uses unique ligand-receptor interactions to impart specificity for AMH.
Collapse
MESH Headings
- Activin Receptors, Type II/chemistry
- Activin Receptors, Type II/metabolism
- Anti-Mullerian Hormone/metabolism
- Disorder of Sex Development, 46,XY/genetics
- HEK293 Cells
- Humans
- Mutagenesis, Site-Directed
- Receptors, Peptide/chemistry
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
- Correspondence and Reprint Requests: Thomas B. Thompson, University of Cincinnati, 231 Albert Sabin Way, MolGen Department, MSB 2204, Cincinnati, OH 45267. E-mail: Kaitlin N. Hart (), 231 Albert Sabin Way, MolGen Department, CARE 4850, Cincinnati, OH 45267
| | - David Pépin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Magdalena Czepnik
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Patricia K Donahoe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
- Correspondence and Reprint Requests: Thomas B. Thompson, University of Cincinnati, 231 Albert Sabin Way, MolGen Department, MSB 2204, Cincinnati, OH 45267. E-mail: Kaitlin N. Hart (), 231 Albert Sabin Way, MolGen Department, CARE 4850, Cincinnati, OH 45267
| |
Collapse
|
9
|
Umer S, Sammad A, Zou H, Khan A, Weldegebriall Sahlu B, Hao H, Zhao X, Wang Y, Zhao S, Zhu H. Regulation of AMH, AMHR-II, and BMPs (2,6) Genes of Bovine Granulosa Cells Treated with Exogenous FSH and Their Association with Protein Hormones. Genes (Basel) 2019; 10:E1038. [PMID: 31842416 PMCID: PMC6947534 DOI: 10.3390/genes10121038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
Anti-Mullerian hormone (AMH) is an important reproductive marker of ovarian reserve produced by granulosa cells (GCs) of pre-antral and early-antral ovarian follicles in several species, including cattle. This hormone plays a vital role during the recruitment of primordial follicles and follicle stimulating hormone (FSH)-dependent follicular growth. However, the regulatory mechanism of AMH expression in follicles is still unclear. In this study, we compared the expression of AMH, AMHR-II, BMP2, BMP6, FSHR, and LHCGR genes during follicular development. In-vitro expression study was performed with and without FSH for AMH, AMHR-II, BMP2, and BMP6 genes in bovine GCs which were isolated from 3-8 mm follicles. Association among the mRNA expression and hormone level was estimated. GCs were collected from small (3-8 mm), medium (9-12 mm) and large size (13 to 24 mm) follicles before, during onset, and after deviation, respectively. Further, mRNA expression, hormones (AMH, FSH, and LH), apoptosis of GCs, and cell viability were detected by qRT-PCR, ELISA, flow cytometry, and spectrophotometry. AMH, AMHR-II, BMP2, and FSHR genes were highly expressed in small and medium follicles as compared to large ones. In addition, the highest level of AMH protein (84.14 ± 5.41 ng/mL) was found in medium-size follicles. Lower doses of FSH increased the viability of bovine GCs while higher doses repressed them. In-vitro cultured GCs treated with FSH significantly increased the AMH, AMHR-II, and BMP2 expression levels at lower doses, while expression levels decreased at higher doses. We found an optimum level of FSH (25 ng/mL) which can significantly enhance AMH and BMP2 abundance (p < 0.05). In summary, AMH, AMHR-II, and BMP2 genes showed a higher expression in follicles developed in the presence of FSH. However, lower doses of FSH demonstrated a stimulatory effect on AMH and BMP2 expression, while expression started to decline at the maximum dose. In this study, we have provided a better understanding of the mechanisms regulating AMH, AMHR II, and BMP2 signaling in GCs during folliculogenesis, which would improve the outcomes of conventional assisted reproductive technologies (ARTs), such as superovulation and oestrus synchronization in bovines.
Collapse
MESH Headings
- Animals
- Anti-Mullerian Hormone/genetics
- Anti-Mullerian Hormone/metabolism
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Cattle/genetics
- Estradiol/metabolism
- Female
- Follicle Stimulating Hormone/genetics
- Follicular Fluid/metabolism
- Gene Expression Regulation/genetics
- Gene Expression Regulation, Developmental/genetics
- Granulosa Cells/metabolism
- Ovarian Follicle/metabolism
- RNA, Messenger/genetics
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Saqib Umer
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (H.Z.); (B.W.S.); (H.H.); (X.Z.); (S.Z.)
| | - Abdul Sammad
- Key Laboratory of Animal Genetics, Breeding and Reproduction, CAST, China Agricultural University, Beijing 100193, China; (A.S.); (A.K.); (Y.W.)
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (H.Z.); (B.W.S.); (H.H.); (X.Z.); (S.Z.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, CAST, China Agricultural University, Beijing 100193, China; (A.S.); (A.K.); (Y.W.)
| | - Bahlibi Weldegebriall Sahlu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (H.Z.); (B.W.S.); (H.H.); (X.Z.); (S.Z.)
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (H.Z.); (B.W.S.); (H.H.); (X.Z.); (S.Z.)
| | - Xueming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (H.Z.); (B.W.S.); (H.H.); (X.Z.); (S.Z.)
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, CAST, China Agricultural University, Beijing 100193, China; (A.S.); (A.K.); (Y.W.)
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (H.Z.); (B.W.S.); (H.H.); (X.Z.); (S.Z.)
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (H.Z.); (B.W.S.); (H.H.); (X.Z.); (S.Z.)
| |
Collapse
|
10
|
Abstract
Bone Morphogenetic Proteins (BMPs) together with the Growth and Differentiation Factors (GDFs) form the largest subgroup of the Transforming Growth Factor (TGF)β family and represent secreted growth factors, which play an essential role in many aspects of cell communication in higher organisms. As morphogens they exert crucial functions during embryonal development, but are also involved in tissue homeostasis and regeneration in the adult organism. Their involvement in maintenance and repair processes of various tissues and organs made these growth factors highly interesting targets for novel pharmaceutical applications in regenerative medicine. A hallmark of the TGFβ protein family is that all of the more than 30 growth factors identified to date signal by binding and hetero-oligomerization of a very limited set of transmembrane serine-threonine kinase receptors, which can be classified into two subgroups termed type I and type II. Only seven type I and five type II receptors exist for all 30plus TGFβ members suggesting a pronounced ligand-receptor promiscuity. Indeed, many TGFβ ligands can bind the same type I or type II receptor and a particular receptor of either subtype can usually interact with and bind various TGFβ ligands. The possible consequence of this ligand-receptor promiscuity is further aggravated by the finding that canonical TGFβ signaling of all family members seemingly results in the activation of just two distinct signaling pathways, that is either SMAD2/3 or SMAD1/5/8 activation. While this would implicate that different ligands can assemble seemingly identical receptor complexes that activate just either one of two distinct pathways, in vitro and in vivo analyses show that the different TGFβ members exert quite distinct biological functions with high specificity. This discrepancy indicates that our current view of TGFβ signaling initiation just by hetero-oligomerization of two receptor subtypes and transduction via two main pathways in an on-off switch manner is too simplified. Hence, the signals generated by the various TGFβ members are either quantitatively interpreted using the subtle differences in their receptor-binding properties leading to ligand-specific modulation of the downstream signaling cascade or additional components participating in the signaling activation complex allow diversification of the encoded signal in a ligand-dependent manner at all cellular levels. In this review we focus on signal specification of TGFβ members, particularly of BMPs and GDFs addressing the role of binding affinities, specificities, and kinetics of individual ligand-receptor interactions for the assembly of specific receptor complexes with potentially distinct signaling properties.
Collapse
|
11
|
The role of anti-Müllerian hormone (AMH) in ovarian disease and infertility. J Assist Reprod Genet 2019; 37:89-100. [PMID: 31755000 DOI: 10.1007/s10815-019-01622-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE In this review, the current knowledge on anti-Müllerian hormone (AMH) is presented, concerning its value in disease and IVF treatment as well as in terms of its prospective clinical use. METHODS AMH is becoming the most appropriate biomarker for the ovarian reserve measured predominantly for assisted reproductive treatment (ART) patients in comparison to the currently used antral follicle count (AFC). However, this is not the only way AMH measurements can be used in the clinics. Because of this, we reviewed the current literature for the use of AMH in current or prospective clinical practice. RESULTS We found that AMH has a high predictive value in assessing the ovarian reserve, which can lead to a better efficiency of in vitro fertilization (IVF) procedures. It has a high potential to be developed as a staple diagnostic marker of ovarian disease, especially for ovarian cancers and even as a possible treatment tool for certain cancers. It could potentially be used to prevent oocyte loss due to chemo- or radiotherapy. CONCLUSION AMH is an important hormone especially in women reproductive organs and is currently seen as the best biomarker for a multitude of uses in reproductive medicine. Currently, the biggest issue lies in the lack of international standardization of AMH. However, it is encouraging to see that there is interest in AMH in the form of research on its action and use in reproductive medicine.
