1
|
Rocchi C, Forcadela M, Kelly P, Linaker S, Gibbons E, Bhojak M, Jacob A, Hamid S, Huda S. The absence of antibodies in longitudinally extensive transverse myelitis may predict a more favourable prognosis. Mult Scler 2024; 30:345-356. [PMID: 38258822 DOI: 10.1177/13524585231221664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
BACKGROUND Isolated first episodes of longitudinally extensive transverse myelitis (LETM) have typically been associated with neuromyelitis optica spectrum disorder (NMOSD) or myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). However, in some cases, serological testing and screening for other aetiologies are negative, a condition referred to as double seronegative longitudinally extensive transverse myelitis (dsLETM). OBJECTIVE The objective of this study was to evaluate comparative outcomes of dsLETM, MOGAD-LETM and NMOSD-LETM. METHODS Cohort study of LETM cases seen in the UK NMOSD Highly Specialised Service between January 2008 and March 2022. RESULTS LETM = 87 cases were identified (median onset age = 46 years (15-85); median follow-up = 46 months (1-144); 47% NMOSD-LETM = 41 (aquaporin-4 antibodies (AQP4-IgG) positive = 36), 20% MOGAD-LETM = 17 and 33% dsLETM = 29). Despite similar Expanded Disability Status Scale (EDSS) at nadir, last EDSS was higher in AQP4-IgG and seronegative NMOSD-LETM (sNMOSD) (p = 0.006). Relapses were less common in dsLETM compared to AQP4-IgG NMOSD-LETM and sNMOSD-LETM (19% vs 60% vs 100%; p = 0.001). Poor prognosis could be predicted by AQP4-IgG (odds ratio (OR) = 38.86 (95% confidence interval (CI) = 1.36-1112.86); p = 0.03) and EDSS 3 months after onset (OR = 65.85 (95% CI = 3.65-1188.60); p = 0.005). CONCLUSION dsLETM remains clinically challenging and difficult to classify with existing nosological terminology. Despite a similar EDSS at nadir, patients with dsLETM relapsed less and had a better long-term prognosis than NMOSD-LETM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anu Jacob
- The Walton Centre Foundation Trust, Liverpool, UK/Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Shahd Hamid
- The Walton Centre Foundation Trust, Liverpool, UK
| | - Saif Huda
- The Walton Centre Foundation Trust, Liverpool, UK
| |
Collapse
|
2
|
Jarius S, Aktas O, Ayzenberg I, Bellmann-Strobl J, Berthele A, Giglhuber K, Häußler V, Havla J, Hellwig K, Hümmert MW, Kleiter I, Klotz L, Krumbholz M, Kümpfel T, Paul F, Ringelstein M, Ruprecht K, Senel M, Stellmann JP, Bergh FT, Tumani H, Wildemann B, Trebst C. Update on the diagnosis and treatment of neuromyelits optica spectrum disorders (NMOSD) - revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part I: Diagnosis and differential diagnosis. J Neurol 2023:10.1007/s00415-023-11634-0. [PMID: 37022481 DOI: 10.1007/s00415-023-11634-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 04/07/2023]
Abstract
The term 'neuromyelitis optica spectrum disorders' (NMOSD) is used as an umbrella term that refers to aquaporin-4 immunoglobulin G (AQP4-IgG)-positive neuromyelitis optica (NMO) and its formes frustes and to a number of closely related clinical syndromes without AQP4-IgG. NMOSD were originally considered subvariants of multiple sclerosis (MS) but are now widely recognized as disorders in their own right that are distinct from MS with regard to immunopathogenesis, clinical presentation, optimum treatment, and prognosis. In part 1 of this two-part article series, which ties in with our 2014 recommendations, the neuromyelitis optica study group (NEMOS) gives updated recommendations on the diagnosis and differential diagnosis of NMOSD. A key focus is on differentiating NMOSD from MS and from myelin oligodendrocyte glycoprotein antibody-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disease, MOGAD), which shares significant similarity with NMOSD with regard to clinical and, partly, radiological presentation, but is a pathogenetically distinct disease. In part 2, we provide updated recommendations on the treatment of NMOSD, covering all newly approved drugs as well as established treatment options.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Judith Bellmann-Strobl
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Achim Berthele
- Department of Neurology, School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Katrin Giglhuber
- Department of Neurology, School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Vivien Häußler
- Department of Neurology and Institute of Neuroimmunology and MS (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kerstin Hellwig
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Martin W Hümmert
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ingo Kleiter
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke, Berg, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Markus Krumbholz
- Department of Neurology and Pain Treatment, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Department of Neurology and Stroke, University Hospital of Tübingen, Tübingen, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Friedemann Paul
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Makbule Senel
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jan-Patrick Stellmann
- Department of Neurology and Institute of Neuroimmunology and MS (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | | | | | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Corinna Trebst
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Lin L, Hang H, Zhang J, Lu J, Chen D, Shi J. Clinical significance of anti-SSA/Ro antibody in Neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2022; 58:103494. [PMID: 35051897 DOI: 10.1016/j.msard.2022.103494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/19/2021] [Accepted: 01/01/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system (CNS), also described as CNS autoimmune astrocytopathy, due to the production of pathogenic antibodies against aquaporin-4 (AQP4) expressed on the foot of astrocytes. NMOSD coexists with autoimmune diseases and related autoantibodies [anti-Sjogren's syndrome A (anti-SSA)/Ro antibody, anti-Sjogren's syndrome B (anti-SSB)/La antibody, anti-nuclear (anti-ANA) antibodies, anti-double-stranded DNA (anti-dsDNA) antibody, anti-thyroglobulin antibody, and anti-thyroid peroxidase antibody]. OBJECTIVES No precise conclusion has been drawn on the role of the anti-SSA/Ro antibody in NMOSD. Therefore, the aim of this work was to evaluate whether the anti-SSA/Ro antibody has an impact on the clinical manifestation or prognosis of NMOSD. METHODS Data were retrospectively collected from 102 patients with NMOSD diagnosed by experienced neurologists. The study population was divided into two groups based on the serum anti-SSA/Ro antibody status: NMOSD with or without anti-SSA/Ro antibody. The clinical, neuroimaging and laboratory parameters were compared between the two groups, including the neurological symptoms, MRI results, frequency of systemic autoantibodies, Expanded Disability Status Scale (EDSS), and NMOSD relapse rate. The EDSS and relapse were applied as measures of the NMOSD patient prognostic value. Cox regression analysis was used to evaluate the prognostic impact of anti-SSA/Ro antibody on NMOSD. RESULTS Among the 102 NMOSD patients, striking differences were observed in the positive rate of AQP4-IgG (89.2% vs. 72.3%, p = 0.046) between those patients with and without the anti-SSA/Ro antibody. In addition, NMOSD patients with anti-SSA/Ro antibody showed the presence of more frequent anti-ANA antibodies (p = 0.002), anti-SSB/La antibody (p < 0.001), anti-dsDNA antibody (p < 0.002), Sjogren's syndrome (SS, p < 0.001) and systemic lupus erythematosus (SLE, p = 0.045). Univariate and multivariate Cox regression analysis were performed to confirm that the anti-SSA/Ro antibody affected the EDSS score and the relapse of NMOSD patients. The analysis of the survival curve revealed that the EDSS score in the NMOSD patients positive for the anti-SSA/Ro antibody reached 4.0 (p = 0.035) and relapsed (p = 0.039) earlier than in the negative group. CONCLUSION The anti-SSA/Ro antibody could be associated with disease activity and severe disability in NMOSD.
