1
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Pal G, Cook L, Schulze J, Verbrugge J, Alcalay RN, Merello M, Sue CM, Bardien S, Bonifati V, Chung SJ, Foroud T, Gatto E, Hall A, Hattori N, Lynch T, Marder K, Mascalzoni D, Novaković I, Thaler A, Raymond D, Salari M, Shalash A, Suchowersky O, Mencacci NE, Simuni T, Saunders‐Pullman R, Klein C. Genetic Testing in Parkinson's Disease. Mov Disord 2023; 38:1384-1396. [PMID: 37365908 PMCID: PMC10946878 DOI: 10.1002/mds.29500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/28/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Genetic testing for persons with Parkinson's disease is becoming increasingly common. Significant gains have been made regarding genetic testing methods, and testing is becoming more readily available in clinical, research, and direct-to-consumer settings. Although the potential utility of clinical testing is expanding, there are currently no proven gene-targeted therapies, but clinical trials are underway. Furthermore, genetic testing practices vary widely, as do knowledge and attitudes of relevant stakeholders. The specter of testing mandates financial, ethical, and physician engagement, and there is a need for guidelines to help navigate the myriad of challenges. However, to develop guidelines, gaps and controversies need to be clearly identified and analyzed. To this end, we first reviewed recent literature and subsequently identified gaps and controversies, some of which were partially addressed in the literature, but many of which are not well delineated or researched. Key gaps and controversies include: (1) Is genetic testing appropriate in symptomatic and asymptomatic individuals without medical actionability? (2) How, if at all, should testing vary based on ethnicity? (3) What are the long-term outcomes of consumer- and research-based genetic testing in presymptomatic PD? (4) What resources are needed for clinical genetic testing, and how is this impacted by models of care and cost-benefit considerations? Addressing these issues will help facilitate the development of consensus and guidelines regarding the approach and access to genetic testing and counseling. This is also needed to guide a multidisciplinary approach that accounts for cultural, geographic, and socioeconomic factors in developing testing guidelines. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gian Pal
- Department of NeurologyRutgers‐Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Lola Cook
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jeanine Schulze
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jennifer Verbrugge
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Roy N. Alcalay
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Movement Disorders Division, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Marcelo Merello
- Neuroscience Department FleniCONICET, Catholic University of Buenos AiresBuenos AiresArgentina
| | - Carolyn M. Sue
- Department of NeurologyRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research UnitStellenbosch UniversityCape TownSouth Africa
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Sun Ju Chung
- Department of Neurology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Tatiana Foroud
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Emilia Gatto
- Instituto de Neurociencias Buenos AiresAffiliated Buenos Aires UniversityBuenos AiresArgentina
| | - Anne Hall
- Parkinson's FoundationNew YorkNew YorkUSA
| | - Nobutaka Hattori
- Research Institute of Disease of Old Age, Graduate School of MedicineJuntendo UniversityTokyoJapan
- Department of NeurologyJuntendo University School of MedicineTokyoJapan
- Neurodegenerative Disorders Collaborative LaboratoryRIKEN Center for Brain ScienceSaitamaJapan
| | - Tim Lynch
- Dublin Neurological Institute at the Mater Misericordiae University HospitalDublinIreland
| | - Karen Marder
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Deborah Mascalzoni
- Institute for Biomedicine, Eurac ResearchAffiliated Institute of the University of LübeckBolzanoItaly
- Center for Research Ethics and Bioethics, Department of Public Health and Caring SciencesUppsala UniversityUppsalaSweden
| | - Ivana Novaković
- Institute of Human Genetics, Faculty of MedicineUniversity of BelgradeBelgradeSerbia
| | - Avner Thaler
- Movement Disorders Unit, Neurological InstituteTel‐Aviv Medical CenterTel AvivIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel‐Aviv UniversityTel AvivIsrael
- Laboratory of Early Markers of Neurodegeneration, Neurological InstituteTel‐Aviv Medical CenterTel AvivIsrael
| | - Deborah Raymond
- Department of NeurologyMount Sinai Beth Israel and Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada‐e Tajrish Comprehensive Neurosurgical Center of ExcellenceShahid Beheshti University of Medical SciencesTehranIran
| | - Ali Shalash
- Department of Neurology, Faculty of MedicineAin Shams UniversityCairoEgypt
| | - Oksana Suchowersky
- Department of Medicine (Neurology), Medical Genetics and PediatricsUniversity of AlbertaEdmontonAlbertaCanada
| | - Niccolò E. Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for NeurogeneticsNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
- Parkinson's Disease and Movement Disorders CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Tanya Simuni
- Parkinson's Disease and Movement Disorders CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Rachel Saunders‐Pullman
- Department of NeurologyMount Sinai Beth Israel and Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Christine Klein
- Institute of NeurogeneticsUniversity of Lübeck and University Hospital Schleswig‐HolsteinLübeckGermany
| |
Collapse
|
3
|
Alshimemeri S, Abo Alsamh D, Zhou L, Furtado S, Kraft S, Bruno V, Duquette A, Brais B, Suchowersky O, Munhoz RP, Slow E. Demographics and Clinical Characteristics of Autosomal Dominant Spinocerebellar Ataxia in Canada. Mov Disord Clin Pract 2023; 10:440-451. [PMID: 36949783 PMCID: PMC10026276 DOI: 10.1002/mdc3.13666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Background Autosomal dominant (AD) spinocerebellar ataxias (SCAs) encompass a large group of rare disorders, which occurs in individuals of different ethnic backgrounds. To date, demographics, and clinical descriptions of AD SCA in Canada are lacking. Methods A retrospective chart review of patients with a genetically confirmed diagnosis of AD SCAs was performed at five tertiary centers across Canada in the provinces of Quebec, Alberta, and Ontario. Demographic, genetic, and clinical information were collected and analyzed. Results A total of 203 patients with AD SCA were identified. Weighted estimated prevalence of AD SCA in three large Canadian provinces was calculated (2.25 cases per 100.000) which is in keeping with the figures documented worldwide. We found that the distribution of the most common SCA differed when comparing provinces. The most prevalent SCA diagnosis in Ontario was SCA3 (49%), while the most prevalent SCA diagnosis in Alberta and Quebec was SCA2 in 26% and 47%, respectively. SCA6 was the third most prevalent SCA subtype in Quebec (14%), which was not seen as commonly in other provinces. SCA1 was uncommonly seen in both Alberta and Quebec, despite being common in Ontario. Conclusions In this largest Canadian study, we describe the prevalence, distribution, and clinical characteristics of AD SCA. We found that the distribution of the most common SCA differed in the three provinces studied. This finding reflects the heterogenous nature of the Canadian population.
Collapse
Affiliation(s)
- Sohaila Alshimemeri
- King Saud UniversityRiyadhSaudi Arabia
- University of TorontoTorontoOntarioCanada
| | | | - Lily Zhou
- University of British ColumbiaVancouverBritish ColumbiaCanada
| | | | | | | | | | | | | | - Renato P. Munhoz
- University of TorontoTorontoOntarioCanada
- University Health NetworkTorontoOntarioCanada
| | - Elizabeth Slow
- University of TorontoTorontoOntarioCanada
- University Health NetworkTorontoOntarioCanada
| |
Collapse
|
4
|
Parkinsonism and tremor syndromes. J Neurol Sci 2021; 433:120018. [PMID: 34686357 DOI: 10.1016/j.jns.2021.120018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/06/2021] [Accepted: 09/29/2021] [Indexed: 01/22/2023]
Abstract
Tremor, the most common movement disorder, may occur in isolation or may co-exist with a variety of other neurologic and movement disorders including parkinsonism, dystonia, and ataxia. When associated with Parkinson's disease, tremor may be present at rest or as an action tremor overlapping in phenomenology with essential tremor. Essential tremor may be associated not only with parkinsonism but other neurological disorders, suggesting the possibility of essential tremor subtypes. Besides Parkinson's disease, tremor can be an important feature of other parkinsonian disorders, such as atypical parkinsonism and drug-induced parkinsonism. In addition, tremor can be a prominent feature in patients with other movement disorders such as fragile X-associated tremor/ataxia syndrome, and Wilson's disease in which parkinsonian features may be present. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
|
5
|
Franco G, Lazzeri G, Di Fonzo A. Parkinsonism and ataxia. J Neurol Sci 2021; 433:120020. [PMID: 34711421 DOI: 10.1016/j.jns.2021.120020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/09/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
Ataxia is not a common feature in Parkinson's disease. Nevertheless, some rare forms of parkinsonism have ataxia as one of the main features in their clinical picture, especially those with juvenile or early-onset. On the other side, in cerebellar degenerative diseases, parkinsonism might accompany the typical symptoms and even become predominant in some cases. Many disorders involving different neurological systems present with a movement phenomenology reflecting the underlying pattern of pathological involvement, such as neurodegeneration with brain iron accumulation, neurodegeneration associated with calcium deposition, and metabolic and mitochondrial disorders. The prototype of sporadic disorders that present with a constellation of symptoms due to the involvement of multiple Central Nervous System regions is multiple system atrophy, whose motor symptoms at onset can be cerebellar ataxia or parkinsonism. Clinical syndromes encompassing both parkinsonian and cerebellar features might represent a diagnostic challenge for neurologists. Recognizing acquired and potentially treatable causes responsible for complex movement disorders is of paramount importance, since an early diagnosis is essential to prevent permanent consequences. The present review aims to provide a pragmatic overview of the most common diseases characterized by the coexistence of cerebellar and parkinsonism features and suggests a possible diagnostic approach for both inherited and sporadic disorders. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Giulia Franco
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Giulia Lazzeri
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.
| |
Collapse
|
6
|
McGurk L, Rifai OM, Shcherbakova O, Perlegos AE, Byrns CN, Carranza FR, Zhou HW, Kim HJ, Zhu Y, Bonini NM. Toxicity of pathogenic ataxin-2 in Drosophila shows dependence on a pure CAG repeat sequence. Hum Mol Genet 2021; 30:1797-1810. [PMID: 34077532 PMCID: PMC8444453 DOI: 10.1093/hmg/ddab148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxia type 2 is a polyglutamine (polyQ) disease associated with an expanded polyQ domain within the protein product of the ATXN2 gene. Interestingly, polyQ repeat expansions in ATXN2 are also associated with amyotrophic lateral sclerosis (ALS) and parkinsonism depending upon the length of the polyQ repeat expansion. The sequence encoding the polyQ repeat also varies with disease presentation: a pure CAG repeat is associated with SCA2, whereas the CAG repeat in ALS and parkinsonism is typically interrupted with the glutamine encoding CAA codon. Here, we asked if the purity of the CAG sequence encoding the polyQ repeat in ATXN2 could impact the toxicity of the ataxin-2 protein in vivo in Drosophila. We found that ataxin-2 encoded by a pure CAG repeat conferred toxicity in the retina and nervous system, whereas ataxin-2 encoded by a CAA-interrupted repeat or CAA-only repeat failed to confer toxicity, despite expression of the protein at similar levels. Furthermore, the CAG-encoded ataxin-2 protein aggregated in the fly eye, while ataxin-2 encoded by either a CAA/G or CAA repeat remained diffuse. The toxicity of the CAG-encoded ataxin-2 protein was also sensitive to the translation factor eIF4H, a known modifier of the toxic GGGGCC repeat in flies. These data indicate that ataxin-2 encoded by a pure CAG versus interrupted CAA/G polyQ repeat domain is associated with differential toxicity, indicating that mechanisms associated with the purity of the sequence of the polyQ domain contribute to disease.