Collapse
|
12
|
Valer JA, Sánchez-de-Diego C, Pimenta-Lopes C, Rosa JL, Ventura F. ACVR1 Function in Health and Disease. Cells 2019; 8:cells8111366. [PMID: 31683698 PMCID: PMC6912516 DOI: 10.3390/cells8111366] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Activin A receptor type I (ACVR1) encodes for a bone morphogenetic protein type I receptor of the TGFβ receptor superfamily. It is involved in a wide variety of biological processes, including bone, heart, cartilage, nervous, and reproductive system development and regulation. Moreover, ACVR1 has been extensively studied for its causal role in fibrodysplasia ossificans progressiva (FOP), a rare genetic disorder characterised by progressive heterotopic ossification. ACVR1 is linked to different pathologies, including cardiac malformations and alterations in the reproductive system. More recently, ACVR1 has been experimentally validated as a cancer driver gene in diffuse intrinsic pontine glioma (DIPG), a malignant childhood brainstem glioma, and its function is being studied in other cancer types. Here, we review ACVR1 receptor function and signalling in physiological and pathological processes and its regulation according to cell type and mutational status. Learning from different functions and alterations linked to ACVR1 is a key step in the development of interdisciplinary research towards the identification of novel treatments for these pathologies.
Collapse
Affiliation(s)
- José Antonio Valer
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Cristina Sánchez-de-Diego
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Carolina Pimenta-Lopes
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| |
Collapse
|
13
|
Rak AY, Trofimov AV, Ischenko AM. Anti-mullerian hormone receptor type II as a Potential Target for Antineoplastic Therapy. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819030053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Rak AY, Trofimov AV, Ischenko AM. [Mullerian inhibiting substance type II receptor as a potential target for antineoplastic therapy]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:202-213. [PMID: 31258143 DOI: 10.18097/pbmc20196503202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review considers properties of the type II anti-Mullerian hormone receptor (mullerian inhibiting substance receptor type II, MISRII), a transmembrane sensor with its own serine/threonine protein kinase activity, triggering apoptosis of the Mullerian ducts in mammalian embryogenesis and providing formation of the male type reproductive system. According to recent data, MISRII overexpression in the postnatal period is found in cells of a number of ovarian, mammary gland, and prostate tumors, and anti-Mullerian hormone (AMH) has a pro-apoptotic effect on MISRII-positive tumor cells. This fact makes MISRII a potential target for targeted anti-cancer therapy. Treatment based on targeting MISRII seems to be a much more effective alternative to the traditional one and will significantly reduce the drug dose. However, the mechanism of MISRII-AMH interaction is still poorly understood, so the development of new anticancer drugs is complicated. The review analyzes MISRII molecular structure and expression levels in various tissues and cell lines, as well as current understanding of the AMH binding mechanisms and data on the possibility of using MISRII as a target for the action of AMH-based antineoplastic drugs.
Collapse
Affiliation(s)
- A Ya Rak
- State Research Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia; Saint-Petersburg State University, Saint-Petersburg, Russia
| | - A V Trofimov
- State Research Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia
| | - A M Ischenko
- State Research Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia
| |
Collapse
|
15
|
Roly ZY, Backhouse B, Cutting A, Tan TY, Sinclair AH, Ayers KL, Major AT, Smith CA. The cell biology and molecular genetics of Müllerian duct development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e310. [DOI: 10.1002/wdev.310] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Zahida Yesmin Roly
- Monash Biomedicine Discovery Institute, Department of Anatomy and Development BiologyMonash UniversityClaytonVictoriaAustralia
| | - Brendan Backhouse
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Andrew Cutting
- Biology Laboratory, Faculty of ScienceThe University of MelbourneMelbourneVictoriaAustralia
| | - Tiong Yang Tan
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Andrew H. Sinclair
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Katie L. Ayers
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Andrew T. Major
- Monash Biomedicine Discovery Institute, Department of Anatomy and Development BiologyMonash UniversityClaytonVictoriaAustralia
| | - Craig A. Smith
- Monash Biomedicine Discovery Institute, Department of Anatomy and Development BiologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
16
|
Monsivais D, Matzuk MM, Pangas SA. The TGF-β Family in the Reproductive Tract. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022251. [PMID: 28193725 DOI: 10.1101/cshperspect.a022251] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transforming growth factor β (TGF-β) family has a profound impact on the reproductive function of various organisms. In this review, we discuss how highly conserved members of the TGF-β family influence the reproductive function across several species. We briefly discuss how TGF-β-related proteins balance germ-cell proliferation and differentiation as well as dauer entry and exit in Caenorhabditis elegans. In Drosophila melanogaster, TGF-β-related proteins maintain germ stem-cell identity and eggshell patterning. We then provide an in-depth analysis of landmark studies performed using transgenic mouse models and discuss how these data have uncovered basic developmental aspects of male and female reproductive development. In particular, we discuss the roles of the various TGF-β family ligands and receptors in primordial germ-cell development, sexual differentiation, and gonadal cell development. We also discuss how mutant mouse studies showed the contribution of TGF-β family signaling to embryonic and postnatal testis and ovarian development. We conclude the review by describing data obtained from human studies, which highlight the importance of the TGF-β family in normal female reproductive function during pregnancy and in various gynecologic pathologies.
Collapse
Affiliation(s)
- Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030.,Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | - Stephanie A Pangas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030
| |
Collapse
|
17
|
Petit FG, Deng C, Jamin SP. Partial Müllerian Duct Retention in Smad4 Conditional Mutant Male Mice. Int J Biol Sci 2016; 12:667-76. [PMID: 27194944 PMCID: PMC4870710 DOI: 10.7150/ijbs.12300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 02/17/2016] [Indexed: 01/13/2023] Open
Abstract
Müllerian duct regression is a complex process which involves the AMH signalling pathway. We have previously demonstrated that besides AMH and its specific type II receptor (AMHRII), BMPR-IA and Smad5 are two essential factors implicated in this mechanism. Mothers against decapentaplegic homolog 4 (Smad4) is a transcription factor and the common Smad (co-Smad) involved in transforming growth factor beta (TGF-β) signalling pathway superfamily. Since Smad4 null mutants die early during gastrulation, we have inactivated Smad4 in the Müllerian duct mesenchyme. Specific inactivation of Smad4 in the urogenital ridge leads to the partial persistence of the Müllerian duct in adult male mice. Careful examination of the urogenital tract reveals that the Müllerian duct retention is randomly distributed either on one side or both sides. Histological analysis shows a uterus-like structure, which is confirmed by the expression of estrogen receptor α. As previously described in a β-catenin conditional mutant mouse model, β-catenin contributes to Müllerian duct regression. In our mutant male embryos, it appears that β-catenin expression is locally reduced along the urogenital ridge as compared to control mice. Moreover, the expression pattern is similar to those observed in control female mice. This study shows that reduced Smad4 expression disrupts the Wnt/β-catenin signalling leading to the partial persistence of Müllerian duct.
Collapse
Affiliation(s)
- Fabrice G Petit
- 1. Institut National de la Santé et de la Recherche Médicale, Institut de Recherche en Santé, Environnement et Travail, UMR1085, Université de Rennes 1, Rennes, France;; 2. Institut National de la Santé et de la Recherche Médicale, U782, Clamart, France
| | - Chuxia Deng
- 3. Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Soazik P Jamin
- 1. Institut National de la Santé et de la Recherche Médicale, Institut de Recherche en Santé, Environnement et Travail, UMR1085, Université de Rennes 1, Rennes, France;; 2. Institut National de la Santé et de la Recherche Médicale, U782, Clamart, France
| |
Collapse
|
18
|
Abstract
Primordial follicles (PF) are formed when somatic cells differentiate into flattened pregranulosa cells, invaginate into the oocyte nests and encircle individual oocytes. We hypothesize that BMP2 regulates PF formation by promoting the transition of germ cells into oocytes and somatic cells into pregranulosa cells. E15 hamster ovaries were cultured for 8 days corresponding to postnatal day 8 (P8) in vivo, with or without BMP2, and the formation of PF was examined. BMP2 was expressed in the oocytes as well as ovarian somatic cells during development. BMP2 exposure for the first two days or the last two days or the entire 8 days of culture led to increase in PF formation suggesting that BMP2 affected both germ cell transition and somatic cell differentiation. Whereas an ALK2/3 inhibitor completely blocked BMP2-induced PF formation, an ALK2-specific inhibitor was partially effective, suggesting that BMP2 affected PF formation via both ALK2 and ALK3. BMP2 also reduced apoptosis in vitro. Further, more meiotic oocytes were present in BMP2 exposed ovaries. In summary, the results provide the first evidence that BMP2 regulates primordial follicle formation by promoting germ cell to oocyte transition and somatic cell to pre-granulosa cells formation and it acts via both ALK2 and ALK3.
Collapse
Affiliation(s)
| | - Shyamal K Roy
- 1] Department of Cellular and Integrative Physiology, and Obstetrics and Gynecology [2] University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
19
|
Müllerian inhibiting substance/anti-Müllerian hormone: A novel treatment for gynecologic tumors. Obstet Gynecol Sci 2014; 57:343-57. [PMID: 25264524 PMCID: PMC4175594 DOI: 10.5468/ogs.2014.57.5.343] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 01/02/2023] Open
Abstract
Müllerian inhibiting substance (MIS), also called anti-Müllerian hormone (AMH), is a member of the transforming growth factor-β super-family of growth and differentiation response modifiers. It is produced in immature Sertoli cells in male embryos and binds to MIS/AMH receptors in primordial Müllerian ducts to cause regression of female reproductive structures that are the precursors to the fallopian tubes, the surface epithelium of the ovaries, the uterus, the cervix, and the upper third of the vagina. Because most gynecologic tumors originate from Müllerian duct-derived tissues, and since MIS/AMH causes regression of the Müllerian duct in male embryos, it is expected to inhibit the growth of gynecologic tumors. Purified recombinant human MIS/AMH causes growth inhibition of epithelial ovarian cancer cells and cell lines in vitro and in vitro via MIS receptor-mediated mechanism. Furthermore, several lines of evidence suggest that MIS/AMH inhibits proliferation in tissues and cell lines of other MIS/AMH receptor-expressing gynecologic tumors such as cervical, endometrial, breast, and in endometriosis as well. These findings indicate that bioactive MIS/AMH recombinant protein should be tested in patients against tumors expressing the MIS/AMH receptor complex, perhaps beginning with ovarian cancer because it has the worst prognosis. The molecular tools to identify MIS/AMH receptor expressing ovarian and other cancers are in place, thus, it is possible to select patients for treatment. An MIS/AMH ELISA exists to follow administered doses of MIS/AMH, as well. Clinical trials await the production of sufficient supplies of qualified recombinant human MIS/AMH for this purpose.