Collapse
Affiliation(s)
- Liuyu Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hailun Hang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jihong Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jie Lu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Daowen Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
4
|
Fu CC, Gao C, Zhang HH, Mao YQ, Lu JQ, Petritis B, Huang AS, Yang XG, Long YM, Huang RP. Serum molecular biomarkers in neuromyelitis optica and multiple sclerosis. Mult Scler Relat Disord 2022; 59:103527. [DOI: 10.1016/j.msard.2022.103527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
|
5
|
Deng R, Wu Y, Xu L, Liu K, Huang X, Zhang X. Clinical risk factors and prognostic model for idiopathic inflammatory demyelinating diseases after haploidentical hematopoietic stem cell transplantation in patients with hematological malignancies. Am J Hematol 2021; 96:1407-1419. [PMID: 34350623 DOI: 10.1002/ajh.26312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 01/09/2023]
Abstract
Idiopathic inflammatory demyelinating diseases (IIDDs) of the central nervous system (CNS) are rare but serious neurological complications of haploidentical hematopoietic stem cell transplantation (haplo-HSCT). However, the risk factors and a method to predict the prognosis of post-transplantation CNS IIDDs are not available. This retrospective study first reviewed data from 4532 patients who received haplo-HSCT during 2008-2019 in our center, and 184 patients (4.1%) with IIDDs after haplo-HSCT were identified. Grades II to IV acute graft-versus-host disease (aGVHD) (p < 0.001) and chronic GVHD (cGVHD) (p = 0.009) were identified as risk factors for developing IIDDs after haplo-HSCT. We then divided the 184 IIDD patients into a derivation cohort and validation cohort due to transplantation time to develop and validate a model for predicting the prognosis of IIDDs. In the multivariate analysis of the derivation cohort, four candidate predictors were entered into the final prognostic model: cytomegalovirus (CMV) infection, Epstein-Barr virus (EBV) infection, IgG synthesis (IgG-syn) and spinal cord lesions. The prognostic model had an area under the receiver operating characteristic curve of 0.864 (95% CI: 0.803-0.925) in the internal validation cohort and 0.871 (95% CI: 0.806-0.931) in the external validation cohort. The calibration plots showed a high agreement between the predicted and observed outcomes. Decision curve analysis indicated that IIDD patients could benefit from the clinical application of the prognostic model. The identification of IIDD patients after allo-HSCT who have a poor prognosis might allow timely treatment and improve patient survival and outcomes.
Collapse
Affiliation(s)
- Rui‐Xin Deng
- Peking University People's Hospital Peking University Institute of Hematology Beijing China
- Collaborative Innovation Center of Hematology Peking University Beijing China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- National Clinical Research Center for Hematologic Disease Beijing China
| | - Ye‐Jun Wu
- Peking University People's Hospital Peking University Institute of Hematology Beijing China
- Collaborative Innovation Center of Hematology Peking University Beijing China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- National Clinical Research Center for Hematologic Disease Beijing China
| | - Lan‐Ping Xu
- Peking University People's Hospital Peking University Institute of Hematology Beijing China
- Collaborative Innovation Center of Hematology Peking University Beijing China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- National Clinical Research Center for Hematologic Disease Beijing China
| | - Kai‐Yan Liu
- Peking University People's Hospital Peking University Institute of Hematology Beijing China
- Collaborative Innovation Center of Hematology Peking University Beijing China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- National Clinical Research Center for Hematologic Disease Beijing China
| | - Xiao‐Jun Huang
- Peking University People's Hospital Peking University Institute of Hematology Beijing China
- Collaborative Innovation Center of Hematology Peking University Beijing China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- National Clinical Research Center for Hematologic Disease Beijing China
| | - Xiao‐Hui Zhang
- Peking University People's Hospital Peking University Institute of Hematology Beijing China
- Collaborative Innovation Center of Hematology Peking University Beijing China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- National Clinical Research Center for Hematologic Disease Beijing China
| |
Collapse
|
6
|
Mogensen FLH, Delle C, Nedergaard M. The Glymphatic System (En)during Inflammation. Int J Mol Sci 2021; 22:7491. [PMID: 34299111 PMCID: PMC8305763 DOI: 10.3390/ijms22147491] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023] Open
Abstract
The glymphatic system is a fluid-transport system that accesses all regions of the brain. It facilitates the exchange of cerebrospinal fluid and interstitial fluid and clears waste from the metabolically active brain. Astrocytic endfeet and their dense expression of the aquaporin-4 water channels promote fluid exchange between the perivascular spaces and the neuropil. Cerebrospinal and interstitial fluids are together transported back to the vascular compartment by meningeal and cervical lymphatic vessels. Multiple lines of work show that neurological diseases in general impair glymphatic fluid transport. Insofar as the glymphatic system plays a pseudo-lymphatic role in the central nervous system, it is poised to play a role in neuroinflammation. In this review, we discuss how the association of the glymphatic system with the meningeal lymphatic vessel calls for a renewal of established concepts on the CNS as an immune-privileged site. We also discuss potential approaches to target the glymphatic system to combat neuroinflammation.