Collapse
Affiliation(s)
- Leeanne McGurk
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia M Rifai
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - China N Byrns
- Neurosciences Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Medical Sciences Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Faith R Carranza
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry W Zhou
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyung-Jun Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yongqing Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Neurosciences Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Cocozza S, Pontillo G, De Michele G, Di Stasi M, Guerriero E, Perillo T, Pane C, De Rosa A, Ugga L, Brunetti A. Conventional MRI findings in hereditary degenerative ataxias: a pictorial review. Neuroradiology 2021; 63:983-999. [PMID: 33733696 PMCID: PMC8213578 DOI: 10.1007/s00234-021-02682-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
Purpose Cerebellar ataxias are a large and heterogeneous group of disorders. The evaluation of brain parenchyma via MRI plays a central role in the diagnostic assessment of these conditions, being mandatory to exclude the presence of other underlying causes in determining the clinical phenotype. Once these possible causes are ruled out, the diagnosis is usually researched in the wide range of hereditary or sporadic ataxias. Methods We here propose a review of the main clinical and conventional imaging findings of the most common hereditary degenerative ataxias, to help neuroradiologists in the evaluation of these patients. Results Hereditary degenerative ataxias are all usually characterized from a neuroimaging standpoint by the presence, in almost all cases, of cerebellar atrophy. Nevertheless, a proper assessment of imaging data, extending beyond the mere evaluation of cerebellar atrophy, evaluating also the pattern of volume loss as well as concomitant MRI signs, is crucial to achieve a proper diagnosis. Conclusion The integration of typical neuroradiological characteristics, along with patient’s clinical history and laboratory data, could allow the neuroradiologist to identify some conditions and exclude others, addressing the neurologist to the more appropriate genetic testing.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.,Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Martina Di Stasi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Elvira Guerriero
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Teresa Perillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Anna De Rosa
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
8
|
Mascalchi M, Vella A. Neuroimaging Biomarkers in SCA2 Gene Carriers. Int J Mol Sci 2020; 21:ijms21031020. [PMID: 32033120 PMCID: PMC7037189 DOI: 10.3390/ijms21031020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
A variety of Magnetic Resonance (MR) and nuclear medicine (NM) techniques have been used in symptomatic and presymptomatic SCA2 gene carriers to explore, in vivo, the physiopathological biomarkers of the neurological dysfunctions characterizing the associated progressive disease that presents with a cerebellar syndrome, or less frequently, with a levodopa-responsive parkinsonian syndrome. Morphometry performed on T1-weighted images and diffusion MR imaging enable structural and microstructural evaluation of the brain in presymptomatic and symptomatic SCA2 gene carriers, in whom they show the typical pattern of olivopontocerebellar atrophy observed at neuropathological examination. Proton MR spectroscopy reveals, in the pons and cerebellum of SCA2 gene carriers, a more pronounced degree of abnormal neurochemical profile compared to other spinocerebellar ataxias with decreased NAA/Cr and Cho/Cr, increased mi/Cr ratios, and decreased NAA and increased mI concentrations. These neurochemical abnormalities are detectable also in presymtomatic gene carriers. Resting state functional MRI (rsfMRI) demonstrates decreased functional connectivity within the cerebellum and of the cerebellum with fronto-parietal cortices and basal ganglia in symptomatic SCA2 subjects. 18F-fluorodeoxyglucose Positron Emission Tomography (PET) shows a symmetric decrease of the glucose uptake in the cerebellar cortex, the dentate nucleus, the brainstem and the parahippocampal cortex. Single photon emission tomography and PET using several radiotracers have revealed almost symmetric nigrostriatal dopaminergic dysfunction irrespective of clinical signs of parkinsonism which are already present in presymtomatic gene carriers. Longitudinal small size studies have proven that morphometry and diffusion MR imaging can track neurodegeneration in SCA2, and hence serve as progression biomarkers. So far, such a capability has not been reported for proton MR spectroscopy, rsfMRI and NM techniques. A search for the best surrogate marker for future clinical trials represents the current challenge for the neuroimaging community.
Collapse
Affiliation(s)
- Mario Mascalchi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, 50121 Florence, Italy
- Correspondence: ; Tel.: +39-329-808-1701
| | | |
Collapse
|
9
|
Teive HAG, Camargo CHF, Munhoz RP. Reply to Comment on: "The Geographic Diversity of Spinocerebellar Ataxias (SCAs) in the Americas: A Systematic Review". Mov Disord Clin Pract 2020; 7:239. [PMID: 32071950 PMCID: PMC7011827 DOI: 10.1002/mdc3.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hélio A. G. Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, and Internal Medicine Post‐Graduation Program, Hospital de ClínicasFederal University of ParanáCuritibaParanáBrazil
| | - Carlos Henrique F. Camargo
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, and Internal Medicine Post‐Graduation Program, Hospital de ClínicasFederal University of ParanáCuritibaParanáBrazil
| | - Renato P. Munhoz
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Torotno Western Hospital, Division of NeuroogyUniversity of TorontoOntarioTorontoCanada
| |
Collapse
|
10
|
Hanna Al-Shaikh R, Wszolek ZK. Comment on: "The Geographic Diversity of Spinocerebellar Ataxias (SCAs) in the Americas: A Systematic Review". Mov Disord Clin Pract 2020; 7:237-238. [PMID: 32071949 DOI: 10.1002/mdc3.12878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
|
11
|
Mascalchi M, Vella A. Neuroimaging Applications in Chronic Ataxias. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 143:109-162. [PMID: 30473193 DOI: 10.1016/bs.irn.2018.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the main instruments for neuroimaging investigation of patients with chronic ataxia. MRI has a predominant diagnostic role in the single patient, based on the visual detection of three patterns of atrophy, namely, spinal atrophy, cortical cerebellar atrophy and olivopontocerebellar atrophy, which correlate with the aetiologies of inherited or sporadic ataxia. In fact spinal atrophy is observed in Friedreich ataxia, cortical cerebellar atrophy in Ataxia Telangectasia, gluten ataxia and Sporadic Adult Onset Ataxia and olivopontocerebellar atrophy in Multiple System Atrophy cerebellar type. The 39 types of dominantly inherited spinocerebellar ataxias show either cortical cerebellar atrophy or olivopontocerebellar atrophy. T2 or T2* weighted MR images can contribute to the diagnosis by revealing abnormally increased or decreased signal with a characteristic distribution. These include symmetric T2 hyperintensity of the posterior and lateral columns of the cervical spinal cord in Friedreich ataxia, diffuse and symmetric hyperintensity of the cerebellar cortex in Infantile Neuro-Axonal Dystrophy, symmetric hyperintensity of the peridentate white matter in Cerebrotendineous Xanthomatosis, and symmetric hyperintensity of the middle cerebellar peduncles and peridentate white matter, cerebral white matter and corpus callosum in Fragile X Tremor Ataxia Syndrome. Abnormally decreased T2 or T2* signal can be observed with a multifocal distribution in Ataxia Telangectasia and with a symmetric distribution in the basal ganglia in Multiple System Atrophy. T2 signal hypointensity lining diffusely the outer surfaces of the brainstem, cerebellum and cerebrum enables diagnosis of superficial siderosis of the central nervous system. The diagnostic role of nuclear medicine techniques is smaller. SPECT and PET show decreased uptake of radiotracers investigating the nigrostriatal system in Multiple System Atrophy and in patients with Fragile X Tremor Ataxia Syndrome. Semiquantitative or quantitative MRI, SPECT and PET data describing structural, microstructural and functional changes of the cerebellum, brainstem, and spinal cord have been widely applied to investigate physiopathological changes in patients with chronic ataxias. Moreover they can track diseases progression with a greater sensitivity than clinical scales. So far, a few small-size and single center studies employed neuroimaging techniques as surrogate markers of treatment effects in chronic ataxias.
Collapse
Affiliation(s)
- Mario Mascalchi
- Meyer Children Hospital, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | | |
Collapse
|
12
|
|
13
|
Matarazzo M, Wile D, Mackenzie M, Stoessl AJ. PET Molecular Imaging in Familial Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:177-223. [DOI: 10.1016/bs.irn.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
The CAG-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:143-170. [PMID: 29325609 DOI: 10.1016/b978-0-444-63233-3.00011-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Throughout the genome, unstable tandem nucleotide repeats can expand to cause a variety of neurologic disorders. Expansion of a CAG triplet repeat within a coding exon gives rise to an elongated polyglutamine (polyQ) tract in the resultant protein product, and accounts for a unique category of neurodegenerative disorders, known as the CAG-polyglutamine repeat diseases. The nine members of the CAG-polyglutamine disease family include spinal and bulbar muscular atrophy (SBMA), Huntington disease, dentatorubral pallidoluysian atrophy, and six spinocerebellar ataxias (SCA 1, 2, 3, 6, 7, and 17). All CAG-polyglutamine diseases are dominantly inherited, with the exception of SBMA, which is X-linked, and many CAG-polyglutamine diseases display anticipation, which is defined as increasing disease severity in successive generations of an affected kindred. Despite widespread expression of the different polyQ-expanded disease proteins throughout the body, each CAG-polyglutamine disease strikes a particular subset of neurons, although the mechanism for this cell-type selectivity remains poorly understood. While the different genes implicated in these disorders display amino acid homology only in the repeat tract domain, certain pathologic molecular processes have been implicated in almost all of the CAG-polyglutamine repeat diseases, including protein aggregation, proteolytic cleavage, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Here we highlight the clinical and molecular genetic features of each distinct disorder, and then discuss common themes in CAG-polyglutamine disease pathogenesis, closing with emerging advances in therapy development.