Collapse
|
20
|
Park JH, Tanaka Y, Arango NA, Zhang L, Benedict LA, Roh MI, Donahoe PK, Teixeira JM. Induction of WNT inhibitory factor 1 expression by Müllerian inhibiting substance/antiMullerian hormone in the Müllerian duct mesenchyme is linked to Müllerian duct regression. Dev Biol 2013; 386:227-36. [PMID: 24362065 DOI: 10.1016/j.ydbio.2013.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 01/07/2023]
Abstract
A key event during mammalian sexual development is regression of the Müllerian ducts (MDs) in the bipotential urogenital ridges (UGRs) of fetal males, which is caused by the expression of Müllerian inhibiting substance (MIS) in the Sertoli cells of the differentiating testes. The paracrine signaling mechanisms involved in MD regression are not completely understood, particularly since the receptor for MIS, MISR2, is expressed in the mesenchyme surrounding the MD, but regression occurs in both the epithelium and mesenchyme. Microarray analysis comparing MIS signaling competent and Misr2 knockout embryonic UGRs was performed to identify secreted factors that might be important for MIS-mediated regression of the MD. A seven-fold increase in the expression of Wif1, an inhibitor of WNT/β-catenin signaling, was observed in the Misr2-expressing UGRs. Whole mount in situ hybridization of Wif1 revealed a spatial and temporal pattern of expression consistent with Misr2 during the window of MD regression in the mesenchyme surrounding the MD epithelium that was absent in both female UGRs and UGRs knocked out for Misr2. Knockdown of Wif1 expression in male UGRs by Wif1-specific siRNAs beginning on embryonic day 13.5 resulted in MD retention in an organ culture assay, and exposure of female UGRs to added recombinant human MIS induced Wif1 expression in the MD mesenchyme. Knockdown of Wif1 led to increased expression of β-catenin and its downstream targets TCF1/LEF1 in the MD mesenchyme and to decreased apoptosis, resulting in partial to complete retention of the MD. These results strongly suggest that WIF1 secretion by the MD mesenchyme plays a role in MD regression in fetal males.
Collapse
Affiliation(s)
- Joo Hyun Park
- Vincent Center of Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Yoshihiro Tanaka
- Vincent Center of Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Nelson A Arango
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Lihua Zhang
- Vincent Center of Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, MA, United States
| | - L Andrew Benedict
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Mi In Roh
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Jose M Teixeira
- Vincent Center of Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
21
|
Anti-Müllerian hormone recruits BMPR-IA in immature granulosa cells. PLoS One 2013; 8:e81551. [PMID: 24312319 PMCID: PMC3842941 DOI: 10.1371/journal.pone.0081551] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/23/2013] [Indexed: 01/24/2023] Open
Abstract
Anti-Müllerian hormone (AMH) is a member of the TGF-β superfamily secreted by the gonads of both sexes. This hormone is primarily known for its role in the regression of the Müllerian ducts in male fetuses. In females, AMH is expressed in granulosa cells of developing follicles. Like other members of the TGF-β superfamily, AMH transduces its signal through two transmembrane serine/threonine kinase receptors including a well characterized type II receptor, AMHR-II. The complete signalling pathway of AMH involving Smads proteins and the type I receptor is well known in the Müllerian duct and in Sertoli and Leydig cells but not in granulosa cells. In addition, few AMH target genes have been identified in these cells. Finally, while several co-receptors have been reported for members of the TGF-β superfamily, none have been described for AMH. Here, we have shown that none of the Bone Morphogenetic Proteins (BMPs) co-receptors, Repulsive guidance molecules (RGMs), were essential for AMH signalling. We also demonstrated that the main Smad proteins used by AMH in granulosa cells were Smad 1 and Smad 5. Like for the other AMH target cells, the most important type I receptor for AMH in these cells was BMPR-IA. Finally, we have identified a new AMH target gene, Id3, which could be involved in the effects of AMH on the differentiation of granulosa cells and its other target cells.
Collapse
|
22
|
Analyzing the possible involvement of anti-Müllerian hormone and anti-Müllerian hormone receptor II single nucleotide polymorphism in infertility. J Assist Reprod Genet 2013; 31:163-8. [PMID: 24271023 DOI: 10.1007/s10815-013-0134-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022] Open
Abstract
PURPOSE We performed TaqMan genotyping assays of anti-Mullerian hormone (AMH) and anti-Mullerian hormone receptor type II (AMHRII) single nucleotide polymorphisms (SNPs) in order to investigate how their frequency and distribution affect infertility treatment outcome. METHODS Eighty Japanese women (advanced age: n = 51, endometriosis: n = 18, male infertility as a control: n = 11) who undertook ART were included in the study, and all couples underwent a full infertility investigation protocol. In order to investigate the natural distribution of SNPs, a naturally pregnant group of 28 subjects was recruited from among women who conceived naturally and subsequently delivered in our department. Genomic DNA was extracted from peripheral blood and genotyping was conducted by TaqMan genotyping assay. The relationship of AMH and AMHRII SNPs and treatment outcome in infertile women. Comparison of allele and genotype frequencies of infertile patients with naturally pregnant women. RESULTS AMHRII -482 A>G homozygote mutation was complicated with ISV 5-6 C>T homozygote mutation and showed a significantly lower oocyte retrieval rate compared with a wild type. Two of 3 cases of AMHRII -482 A>G homozygote mutation were poor responders, and the distribution and frequency of each allele of naturally pregnant women showed no statistical difference compared with infertile women. CONCLUSIONS This study revealed the possible involvement of AMHRII -482 A>G polymorphism on the malfunction of follicular development in Japanese women.
Collapse
|
23
|
Abstract
To understand life-long neurogenesis in the dentate gyrus (DG), characterizing dentate neural stem cells and the signals controlling their development are crucial. In the present study, we show that bone morphogenic protein (Bmp) signaling is a critical regulator of embryonic dentate development, required for initiating neurogenesis in embryonic DG progenitors and required for the establishment of dentate neural stem cells postnatally. We tested the hypothesis that Bmp signaling regulates dentate development in part by controlling the expression of Lef1, a Wnt responsive transcription factor expressed in dentate stem cells and absolutely required for dentate granule cell production. Bmp activation through the Acvr1 receptor induced Lef1 expression and neurogenesis in the embryonic DG. Ectopic expression of Bmp7 in the embryonic midline increased DG neurogenesis and inhibition of local Bmp signaling decreased embryonic DG neurogenesis. Mice with selective loss of Bmp expression due to defective meningeal development or with selective conditional deletion of meningeal Bmp7 also have dentate developmental defects. Conditional deletion of Activin receptor type I (Acvr1) or Smad4 (a downstream target nuclear effector of Bmp signaling) in DG neural stem cells resulted in defects in the postnatal subgranular zone and reduced neurogenesis. These results suggest that Acvr1-mediated meningeal Bmp signaling regulates Lef1 expression in the dentate, regulating embryonic DG neurogenesis, DG neural stem cell niche formation, and maintenance.
Collapse
|
24
|
Abstract
Müllerian inhibiting substance (MIS) not only induces Müllerian duct regression during male sexual differentiation but also modulates Leydig cell steroidogenic capacity and differentiation. MIS actions are mediated through a complex of homologous receptors: a type II ligand-binding receptor [MIS type II receptor (MISRII)] and a tissue-specific type I receptor that initiates downstream signaling. The putative MIS type I receptors responsible for Müllerian duct regression are activin A type II receptor, type I [Acvr1/activin receptor-like kinase 2 (ALK2)], ALK3, and ALK6, but the one recruited by MIS in Leydig cells is unknown. To identify whether ALK3 is the specific type I receptor partner for MISRII in Leydig cells, we generated Leydig cell-specific ALK3 conditional knockout mice using a Cre-lox system and compared gene expression and steroidogenic capacity in Leydig cells of ALK3(fx/fx)Cyp17(cre+) and control mice (ALK3(fx/fx)Cyp17(cre-) or ALK3(fx/wt)Cyp17(cre-) littermates). We found reduced mRNA expression of the genes encoding P450c17, StAR, and two enzymes (17βHSD-III and 3βHSD-VI) that are expressed in differentiated adult Leydig cells and increased expression of androgen-metabolizing enzymes (3α-HSD and SRD5A2) and proliferating cell nuclear antigen (PCNA) in Leydig cells of ALK3(fx/fx)Cyp17(cre+) mice. Despite down-regulation of steroidogenic capacity in ALK3(fx/fx)Cyp17(cre+) mice, the loss of MIS signaling also stimulates Leydig cell proliferation such that plasma testosterone and androstenedione concentrations are comparable to that of control mice. Collectively, these results indicate that the phenotype in ALK3 conditional knockout mice is similar to that of the MIS-knockout mice, confirming that ALK3 is the primary type I receptor recruited by the MIS-MISRII complex during Leydig cell differentiation.