Collapse
Affiliation(s)
- Frida Lind-Holm Mogensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
| | - Christine Delle
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
7
|
Chen T, Bosco DB, Ying Y, Tian DS, Wu LJ. The Emerging Role of Microglia in Neuromyelitis Optica. Front Immunol 2021; 12:616301. [PMID: 33679755 PMCID: PMC7933531 DOI: 10.3389/fimmu.2021.616301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Neuromyelitis optica (NMO) is an autoantibody-triggered neuro-inflammatory disease which preferentially attacks the spinal cord and optic nerve. Its defining autoantibody is specific for the water channel protein, aquaporin-4 (AQP4), which primarily is localized at the end-feet of astrocytes. Histopathology studies of early NMO lesions demonstrated prominent activation of microglia, the resident immune sentinels of the central nervous system (CNS). Significant microglial reactivity is also observed in NMO animal models induced by introducing AQP4-IgG into the CNS. Here we review the potential roles for microglial activation in human NMO patients as well as different animal models of NMO. We will focus primarily on the molecular mechanisms underlying microglial function and microglia-astrocyte interaction in NMO pathogenesis. Understanding the role of microglia in NMO pathology may yield novel therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Dale B. Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Yanlu Ying
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Dai-Shi Tian
- Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
The S1P-S1PR Axis in Neurological Disorders-Insights into Current and Future Therapeutic Perspectives. Cells 2020; 9:cells9061515. [PMID: 32580348 PMCID: PMC7349054 DOI: 10.3390/cells9061515] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Sphingosine 1-phosphate (S1P), derived from membrane sphingolipids, is a pleiotropic bioactive lipid mediator capable of evoking complex immune phenomena. Studies have highlighted its importance regarding intracellular signaling cascades as well as membrane-bound S1P receptor (S1PR) engagement in various clinical conditions. In neurological disorders, the S1P–S1PR axis is acknowledged in neurodegenerative, neuroinflammatory, and cerebrovascular disorders. Modulators of S1P signaling have enabled an immense insight into fundamental pathological pathways, which were pivotal in identifying and improving the treatment of human diseases. However, its intricate molecular signaling pathways initiated upon receptor ligation are still poorly elucidated. In this review, the authors highlight the current evidence for S1P signaling in neurodegenerative and neuroinflammatory disorders as well as stroke and present an array of drugs targeting the S1P signaling pathway, which are being tested in clinical trials. Further insights on how the S1P–S1PR axis orchestrates disease initiation, progression, and recovery may hold a remarkable potential regarding therapeutic options in these neurological disorders.
Collapse
|
9
|
Wang J, Wang S, Sun M, Xu H, Liu W, Wang D, Zhang L, Li Y, Cao J, Li F, Li M. Identification of geraldol as an inhibitor of aquaporin‑4 binding by NMO‑IgG. Mol Med Rep 2020; 22:1111-1118. [PMID: 32626958 PMCID: PMC7339707 DOI: 10.3892/mmr.2020.11212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/27/2019] [Indexed: 11/23/2022] Open
Abstract
Neuromyelitis optica (NMO) is a severe neurological demyelinating autoimmune disease that affects the optic nerves and spinal cord. There is currently no effective cure or therapy. Aquaporin-4 (AQP4) is a known target of the autoimmune antibody NMO-IgG. Therefore, binding of NMO-IgG to AQP4, and subsequent activation of antibody-mediated and complement-dependent cytotoxicity (CDC), are thought to underlie the pathogenesis of NMO. In the present study, a cell-based high-throughput screening approach was developed to identify molecular inhibitors of NMO-IgG binding to AQP4. Using this approach, extracts from the herb Petroselinum crispum were shown to have inhibitory effects on NMO-IgG binding to AQP4, and the natural compound geraldol was purified from the herb extracts. Analytical high performance liquid chromatography, electrospray ionization-mass spectrometry and nuclear magnetic resonance analyses confirmed the identity of the isolated compound as geraldol, a flavonoid. Geraldol effectively blocked binding of NMO-IgG to AQP4 in immunofluorescence assays and decreased CDC in NMO-IgG/complement-treated FRTL-AQP4 cells and primary astrocytes. Geraldol exhibited low cytotoxicity, with no effect on proliferation or apoptosis of FRTL-AQP4 cells and primary astrocytes. Permeability assays indicated that geraldol did not alter the water transport function of AQP4 in either cell system. The present study suggests the potential therapeutic value of geraldol for NMO drug development.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Shuai Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Meiyan Sun
- Medical Examination College, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Huijing Xu
- Medical Examination College, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Wei Liu
- Medical Examination College, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Deli Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Lei Zhang
- Medical Examination College, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Yan Li
- Medical Examination College, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Jiaming Cao
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Fang Li
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Miao Li
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
10
|
Lechner C, Breu M, Wendel EM, Kornek B, Schanda K, Baumann M, Reindl M, Rostásy K. Epidemiology of Pediatric NMOSD in Germany and Austria. Front Neurol 2020; 11:415. [PMID: 32670175 PMCID: PMC7326092 DOI: 10.3389/fneur.2020.00415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Neuromyelitis optica spectrum disorders (NMOSD) are severe inflammatory demyelinating disorders of the central nervous system mainly characterized by recurrent episodes of uni- or bilateral optic neuritis (ON), transverse myelitis (TM) and brainstem syndromes (BS). The majority of adult patients has serum antibodies directed against the water channel protein aquaporin 4 (AQP4-abs). In pediatric patients, AQP4-abs are less, while antibodies against myelin oligodendrocyte glycoprotein (MOG-abs) are more frequently detectable than in adults. Some children with NMOSD have neither AQP4- nor MOG-ab (double-seronegative). Objective: Evaluation of epidemiological data regarding incidence and prevalence of pediatric NMOSD in Germany and Austria. Methods: We recruited pediatric NMOSD patients between 1 March 2017 and 28 February 2019 with five different tools: (1) ESPED (Surveillance Unit for Rare Pediatric Disorders in Germany), (2) ESNEK (Surveillance for Rare Neurological Disorders during Childhood), (3) pediatric neurology working group within the Austrian Society of Pediatrics and Adolescent Medicine, (4) BIOMARKER Study and (5) NEMOS (Neuromyelitis optica Study Group). We requested data regarding clinical symptoms, antibody status, therapy regimen and response via a standardized questionnaire. Results: During the 2-year recruitment period, 46 (both incidental and prevalent) patients with a suspected diagnosis of NMOSD were brought to our attention. Twenty-two of these patients did not fulfill the inclusion criteria. Of the remaining 24 children, 22 had a median age at onset of 11 (range 3–17) years and 16/22 were female (72.7%) (no data in two patients). Sixteen of 24 patients were AQP4-ab positive (67%), 4/24 MOG-ab positive (16.7%), three children were double-seronegative and in one patient no antibody testing was done. We calculated an incidence rate of 0.022 per 100,000 person-years for Germany, while there was no incidental case in Austria during the recruitment period. The prevalence rate was 0.147 and 0.267 per 100,000 persons in Germany and Austria, respectively. Conclusion: Pediatric NMOSD, with and without associated antibodies, are very rare even considering the different limitations of our study. An unexpected finding was that a considerable proportion of patients was tested neither for AQP4- nor MOG-abs during diagnostic work-up, which should prompt to establish and disseminate appropriate guidelines.