Collapse
|
15
|
Antenora A, Rinaldi C, Roca A, Pane C, Lieto M, Saccà F, Peluso S, De Michele G, Filla A. The Multiple Faces of Spinocerebellar Ataxia type 2. Ann Clin Transl Neurol 2017; 4:687-695. [PMID: 28904990 PMCID: PMC5590519 DOI: 10.1002/acn3.437] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/09/2017] [Accepted: 06/07/2017] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is among the most common forms of autosomal dominant ataxias, accounting for 15% of the total families. Occurrence is higher in specific populations such as the Cuban and Southern Italian. The disease is caused by a CAG expansion in ATXN2 gene, leading to abnormal accumulation of the mutant protein, ataxin‐2, in intracellular inclusions. The clinical picture is mainly dominated by cerebellar ataxia, although a number of other neurological signs have been described, ranging from parkinsonism to motor neuron involvement, making the diagnosis frequently challenging for neurologists, particularly when information about the family history is not available. Although the functions of ataxin‐2 have not been completely elucidated, the protein is involved in mRNA processing and control of translation. Recently, it has also been shown that the size of the CAG repeat in normal alleles represents a risk factor for ALS, suggesting that ataxin‐2 plays a fundamental role in maintenance of neuronal homeostasis.
Collapse
Affiliation(s)
- Antonella Antenora
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Carlo Rinaldi
- Department of Physiology Anatomy and Genetics, University of Oxford Oxford United Kingdom
| | - Alessandro Roca
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Chiara Pane
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Maria Lieto
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy.,Department of Physiology Anatomy and Genetics, University of Oxford Oxford United Kingdom
| | - Francesco Saccà
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Silvio Peluso
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Giuseppe De Michele
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Alessandro Filla
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| |
Collapse
|
16
|
Kim YE, Jeon B, Farrer MJ, Scott E, Guella I, Park SS, Kim JM, Park HY, Kim A, Son YD, Cho ZH. SCA2 family presenting as typical Parkinson's disease: 34 year follow up. Parkinsonism Relat Disord 2017; 40:69-72. [DOI: 10.1016/j.parkreldis.2017.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/10/2017] [Indexed: 12/27/2022]
|
17
|
Neurological phenotypes in spinocerebellar ataxia type 2: Role of mitochondrial polymorphism A10398G and other risk factors. Parkinsonism Relat Disord 2017. [PMID: 28648514 DOI: 10.1016/j.parkreldis.2017.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Spinocerebellar ataxia type 2 (SCA2) is due to a CAG expansion (CAGexp) at ATXN2. SCA2 presents great clinical variability, alongside characteristic ataxia with saccadic slowness. AIMS To study parkinsonism, dementia, dystonia, and amyotrophy as subphenotypes of SCA2, and to explore the effect of CAG repeats at different loci and of mitochondrial polymorphism A10398G as modifiers of phenotype. METHODS Symptomatic subjects were classified by presence/absence of neurological signs mentioned above; SARA and NESSCA scores were obtained. CAG repeats at ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7 and RAI1, and polymorphism A10398G at mtDNA were established. Group characteristics were compared, with a p < 0.05. RESULTS Forty-eight SCA2 individuals were included. Age at onset, CAGexp, and disease duration explained 53% and 43% of SARA and NESSCA variations, respectively. CAGexp of subjects with and without parkinsonism were different (medians of 42 and 39 repeats) as well as of subjects with and without dystonia (44 and 40 repeats). Amyotrophy was not significantly related to any variable under study. Concerning polymorphism A10398G, 83% of subjects with and 34% of those without cognitive decline carried 10398G at (p = 0.003). DISCUSSION Treating the four phenotypic subgroups as outcomes was a valid strategy to identify modifiers of disease. Among correlations found, some confirmed previous reports, such as that between dystonia and CAGexp. Of note was the association between cognitive decline and the variant G at mitochondrial polymorphism A10398G, a variant formerly related to earlier ages at onset in SCA2.
Collapse
|
18
|
McCombe PA, Wray NR, Henderson RD. Extra-motor abnormalities in amyotrophic lateral sclerosis: another layer of heterogeneity. Expert Rev Neurother 2017; 17:561-577. [PMID: 27983884 DOI: 10.1080/14737175.2017.1273772] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease defined by the presence of muscle weakness. The motor features of disease are heterogeneous in site of onset and progression. There are also extra-motor features in some patients. The genetic basis for extra-motor features is uncertain. The heterogeneity of ALS is an issue for clinical trials. Areas covered: This paper reviews the range and prevalence of extra-motor features associated with ALS, and highlights the current information about genetic associations with extra-motor features. Expert commentary: There are extra-motor features of ALS, but these are not found in all patients. The most common is cognitive abnormality. More data is required to ascertain whether extra-motor features arise with progression of disease. Extra-motor features are reported in patients with a range of causative genetic mutations, but are not found in all patients with these mutations. Further studies are required of the heterogeneity of ALS, and genotype/phenotype correlations are required, taking note of extra-motor features.
Collapse
Affiliation(s)
- P A McCombe
- a The University of Queensland Centre for Clinical Research and Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia
| | - N R Wray
- b The University of Queensland Institute for Molecular Bioscience , Brisbane , Australia
| | - R D Henderson
- a The University of Queensland Centre for Clinical Research and Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia
| |
Collapse
|
19
|
Xie T, Appelbaum D, Bernard J, Padmanaban M, Pu Y, Gomez C. Evaluation of parkinsonism and striatal dopamine transporter loss in patients with spinocerebellar ataxia type 6. J Neurol 2016; 263:2302-2307. [PMID: 27544504 DOI: 10.1007/s00415-016-8261-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/07/2016] [Accepted: 08/06/2016] [Indexed: 11/29/2022]
Abstract
It is unclear whether patients with spinocerebellar ataxia type 6 (SCA6) have parkinsonism and striatal dopamine transporter (DAT) loss, based on previously small size studies without well-matched controls. A study with a larger number of patients and both age- and gender-matched healthy controls (HCs) is needed for a better answer to this question. Twelve genetically confirmed ataxic SCA6 patients (six male six female, age 65.3 ± 11.2 years), and eight age- and gender-matched HCs (five male three female, age 71.3 ± 8.6 years) were enrolled during 2013-2015 from tertiary movement disorders and ataxia clinics. Clinical assessment for parkinsonism, and qualitative and quantitative assessment of DAT level on DaTscan™ imaging were conducted in SCA6 patients compared to HCs. We found no convincing parkinsonism in SCA6 patients, given generalized bradykinesia in the context of significant ataxia in all, with mild symmetric rigidity in five without resting tremor. Furthermore, we found no striatal DAT loss in anterior, posterior, and total putamen and caudate on imaging, assessed independently by qualitative visual inspection in a blinded manner by the nuclear medicine specialist and movement disorder specialist (kappa = 1). Additional quantitative analysis on these areas did not reveal significant DAT loss either in SCA6 patients compared to HCs. We conclude that there is no convincing parkinsonism or DAT loss in SCA6 patients in this unique study with a larger than previously reported number of patients compared to both age- and gender-matched HCs, suggesting that dopaminergic dysfunction is not usually involved in SCA6.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC 2030, Chicago, IL, 60637, USA.
| | - Daniel Appelbaum
- Division of Nuclear Medicine, Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | - Jacqueline Bernard
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC 2030, Chicago, IL, 60637, USA
| | - Mahesh Padmanaban
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC 2030, Chicago, IL, 60637, USA
| | - Yonglin Pu
- Division of Nuclear Medicine, Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | - Christopher Gomez
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC 2030, Chicago, IL, 60637, USA
| |
Collapse
|
20
|
Schöls L, Reimold M, Seidel K, Globas C, Brockmann K, Hauser TK, Auburger G, Bürk K, den Dunnen W, Reischl G, Korf HW, Brunt ER, Rüb U. No parkinsonism in SCA2 and SCA3 despite severe neurodegeneration of the dopaminergic substantia nigra. Brain 2015; 138:3316-26. [PMID: 26362908 DOI: 10.1093/brain/awv255] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/08/2015] [Indexed: 11/12/2022] Open
Abstract
See Klockgether (doi:10.1093/awv253) for a scientific commentary on this article.The spinocerebellar ataxias types 2 (SCA2) and 3 (SCA3) are autosomal dominantly inherited cerebellar ataxias which are caused by CAG trinucleotide repeat expansions in the coding regions of the disease-specific genes. Although previous post-mortem studies repeatedly revealed a consistent neurodegeneration of the dopaminergic substantia nigra in patients with SCA2 and with SCA3, parkinsonian motor features evolve only rarely. As the pathophysiological mechanism how SCA2 and SCA3 patients do not exhibit parkinsonism is still enigmatic, we performed a positron emission tomography and a post-mortem study of two independent cohorts of SCA2 and SCA3 patients with and without parkinsonian features. Positron emission tomography revealed a significant reduction of dopamine transporter levels in the striatum as well as largely unaffected postsynaptic striatal D2 receptors. In spite of this remarkable pathology in the motor mesostriatal pathway, only 4 of 19 SCA2 and SCA3 patients suffered from parkinsonism. The post-mortem investigation revealed, in addition to an extensive neuronal loss in the dopaminergic substantia nigra of all patients with spinocerebellar ataxia, a consistent affection of the thalamic ventral anterior and ventral lateral nuclei, the pallidum and the cholinergic pedunculopontine nucleus. With the exception of a single patient with SCA3 who suffered from parkinsonian motor features during his lifetime, the subthalamic nucleus underwent severe neuronal loss, which was clearly more severe in its motor territory than in its limbic or associative territories. Our observation that lesions of the motor territory of the subthalamic nucleus were consistently associated with the prevention of parkinsonism in our SCA2 and SCA3 patients matches the clinical experience that selective targeting of the motor territory of the subthalamic nucleus by focal lesions or deep brain stimulation can ameliorate parkinsonian motor features and is likely to counteract the manifestation of parkinsonism in SCA2 and SCA3 despite a severe neurodegeneration of the dopaminergic substantia nigra.