Collapse
Affiliation(s)
- Xiufeng Wu
- Pediatric Endocrine Division, Departments of Pediatrics and Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
25
|
Tanwar PS, Commandeur AE, Zhang L, Taketo MM, Teixeira JM. The Müllerian inhibiting substance type 2 receptor suppresses tumorigenesis in testes with sustained β-catenin signaling. Carcinogenesis 2012; 33:2351-61. [PMID: 22962306 DOI: 10.1093/carcin/bgs281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dysregulated WNT/β-catenin signaling in murine testes results in a phenotype with complete germ cell loss that resembles human Sertoli cell-only syndrome. In other systems, including the ovary, dysregulated WNT/β-catenin induces tumorigenesis but no tumors are observed in the mutant testes without deletion of a tumor suppressor, such as phosphatase and tensin homolog (PTEN). Müllerian inhibiting substance (MIS, also known as AMH), a member of the transforming growth factor-β family of growth factors responsible for Müllerian duct regression in fetal males, has been shown to inhibit tumor growth in vitro and in vivo but its role as an endogenous tumor suppressor has never been reported. We have deleted the MIS type 2 receptor (MISR2), and thus MIS signaling, in mice with dysregulated WNT/β-catenin and show that these mice develop testicular stromal tumors with 100% penetrance within a few months postnatal. The tumors are highly proliferative and have characteristics of either Sertoli cell tumors or progenitor Leydig cell tumors based on their marker profiles and histology. Phosphorylated Sma and mothers against decapentaplegic-related homolog 1/5/8 is absent in the tumors and β-catenin target genes are induced. The tumor suppressor TP53 is also highly expressed in the tumors, as is phosphorylated γH2AX, which is indicative of DNA damage. The phenotype of these tumors closely resembles those observed when PTEN is also deleted in mice with dysregulated WNT/β-catenin. Tumorigenesis in these mice provides conclusive evidence that physiological MIS signaling is a tumor suppressor mechanism and suggests that targeted treatment of MISR2-expressing cancers with therapeutic MIS should have a beneficial effect on tumor progression.
Collapse
Affiliation(s)
- Pradeep S Tanwar
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
26
|
Le VQ, Wharton KA. Hyperactive BMP signaling induced by ALK2(R206H) requires type II receptor function in a Drosophila model for classic fibrodysplasia ossificans progressiva. Dev Dyn 2012; 241:200-14. [PMID: 22174087 DOI: 10.1002/dvdy.22779] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Fibrodysplasia Ossificans Progressiva (FOP) is an autosomal dominant disorder characterized by episodic deposition of heterotopic bone in place of soft connective tissue. All FOP-associated mutations map to the BMP type I receptor, ALK2, with the ALK2(R206H) mutant form found in the vast majority of patients. The mechanism(s) regulating the expressivity of hyperactive ALK2(R206H) signaling throughout a patient's life is not well understood. RESULTS In Drosophila, human ALK2(R206H) receptor induces hyperactive BMP signaling. As in vertebrates, elevated signaling associated with ALK2(R206H) in Drosophila is ligand-independent. We found that a key determinant for ALK2(R206H) hyperactivity is a functional type II receptor. Furthermore, our results indicate that like its Drosophila ortholog, Saxophone (Sax), wild-type ALK2 can antagonize, as well as promote, BMP signaling. CONCLUSIONS The dual function of ALK2 is of particular interest given the heterozygous nature of FOP, as the normal interplay between such disparate behaviors could be shifted by the presence of ALK2(R206H) receptors. Our studies provide a compelling example for Drosophila as a model organism to study the molecular underpinnings of complex human syndromes such as FOP.
Collapse
Affiliation(s)
- Viet Q Le
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
27
|
Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proc Natl Acad Sci U S A 2012; 109:2358-63. [PMID: 22308459 DOI: 10.1073/pnas.1120733109] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Women with late-stage ovarian cancer usually develop chemotherapeutic-resistant recurrence. It has been theorized that a rare cancer stem cell, which is responsible for the growth and maintenance of the tumor, is also resistant to conventional chemotherapeutics. We have isolated from multiple ovarian cancer cell lines an ovarian cancer stem cell-enriched population marked by CD44, CD24, and Epcam (3+) and by negative selection for Ecadherin (Ecad-) that comprises less than 1% of cancer cells and has increased colony formation and shorter tumor-free intervals in vivo after limiting dilution. Surprisingly, these cells are not only resistant to chemotherapeutics such as doxorubicin, but also are stimulated by it, as evidenced by the significantly increased number of colonies in treated 3+Ecad- cells. Similarly, proliferation of the 3+Ecad- cells in monolayer increased with treatment, by either doxorubicin or cisplatin, compared with the unseparated or cancer stem cell-depleted 3-Ecad+ cells. However, these cells are sensitive to Mullerian inhibiting substance (MIS), which decreased colony formation. MIS inhibits ovarian cancer cells by inducing G1 arrest of the 3+Ecad- subpopulation through the induction of cyclin-dependent kinase inhibitors. 3+Ecad- cells selectively expressed LIN28, which colocalized by immunofluorescence with the 3+ cancer stem cell markers in the human ovarian carcinoma cell line, OVCAR-5, and is also highly expressed in transgenic murine models of ovarian cancer and in other human ovarian cancer cell lines. These results suggest that chemotherapeutics may be stimulative to cancer stem cells and that selective inhibition of these cells by treating with MIS or targeting LIN28 should be considered in the development of therapeutics.
Collapse
|
28
|
Chang HL, Pieretti-Vanmarcke R, Nicolaou F, Li X, Wei X, MacLaughlin DT, Donahoe PK. Mullerian inhibiting substance inhibits invasion and migration of epithelial cancer cell lines. Gynecol Oncol 2011; 120:128-34. [PMID: 21056908 PMCID: PMC3008816 DOI: 10.1016/j.ygyno.2010.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 09/21/2010] [Accepted: 09/26/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Given the fact that Mullerian Inhibiting Substance (MIS) causes complex remodeling of the urogenital ridge and regression of the Mullerian ducts during male embryonic development, we examined whether MIS could affect similar cell properties such as migration and invasion that could contribute ultimately to micro-metastasis of cancers arising from Mullerian tissues. MIS receptor expressing cell lines found to be invasive and migratory in vivo are examined in an in vivo assay that is cost-effective. METHODS We designed in vitro and in vivo experiments to determine if MIS inhibited the movement of cancer lines IGROV-1, HEp3, MDA-MB-231, and HT1080 in cell culture invasion/migration chamber assays and in chick embryo metastasis assays. RESULTS MIS, at concentrations below those that inhibit cell proliferation, blocked in vitro invasion and in vivo migration of epithelial cancer cells that express the MIS receptor. CONCLUSIONS While our laboratory has previously established MIS as an inhibitor of cancer cell proliferation using in vitro assays and in vivo xenografts, we now show that MIS can also inhibit in vivo tumor migration.
Collapse
Affiliation(s)
- Henry L Chang
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
di Clemente N, Jamin SP, Lugovskoy A, Carmillo P, Ehrenfels C, Picard JY, Whitty A, Josso N, Pepinsky RB, Cate RL. Processing of anti-mullerian hormone regulates receptor activation by a mechanism distinct from TGF-beta. Mol Endocrinol 2010; 24:2193-206. [PMID: 20861221 DOI: 10.1210/me.2010-0273] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
TGF-β family ligands are translated as prepropeptide precursors and are processed into mature C-terminal dimers that signal by assembling a serine/threonine kinase receptor complex containing type I and II components. Many TGF-β ligands are secreted in a latent form that cannot bind their receptor, due to the pro-region remaining associated with the mature ligand in a noncovalent complex after proteolytic cleavage. Here we show that anti-Müllerian hormone (AMH), a TGF-β family ligand involved in reproductive development, must be cleaved to bind its type II receptor (AMHRII), but dissociation of the pro-region from the mature C-terminal dimer is not required for this initial interaction. We provide direct evidence for this interaction by showing that the noncovalent complex binds to a soluble form of AMHRII in an ELISA format and to AMHRII immobilized on Sepharose. Binding of the noncovalent complex to Sepharose-coupled AMHRII induces dissociation of the pro-region from the mature C-terminal dimer, whereas no dissociation occurs after binding to immobilized AMH antibodies. The pro-region cannot be detected after binding of the AMH noncovalent complex to AMHRII expressed on COS cells, indicating that pro-region dissociation may occur as a natural consequence of receptor engagement on cells. Moreover, the mature C-terminal dimer is more active than the noncovalent complex in stimulating Sma- and Mad-related protein activation, suggesting that pro-region dissociation contributes to the assembly of the active receptor complex. AMH thus exemplifies a new mechanism for receptor engagement in which interaction with the type II receptor promotes pro-region dissociation to generate mature ligand.