Collapse
Affiliation(s)
- Christian Lechner
- Division of Pediatric Neurology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Breu
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva-Maria Wendel
- Department of Pediatrics, Olgahospital Stuttgart, Stuttgart, Germany
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Kathrin Schanda
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Baumann
- Division of Pediatric Neurology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kevin Rostásy
- Department of Pediatric Neurology, Children's Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| |
Collapse
|
11
|
Dandu V, Siddamreddy S, Meegada S, Muppidi V, Challa T. Isolated Area Postrema Syndrome Presenting as Intractable Nausea and Vomiting. Cureus 2020; 12:e7058. [PMID: 32219052 PMCID: PMC7086113 DOI: 10.7759/cureus.7058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Neuromyelitis optica (NMO) is a disease of central nervous system, characterized by demyelination and axonal damage mostly involving optic nerves and spinal cord. Usually these patients present with symptoms related to optic neuritis or myelitis with a typical relapsing course. Some patients present with less common symptoms involving brain stem like nausea and vomiting, especially those involving area postrema (AP) located in dorsal medulla. International panel for NMO diagnosis revised criteria in 2015 and came up with a unifying term NMO spectrum disorders (NMOSD) instead of NMO. Patients with NMO having AP involvement are grouped under area postrema syndrome (APS). Usually patients with AP symptoms also have neurological symptoms upon presentation. Here we present a rare case of an NMO who presented with isolated APS with no other neurological symptoms.
Collapse
Affiliation(s)
- Vasuki Dandu
- Neurology, Baptist Health Medical Center, Little Rock, USA
| | - Suman Siddamreddy
- Internal Medicine, Baptist Health Medical Center, North Little Rock, USA
| | - Sreenath Meegada
- Internal Medicine, The University of Texas Health Science Center/Christus Good Shepherd Medical Center, Longview, USA
| | | | - Tejo Challa
- Internal Medicine, The University of Texas Health Science Center/Christus Good Shepherd Medical Center, Longview, USA
| |
Collapse
|
12
|
Jarius S, Wildemann B. The history of neuromyelitis optica. Part 2: 'Spinal amaurosis', or how it all began. J Neuroinflammation 2019; 16:280. [PMID: 31883522 PMCID: PMC6935230 DOI: 10.1186/s12974-019-1594-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023] Open
Abstract
Neuromyelitis optica (NMO) was long considered a clinical variant of multiple sclerosis (MS). However, the discovery of a novel and pathogenic anti-astrocytic serum autoantibody targeting aquaporin-4 (termed NMO-IgG or AQP4-Ab), the most abundant water channel protein in the central nervous system, led to the recognition of NMO as a distinct disease entity in its own right and generated strong and persisting interest in the condition. NMO is now studied as a prototypic autoimmune disorder, which differs from MS in terms of immunopathogenesis, clinicoradiological presentation, optimum treatment, and prognosis. While the history of classic MS has been extensively studied, relatively little is known about the history of NMO. In Part 1 of this series we focused on the late 19th century, when the term 'neuromyelitis optica' was first coined, traced the term's origins and followed its meandering evolution throughout the 20th and into the 21st century. Here, in Part 2, we demonstrate that the peculiar concurrence of acute optic nerve and spinal cord affliction characteristic for NMO caught the attention of physicians much earlier than previously thought by re-presenting a number of very early cases of possible NMO that date back to the late 18th and early 19th century. In addition, we comprehensively discuss the pioneering concept of 'spinal amaurosis', which was introduced into the medical literature by ophthalmologists in the first half of the 19th century.
Collapse
Affiliation(s)
- S. Jarius
- Department of Neurology, Molecular Neuroimmunology Group, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - B. Wildemann
- Department of Neurology, Molecular Neuroimmunology Group, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Dusitkasem S, Subsoontorn P. General anaesthesia for caesarean section in a patient with neuromyelitis optica spectrum disorder (NMOSD). Int J Surg Case Rep 2019; 60:72-74. [PMID: 31207529 PMCID: PMC6580010 DOI: 10.1016/j.ijscr.2019.03.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 01/27/2023] Open
Abstract
We report the anaesthetic management of a patient with pre-existing NMOSD undergoing a caesarean delivery. Multidisciplinary collaboration and careful patient counselling were essential to optimize maternal and foetal outcomes. The use of neuromuscular monitoring and sugammadex reversal might play an important role in anesthetic management of patients with NMOSD.
Introduction Neuromyelitis optica spectrum disorder (NMOSD) is a rare demyelinating disorder affecting the spinal cord and optic nerves. The anesthetic management in parturient women with NMOSD are controversial and remains challenging. Presentation of case A 35-year-old G2P1 woman at 36 weeks of gestation with NMOSD presented for pre-anesthesia assessment prior to caesarean section. Her NMOSD had been diagnosed four years previously and was treated with intravenous methylprednisolone (IVMP) and plasma exchange (PLEX). She underwent general anesthesia without developing adverse respiratory events or signs and symptoms of muscle weakness. Discussion Both neuraxial and general anaesthesia for NMOSD have been described in previous case reports. Risk factors of general anesthesia in pregnancy with NMOSD must be weighed against the likely risk of NMOSD relapse and the potential deteriorating neurological symptoms after neuraxial anesthesia. Conclusion A multidisciplinary collaboration together with careful anesthetic consideration is required for the anesthetic and perioperative management of these patients.
Collapse
Affiliation(s)
- Sasima Dusitkasem
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Pattika Subsoontorn
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
McCreary M, Mealy MA, Wingerchuk DM, Levy M, DeSena A, Greenberg BM. Updated diagnostic criteria for neuromyelitis optica spectrum disorder: Similar outcomes of previously separate cohorts. Mult Scler J Exp Transl Clin 2018; 4:2055217318815925. [PMID: 30559975 PMCID: PMC6293372 DOI: 10.1177/2055217318815925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/28/2018] [Accepted: 10/28/2018] [Indexed: 11/19/2022] Open
Abstract
Background The specificity of the aquaporin-4 antibody to predict recurrent
inflammatory central nervous system disease has led to the
design of the 2015 neuromyelitis optica spectrum disorder
criteria which capture all aquaporin-4 antibody seropositive
patients. Objective The purpose of this study was to compare treatment outcomes in
aquaporin-4 antibody seropositive patients who met the previous
2006 clinical criteria for neuromyelitis optica with patients
who meet the 2015 neuromyelitis optica spectrum disorder
criteria. Methods The study involved a three-center retrospective chart review of
clinical outcomes among aquaporin-4 patients diagnosed with
neuromyelitis optica and neuromyelitis optica spectrum
disorder. Results Hazard ratios of relapse during immunosuppressive therapy, relative
to pre-therapy, were not significantly different for patients
who met the 2006 criteria of neuromyelitis optica versus the
2015 neuromyelitis optica spectrum disorder criteria among those
treated with azathioprine ( p = 0.24),
mycophenolate mofetil ( p = 0.63), or rituximab
( p = 0.97). Conclusion Reductions in the hazard of relapse during treatment with
immunosuppressive therapies, relative to average pre-treatment,
were not different for aquaporin-4 antibody seropositive
patients categorized using the 2006 criteria of neuromyelitis
optica and the 2015 neuromyelitis optica spectrum disorder
criteria. These therapeutic findings support the design of the
2015 neuromyelitis optica spectrum disorder criteria which
capture all aquaporin-4 antibody seropositive patients.