Collapse
Affiliation(s)
- Ludger Schöls
- 1 Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany 2 Deutsches Zentrum für Neurodegenerative Erkrankungen, D-72076 Tübingen, Germany
| | - Matthias Reimold
- 3 Department of Nuclear Medicine, University of Tübingen, D-72076 Tübingen, Germany
| | - Kay Seidel
- 4 Dr Senckenbergisches Chronomedizinisches Institut, Goethe-University, D-60590 Frankfurt/Main, Germany
| | - Christoph Globas
- 1 Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Kathrin Brockmann
- 1 Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany 2 Deutsches Zentrum für Neurodegenerative Erkrankungen, D-72076 Tübingen, Germany
| | - Till Karsten Hauser
- 5 Department of Neuroradiology, University of Tübingen, D-72076 Tübingen, Germany
| | - Georg Auburger
- 6 Molecular Neurogenetics, Department of Neurology, Goethe-University, D-60590 Frankfurt/Main, Germany
| | - Katrin Bürk
- 7 Department of Neurology, Philipps University of Marburg, D-35039 Marburg, Germany
| | - Wilfred den Dunnen
- 8 Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, NL-9700 RB Groningen, The Netherlands
| | - Gerald Reischl
- 9 Radiopharmacy, University of Tübingen, D-72076 Tübingen, Germany
| | - Horst-Werner Korf
- 4 Dr Senckenbergisches Chronomedizinisches Institut, Goethe-University, D-60590 Frankfurt/Main, Germany
| | - Ewout R Brunt
- 10 Department of Neurology, University Medical Center Groningen, University of Groningen, NL-5970 RB Groningen, The Netherlands
| | - Udo Rüb
- 4 Dr Senckenbergisches Chronomedizinisches Institut, Goethe-University, D-60590 Frankfurt/Main, Germany
| |
Collapse
|
21
|
Wang L, Aasly JO, Annesi G, Bardien S, Bozi M, Brice A, Carr J, Chung SJ, Clarke C, Crosiers D, Deutschländer A, Eckstein G, Farrer MJ, Goldwurm S, Garraux G, Hadjigeorgiou GM, Hicks AA, Hattori N, Klein C, Jeon B, Kim YJ, Lesage S, Lin JJ, Lynch T, Lichtner P, Lang AE, Mok V, Jasinska-Myga B, Mellick GD, Morrison KE, Opala G, Pihlstrøm L, Pramstaller PP, Park SS, Quattrone A, Rogaeva E, Ross OA, Stefanis L, Stockton JD, Silburn PA, Theuns J, Tan EK, Tomiyama H, Toft M, Van Broeckhoven C, Uitti RJ, Wirdefeldt K, Wszolek Z, Xiromerisiou G, Yueh KC, Zhao Y, Gasser T, Maraganore DM, Krüger R, Sharma M. Large-scale assessment of polyglutamine repeat expansions in Parkinson disease. Neurology 2015; 85:1283-92. [PMID: 26354989 DOI: 10.1212/wnl.0000000000002016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/21/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES We aim to clarify the pathogenic role of intermediate size repeat expansions of SCA2, SCA3, SCA6, and SCA17 as risk factors for idiopathic Parkinson disease (PD). METHODS We invited researchers from the Genetic Epidemiology of Parkinson's Disease Consortium to participate in the study. There were 12,346 cases and 8,164 controls genotyped, for a total of 4 repeats within the SCA2, SCA3, SCA6, and SCA17 genes. Fixed- and random-effects models were used to estimate the summary risk estimates for the genes. We investigated between-study heterogeneity and heterogeneity between different ethnic populations. RESULTS We did not observe any definite pathogenic repeat expansions for SCA2, SCA3, SCA6, and SCA17 genes in patients with idiopathic PD from Caucasian and Asian populations. Furthermore, overall analysis did not reveal any significant association between intermediate repeats and PD. The effect estimates (odds ratio) ranged from 0.93 to 1.01 in the overall cohort for the SCA2, SCA3, SCA6, and SCA17 loci. CONCLUSIONS Our study did not support a major role for definite pathogenic repeat expansions in SCA2, SCA3, SCA6, and SCA17 genes for idiopathic PD. Thus, results of this large study do not support diagnostic screening of SCA2, SCA3, SCA6, and SCA17 gene repeats in the common idiopathic form of PD. Likewise, this largest multicentered study performed to date excludes the role of intermediate repeats of these genes as a risk factor for PD.
Collapse
Affiliation(s)
- Lisa Wang
- Authors' affiliations are listed at the end of the article
| | - Jan O Aasly
- Authors' affiliations are listed at the end of the article
| | - Grazia Annesi
- Authors' affiliations are listed at the end of the article
| | - Soraya Bardien
- Authors' affiliations are listed at the end of the article
| | - Maria Bozi
- Authors' affiliations are listed at the end of the article
| | - Alexis Brice
- Authors' affiliations are listed at the end of the article
| | - Jonathan Carr
- Authors' affiliations are listed at the end of the article
| | - Sun J Chung
- Authors' affiliations are listed at the end of the article
| | - Carl Clarke
- Authors' affiliations are listed at the end of the article
| | - David Crosiers
- Authors' affiliations are listed at the end of the article
| | | | | | | | | | - Gaetan Garraux
- Authors' affiliations are listed at the end of the article
| | | | - Andrew A Hicks
- Authors' affiliations are listed at the end of the article
| | | | | | - Beom Jeon
- Authors' affiliations are listed at the end of the article
| | - Yun J Kim
- Authors' affiliations are listed at the end of the article
| | - Suzanne Lesage
- Authors' affiliations are listed at the end of the article
| | - Juei-Jueng Lin
- Authors' affiliations are listed at the end of the article
| | - Timothy Lynch
- Authors' affiliations are listed at the end of the article
| | - Peter Lichtner
- Authors' affiliations are listed at the end of the article
| | - Anthony E Lang
- Authors' affiliations are listed at the end of the article
| | - Vincent Mok
- Authors' affiliations are listed at the end of the article
| | | | | | | | - Grzegorz Opala
- Authors' affiliations are listed at the end of the article
| | | | | | - Sung S Park
- Authors' affiliations are listed at the end of the article
| | - Aldo Quattrone
- Authors' affiliations are listed at the end of the article
| | | | - Owen A Ross
- Authors' affiliations are listed at the end of the article
| | | | | | | | - Jessie Theuns
- Authors' affiliations are listed at the end of the article
| | - Eng K Tan
- Authors' affiliations are listed at the end of the article
| | | | - Mathias Toft
- Authors' affiliations are listed at the end of the article
| | | | - Ryan J Uitti
- Authors' affiliations are listed at the end of the article
| | | | | | | | - Kuo-Chu Yueh
- Authors' affiliations are listed at the end of the article
| | - Yi Zhao
- Authors' affiliations are listed at the end of the article
| | - Thomas Gasser
- Authors' affiliations are listed at the end of the article
| | | | - Rejko Krüger
- Authors' affiliations are listed at the end of the article
| | - Manu Sharma
- Authors' affiliations are listed at the end of the article.
| | | |
Collapse
|
22
|
Parkinsonism in spinocerebellar ataxia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:125273. [PMID: 25866756 PMCID: PMC4383270 DOI: 10.1155/2015/125273] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/29/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022]
Abstract
Spinocerebellar ataxia (SCA) presents heterogeneous clinical phenotypes, and parkinsonism is reported in diverse SCA subtypes. Both levodopa responsive Parkinson disease (PD) like phenotype and atypical parkinsonism have been described especially in SCA2, SCA3, and SCA17 with geographic differences in prevalence. SCA2 is the most frequently reported subtype of SCA related to parkinsonism worldwide. Parkinsonism in SCA2 has unique genetic characteristics, such as low number of expansions and interrupted structures, which may explain the sporadic cases with low penetrance. Parkinsonism in SCA17 is more remarkable in Asian populations especially in Korea. In addition, an unclear cutoff of the pathologic range is the key issue in SCA17 related parkinsonism. SCA3 is more common in western cohorts. SCA6 and SCA8 have also been reported with a PD-like phenotype. Herein, we reviewed the epidemiologic, clinical, genetic, and pathologic features of parkinsonism in SCAs.
Collapse
|
23
|
Martínez-Sánchez P, Cazorla-García R, Sanz-Gallego I, Correas-Callero E, Pulido-Valdeolivas I, Arpa J. Substantia nigra echogenicity in hereditary ataxias with and without nigrostriatal pathology: a pilot study. THE CEREBELLUM 2015; 14:240-6. [PMID: 25592070 DOI: 10.1007/s12311-014-0642-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our objective was to determine whether substantia nigra (SN) hyperechogenicity is greater in spinocerebellar ataxias (SCA) with nigrostriatal affectation than in ataxias without it. A cross-sectional case-control study analyzing four groups of patients was conducted: 1) nigrostriatal ataxias (SCA3 and SCA6), 2) nigrostriatal healthy controls matched by age and sex, 3) non-nigrostriatal ataxias (FRDA and SCA7), and 4) non-nigrostriatal healthy controls matched by age and sex. All the patients underwent a transcranial ultrasound performed by an experienced sonographer blinded to the clinical, genetic, and neuroimaging data. The SN area was measured and compared in the four groups. The SN area was also correlated with clinical features and genetic data in the two ataxia groups. We examined 12 patients with nigrostriatal ataxia (11 SCA3 and 1 SCA6), 12 nigrostriatal healthy control patients, 7 patients with non-nigrostriatal ataxia (5 FRDA and 2 SCA7), and 7 non-nigrostriatal healthy control patients. The median (IQR) SN area (cm(2)) was greater in the nigrostriatal ataxias compared with the controls (right SN, 0.43 [0.44] vs. 0.11 [0.25]; P=0.001; left SN, 0.32 [0.25] vs. 0.11 [0.16]; P=0.001), but was similar among the non-nigrostriatal ataxias and controls. There were no statistically significant differences in the SN area between the nigrostriatal and non-nigrostriatal ataxias, although there was a tendency for a greater left SN area in the nigrostriatal compared with the non-nigrostriatal ataxias (0.32 [0.25] vs. 0.16 [0.24], P=0.083). SN echogenicity is markedly greater in ataxias with nigrostriatal pathology than in controls. The role of SN hyperechogenicity in differentiating ataxias with and without nigrostriatal pathology should be elucidated in future studies.