Collapse
Affiliation(s)
- Nathalie di Clemente
- Institut National de la Santé et de la Recherche Médicale U782, 32 rue des Carnets, Clamart F-92140, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Focal Mullerian duct retention in male mice with constitutively activated beta-catenin expression in the Mullerian duct mesenchyme. Proc Natl Acad Sci U S A 2010; 107:16142-7. [PMID: 20805501 DOI: 10.1073/pnas.1011606107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Müllerian-inhibiting substance (MIS), which is produced by fetal Sertoli cells shortly after commitment of the bipotential gonads to testicular differentiation, causes Müllerian duct (MD) regression. In the fetal female gonads, MIS is not expressed and the MDs will differentiate into the internal female reproductive tract. We have investigated whether dysregulated β-catenin activity affects MD regression by expressing a constitutively activated nuclear form of β-catenin in the MD mesenchyme. We show that constitutively activated (CA) β-catenin causes focal retention of MD tissue in the epididymides and vasa deferentia. In adult mutant mice, the retained MD tissues express α-smooth muscle actin and desmin, which are markers for uterine differentiation. MD retention inhibited the folding complexity of the developing epididymides and usually led to obstructive azoospermia by spermatoceles. The MDs of urogenital ridges from mutant female embryos showed less regression with added MIS in organ culture compared with control MDs when analyzed by whole mount in situ hybridization for Wnt7a as a marker for the MD epithelium. CA β-catenin did not appear to affect expression of either MIS in the embryonic testes or its type II receptor (AMHR2) in the MD mesenchyme nor did it inhibit pSmad1/5/8 nuclear accumulation, suggesting that dysregulated β-catenin must inhibit MD regression independently of MIS signaling. These studies suggest that dysregulated Wnt/β-catenin signaling in the MD mesenchyme might also be a contributing factor in persistent Müllerian duct syndrome, a form of male pseudohermaphroditism, and development of spermatoceles.
Collapse
|
31
|
MacLaughlin DT, Donahoe PK. Müllerian inhibiting substance/anti-Müllerian hormone: a potential therapeutic agent for human ovarian and other cancers. Future Oncol 2010; 6:391-405. [PMID: 20222796 DOI: 10.2217/fon.09.172] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
According to the 2008 American Cancer Society statistics, cancer remains the second leading cause of death in American today. Early detection, innovative surgery, new drugs and increased public education regarding avoidable risk factors, such as smoking, have had significant impact on the incidence and survival rates of many cancers, while overall death rates from all cancers have declined a modest 5% over the past 50 years. Ovarian cancer statistics, however, have not been as encouraging. Despite recent advances in the management of this disease, 5-year survival has not improved, and the search continues for rationally designed new treatments. Müllerian Inhibiting Substance is a strong candidate because it addresses many of the deficiencies of existing treatments. Namely, Müllerian Inhibiting Substance has little demonstrated toxicity, it complements the activity of known anticancer drugs, it is highly specific against cancers expressing its receptor and it inhibits the proliferation of drug-resistant tumors.
Collapse
|
32
|
Gonzalez G, Behringer RR. Dicer is required for female reproductive tract development and fertility in the mouse. Mol Reprod Dev 2009; 76:678-88. [PMID: 19197916 PMCID: PMC2752678 DOI: 10.1002/mrd.21010] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dicer encodes a riboendonuclease required for microRNA biosynthesis. Dicer was inactivated in Müllerian duct mesenchyme-derived tissues of the reproductive tract of the mouse, using an Amhr2-Cre allele. Although Amhr2-Cre; Dicer conditional mutant males appeared normal and were fertile, mutant females were infertile. In adult mutant females, there was a reduction in the size of the oviducts and uterine horns. The oviducts were less coiled compared to controls and cysts formed at the isthmus near the uterotubal junction. Unfertilized, degenerate oocytes were commonly found within these cysts, indicating a defect in embryo transit. Beads transferred into the mutant oviduct failed to migrate into the uterus. In addition, blastocysts transferred directly into the mutant uterus did not result in pregnancy. Histological analysis demonstrated that the mutant uterus contained less glandular tissue and often the few glands that remained were found within the myometrium, an abnormal condition known as adenomyosis. In adult mutants, there was ectopic expression of Wnt4 and Wnt5a in the luminal epithelium (LE) and glandular epithelium (GE) of the uterus, and Wnt11 was ectopically expressed in GE. These results demonstrate that Dicer is necessary for postnatal differentiation of Müllerian duct mesenchyme-derived tissues of the female reproductive tract, suggesting that microRNAs are important regulators of female reproductive tract development and fertility.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, and Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard R. Behringer
- Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, and Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
33
|
Malloy PJ, Peng L, Wang J, Feldman D. Interaction of the vitamin D receptor with a vitamin D response element in the Mullerian-inhibiting substance (MIS) promoter: regulation of MIS expression by calcitriol in prostate cancer cells. Endocrinology 2009; 150:1580-7. [PMID: 19056816 PMCID: PMC2659287 DOI: 10.1210/en.2008-1555] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calcitriol (1,25-dihydroxyvitamin D(3)) inhibits the growth of a variety of cancer cells including human prostate cancer. Müllerian-inhibiting substance (MIS) also exhibits antiproliferative and proapoptotic actions on multiple cancer cells including human prostate cancer. In this study, we investigated whether calcitriol regulated MIS expression in prostate cancer, an action that might contribute to its antiproliferative activity. We identified a 15-bp sequence, GGGTGAgcaGGGACA, in the MIS promoter that was highly similar to direct repeat 3-type vitamin D response elements (VDREs). The human MIS promoter containing the putative VDRE was cloned into a luciferase reporter vector. In HeLa cells transfected with the vitamin D receptor (VDR), MIS promoter activity was stimulated by calcitriol. Coexpression of steroidogenic factor 1, a key regulator of MIS, increased basal MIS promoter activity that was further stimulated by calcitriol. Mutation or deletion of the VDRE reduced calcitriol-induced transactivation. In addition, the MIS VDRE conferred calcitriol responsiveness to a heterologous promoter. In gel shift assays, VDR and retinoid X receptor bound to the MIS VDRE and the binding was increased by calcitriol. Chromatin immunoprecipitation assays showed that VDR and retinoid X receptor were present on the MIS promoter in prostate cancer cells. In conclusion, we demonstrated that MIS is a target of calcitriol action. MIS is up-regulated by calcitriol via a functional VDRE that binds the VDR. Up-regulation of MIS by calcitriol may be an important component of the antiproliferative actions of calcitriol in some cancers.
Collapse
Affiliation(s)
- Peter J Malloy
- S025 Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305-5103.
| | | | | | | |
Collapse
|
34
|
Wu X, Wan S, Pujar S, Haskins ME, Schlafer DH, Lee MM, Meyers-Wallen VN. A single base pair mutation encoding a premature stop codon in the MIS type II receptor is responsible for canine persistent Müllerian duct syndrome. JOURNAL OF ANDROLOGY 2009; 30:46-56. [PMID: 18723470 PMCID: PMC2593750 DOI: 10.2164/jandrol.108.005736] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Müllerian inhibiting substance (MIS), a secreted glycoprotein in the transforming growth factor-beta family of growth factors, mediates regression of the Müllerian ducts during embryonic sex differentiation in males. In persistent Müllerian duct syndrome (PMDS), rather than undergoing involution, the Müllerian ducts persist in males, giving rise to the uterus, fallopian tubes, and upper vagina. Genetic defects in MIS or its receptor (MISRII) have been identified in patients with PMDS. The phenotype in the canine model of PMDS derived from the miniature schnauzer breed is strikingly similar to that of human patients. In this model, PMDS is inherited as a sex-limited autosomal recessive trait. Previous studies indicated that a defect in the MIS receptor or its downstream signaling pathway was likely to be causative of the canine syndrome. In this study, the canine PMDS phenotype and clinical sequelae are described in detail. Affected and unaffected members of this pedigree are genotyped, identifying a single base pair substitution in MISRII that introduces a stop codon in exon 3. The homozygous mutation terminates translation at 80 amino acids, eliminating much of the extracellular domain and the entire transmembrane and intracellular signaling domains. Findings in this model could enable insights to be garnered from correlation of detailed clinical descriptions with molecular defects, which are not otherwise possible in the human syndrome.
Collapse
Affiliation(s)
- Xiufeng Wu
- Pediatric Endocrine Division, Department of Pediatrics and Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Shengqin Wan
- Pediatric Endocrine Division, Department of Pediatrics and Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Shashikant Pujar
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Mark E. Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Donald H. Schlafer
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Mary M. Lee
- Pediatric Endocrine Division, Department of Pediatrics and Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Vicki N. Meyers-Wallen
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
35
|
Orvis GD, Jamin SP, Kwan KM, Mishina Y, Kaartinen VM, Huang S, Roberts AB, Umans L, Huylebroeck D, Zwijsen A, Wang D, Martin JF, Behringer RR. Functional redundancy of TGF-beta family type I receptors and receptor-Smads in mediating anti-Mullerian hormone-induced Mullerian duct regression in the mouse. Biol Reprod 2008; 78:994-1001. [PMID: 18322278 DOI: 10.1095/biolreprod.107.066605] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Amniotes, regardless of genetic sex, develop two sets of genital ducts: the Wolffian and Müllerian ducts. For normal sexual development to occur, one duct must differentiate into its corresponding organs, and the other must regress. In mammals, the Wolffian duct differentiates into the male reproductive tract, mainly the vasa deferentia, epididymides, and seminal vesicles, whereas the Müllerian duct develops into the four components of the female reproductive tract, the oviducts, uterus, cervix, and upper third of the vagina. In males, the fetal Leydig cells produce testosterone, which stimulates the differentiation of the Wolffian duct, whereas the Sertoli cells of the fetal testes express anti-Müllerian hormone, which activates the regression of the Müllerian duct. Anti-Müllerian hormone is a member of the transforming growth factor-beta (TGF-beta) family of secreted signaling molecules and has been shown to signal through the BMP pathway. It binds to its type II receptor, anti-Müllerian hormone receptor 2 (AMHR2), in the Müllerian duct mesenchyme and through an unknown mechanism(s); the mesenchyme induces the regression of the Müllerian duct mesoepithelium. Using tissue-specific gene inactivation with an Amhr2-Cre allele, we have determined that two TGF-beta type I receptors (Acvr1 and Bmpr1a) and all three BMP receptor-Smads (Smad1, Smad5, and Smad8) function redundantly in transducing the anti-Müllerian hormone signal required for Müllerian duct regression. Loss of these genes in the Müllerian duct mesenchyme results in male infertility due to retention of Müllerian duct derivatives in an otherwise virilized male.