Collapse
Affiliation(s)
- M McCreary
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, USA
| | - M A Mealy
- Department of Neurology, Johns Hopkins Hospital, USA
| | | | - M Levy
- Department of Neurology, Johns Hopkins Hospital, USA
| | - A DeSena
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, USA
| | - B M Greenberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, USA
| |
Collapse
|
15
|
The first Japanese report on neuromyelitis optica rediscovered: acute bilateral blindness, tetraparesis and respiratory insufficiency in a 35-year-old man (1891). J Neurol Sci 2018; 395:121-125. [DOI: 10.1016/j.jns.2018.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 11/20/2022]
|
16
|
Yang CS, Zhang QX, Chang SH, Zhang LJ, Li LM, Qi Y, Wang J, Sun ZH, Zhangning N, Yang L, Shi FD. Neuromyelitis optica spectrum disorders with and without connective tissue disorders. BMC Neurol 2018; 18:177. [PMID: 30355349 PMCID: PMC6199722 DOI: 10.1186/s12883-018-1182-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorders (NMOSD) often coexist with connective tissue disorders (CTD). The aim of this study was to investigate and compare the features of NMOSD with and without CTD. METHODS NMOSD patients with (n = 18) and without CTD (n = 39) were enrolled, and the clinical, laboratory, and magnetic resonance imaging (MRI) features of the two groups were assessed. RESULTS Most of the demographic and clinical features examined were similar between NMOSD patients with and without CTD. Serum immunoglobulin G (IgG), percentage of γ-globulin and seropositivity for several other autoantibodies were significantly elevated in NMOSD patients with CTD (P < 0.05). NMOSD with CTD was marked by longer spinal cord lesions and a lower frequency of short transverse myelitis (TM) than NMOSD without CTD (P < 0.05). NMOSD with CTD also featured more T1 hypointensity and T2 bright spotty lesions (BSLs) on MRI than NMOSD without CTD (P = 0.001 and 0.011, respectively). There were no other differences in laboratory, MRI and clinical characteristics between different NMOSD subtypes. CONCLUSIONS A few characteristics differed between NMOSD with and without CTD. NMOSD patients with CTD had higher serum IgG, longer spinal cord lesions, a lower frequency of short TM and more T1 hypointensity and T2 BSLs on spinal MRI than NMOSD patients without CTD.
Collapse
Affiliation(s)
- Chun-Sheng Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Qiu Xia Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Sheng Hui Chang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Lin Jie Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Li Min Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yuan Qi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jing Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhi Hua Sun
- Department of Radiology, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Nannan Zhangning
- Department of Radiology, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| |
Collapse
|
17
|
Fabis-Pedrini MJ, Bundell C, Wee CK, Lucas M, McLean-Tooke A, Mastaglia FL, Carroll WM, Kermode AG. Prevalence of anti-aquaporin 4 antibody in a diagnostic cohort of patients being investigated for possible neuromyelitis optica spectrum disorder in Western Australia. J Neuroimmunol 2018; 324:76-80. [PMID: 30248527 DOI: 10.1016/j.jneuroim.2018.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To evaluate the prevalence of anti-AQP4 antibody in serum and CSF samples from patients being investigated for possible neuromyelitis optica spectrum disorder (NMOSD) referred to the PathWest State reference laboratory using a sensitive cell-based assay (CBA). BACKGROUND NMOSD is an inflammatory CNS disease distinct from MS, which is relatively rare in Western countries. A proportion of patients with NMOSD have detectable serum IgG antibodies that target the water channel aquaporin-4 (AQP4-IgG), but the frequency varies in different populations studied and according to the assay method employed. METHODS Sera or CSF from a diagnostic cohort of 196 consecutive patients with possible NMOSD which had previously been screened by indirect immunofluorescence (IIF) on primate cerebellum were re-tested for AQP4-IgG reactivity to the M1 and M23 isoforms of AQP4 using a commercial CBA. A control group of 205 patients with definite MS was also included in the study. RESULTS Of the 196 patients, only 5 sera were AQP4-IgG positive, representing 2.6% of patients in the diagnostic cohort. All 5 AQP4-IgG positive patients fulfilled the 2015 revised diagnostic criteria for NMOSD and were females of varied ethnic origins, 4 of whom had longitudinally extensive transverse myelitis. The CBA confirmed AQP4-IgG positivity in the four patients previously reported as positive by IIF, and an additional patient with NMOSD who had previously been diagnosed as MS was also identified. None of the 205 MS sera were AQP4-IgG positive. CONCLUSIONS Our study confirms the utility and greater reliability of the M1/M23 CBA for detecting AQP4-IgG in patients with possible NMOSD, and indicates a prevalence of seropositive NMOSD in the Western Australian population similar to that in other Western populations.
Collapse
Affiliation(s)
- Marzena J Fabis-Pedrini
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perron Institute for Neurological & Translational Science, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia
| | - Christine Bundell
- PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Chee-Keong Wee
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perron Institute for Neurological & Translational Science, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia
| | - Michaela Lucas
- PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia; School of Medicine and Pharmacology, School of Pathology and Laboratory Medicine, UWA, Perth, Western Australia, Australia; Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia; Department of Immunology, Sir Charles Gairdner Hospital, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia
| | - Andrew McLean-Tooke
- PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia; Department of Immunology, Sir Charles Gairdner Hospital, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia
| | - Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perron Institute for Neurological & Translational Science, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia
| | - William M Carroll
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perron Institute for Neurological & Translational Science, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia; Department of Neurology & Clinical Neurophysiology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Allan G Kermode
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perron Institute for Neurological & Translational Science, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia; Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia; Department of Neurology & Clinical Neurophysiology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.