Collapse
Affiliation(s)
- Patricia Martínez-Sánchez
- Department of Neurology and Stroke Center, La Paz University Hospital, Autonoma of Madrid University IdiPAZ Health Research Institute, Paseo de la Castellana 261, 28046, Madrid, Spain,
| | | | | | | | | | | |
Collapse
|
24
|
Lang AE, Miyasaki J, Olanow CW, Stoessl AJ, Suchowersky O. Progress in Clinical Neurosciences: A Forum on the Early Management of Parkinson's Disease. Can J Neurol Sci 2014; 32:277-86. [PMID: 16225167 DOI: 10.1017/s0317167100004145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ABSTRACT:There are numerous concerns related to treatment choices involving early dopaminergic therapy in Parkinson's disease. These include the effect on the underlying progression of the neurodegenerative process as well as the development of motor complications such as fluctuations and dyskinesias. A number of recent basic and clinical studies have provided new insights but have also added confusion and controversy. This report summarizes presentations and discussion dealing with these issues from a one-day symposium involving Canadian Movement Disorders neurologists.
Collapse
Affiliation(s)
- Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto Western Hospital, Canada
| | | | | | | | | |
Collapse
|
25
|
Rossi M, Perez-Lloret S, Cerquetti D, Merello M. Movement Disorders in Autosomal Dominant Cerebellar Ataxias: A Systematic Review. Mov Disord Clin Pract 2014; 1:154-160. [PMID: 30363920 DOI: 10.1002/mdc3.12042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 11/06/2022] Open
Abstract
Autosomal dominant cerebellar ataxias (ADCAs) are clinically heterogeneous disorders classified according to genetic subtype and collectively known as SCAs. In a few SCAs, movement disorders can be the most frequent extracerebellar sign. The aim of this article is to perform a systematic review of movement disorders frequency and characteristics in ADCAs. This work consisted of a structured search of electronic databases up to January 2013. Publications containing descriptions of ADCA clinical features written in several languages were selected initially based on title and abstract screening, followed by full-text reading of potentially relevant publications. Clinical findings and demographic data on genetically confirmed patients were extracted. Analysis of individual patient data from subjects with movement disorders was performed using the chi-square test and logistic regression. One thousand and sixty-six publications reviewing 12,151 patients from 30 different SCAs were analyzed. Individual data were available from 755 patients with at least one type of movement disorder during overall disease course. Of 422 patients in whom onset symptom data were available, one third referred a movement disorder as the initial symptom. During overall disease course, parkinsonism was common in many SCA subtypes, frequently described in the absence of ataxia and characterized as responding to dopaminergic medications. Motor complications developed occasionally in some patients as did nigrostriatal imaging alterations. Other frequent features were dystonia, chorea, and myoclonus. Rare conditions, such as akathisia, paroxysmal nonkinesigenic dyskinesia, or stiff person-like syndrome, were also reported. ADCA descriptions included a full range of movement disorders. Aside from postural or intention tremor, dopamine-responsive parkinsonism and dystonia were the most common.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience Department Raul Carrea Institute for Neurological Research (FLENI) Buenos Aires Argentina
| | - Santiago Perez-Lloret
- Clinical Pharmacology and Epidemiology Laboratory Pontifical Catholic University of Argentina Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council (CONICET) Buenos Aires Argentina
| | - Daniel Cerquetti
- Movement Disorders Section, Neuroscience Department Raul Carrea Institute for Neurological Research (FLENI) Buenos Aires Argentina
| | - Marcelo Merello
- Movement Disorders Section, Neuroscience Department Raul Carrea Institute for Neurological Research (FLENI) Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council (CONICET) Buenos Aires Argentina
| |
Collapse
|
26
|
Yamashita C, Tomiyama H, Funayama M, Inamizu S, Ando M, Li Y, Yoshino H, Araki T, Ichikawa T, Ehara Y, Ishikawa K, Mizusawa H, Hattori N. Evaluation of polyglutamine repeats in autosomal dominant Parkinson's disease. Neurobiol Aging 2014; 35:1779.e17-21. [PMID: 24534762 DOI: 10.1016/j.neurobiolaging.2014.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/13/2022]
Abstract
We evaluated the contributions of various polyglutamine (polyQ) disease genes to Parkinson's disease (PD). We compared the distributions of polyQ repeat lengths in 8 common genes (ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, TBP, ATN1, and HTT) in 299 unrelated patients with autosomal dominant PD (ADPD) and 329 normal controls. We also analyzed the possibility of genetic interactions between ATXN1 and ATXN2, ATXN2 and ATXN3, and ATXN2 and CACNA1A. Intermediate-length polyQ expansions (>24 Qs) of ATXN2 were found in 7 ADPD patients and no controls (7/299 = 2.34% and 0/329 = 0%, respectively; p = 0.0053 < 0.05/8 after Bonferroni correction). These patients showed typical L-DOPA-responsive PD phenotypes. Conversely, no significant differences in polyQ repeat lengths were found between the ADPD patients and the controls for the other 7 genes. Our results may support the hypothesis that ATXN2 polyQ expansion is a specific predisposing factor for multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Chikara Yamashita
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Tomiyama
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan; Department of Neuroscience for Neurodegenerative Disorders, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Manabu Funayama
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Saeko Inamizu
- Department of Neurology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Naka-ku, Hiroshima, Japan
| | - Maya Ando
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Yuanzhe Li
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Takehisa Araki
- Department of Neurology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Naka-ku, Hiroshima, Japan
| | - Tadashi Ichikawa
- Department of Neurology, Saitama Prefectural Rehablitation Center, Ageo-city, Saitama, Japan
| | - Yoshiro Ehara
- Department of Medical Education, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan; Department of Neuroscience for Neurodegenerative Disorders, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
27
|
Chen KH, Lin CH, Wu RM. Psychotic-affective symptoms and multiple system atrophy expand phenotypes of spinocerebellar ataxia type 2. BMJ Case Rep 2012; 2012:bcr.10.2011.5061. [PMID: 22605703 DOI: 10.1136/bcr.10.2011.5061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a progressive neurodegenerative disorder, characterised by ataxic gait, slow saccades and peripheral neuropathy. Levodopa-responsive parkinsonism could be a clinical phenotype of SCA2, especially those of Chinese origin. In addition to these motor symptoms, SCA2 has been associated with depression and cognitive dysfunction, with only rare reports of psychosis. The authors report the presence of severe psychosis, major depression and multiple system atrophy in affected subjects of a Taiwanese family with intermediate CAG repeats within the ATXN2 gene. The identification of this rare and distinctive SCA2 phenotype expands the current knowledge of the phenotypic variability of SCA2 and suggests that modifier genes could influence the clinical phenotype of SCA2.
Collapse
Affiliation(s)
- Kai-Hsiang Chen
- Neurology Department, National Taiwan University Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
28
|
Mascalchi M, Vella A. Magnetic resonance and nuclear medicine imaging in ataxias. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:85-110. [PMID: 21827882 DOI: 10.1016/b978-0-444-51892-7.00004-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Imaging techniques including computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET) have been widely applied to the investigation of patients with acute or chronic ataxias. Fundamentally, CT has a role in the emergency evaluation of the patient with acute ataxia to ascertain brainstem or cerebellar hemorrhage and to exclude a mass lesion in the posterior cranial fossa. Conventional MRI is the most frequently performed imaging investigation in patients with ataxia. It can support the diagnosis of acute cerebellitis and Wernicke encephalopathy by revealing T2 signal changes with a typical distribution. In patients with inherited or sporadic chronic ataxia it reveals three fundamental patterns of atrophy of the brainstem, cerebellum, and spinal cord which match the gross neuropathological descriptions. These are represented by olivopontocerebellar atrophy (OPCA), cortical cerebellar atrophy (CCA), and spinal atrophy (SA). A substantial correspondence exists among these patterns of atrophy shown by MRI and the etiological classification of inherited or acquired chronic ataxias. This, along with demonstration of T2 signal changes characteristic of some diseases, makes conventional MRI potentially useful for the diagnostic work-up of the single patient, especially in the case of a sporadic disease. Non-conventional MR techniques including diffusion MR, spectroscopy, and functional MR have been used in patients with acute or chronic ataxia, but their exact role in the evaluation of the single patient is not established yet. They are currently investigated as potential tools to monitor progression of neurodegeneration in chronic ataxia and to serve as "surrogate markers" in clinical trials. Several radiotracers have been utilized in combination with SPECT and PET in patients with ataxia. Perfusion SPECT can reveal cerebellar blood flow abnormalities early in the course of cerebellitis. It has also been utilized to investigate perfusion of the brain in several inherited or sporadic chronic ataxic diseases, contributing to improved understanding of the pathophysiology of these conditions. Recently, perfusion SPECT has been tested as a "surrogate marker" to verify the effects of newly developed therapies in patients with a variety of chronic ataxias. Whole-body FDG-PET is recommended in patients with suspected paraneoplastic cerebellar degeneration to detect the primary malignancy. Brain FDG-PET has provided important information on the pathophysiology of several acquired and inherited conditions. PET and SPECT with radiotracers able to assess the nigrostriatal system or the density of D2 dopamine receptors in the striatum are increasingly used in patients with adult-onset sporadic ataxia for the differential diagnosis between multiple system atrophy in which overt striatal abnormalities are found and idiopathic late-onset cerebellar ataxia in which no abnormality is detected.
Collapse
Affiliation(s)
- Mario Mascalchi
- Radiodiagnostic Section, Department of Clinical Physiopathology, University of Florence, Italy.
| | | |
Collapse
|
29
|
Abstract
In the last 25 years there have been enormous advances in brain imaging. In addition to utility in diagnosis, these have led to novel insights into the pathogenesis of basal ganglia disease and the role of dopamine and the basal ganglia in normal health. The authors review highlights of this work, with a focus on advances in Parkinson's disease, the dystonias, Huntington's disease, and the role of dopamine in cognition and reward signaling. Emerging areas for future development include studies of functional connectivity, the analysis of default mode networks, studies of novel neurochemical pathways, methods to study disease pathogenesis, and the application of imaging techniques to investigate animal models of disease.