Collapse
Affiliation(s)
- G D Orvis
- Program in Genes and Development, Graduate School of Biomedical Sciences at Houston, The University of Texas, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Renlund N, Pieretti-Vanmarcke R, O'Neill FH, Zhang L, Donahoe PK, Teixeira J. c-Jun N-terminal kinase inhibitor II (SP600125) activates Mullerian inhibiting substance type II receptor-mediated signal transduction. Endocrinology 2008; 149:108-15. [PMID: 17947357 PMCID: PMC2194615 DOI: 10.1210/en.2007-0529] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Müllerian inhibiting substance (MIS), the hormone required for Müllerian duct regression in fetal males, is also expressed in both adult males and females, but its physiological role in these settings is not clear. The expression of the MIS type II receptor (MISRII) in ovarian cancer cells and the ability of MIS to inhibit proliferation of these cells suggest that MIS might be a promising therapeutic for recurrent ovarian cancer. Using an MISRII-dependent activity assay in a small-molecule screen for MIS-mimetic compounds, we have identified the c-Jun N-terminal kinase inhibitor SP600125 as an activator of the MIS signal transduction pathway. SP600125 increased the activity of a bone morphogenetic protein-responsive reporter gene in a dose-dependent manner and exerted a synergistic effect when used in combination with MIS. This effect was specific for the MISRII and was not seen with other receptors of the TGFbeta family. Moreover, treatment of mouse ovarian cancer cells with a combination of SP600125 and paclitaxel, an established chemotherapeutic agent used in the treatment of ovarian cancer, or with MIS enabled inhibition of cell proliferation at a lower dose than with each treatment alone. These results offer a strong rationale for testing the therapeutic potential of SP600125, alone or in combination with already established drugs, in the treatment of recurrent ovarian cancer with a much-needed decrease in the toxic side effects of currently employed therapeutic agents.
Collapse
Affiliation(s)
- Nina Renlund
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
37
|
Pieretti-Vanmarcke R, Donahoe PK, Pearsall LA, Dinulescu DM, Connolly DC, Halpern EF, Seiden MV, MacLaughlin DT. Mullerian Inhibiting Substance enhances subclinical doses of chemotherapeutic agents to inhibit human and mouse ovarian cancer. Proc Natl Acad Sci U S A 2006; 103:17426-31. [PMID: 17088539 PMCID: PMC1859945 DOI: 10.1073/pnas.0607959103] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mullerian Inhibiting Substance (MIS), a biological modifier that causes regression of Mullerian ducts in male embryos, is effective as a single agent in vitro and in vivo against human and mouse ovarian cancer cell lines expressing MIS type II receptor; however, little is known about how recombinant human MIS (rhMIS), now being scaled for preclinical trials, could be used in combination with cytotoxic or targeted chemotherapeutic agents. Mouse serous and endometrioid ovarian carcinoma cell lines were tested in vitro against rhMIS alone and with doxorubicin, paclitaxel, or cisplatin as agents in clinical use. Because MIS releases FK506 binding protein (FKBP12), which activates the mammalian target of rapamycin (mTOR) downstream of Akt, rhMIS and rapamycin combinations were tested. MIS increases p16 protein levels, and 5'-Aza-2'-deoxycytidine (AzadC) induces p16 mRNA; therefore, they were used in combination in vitro and in vivo with a human ovarian cancer cell line. A paclitaxel-resistant human ovarian cancer cell line and its parental line both respond to rhMIS in vitro. Additivity, synergy, or competition was observed with MIS and rapamycin, AzadC, doxorubicin, cisplatin, and paclitaxel, suggesting that MIS in combination with selective targeted therapies might achieve greater activity against ovarian cancer than the use of each individual agent alone. These assays and statistical analyses could be useful in selecting rhMIS and chemotherapeutic agent combinations that enhance clinical efficacy and reduce toxicity.
Collapse
Affiliation(s)
| | - Patricia K. Donahoe
- *Pediatric Surgical Research Laboratories, Department of Surgery
- To whom correspondence may be addressed at:
Pediatric Surgical Research Laboratories/CPZN6200, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114. E-mail:
or
| | - Lisa A. Pearsall
- *Pediatric Surgical Research Laboratories, Department of Surgery
| | - Daniela M. Dinulescu
- Department of Pathology, Brigham and Women's Hospital/Harvard Medical School, Eugene Braunwald Research Center, 221 Longwood Avenue, Boston, MA 02115; and
| | - Denise C. Connolly
- Medical Science Division, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111
| | | | - Michael V. Seiden
- Ovarian Tumor Biology Laboratory, Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114
| | - David T. MacLaughlin
- *Pediatric Surgical Research Laboratories, Department of Surgery
- To whom correspondence may be addressed at:
Pediatric Surgical Research Laboratories/CPZN6200, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114. E-mail:
or
| |
Collapse
|
38
|
Zhan Y, Fujino A, MacLaughlin DT, Manganaro TF, Szotek PP, Arango NA, Teixeira J, Donahoe PK. Müllerian inhibiting substance regulates its receptor/SMAD signaling and causes mesenchymal transition of the coelomic epithelial cells early in Müllerian duct regression. Development 2006; 133:2359-69. [PMID: 16687449 DOI: 10.1242/dev.02383] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Examination of Müllerian inhibiting substance (MIS) signaling in the rat in vivo and in vitro revealed novel developmental stage- and tissue-specific events that contributed to a window of MIS responsiveness in Müllerian duct regression. The MIS type II receptor (MISRII)-expressing cells are initially present in the coelomic epithelium of both male and female urogenital ridges, and then migrate into the mesenchyme surrounding the male Müllerian duct under the influence of MIS. Expression of the genes encoding MIS type I receptors, Alk2 and Alk3, is also spatiotemporally controlled; Alk2 expression appears earlier and increases predominantly in the coelomic epithelium, whereas Alk3expression appears later and is restricted to the mesenchyme, suggesting sequential roles in Müllerian duct regression. MIS induces expression of Alk2, Alk3 and Smad8, but downregulates Smad5 in the urogenital ridge. Alk2-specific small interfering RNA (siRNA) blocks both the transition of MISRII expression from the coelomic epithelium to the mesenchyme and Müllerian duct regression in organ culture. Müllerian duct regression can also be inhibited or accelerated by siRNA targeting Smad8 and Smad5,respectively. Thus, the early action of MIS is to initiate an epithelial-to-mesenchymal transition of MISRII-expressing cells and to specify the components of the receptor/SMAD signaling pathway by differentially regulating their expression.
Collapse
Affiliation(s)
- Yong Zhan
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Pieretti-Vanmarcke R, Donahoe PK, Szotek P, Manganaro T, Lorenzen MK, Lorenzen J, Connolly DC, Halpern EF, MacLaughlin DT. Recombinant human Mullerian inhibiting substance inhibits long-term growth of MIS type II receptor-directed transgenic mouse ovarian cancers in vivo. Clin Cancer Res 2006; 12:1593-8. [PMID: 16533786 DOI: 10.1158/1078-0432.ccr-05-2108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Mullerian inhibiting substance (MIS) is a glycoprotein hormone that causes Mullerian duct regression in male embryos. In short-term experiments, recombinant human MIS (rhMIS) inhibits xenotransplanted human ovarian cancer cell lines that are thought to be of Mullerian origin. Because this highly lethal cancer has a high recurrence rate after conventional chemotherapy, new treatments are warranted. We examined whether rhMIS as a novel, nontoxic, naturally occurring growth inhibitor can be an effective anticancer drug in long-term studies in vivo against allograft tumors that recapitulate human ovarian carcinoma. EXPERIMENTAL DESIGN Mouse ovarian carcinoma (MOVCAR) cell lines expressing the early region of the SV40 virus, including the large and small T-antigen genes under transcriptional control of a portion of the murine MIS receptor type II (MISRII) gene promoter, were derived from TgMISIIR-TAg transgenic mice. rhMIS was tested against MOVCAR cells in growth inhibition assays in vitro, and in vivo in 6-week-old female nude mice. Tumor growth in animals was measured at weekly intervals for up to 20 weeks. RESULTS MOVCAR cells and tumors express MISRII by Western blot, immunohistochemical, and Northern blot analyses. rhMIS significantly inhibited MOVCAR cell growth in vitro and in vivo in three separate long-term allotransplantation experiments. CONCLUSIONS Because rhMIS is an effective anticancer agent in in vitro and in long-term in vivo preclinical experiments against MISRII-positive tumors, we predict that rhMIS can be used safely and effectively to treat human ovarian malignancies.