| |
Collapse
|
18
|
Shaygannejad V, Maljaei MB, Bank SS, Mirmosayyeb O, Maracy MR, Askari G. Association between Sun Exposure, Vitamin D Intake, Serum Vitamin D Level, and Immunoglobulin G Level in Patients with Neuromyelitis Optica Spectrum Disorder. Int J Prev Med 2018; 9:68. [PMID: 30167098 PMCID: PMC6106131 DOI: 10.4103/ijpvm.ijpvm_45_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/05/2017] [Indexed: 11/10/2022] Open
Abstract
Background: Neuromyelitis optica spectrum disorder (NMOSD) is a central nervous system inflammatory disorder in which immunoglobulin G (IgG) autoantibodies possibly play a pathogenic role against the aquaporin-4 water channel protein. Vitamin D may modulate B-cell function and decrease the IgG synthesis and may play a role in NMOSD as a crucial factor. The aim of this study was to investigate the relation between Vitamin D intakes from food, Vitamin D intake from sunlight exposure, blood Vitamin D levels, and IgG-neuromyelitis optica (NMO) level in serum of patients with NMOSD and NMO. Method: In this cross-sectional study, food Frequency Questionnaires (FFQ) and Sun Exposure Questionnaire (SEQ) were completed to evaluate of vitamin D intakes from food and sun light exposure. Moreover, serum levels of 25(OH) vitamin D3 and IgG-NMO were assessed in patients with NMOSD and NMO. Results: We assessed IgG-NMO levels in 29 patients with NMOSD that nine patients (n = 31%) were positive and for the rest it was negative. Sunlight exposure scale (P = 0.01) and 25(OH) D3 (P = 0.04) in IgG-NMO-negative patients were significantly more than patients with positive IgG-NMO. Age, gender, and latitude were not confounder variables. A positive significant correlation was observed between the sun exposure scale and serum levels of 25(OH) D3 in all participants (r = 0.747, P ≤ 0.001). Conclusions: Physiological variation in Vitamin D may apply a significant effect on IgG-NMO synthesis in patients with NMO. Vitamin D may have significant role in pathogenesis of NMOSD and NMO.
Collapse
Affiliation(s)
- Vahid Shaygannejad
- Isfahan Neuroscience Research Center, Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagher Maljaei
- Isfahan Neuroscience Research Center, Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Saraf Bank
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Mirmosayyeb
- Isfahan Neuroscience Research Center, Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Maracy
- Department of Epidemiology and Biostatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Chee CG, Park KS, Lee JW, Ahn HW, Lee E, Kang Y, Kang HS. MRI Features of Aquaporin-4 Antibody-Positive Longitudinally Extensive Transverse Myelitis: Insights into the Diagnosis of Neuromyelitis Optica Spectrum Disorders. AJNR Am J Neuroradiol 2018; 39:782-787. [PMID: 29449281 DOI: 10.3174/ajnr.a5551] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/29/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE Longitudinally extensive transverse myelitis is a well-documented spinal manifestation of neuromyelitis optica spectrum disorders, however, other forms of nontumorous myelopathy can also manifest as longitudinally extensive transverse myelitis. Our aim was to evaluate the MR imaging features of aquaporin-4 antibody-positive longitudinally extensive transverse myelitis, which is strongly associated with neuromyelitis optica spectrum disorders. MATERIALS AND METHODS We evaluated cervicomedullary junction involvement, cord expansion ratios, bright spotty lesions, the number of involved segments, skipped lesions, enhancement patterns, and axial distribution patterns using spinal MR imaging of 41 patients with longitudinally extensive transverse myelitis who underwent aquaporin-4 antibody testing. Univariate logistic regression analysis was performed to identify factors associated with aquaporin-4 antibody seropositivity, which were then used to develop a scoring system for diagnosing aquaporin-4 antibody-positive longitudinally extensive transverse myelitis. Interrater reliability for cord expansion ratio measurement and bright spotty lesions was determined using intraclass correlation coefficients and κ values, respectively. RESULTS Fifteen patients with longitudinally extensive transverse myelitis were aquaporin-4 antibody-positive. Sex (female), cervicomedullary junction involvement, a cord expansion ratio of >1.4, and bright spotty lesions were significantly associated with aquaporin-4 antibody seropositivity. The sensitivity and specificity of the scoring system were 73.3% and 96.2%, respectively. The interclass correlation value for the cord expansion ratio was 0.78, and the κ value for bright spotty lesions was 0.61. CONCLUSIONS Our scoring system, based on cervicomedullary junction involvement, higher cord expansion ratio, bright spotty lesions, and female sex, can facilitate the timely diagnosis of neuromyelitis optica spectrum disorders.
Collapse
Affiliation(s)
- C G Chee
- From the Departments of Radiology (C.G.C., J.W.L., H.W.A., E.L., Y.K., H.S.K.)
| | - K S Park
- Neurology (K.S.P.), Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - J W Lee
- From the Departments of Radiology (C.G.C., J.W.L., H.W.A., E.L., Y.K., H.S.K.)
| | - H W Ahn
- From the Departments of Radiology (C.G.C., J.W.L., H.W.A., E.L., Y.K., H.S.K.)
| | - E Lee
- From the Departments of Radiology (C.G.C., J.W.L., H.W.A., E.L., Y.K., H.S.K.)
| | - Y Kang
- From the Departments of Radiology (C.G.C., J.W.L., H.W.A., E.L., Y.K., H.S.K.)
| | - H S Kang
- From the Departments of Radiology (C.G.C., J.W.L., H.W.A., E.L., Y.K., H.S.K.)