Collapse
Affiliation(s)
- A Jon Stoessl
- Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
30
|
Model organisms reveal insight into human neurodegenerative disease: ataxin-2 intermediate-length polyglutamine expansions are a risk factor for ALS. J Mol Neurosci 2011; 45:676-83. [PMID: 21660502 PMCID: PMC3207127 DOI: 10.1007/s12031-011-9548-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/06/2011] [Indexed: 12/13/2022]
Abstract
Model organisms include yeast Saccromyces cerevisae and fly Drosophila melanogaster. These systems have powerful genetic approaches, as well as highly conserved pathways, both for normal function and disease. Here, we review and highlight how we applied these systems to provide mechanistic insight into the toxicity of TDP-43. TDP-43 accumulates in pathological aggregates in ALS and about half of FTD. Yeast and fly studies revealed an interaction with the counterparts of human Ataxin-2, a gene whose polyglutamine repeat expansion is associated with spinocerebellar ataxia type 2. This finding raised the hypothesis that repeat expansions in ataxin-2 may associate with diseases characterized by TDP-43 pathology such as ALS. DNA analysis of patients revealed that intermediate-length polyglutamine expansions in ataxin-2 are a risk factor for ALS, such that repeat lengths are greater than normal, but lower than that associated with spinocerebellar ataxia type 2 (SCA2), and are more frequent in ALS patients than in matched controls. Moreover, repeat expansions associated with ALS are interrupted CAA-CAG sequences as opposed to the pure CAG repeat expansions typically associated with SCA2. These studies provide an example of how model systems, when extended to human cells and human patient tissue, can reveal new mechanistic insight into disease.
Collapse
|
31
|
Whaley NR, Fujioka S, Wszolek ZK. Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis 2011; 6:33. [PMID: 21619691 PMCID: PMC3123548 DOI: 10.1186/1750-1172-6-33] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 05/28/2011] [Indexed: 12/26/2022] Open
Abstract
Type I autosomal dominant cerebellar ataxia (ADCA) is a type of spinocerebellar ataxia (SCA) characterized by ataxia with other neurological signs, including oculomotor disturbances, cognitive deficits, pyramidal and extrapyramidal dysfunction, bulbar, spinal and peripheral nervous system involvement. The global prevalence of this disease is not known. The most common type I ADCA is SCA3 followed by SCA2, SCA1, and SCA8, in descending order. Founder effects no doubt contribute to the variable prevalence between populations. Onset is usually in adulthood but cases of presentation in childhood have been reported. Clinical features vary depending on the SCA subtype but by definition include ataxia associated with other neurological manifestations. The clinical spectrum ranges from pure cerebellar signs to constellations including spinal cord and peripheral nerve disease, cognitive impairment, cerebellar or supranuclear ophthalmologic signs, psychiatric problems, and seizures. Cerebellar ataxia can affect virtually any body part causing movement abnormalities. Gait, truncal, and limb ataxia are often the most obvious cerebellar findings though nystagmus, saccadic abnormalities, and dysarthria are usually associated. To date, 21 subtypes have been identified: SCA1-SCA4, SCA8, SCA10, SCA12-SCA14, SCA15/16, SCA17-SCA23, SCA25, SCA27, SCA28 and dentatorubral pallidoluysian atrophy (DRPLA). Type I ADCA can be further divided based on the proposed pathogenetic mechanism into 3 subclasses: subclass 1 includes type I ADCA caused by CAG repeat expansions such as SCA1-SCA3, SCA17, and DRPLA, subclass 2 includes trinucleotide repeat expansions that fall outside of the protein-coding regions of the disease gene including SCA8, SCA10 and SCA12. Subclass 3 contains disorders caused by specific gene deletions, missense mutation, and nonsense mutation and includes SCA13, SCA14, SCA15/16, SCA27 and SCA28. Diagnosis is based on clinical history, physical examination, genetic molecular testing, and exclusion of other diseases. Differential diagnosis is broad and includes secondary ataxias caused by drug or toxic effects, nutritional deficiencies, endocrinopathies, infections and post-infection states, structural abnormalities, paraneoplastic conditions and certain neurodegenerative disorders. Given the autosomal dominant pattern of inheritance, genetic counseling is essential and best performed in specialized genetic clinics. There are currently no known effective treatments to modify disease progression. Care is therefore supportive. Occupational and physical therapy for gait dysfunction and speech therapy for dysarthria is essential. Prognosis is variable depending on the type of ADCA and even among kindreds.
Collapse
|
32
|
Ross OA, Rutherford NJ, Baker M, Soto-Ortolaza AI, Carrasquillo MM, DeJesus-Hernandez M, Adamson J, Li M, Volkening K, Finger E, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C, Kertesz A, Bigio EH, Lippa C, Woodruff BK, Knopman DS, White CL, Van Gerpen JA, Meschia JF, Mackenzie IR, Boylan K, Boeve BF, Miller BL, Strong MJ, Uitti RJ, Younkin SG, Graff-Radford NR, Petersen RC, Wszolek ZK, Dickson DW, Rademakers R. Ataxin-2 repeat-length variation and neurodegeneration. Hum Mol Genet 2011; 20:3207-12. [PMID: 21610160 DOI: 10.1093/hmg/ddr227] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expanded glutamine repeats of the ataxin-2 (ATXN2) protein cause spinocerebellar ataxia type 2 (SCA2), a rare neurodegenerative disorder. More recent studies have suggested that expanded ATXN2 repeats are a genetic risk factor for amyotrophic lateral sclerosis (ALS) via an RNA-dependent interaction with TDP-43. Given the phenotypic diversity observed in SCA2 patients, we set out to determine the polymorphic nature of the ATXN2 repeat length across a spectrum of neurodegenerative disorders. In this study, we genotyped the ATXN2 repeat in 3919 neurodegenerative disease patients and 4877 healthy controls and performed logistic regression analysis to determine the association of repeat length with the risk of disease. We confirmed the presence of a significantly higher number of expanded ATXN2 repeat carriers in ALS patients compared with healthy controls (OR = 5.57; P= 0.001; repeat length >30 units). Furthermore, we observed significant association of expanded ATXN2 repeats with the development of progressive supranuclear palsy (OR = 5.83; P= 0.004; repeat length >30 units). Although expanded repeat carriers were also identified in frontotemporal lobar degeneration, Alzheimer's and Parkinson's disease patients, these were not significantly more frequent than in controls. Of note, our study identified a number of healthy control individuals who harbor expanded repeat alleles (31-33 units), which suggests caution should be taken when attributing specific disease phenotypes to these repeat lengths. In conclusion, our findings confirm the role of ATXN2 as an important risk factor for ALS and support the hypothesis that expanded ATXN2 repeats may predispose to other neurodegenerative diseases, including progressive supranuclear palsy.
Collapse
Affiliation(s)
- Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yu Z, Zhu Y, Chen-Plotkin AS, Clay-Falcone D, McCluskey L, Elman L, Kalb RG, Trojanowski JQ, Lee VMY, Van Deerlin VM, Gitler AD, Bonini NM. PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats. PLoS One 2011; 6:e17951. [PMID: 21479228 PMCID: PMC3066214 DOI: 10.1371/journal.pone.0017951] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 02/16/2011] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive disease leading to paralysis and death. Recently, intermediate length polyglutamine (polyQ) repeats of 27-33 in ATAXIN-2 (ATXN2), encoding the ATXN2 protein, were found to increase risk for ALS. In ATXN2, polyQ expansions of ≥ 34, which are pure CAG repeat expansions, cause spinocerebellar ataxia type 2. However, similar length expansions that are interrupted with other codons, can present atypically with parkinsonism, suggesting that configuration of the repeat sequence plays an important role in disease manifestation in ATXN2 polyQ expansion diseases. Here we determined whether the expansions in ATXN2 associated with ALS were pure or interrupted CAG repeats, and defined single nucleotide polymorphisms (SNPs) rs695871 and rs695872 in exon 1 of the gene, to assess haplotype association. We found that the expanded repeat alleles of 40 ALS patients and 9 long-repeat length controls were all interrupted, bearing 1-3 CAA codons within the CAG repeat. 21/21 expanded ALS chromosomes with 3CAA interruptions arose from one haplotype (GT), while 18/19 expanded ALS chromosomes with <3CAA interruptions arose from a different haplotype (CC). Moreover, age of disease onset was significantly earlier in patients bearing 3 interruptions vs fewer, and was distinct between haplotypes. These results indicate that CAG repeat expansions in ATXN2 associated with ALS are uniformly interrupted repeats and that the nature of the repeat sequence and haplotype, as well as length of polyQ repeat, may play a role in the neurological effect conferred by expansions in ATXN2.
Collapse
Affiliation(s)
- Zhenming Yu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yongqing Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alice S. Chen-Plotkin
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Dana Clay-Falcone
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Leo McCluskey
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Lauren Elman
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Robert G. Kalb
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Vivianna M. Van Deerlin
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Aaron D. Gitler
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Nancy M. Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Howard Hughes Medical Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
34
|
van Gaalen J, Giunti P, van de Warrenburg BP. Movement disorders in spinocerebellar ataxias. Mov Disord 2011; 26:792-800. [PMID: 21370272 DOI: 10.1002/mds.23584] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/12/2010] [Accepted: 11/14/2010] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant spinocerebellar ataxias (SCAs) can present with a large variety of noncerebellar symptoms, including movement disorders. In fact, movement disorders are frequent in many of the various SCA subtypes, and they can be the presenting, dominant, or even isolated disease feature. When combined with cerebellar ataxia, the occurrence of a specific movement disorder can provide a clue toward the underlying genotype. There are reasons to believe that for some coexisting movement disorders, the cerebellar pathology itself is the culprit, for example, in the case of cortical myoclonus and perhaps dystonia. However, movement disorders in SCAs are more likely related to extracerebellar pathology, and imaging and neuropathological data indeed show involvement of other parts of the motor system (substantia nigra, striatum, pallidum, motor cortex) in some SCA subtypes. When confronted with a patient with an isolated movement disorder, that is, without ataxia, there is currently no reason to routinely screen for SCA gene mutations, the only exceptions being SCA2 in autosomal dominant parkinsonism (particularly in Asian patients) and SCA17 in the case of a Huntington's disease-like presentation without an HTT mutation.