Collapse
Affiliation(s)
- Rafael Pieretti-Vanmarcke
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kaivo-oja N, Jeffery LA, Ritvos O, Mottershead DG. Smad signalling in the ovary. Reprod Biol Endocrinol 2006; 4:21. [PMID: 16611366 PMCID: PMC1459162 DOI: 10.1186/1477-7827-4-21] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 04/12/2006] [Indexed: 02/08/2023] Open
Abstract
It has now been a decade since the first discovery of the intracellular Smad proteins, the downstream signalling molecules of one of the most important growth factor families in the animal kingdom, the transforming growth factor beta (TGF-beta) superfamily. In the ovary, several TGF-beta superfamily members are expressed by the oocyte, granulosa and thecal cells at different stages of folliculogenesis, and they signal mainly through two different Smad pathways in an autocrine/paracrine manner. Defects in the upstream signalling cascade molecules, the ligands and receptors, are known to have adverse effects on ovarian organogenesis and folliculogenesis, but the role of the individual Smad proteins in the proper function of the ovary is just beginning to be understood for example through the use of Smad knockout models. Although most of the different Smad knockouts are embryonic lethal, it is known, however, that in Smad1 and Smad5 knockout mice primordial germ cell development is impaired and that Smad3 deficient mice harbouring a deletion in exon 8 exhibit impaired folliculogenesis and reduced fertility. In this minireview we discuss the role of Smad structure and function in the ovarian context.
Collapse
Affiliation(s)
- Noora Kaivo-oja
- Programme for Developmental and Reproductive Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland and Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Luke A Jeffery
- Programme for Developmental and Reproductive Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland and Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Programme for Developmental and Reproductive Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland and Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - David G Mottershead
- Programme for Developmental and Reproductive Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland and Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Wang PY, Koishi K, McGeachie AB, Kimber M, Maclaughlin DT, Donahoe PK, McLennan IS. Mullerian inhibiting substance acts as a motor neuron survival factor in vitro. Proc Natl Acad Sci U S A 2005; 102:16421-5. [PMID: 16260730 PMCID: PMC1283469 DOI: 10.1073/pnas.0508304102] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The survival of motor neurons is controlled by multiple factors that regulate different aspects of their physiology. The identification of these factors is important because of their relationship to motor neuron disease. We investigate here whether Mullerian Inhibiting Substance (MIS) is a motor neuron survival factor. We find that motor neurons from adult mice synthesize MIS and express its receptors, suggesting that mature motor neurons use MIS in an autocrine fashion or as a way to communicate with each other. MIS was observed to support the survival and differentiation of embryonic motor neurons in vitro. During development, male-specific MIS may have a hormone effect because the blood-brain barrier has yet to form, raising the possibility that MIS participates in generating sex-specific differences in motor neurons.
Collapse
Affiliation(s)
- Pei-Yu Wang
- Neuromuscular Research Group, Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
42
|
Belville C, Jamin SP, Picard JY, Josso N, di Clemente N. Role of type I receptors for anti-Müllerian hormone in the SMAT-1 Sertoli cell line. Oncogene 2005; 24:4984-92. [PMID: 15897891 DOI: 10.1038/sj.onc.1208686] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Anti-Müllerian hormone (AMH) is a member of the transforming growth factor-beta family responsible for regression of Müllerian ducts during male sexual differentiation and for regulation of gonadal steroidogenesis. AMH is also a gonadal tumor suppressor which mediates its effects through a specific type II receptor and the bone morphogenetic protein (BMP)-specific Smad proteins, suggesting that AMH and BMPs could also share type I receptors, namely activin-like kinases (ALKs)2, 3 or 6. However, attempts to identify a unique AMH type I receptor among them were unsuccessful. Here, using kinase-deficient type I receptors and small interfering RNA technology, we demonstrate that, in an AMH Sertoli target cell line, ALK3 mediates AMH effects on both Smad1 activation and P450 side-chain cleavage enzyme. In addition, transfecting a combination of normal and kinase-deficient receptors, we show that ALK2 can compensate for the absence of ALK3 and probably acts in synergy with ALK3 at high concentrations of AMH to activate Smad1, whereas ALK6 has a competitive inhibitory effect. These results are a first step in understanding how AMH transduces its effects in immature Sertoli cells.
Collapse
Affiliation(s)
- Corinne Belville
- Institut National de la Santé et de la Recherche Médicale, Unité 493 sur l'Endocrinologie du Développement, Université Paris XI, 32 rue des Carnets, 92140 Clamart, France
| | | | | | | | | |
Collapse
|
43
|
Gupta V, Carey JL, Kawakubo H, Muzikansky A, Green JE, Donahoe PK, MacLaughlin DT, Maheswaran S. Mullerian inhibiting substance suppresses tumor growth in the C3(1)T antigen transgenic mouse mammary carcinoma model. Proc Natl Acad Sci U S A 2005; 102:3219-24. [PMID: 15728372 PMCID: PMC552936 DOI: 10.1073/pnas.0409709102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mullerian inhibiting substance (MIS) inhibits breast cancer cell growth in vitro. To extend the use of MIS to treat breast cancer, it is essential to test the responsiveness of mammary tumor growth to MIS in vivo. Mammary tumors arising in the C3(1) T antigen mouse model expressed the MIS type II receptor, and MIS in vitro inhibited the growth of cells derived from tumors. Administration of MIS to mice was associated with a lower number of palpable mammary tumors compared with vehicle-treated mice (P=0.048), and the mean mammary tumor weight in the MIS-treated group was significantly lower compared with the control group (P=0.029). Analysis of proliferating cell nuclear antigen (PCNA) expression and caspase-3 cleavage in tumors revealed that exposure to MIS was associated with decreased proliferation and increased apoptosis, respectively, and was not caused by a decline in T antigen expression. The effect of MIS on tumor growth was also evaluated on xenografted human breast cancer cell line MDA-MB-468, which is estrogen receptor- and retinoblastoma-negative and expresses mutant p53, and thus complements the C3(1)Tag mouse mammary tumors that do not express estrogen receptor and have functional inactivation of retinoblastoma and p53. In agreement with results observed in the transgenic mice, MIS decreased the rate of MDA-MB-468 tumor growth and the gain in mean tumor volume in severe combined immunodeficient mice compared with vehicle-treated controls (P=0.004). These results suggest that MIS can suppress the growth of mammary tumors in vivo.
Collapse
Affiliation(s)
- V Gupta
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Renaud EJ, MacLaughlin DT, Oliva E, Rueda BR, Donahoe PK. Endometrial cancer is a receptor-mediated target for Mullerian Inhibiting Substance. Proc Natl Acad Sci U S A 2005; 102:111-6. [PMID: 15618407 PMCID: PMC544070 DOI: 10.1073/pnas.0407772101] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mullerian Inhibiting Substance (MIS), a 140-kDa homodimer glycoprotein member of the TGF-beta superfamily of biological-response modifiers, causes regression of the Mullerian ducts in developing male embryos. MIS also can induce growth arrest and apoptosis in ovarian and cervical cancer cell lines. The embryonic progenitor of the ovarian and cervical epithelium is the coelomic epithelium, the same tissue that regresses under the direction of MIS in the male. The endometrium and uterus also arise from the coelomic epithelium and the Mullerian ducts. Here, we show that both normal human endometrium and endometrial cancers express the receptor for MIS and that MIS can inhibit the proliferation of a number of human endometrial cancer cell lines that express the MIS type II receptor. In the representative endometrial cancer cell line AN3CA, MIS affects the expression of key cell-cycle regulatory proteins. This work broadens the scope of tumors that MIS can potentially control and, by elucidating the MIS signaling pathway, identifies other potential avenues for intervention.
Collapse
Affiliation(s)
- Elizabeth J Renaud
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
45
|
Salhi I, Cambon-Roques S, Lamarre I, Laune D, Molina F, Pugnière M, Pourquier D, Gutowski M, Picard JY, Xavier F, Pèlegrin A, Navarro-Teulon I. The anti-Müllerian hormone type II receptor: insights into the binding domains recognized by a monoclonal antibody and the natural ligand. Biochem J 2004; 379:785-93. [PMID: 14750901 PMCID: PMC1224123 DOI: 10.1042/bj20031961] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 01/23/2004] [Accepted: 01/30/2004] [Indexed: 11/17/2022]
Abstract
Anti-Müllerian hormone (AMH) [also called Müllerian inhibiting substance (MIS)] is a member of the transforming growth factor-beta family. AMH and its type II receptor (AMHR-II) are involved in the regression of the Müllerian ducts in the male embryo, and in gonadal functions in the adult. AMH is also known to be a marker of granulosa and Sertoli cell tumours. We selected a high-affinity monoclonal antibody, mAb 12G4, specific for human AMHR-II (hAMHR-II), by FACS analysis, Western blotting and immunohistochemical staining of a hAMHR-II-transfected CHO (Chinese hamster ovary) cell line, normal adult testicular tissue and granulosa cell tumours. Using peptide array screening, we identified the binding sequences of mAb 12G4 and AMH on the receptor. Identification of Asp53 and Ala55 as critical residues in the DRAQVEM minimal epitopic sequence of mAb 12G4 definitively accounted for the lack of cross-reactivity with the murine receptor, in which there is a glycine residue in place of an aspartic acid residue. In a structural model, the AMH-binding interface was mapped to the concave side of hAMHR-II, whereas the mAb 12G4-binding site was located on the convex side. mAb 12G4, the first mAb to be raised against hAMHR-II, therefore has unique properties that could make it a valuable tool for the immunotargeting of tumours expressing this receptor.