| |
Collapse
|
20
|
Devic's disease before Devic: On the contribution of Friedrich Albin Schanz (1863–1923). J Neurol Sci 2017; 379:99-102. [DOI: 10.1016/j.jns.2017.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 11/18/2022]
|
21
|
Jarius S, Ringelstein M, Haas J, Serysheva II, Komorowski L, Fechner K, Wandinger KP, Albrecht P, Hefter H, Moser A, Neuen-Jacob E, Hartung HP, Wildemann B, Aktas O. Inositol 1,4,5-trisphosphate receptor type 1 autoantibodies in paraneoplastic and non-paraneoplastic peripheral neuropathy. J Neuroinflammation 2016; 13:278. [PMID: 27776522 PMCID: PMC5078930 DOI: 10.1186/s12974-016-0737-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, we described a novel autoantibody, anti-Sj/ITPR1-IgG, that targets the inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) in patients with cerebellar ataxia. However, ITPR1 is expressed not only by Purkinje cells but also in the anterior horn of the spinal cord, in the substantia gelatinosa and in the motor, sensory (including the dorsal root ganglia) and autonomic peripheral nervous system, suggesting that the clinical spectrum associated with autoimmunity to ITPR1 may be broader than initially thought. Here we report on serum autoantibodies to ITPR1 (up to 1:15,000) in three patients with (radiculo)polyneuropathy, which in two cases was associated with cancer (ITPR1-expressing adenocarcinoma of the lung, multiple myeloma), suggesting a paraneoplastic aetiology. METHODS Serological and other immunological studies, and retrospective analysis of patient records. RESULTS The clinical findings comprised motor, sensory (including severe pain) and autonomic symptoms. While one patient presented with subacute symptoms mimicking Guillain-Barré syndrome (GBS), the symptoms progressed slowly in two other patients. Electrophysiology revealed delayed F waves; a decrease in motor and sensory action potentials and conduction velocities; delayed motor latencies; signs of denervation, indicating sensorimotor radiculopolyneuropathy of the mixed type; and no conduction blocks. ITPR1-IgG belonged to the complement-activating IgG1 subclass in the severely affected patient but exclusively to the IgG2 subclass in the two more mildly affected patients. Cerebrospinal fluid ITPR1-IgG was found to be of predominantly extrathecal origin. A 3H-thymidine-based proliferation assay confirmed the presence of ITPR1-reactive lymphocytes among peripheral blood mononuclear cells (PBMCs). Immunophenotypic profiling of PBMCs protein demonstrated predominant proliferation of B cells, CD4 T cells and CD8 memory T cells following stimulation with purified ITPR1 protein. Patient ITPR1-IgG bound both to peripheral nervous tissue and to lung tumour tissue. A nerve biopsy showed lymphocyte infiltration (including cytotoxic CD8 cells), oedema, marked axonal loss and myelin-positive macrophages, indicating florid inflammation. ITPR1-IgG serum titres declined following tumour removal, paralleled by clinical stabilization. CONCLUSIONS Our findings expand the spectrum of clinical syndromes associated with ITPR1-IgG and suggest that autoimmunity to ITPR1 may underlie peripheral nervous system diseases (including GBS) in some patients and may be of paraneoplastic origin in a subset of cases.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Lars Komorowski
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Seekamp 31, 23560, Lübeck, Germany
| | - Kai Fechner
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Seekamp 31, 23560, Lübeck, Germany
| | - Klaus-Peter Wandinger
- Department of Neurology, University of Schleswig Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Harald Hefter
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Andreas Moser
- Department of Neurology, University of Schleswig Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Eva Neuen-Jacob
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
22
|
Cheng C, Jiang Y, Lu X, Gu F, Kang Z, Dai Y, Lu Z, Hu X. The role of anti-aquaporin 4 antibody in the conversion of acute brainstem syndrome to neuromyelitis optica. BMC Neurol 2016; 16:203. [PMID: 27769253 PMCID: PMC5073440 DOI: 10.1186/s12883-016-0721-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/15/2016] [Indexed: 12/20/2022] Open
Abstract
Background Acute brainstem syndrome (ABS) may herald multiple sclerosis (MS), neuromyelitis optica (NMO), or occur as an isolated syndrome. The aquaporin 4 (AQP4)-specific serum autoantibody, NMO-IgG, is a biomarker for NMO. However, the role of anti-AQP4 antibody in the conversion of ABS to NMO is unclear. Methods Thirty-one patients with first-event ABS were divided into two groups according to the presence of anti-AQP4 antibodies, their clinical features and outcomes were retrospectively analyzed. Results Fourteen of 31 patients (45.16 %) were seropositive for NMO-IgG. The 71.43 % of anti-AQP4 (+) ABS patients converted to NMO, while only 11.76 % of anti-AQP4 (-) ABS patients progressed to NMO. Anti-AQP4 (+) ABS patients demonstrated a higher IgG index (0.68 ± 0.43 vs 0.42 ± 0.13, p < 0.01) and Kurtzke Expanded Disability Status Scale (4.64 ± 0.93 vs 2.56 ± 0.81, p < 0.01) than anti-AQP4 (-) ABS patients. Area postrema clinical brainstem symptoms occurred more frequently in anti-AQP4 (+) ABS patients than those in anti-AQP4 (-) ABS patients (71.43 % vs 17.65 %, p = 0.004). In examination of magnetic resonance imaging (MRI), the 78.57 % of anti-AQP4 (+) ABS patients had medulla-predominant involvements in the sagittal view and dorsal-predominant involvements in the axial view. Conclusions ABS represents an inaugural or limited form of NMO in a high proportion of anti-AQP4 (+) patients.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Neurology, The Affiliated Hospital, Hangzhou Normal University, 126 Wenzhou Road, Hangzhou, Zhejiang, 310015, People's Republic of China
| | - Ying Jiang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China.
| | - Xiaodong Lu
- Department of Neurology, The Affiliated Hospital, Hangzhou Normal University, 126 Wenzhou Road, Hangzhou, Zhejiang, 310015, People's Republic of China
| | - Fu Gu
- Department of Chemical and Environmental Engineering, University of Nottingham, 199 Taikang East Road, Ningbo, Zhejiang, 315100, People's Republic of China
| | - Zhuang Kang
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Yongqiang Dai
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Xueqiang Hu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China.
| |
Collapse
|
23
|
MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation 2016; 13:280. [PMID: 27793206 PMCID: PMC5086042 DOI: 10.1186/s12974-016-0718-0] [Citation(s) in RCA: 664] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/09/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND A subset of patients with neuromyelitis optica spectrum disorders (NMOSD) has been shown to be seropositive for myelin oligodendrocyte glycoprotein antibodies (MOG-IgG). OBJECTIVE To describe the epidemiological, clinical, radiological, cerebrospinal fluid (CSF), and electrophysiological features of a large cohort of MOG-IgG-positive patients with optic neuritis (ON) and/or myelitis (n = 50) as well as attack and long-term treatment outcomes. METHODS Retrospective multicenter study. RESULTS The sex ratio was 1:2.8 (m:f). Median age at onset was 31 years (range 6-70). The disease followed a multiphasic course in 80 % (median time-to-first-relapse 5 months; annualized relapse rate 0.92) and resulted in significant disability in 40 % (mean follow-up 75 ± 46.5 months), with severe visual impairment or functional blindness (36 %) and markedly impaired ambulation due to paresis or ataxia (25 %) as the most common long-term sequelae. Functional blindess in one or both eyes was noted during at least one ON attack in around 70 %. Perioptic enhancement was present in several patients. Besides acute tetra-/paraparesis, dysesthesia and pain were common in acute myelitis (70 %). Longitudinally extensive spinal cord lesions were frequent, but short lesions occurred at least once in 44 %. Fourty-one percent had a history of simultaneous ON and myelitis. Clinical or radiological involvement of the brain, brainstem, or cerebellum was present in 50 %; extra-opticospinal symptoms included intractable nausea and vomiting and respiratory insufficiency (fatal in one). CSF pleocytosis (partly neutrophilic) was present in 70 %, oligoclonal bands in only 13 %, and blood-CSF-barrier dysfunction in 32 %. Intravenous methylprednisolone (IVMP) and long-term immunosuppression were often effective; however, treatment failure leading to rapid accumulation of disability was noted in many patients as well as flare-ups after steroid withdrawal. Full recovery was achieved by plasma exchange in some cases, including after IVMP failure. Breakthrough attacks under azathioprine were linked to the drug-specific latency period and a lack of cotreatment with oral steroids. Methotrexate was effective in 5/6 patients. Interferon-beta was associated with ongoing or increasing disease activity. Rituximab and ofatumumab were effective in some patients. However, treatment with rituximab was followed by early relapses in several cases; end-of-dose relapses occurred 9-12 months after the first infusion. Coexisting autoimmunity was rare (9 %). Wingerchuk's 2006 and 2015 criteria for NMO(SD) and Barkhof and McDonald criteria for multiple sclerosis (MS) were met by 28 %, 32 %, 15 %, 33 %, respectively; MS had been suspected in 36 %. Disease onset or relapses were preceded by infection, vaccination, or pregnancy/delivery in several cases. CONCLUSION Our findings from a predominantly Caucasian cohort strongly argue against the concept of MOG-IgG denoting a mild and usually monophasic variant of NMOSD. The predominantly relapsing and often severe disease course and the short median time to second attack support the use of prophylactic long-term treatments in patients with MOG-IgG-positive ON and/or myelitis.