Collapse
Affiliation(s)
- Judith van Gaalen
- Department of Neurology, Donders Institute of Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
35
|
Genetic and clinical analysis in a Chinese parkinsonism-predominant spinocerebellar ataxia type 2 family. J Hum Genet 2011; 56:330-4. [PMID: 21307863 DOI: 10.1038/jhg.2011.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parkinson's disease is a degenerative central nervous system disorder that often impairs motor skills, speech and other functions. We discovered a large Chinese family showing primarily parkinsonism symptoms with autosomal dominant inheritance. Six affected individuals in the family showed typical parkinsonism symptoms, including pill-rolling tremor. Two other affected individuals showed cerebellar ataxia symptoms. A whole-genome scan using the 50K single nucleotide polymorphism array with three different linkage methods detected two positive regions on chromosome 12q24.1 and 5q13.3. The ATXN2 gene, responsible for spinocerebellar ataxia type 2 (SCA2) was located precisely in the center of the positive region on chromosome 12. Further analysis of SCA2 revealed heterozygous pathological CAG expansions in the family. The affected individuals' symptoms were typical of parkinsonism, but complex. Inverse correlation between CAG repeat size and age of onset is not obvious in this pedigree. This parkinsonism-predominant SCA2 family shared the same disease gene locus with other 'standard' SCA2 families, but it is possible that variations in one or more modifier genes might account for the parkinsonism-predominant SCA2 predisposition observed in this pedigree.
Collapse
|
36
|
Nishikawa N, Nagai M, Tsujii T, Tanabe N, Takashima H, Nomoto M. Three spinocerebellar ataxia type 2 siblings with ataxia, parkinsonism, and motor neuronopathy. Intern Med 2011; 50:1429-32. [PMID: 21720065 DOI: 10.2169/internalmedicine.50.5262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) represents a family of dominant neurodegenerative disorders that results from CAG expansion repeat mutations. The phenotype consists of some common features, most notably progressive ataxia. We describe three siblings with SCA2, manifesting parkinsonism and ataxia in the first sibling, juvenile parkinsonism in the second and motor neuronopathy in the third. Genetic examination revealed expansion to 42, 43, and 42 CAG repeats. There was no relationship between the number of repeats and phenotype. The SCA2 gene should be studied in families with heterogeneous neurodegenerative disorders, including motor neuron disease.
Collapse
Affiliation(s)
- Noriko Nishikawa
- Department of Neurology and Clinical Pharmacology, Ehime University Hospital, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Ramos EM, Martins S, Alonso I, Emmel VE, Saraiva-Pereira ML, Jardim LB, Coutinho P, Sequeiros J, Silveira I. Common origin of pure and interrupted repeat expansions in spinocerebellar ataxia type 2 (SCA2). Am J Med Genet B Neuropsychiatr Genet 2010; 153B:524-531. [PMID: 19676102 DOI: 10.1002/ajmg.b.31013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease characterized by gait and limb ataxia. This disease is caused by the expansion of a (CAG)(n) located in the ATXN2, that encodes a polyglutamine tract of more than 34 repeats. Lately, alleles with 32-33 CAGs have been associated to late-onset disease cases. Repeat interruptions by CAA triplets are common in normal alleles, while expanded alleles usually contain a pure repeat tract. To investigate the mutational origin and the instability associated to the ATXN2 repeat, we performed an extensive haplotype study and sequencing of the CAG/CAA repeat, in a cohort of families of different geographic origins and phenotypes. Our results showed (1) CAA interruptions also in expanded ATXN2 alleles; (2) that pathological CAA interrupted alleles shared an ancestral haplotype with pure expanded alleles; and (3) higher genetic diversity in European SCA2 families, suggesting an older European ancestry of SCA2. In conclusion, we found instability towards expansion in interrupted ATXN2 alleles and a shared ancestral ATXN2 haplotype for pure and interrupted expanded alleles; this finding has strong implications in mutation diagnosis and counseling. Our results indicate that interrupted alleles, below the pathological threshold, may be a reservoir of mutable alleles, prone to expansion in subsequent generations, leading to full disease mutation.
Collapse
Affiliation(s)
- Eliana Marisa Ramos
- UnIGENe, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sandra Martins
- UnIGENe, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Isabel Alonso
- UnIGENe, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | | | - Paula Coutinho
- UnIGENe, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Hospital São Sebastião, Feira, Portugal
| | - Jorge Sequeiros
- UnIGENe, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Isabel Silveira
- UnIGENe, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
38
|
Krogias C, Postert T, Eyding J. Transcranial Sonography in Ataxia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 90:217-35. [DOI: 10.1016/s0074-7742(10)90016-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
39
|
Klein C, Schneider SA, Lang AE. Hereditary parkinsonism: Parkinson disease look-alikes-An algorithm for clinicians to “PARK
” genes and beyond. Mov Disord 2009; 24:2042-58. [DOI: 10.1002/mds.22675] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
40
|
Socal M, Emmel V, Rieder C, Hilbig A, Saraiva-Pereira M, Jardim L. Intrafamilial variability of Parkinson phenotype in SCAs: Novel cases due to SCA2 and SCA3 expansions. Parkinsonism Relat Disord 2009; 15:374-8. [DOI: 10.1016/j.parkreldis.2008.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
|
41
|
Muthipeedika J, Furtado S, Suchowersky O. A cerebellar syndrome without cerebellar signs. Mov Disord 2008. [DOI: 10.3109/9780203008454-82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Abstract
BACKGROUND Parkinsonism (PD) is occasionally seen in several types of spinocerebellar ataxia (SCA). Mutations in SCA gene have been reported in the patients of parkinsonism without ataxia. METHODS We examined spinocerebellar ataxia type 12 mutation in 877 PD and 199 multiple system atrophy (MSA) patients. RESULTS AND CONCLUSIONS No patients showed abnormal SCA12 expansion. It suggests that PD and MSA are not associated with SCA12 and it is not necessary to screen SCA12 in PD and MSA patients.
Collapse
|
43
|
Sáfrány E, Balikó L, Guseo A, Faragó B, Melegh B. The autosomal dominant cerebellar ataxias are hereditary neurodegenerative diseases. Orv Hetil 2007; 148:2125-32. [DOI: 10.1556/oh.2007.28205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Az autoszomális domináns cerebellaris ataxiák örökletes neurodegeneratív betegségek. Az ataxiák még néhány évtizeddel ezelőtt is a legkevésbé megértett idegi rendellenességek közé tartoztak, de molekuláris hátterük tisztázása mára lehetőséget teremtett a pontos diagnózis megállapítására, és segítséget nyújtott számos olyan különös jelenség értelmezésében is, mint például a családon belül változatosan megjelenő fenotípus. A spinocerebellaris ataxiák patogenezisének megismerése esélyt kínálhat sikeres terápiák kifejlesztésére, a jelenlegi, pusztán tüneti kezelések helyett. A gyors egymásutánban felfedezett gének és génlocusok, valamint a kialakított ataxiaaltípusok azonban zavart is okozhatnak a betegség pontos meghatározásában. Célunk rövid betekintést nyújtani e neurodegeneratív kórképek genetikai hátterébe, és a fontosabb ataxiaaltípusok jellemzésével megkönnyíteni az egyértelmű diagnózis felállítását.
Collapse
Affiliation(s)
- Enikő Sáfrány
- 1 Pécsi Tudományegyetem, Általános Orvostudományi Kar Orvosi Genetikai és Gyermekfejlődéstani Intézet Pécs Szigeti út 12. 7624
| | - László Balikó
- 2 Veszprém Megyei Csolnoky Ferenc Kórház Neurológiai és Stroke Osztály Veszprém
| | - András Guseo
- 3 Fejér Megyei Szent György Kórház Neurológiai Osztály Székesfehérvár
| | - Bernadett Faragó
- 1 Pécsi Tudományegyetem, Általános Orvostudományi Kar Orvosi Genetikai és Gyermekfejlődéstani Intézet Pécs Szigeti út 12. 7624
| | - Béla Melegh
- 1 Pécsi Tudományegyetem, Általános Orvostudományi Kar Orvosi Genetikai és Gyermekfejlődéstani Intézet Pécs Szigeti út 12. 7624
| |
Collapse
|
44
|
Charles P, Camuzat A, Benammar N, Sellal F, Destée A, Bonnet AM, Lesage S, Le Ber I, Stevanin G, Dürr A, Brice A. Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? Neurology 2007; 69:1970-5. [PMID: 17568014 DOI: 10.1212/01.wnl.0000269323.21969.db] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Autosomal dominant parkinsonism (ADP) is caused in a large percentage of familial and sporadic cases by mutations in the LRRK2 gene, particularly G2019S. It is also caused by mutations in genes associated with autosomal dominant cerebellar ataxia (ADCA), notably CAG/CAA repeat expansions in SCA2. METHODS We screened 164 families with ADP for expansions in the SCA2, 3, and 17 genes and for the G2019S mutation in LRRK2. The SCA2 CAG/CAA repeat expansion was sequenced to determine its structure. The phenotypes of patients with ADP caused by the SCA2, LRRK2, and unknown mutations were compared, as well as those of SCA2 patients with interrupted or uninterrupted expansions of the same size. RESULTS Three French ADP families had SCA2 mutations. The expansions ranged from 37 to 39 repeats and were interrupted and stable upon transmission. All patients (n = 9) had levodopa-responsive parkinsonism without cerebellar signs. They had significantly more symmetric signs and less rigidity than ADP caused by the G2019S mutation in LRRK2 or by unknown mutations. Interestingly, two sisters carrying both the SCA2 and the G2019S LRRK2 mutations had markedly earlier onset than their mother with only SCA2. In contrast, similar-sized but uninterrupted repeats were associated with ADCA in which cerebellar ataxia was constant and associated only rarely with one or more mild parkinsonian signs. CONCLUSION These results suggest that the configuration of the SCA2 CAG/CAA repeat expansions plays an important role in phenotype variability. Uninterrupted SCA2 repeat expansions found in families with autosomal dominant cerebellar ataxia result in somatic mosaicism and produce large hairpin RNAs, which may interact with double-stranded RNA-binding proteins. These characteristics are modified by interruption of the SCA2 repeat expansion as found in families with autosomal dominant parkinsonism.