Collapse
Affiliation(s)
- Imed Salhi
- EMI 0227 INSERM/Université Montpellier I/CRLC Montpellier, Cancer Institute Val d'Aurelle-Paul Lamarque, 35 rue de la Croix Verte, 34298 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Migration of mesonephric cells into XY gonads is a critical early event in testis cord formation. Based on the fact that anti-Müllerian hormone (AMH) can induce testis cord formation in XX gonads, we investigated whether AMH plays a role in the induction of cell migration. Addition of recombinant AMH induced mesonephric migration into XX gonads in culture. AMH-treated XX gonads displayed increased vascular development and altered morphology of the coelomic epithelium, both features of normal testis differentiation. AMH did not induce markers of Sertoli or Leydig cell differentiation. We examined early testis development in Amh-deficient mice, but found no abnormalities, suggesting that any function AMH may have in vivo is redundant. Other transforming growth factor (TGF-beta) family proteins, bone morphogenetic proteins (BMP2 and BMP4) show similar inductive effects on XX gonads in culture. Although neither BMP2 nor BMP4 is expressed in embryonic XY gonads, our findings suggest that a TGF-beta signalling pathway endogenous to the XY gonad may be involved in regulation of mesonephric cell migration. The factors involved in this process remain to be identified.
Collapse
Affiliation(s)
- Andrea J. Ross
- Department of Cell Biology, Duke University Medical Center, Box 3709, 340 Nanaline Duke, Research Dr., Durham, NC 27710, USA
| | - Christopher Tilman
- Department of Cell Biology, Duke University Medical Center, Box 3709, 340 Nanaline Duke, Research Dr., Durham, NC 27710, USA
| | - Humphrey Yao
- Department of Cell Biology, Duke University Medical Center, Box 3709, 340 Nanaline Duke, Research Dr., Durham, NC 27710, USA
| | - David MacLaughlin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Box 3709, 340 Nanaline Duke, Research Dr., Durham, NC 27710, USA
- Corresponding author. Tel.: +1-919-684-6390; fax: +1-919-684-5481. (B. Capel)
| |
Collapse
|
47
|
Bédécarrats GY, O'Neill FH, Norwitz ER, Kaiser UB, Teixeira J. Regulation of gonadotropin gene expression by Mullerian inhibiting substance. Proc Natl Acad Sci U S A 2003; 100:9348-53. [PMID: 12878721 PMCID: PMC170921 DOI: 10.1073/pnas.1633592100] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to its role in causing Müllerian duct regression, Müllerian inhibiting substance (MIS) is implicated in the regulation of steroidogenesis, breast and prostate growth, and ovarian follicle recruitment, all of which are processes controlled or influenced by the hypothalamic-pituitary-gonadal axis. Whereas the direct effect of MIS on gonadal, prostate, and breast cells is under investigation, the ability of MIS to modulate pituitary function, thereby affecting those tissues indirectly, has not yet been studied. Using LbetaT2 cells, a murine gonadotrope-derived cell line, we have evaluated the effects of MIS on the expression of the gonadotropin genes. We show that both LbetaT2 cells and adult rat pituitaries express MIS type II receptor (MISRII) mRNA. Within 2 h, follicle-stimulating hormone beta subunit (FSHbeta) mRNA levels are significantly induced by addition of MIS to LbetaT2 cells and remain elevated through 8 h of treatment. Transcriptional activation of both the FSHbeta and luteinizing hormone beta subunit (LHbeta) gene promoters was observed by MIS, which enhances the effect of gonadotropin-releasing hormone (GnRH) agonist on the FSHbeta gene promoter and synergizes with the GnRH agonist to stimulate LHbeta gene promoter activity. Addition of MIS to LbetaT2 cells stimulates the activity of the rat LHbeta gene promoter with as little as 1 microg/ml and in a dose-dependent manner. These studies report both MISRII expression in rat pituitary cells and a gonadotrope-derived cell line and MIS-mediated activation of LHbeta and FSHbeta gene expression, and suggest that MIS may modulate the hypothalamic-pituitary-gonadal axis at more than one level.
Collapse
Affiliation(s)
- Grégoy Y Bédécarrats
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
48
|
Murakami G, Watabe T, Takaoka K, Miyazono K, Imamura T. Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol Biol Cell 2003; 14:2809-17. [PMID: 12857866 PMCID: PMC165678 DOI: 10.1091/mbc.e02-07-0441] [Citation(s) in RCA: 251] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Smad ubiquitin regulatory factor (Smurf) 1 binds to receptor-regulated Smads for bone morphogenetic proteins (BMPs) Smad1/5 and promotes their degradation. In addition, Smurf1 associates with transforming growth factor-beta type I receptor through the inhibitory Smad (I-Smad) Smad7 and induces their degradation. Herein, we examined whether Smurf1 negatively regulates BMP signaling together with the I-Smads Smad6/7. Smurf1 and Smad6 cooperatively induced secondary axes in Xenopus embryos. Using a BMP-responsive promoter-reporter construct in mammalian cells, we found that Smurf1 cooperated with I-Smad in inhibiting BMP signaling and that the inhibitory activity of Smurf1 was not necessarily correlated with its ability to bind to Smad1/5 directly. Smurf1 bound to BMP type I receptors via I-Smads and induced ubiquitination and degradation of these receptors. Moreover, Smurf1 associated with Smad1/5 indirectly through I-Smads and induced their ubiquitination and degradation. Smurf1 thus controls BMP signaling with and without I-Smads through multiple mechanisms.
Collapse
Affiliation(s)
- Gyo Murakami
- Department of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 170-8455, Japan
| | | | | | | | | |
Collapse
|
49
|
Warburton D, Bellusci S, Del Moral PM, Kaartinen V, Lee M, Tefft D, Shi W. Growth factor signaling in lung morphogenetic centers: automaticity, stereotypy and symmetry. Respir Res 2003; 4:5. [PMID: 12818006 PMCID: PMC185249 DOI: 10.1186/1465-9921-4-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Revised: 01/28/2003] [Accepted: 02/17/2003] [Indexed: 12/16/2022] Open
Abstract
Lung morphogenesis is stereotypic, both for lobation and for the first several generations of airways, implying mechanistic control by a well conserved, genetically hardwired developmental program. This program is not only directed by transcriptional factors and peptide growth factor signaling, but also co-opts and is modulated by physical forces. Peptide growth factors signal within repeating epithelial-mesenchymal temporospatial patterns that constitute morphogenetic centers, automatically directing millions of repetitive events during both stereotypic branching and nonstereotypic branching as well as alveolar surface expansion phases of lung development. Transduction of peptide growth factor signaling within these centers is finely regulated at multiple levels. These may include ligand expression, proteolytic activation of latent ligand, ligand bioavailability, ligand binding proteins and receptor affinity and presentation, receptor complex assembly and kinase activation, phosphorylation and activation of adapter and messenger protein complexes as well as downstream events and cross-talk both inside and outside the nucleus. Herein we review the critical Sonic Hedgehog, Fibroblast Growth Factor, Bone Morphogenetic Protein, Vascular Endothelial Growth Factor and Transforming Growth Factorbeta signaling pathways and propose how they may be functionally coordinated within compound, highly regulated morphogenetic gradients that drive first stereotypic and then non-stereotypic, automatically repetitive, symmetrical as well as asymmetrical branching events in the lung.
Collapse
Affiliation(s)
- David Warburton
- Developmental Biology Program, Childrens Hospital Los Angeles Research Institute and the Center for Craniofacial Molecular Biology, Keck School of Medicine and School of Dentistry, University of Southern California, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Segev DL, Hoshiya Y, Hoshiya M, Tran TT, Carey JL, Stephen AE, MacLaughlin DT, Donahoe PK, Maheswaran S. Mullerian-inhibiting substance regulates NF-kappa B signaling in the prostate in vitro and in vivo. Proc Natl Acad Sci U S A 2002; 99:239-44. [PMID: 11773638 PMCID: PMC117545 DOI: 10.1073/pnas.221599298] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mullerian-inhibiting substance (MIS) is a member of the transforming growth factor beta superfamily, a class of molecules that regulates growth, differentiation, and apoptosis in many cells. MIS type II receptor in the Mullerian duct is temporally and spatially regulated during development and becomes restricted to the most caudal ends that fuse to form the prostatic utricle. In this article, we have demonstrated MIS type II receptor expression in the normal prostate, human prostate cancer cell lines, and tissue derived from patients with prostate adenocarcinomas. MIS induced NF-kappaB DNA binding activity and selectively up-regulated the immediate early gene IEX-1S in both androgen-dependent and independent human prostate cancer cells in vitro. Dominant negative IkappaBalpha expression ablated both MIS-induced increase of IEX-1S mRNA and inhibition of growth, indicating that activation of NF-kappaB signaling was required for these processes. Androgen also induced NF-kappaB DNA binding activity in prostate cancer cells but without induction of IEX-1S mRNA, suggesting that MIS-mediated increase in IEX-1S was independent of androgen-mediated signaling. Administration of MIS to male mice induced IEX-1S mRNA in the prostate in vivo, suggesting that MIS may function as an endogenous hormonal regulator of NF-kappaB signaling and growth in the prostate gland.
Collapse
Affiliation(s)
- Dorry L Segev
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|