Collapse
Affiliation(s)
- P Charles
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Genetics and Cytogenetics, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lin CH, Hwu WL, Chiang SC, Tai CH, Wu RM. Lack of mutations in spinocerebellar ataxia type 2 and 3 genes in a Taiwanese (ethnic Chinese) cohort of familial and early-onset parkinsonism. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:434-8. [PMID: 17440947 DOI: 10.1002/ajmg.b.30427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recent reports suggest that CAG triplet expansions of spinocerebellar ataxia type 2 and 3 (SCA2 and SCA3) genes are the cause of typical levodopa-responsive Parkinson's disease (PD) in familial cases, several of which were ethnic Chinese. To investigate the role of SCA2 and SCA3 mutations in Chinese familial and early-onset PD patients, we analyzed CAG triplet repeat expansions of SCA2 and SCA3 genes in a cohort of 73 Taiwanese/Ethnic Chinese familial and early-onset PD patients [mean age at onset 42.70 +/- 7.17 years (mean +/- SD)]. Thirteen of them (17.8%) had positive family history. All patients received comprehensive clinical evaluation including a thorough neurological examination, laboratory tests, and neuroimaging studies to exclude secondary causes and atypical parkinsonism. The CAG repeat length in these genes was determined using polymerase chain reaction polyacrylamide gel electrophoresis. SCA2 gene CAG repeats ranged from 15 to 26 repeats with a median of 20, and SCA3 gene CAG repeats ranged from 15 to 40 with a median of 15. No long pathogenic repeats were found in either SCA2 or SCA3, although borderline CAG repeat number was detected in the SCA3 gene of four patients. Thus, mutations of SCA2 or SCA3 did not play a major role in familial or early-onset PD in our study cohort. PD patients without autosomal dominant family history or obvious cerebellar ataxia should not be candidates for routine screening of SCA2 or SCA3 mutations for cost-effectiveness.
Collapse
Affiliation(s)
- Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
46
|
Satterfield TF, Pallanck LJ. Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. Hum Mol Genet 2006; 15:2523-32. [PMID: 16835262 DOI: 10.1093/hmg/ddl173] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations resulting in the expansion of a polyglutamine tract in the protein ataxin-2 give rise to the neurodegenerative disorders spinocerebellar ataxia type 2 and Parkinson's disease. The normal cellular function of ataxin-2 and the mechanism by which polyglutamine expansion of ataxin-2 causes neurodegeneration are unknown. Here, we demonstrate that ataxin-2 and its Drosophila homolog, ATX2, assemble with polyribosomes and poly(A)-binding protein (PABP), a key regulator of mRNA translation. The assembly of ATX2 with polyribosomes is mediated independently by two distinct evolutionarily conserved regions of ATX2: an N-terminal Lsm/Lsm-associated domain (LsmAD), found in proteins that function in nuclear RNA processing and mRNA decay, and a PAM2 motif, found in proteins that interact physically with PABP. We further show that the PAM2 motif mediates a physical interaction of ATX2 with PABP in addition to promoting ATX2 assembly with polyribosomes. Our results suggest a model in which ATX2 binds mRNA directly through its Lsm/LsmAD domain and indirectly via binding PABP that is itself directly bound to mRNA. These findings, coupled with work on other ataxin-2 family members, suggest that ATX2 plays a direct role in translational regulation. Our results raise the possibility that polyglutamine expansions within ataxin-2 cause neurodegeneration by interfering with the translational regulation of particular mRNAs.
Collapse
Affiliation(s)
- Terrence F Satterfield
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195-7730, USA
| | | |
Collapse
|
47
|
Scherfler C, Boesch SM, Donnemiller E, Seppi K, Weirich-Schwaiger H, Goebel G, Virgolini I, Wenning GK, Poewe W. Topography of cerebral monoamine transporter availability in families with SCA2 mutations: a voxel-wise [123I]beta-CIT SPECT analysis. Eur J Nucl Med Mol Imaging 2006; 33:1084-90. [PMID: 16699769 DOI: 10.1007/s00259-006-0104-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of this study was to investigate the monoamine transporter status of dopamine, serotonin and norepinephrine throughout the brain in spinocerebellar ataxia type 2 (SCA2). To this end, nine patients were studied with [(123)I]beta-CIT SPECT. METHODS Data were compared with ten age-matched healthy control subjects and ten patients with young-onset Parkinson's disease (YOPD), matched for age. Parametric SPECT images of the specific-to-non-displaceable equilibrium partition coefficient (V (3)''), which is proportional to the receptor density (B (max)), were generated. In order to objectively localise focal changes in beta-CIT uptake throughout the brain volume without having to make an a priori hypothesis as to their location, statistical parametric mapping (SPM) was applied to SPECT images. Data clusters revealed by SPM, showing significant differences in V (3)'' values between groups, were transformed onto the individual V (3)'' image to obtain mean regional uptake values. RESULTS Both SCA2 and YOPD patients showed significant decreases in striatal [(123)I]beta-CIT SPECT uptake when compared with controls. However, in SCA2 patients, additional reductions in caudate/anterior putamen, midbrain and pons [(123)I]beta-CIT uptake were localised with SPM. CONCLUSION Voxel-wise analysis of [(123)I]beta-CIT SPECT revealed more widespread decline of monoamine transporter availability in SCA2 than in YOPD, reflecting differences in the underlying pathology. We suggest that the quantification of midbrain and pons [(123)I]beta-CIT signal is likely to improve the diagnostic accuracy in patients presenting with clinical features of both SCA2 and YOPD at initial investigation.
Collapse
Affiliation(s)
- Christoph Scherfler
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kraft S, Furtado S, Ranawaya R, Parboosingh J, Bleoo S, McElligott K, Bridge P, Spacey S, Das S, Suchowersky O. Adult onset spinocerebellar ataxia in a Canadian movement disorders clinic. Can J Neurol Sci 2006; 32:450-8. [PMID: 16408574 DOI: 10.1017/s0317167100004431] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The spinocerebellar ataxias (SCAs) are a genetically and clinically heterogeneous group of neurodegenerative disorders. Relative frequencies vary within different ethnic groups and geographical locations. OBJECTIVES 1) To determine the frequencies of hereditary and sporadic adult onset SCAs in the Movement Disorders population; 2) to assess if the fragile X mental retardation gene 1 (FMR1) premutation is found in this population. METHODS A retrospective chart review of individuals with a diagnosis of adult onset SCA was carried out. Testing for SCA types 1, 2, 3, 6, 7, and 8, Dentatorubral-pallidoluysian atrophy (DRPLA), Friedreich ataxia and the FMR1 expansion was performed. RESULTS A total of 69 patients in 60 families were identified. Twenty-one (35%) of the families displayed autosomal dominant and two (3.3%) showed autosomal recessive (AR) pattern of inheritance. A positive but undefined family history was noted in nine (15%). The disorder appeared sporadic in 26 patients (43.3%). In the AD families, the most common mutation was SCA3 (23.8%) followed by SCA2 (14.3%) and SCA6 (14.3%). The SCA1 and SCA8 were each identified in 4.8%. FA was found in a pseudodominant pedigree, and one autosomal recessive pedigree. One sporadic patient had a positive test (SCA3).Dentatorubral-pallidoluysian atrophy and FMR1 testing was negative. CONCLUSION A positive family history was present in 53.3% of our adult onset SCA patients. A specific genetic diagnosis could be given in 61.9% of dominant pedigrees with SCA3 being the most common mutation, followed by SCA2 and SCA6. The yield in sporadic cases was low. The fragile X premutation was not found to be responsible for SCA.
Collapse
Affiliation(s)
- Scott Kraft
- Movement Disorsders program, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Reimold M, Globas C, Gleichmann M, Schulze M, Gerloff C, Bares R, Machulla HJ, Bürk K. Spinocerebellar ataxia type 1, 2, and 3 and restless legs syndrome: Striatal dopamine D2 receptor status investigated by [11C]raclopride positron emission tomography. Mov Disord 2006; 21:1667-73. [PMID: 16941469 DOI: 10.1002/mds.20978] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In spinocerebellar ataxias (SCAs), up to 30% of patients complain of restless legs syndrome (RLS). In primary RLS, a putative role of the dopaminergic system has been postulated. To assess dopaminergic function in SCA1, 2, and 3, dopamine D(2) receptor binding potential (BP) was assessed by [(11)C]raclopride positron emission tomography in 10 SCA patients, 4 of whom suffered from RLS as demonstrated by polysomnography. BP was compared to 9 age-matched control subjects. In 2 SCA patients, striatal BP was clearly reduced (<2 SD below the mean of controls). However, there were no significant group differences between SCA and controls, largely owing to a significantly higher variance of striatal BP in SCA. BP was negatively correlated with disease duration. The fit suggests an increased BP in early stages, followed by a moderate decline in all quantified regions (caudate, dorsal putamen, ventral striatum) presumably reflecting a progressive loss of D(2) receptors. RLS in SCA was not accompanied by a significant reduction of D(2) receptor availability in the striatum. This missing correlation may point to an extrastriatal origin of RLS.
Collapse
|
50
|
Lu CS, Chou YHW, Weng YH, Chen RS. Genetic and DAT imaging studies of familial parkinsonism in a Taiwanese cohort. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:235-40. [PMID: 17017535 DOI: 10.1007/978-3-211-45295-0_36] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We here summarize the results of genetic investigations on a series of 82 parkinsonian patients from 60 families in Taiwan. We found 13 parkin patients in 7 families (12%), 2 PINK1 sibs from 1 family, and 1 LRRK2 patient from 1 family with I2012T mutation. We also identified SCA2 in 8 patients from 5 families (8%) and SCA3 in 3 patients from 1 family, all presenting with parkinsonian phenotype. In the available patients with parkin, PINK1, SCA2 and SCA3, the dopamine transporter (DAT) scan revealed that the reduction of uptake was primarily observed in the bilateral putamen, basically sharing a similar pattern with that in idiopathic Parkinson's disease. We concluded that the genetic causes contributed to about 25% of our series of familial parkinsonism. The parkin mutations and SCA2 were the most frequent genetic causes in our series with Chinese ethnicity. The results of DAT scan indicated that bilateral putamen was essentially involved in various genetically-caused familial parkinsonism.
Collapse
Affiliation(s)
- C S Lu
- Movement Disorders Section, Department of Neurology and Neuroscience Research Center, Human Molecular Genetic Laboratory, Chang Gung Memorial Hospital and Chang Gung University, Taiwan.
| | | | | | | |
Collapse
|