Collapse
|
24
|
Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K, Pache F, Stich O, Beume LA, Hümmert MW, Trebst C, Ringelstein M, Aktas O, Winkelmann A, Buttmann M, Schwarz A, Zimmermann H, Brandt AU, Franciotta D, Capobianco M, Kuchling J, Haas J, Korporal-Kuhnke M, Lillevang ST, Fechner K, Schanda K, Paul F, Wildemann B, Reindl M. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: Frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J Neuroinflammation 2016; 13:279. [PMID: 27788675 PMCID: PMC5084340 DOI: 10.1186/s12974-016-0717-1] [Citation(s) in RCA: 329] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/09/2016] [Indexed: 01/18/2023] Open
Abstract
Background Antibodies to myelin oligodendrocyte glycoprotein (MOG-IgG) have been suggested to play a role in a subset of patients with neuromyelitis optica and related disorders. Objective To assess (i) the frequency of MOG-IgG in a large and predominantly Caucasian cohort of patients with optic neuritis (ON) and/or myelitis; (ii) the frequency of MOG-IgG among AQP4-IgG-positive patients and vice versa; (iii) the origin and frequency of MOG-IgG in the cerebrospinal fluid (CSF); (iv) the presence of MOG-IgG at disease onset; and (v) the influence of disease activity and treatment status on MOG-IgG titers. Methods 614 serum samples from patients with ON and/or myelitis and from controls, including 92 follow-up samples from 55 subjects, and 18 CSF samples were tested for MOG-IgG using a live cell-based assay (CBA) employing full-length human MOG-transfected HEK293A cells. Results MOG-IgG was detected in 95 sera from 50 patients with ON and/or myelitis, including 22/54 (40.7 %) patients with a history of both ON and myelitis, 22/103 (21.4 %) with a history of ON but no myelitis and 6/45 (13.3 %) with a history of longitudinally extensive transverse myelitis but no ON, and in 1 control patient with encephalitis and a connective tissue disorder, all of whom were negative for AQP4-IgG. MOG-IgG was absent in 221 further controls, including 83 patients with AQP4-IgG-seropositive neuromyelitis optica spectrum disorders and 85 with multiple sclerosis (MS). MOG-IgG was found in 12/18 (67 %) CSF samples from MOG-IgG-seropositive patients; the MOG-IgG-specific antibody index was negative in all cases, indicating a predominantly peripheral origin of CSF MOG-IgG. Serum and CSF MOG-IgG belonged to the complement-activating IgG1 subclass. MOG-IgG was present already at disease onset. The antibodies remained detectable in 40/45 (89 %) follow-up samples obtained over a median period of 16.5 months (range 0–123). Serum titers were higher during attacks than during remission (p < 0.0001), highest during attacks of simultaneous myelitis and ON, lowest during acute isolated ON, and declined following treatment. Conclusions To date, this is the largest cohort studied for IgG to human full-length MOG by means of an up-to-date CBA. MOG-IgG is present in a substantial subset of patients with ON and/or myelitis, but not in classical MS. Co-existence of MOG-IgG and AQP4-IgG is highly uncommon. CSF MOG-IgG is of extrathecal origin. Serum MOG-IgG is present already at disease onset and remains detectable in the long-term course. Serum titers depend on disease activity and treatment status.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Otto Meyerhof Center, Department of Neurology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.
| | - Klemens Ruprecht
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Ingo Kleiter
- Department of Neurology, Ruhr University Bochum, Bochum, Germany
| | - Nadja Borisow
- NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité University Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Nasrin Asgari
- Department of Neurology and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Florence Pache
- NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité University Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Oliver Stich
- Department of Neurology, Albert Ludwigs University, Freiburg, Germany
| | | | - Martin W Hümmert
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Corinna Trebst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Orhan Aktas
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | | | - Mathias Buttmann
- Department of Neurology, Julius Maximilians University, Würzburg, Germany
| | - Alexander Schwarz
- Molecular Neuroimmunology Group, Otto Meyerhof Center, Department of Neurology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Hanna Zimmermann
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Alexander U Brandt
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | | | - Marco Capobianco
- Centro di Riferimento Regionale SM, Azienda Ospedaliero Universitaria San Luigi Gonzaga, Orbassano, Italy
| | - Joseph Kuchling
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Otto Meyerhof Center, Department of Neurology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Mirjam Korporal-Kuhnke
- Molecular Neuroimmunology Group, Otto Meyerhof Center, Department of Neurology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | | | - Kai Fechner
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Lübeck, Germany
| | - Kathrin Schanda
- Clinical Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Friedemann Paul
- NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité University Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Otto Meyerhof Center, Department of Neurology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Markus Reindl
- Clinical Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
25
|
Jitprapaikulsan J, Siritho S, Prayoonwiwat N. Vitamin D level status in Thai neuromyelitis optica patients. J Neuroimmunol 2016; 295-296:75-8. [PMID: 27235352 DOI: 10.1016/j.jneuroim.2016.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 01/04/2023]
Abstract
Vitamin D status of Thai clinically isolated syndrome (CIS), multiple sclerosis (MS) and NMO/neuromyelitis optica spectrum disorders (NMOSD) patients were prospectively collected (N=130). Its associations with disability score, and disease activity were sought. Mean vitamin D levels were not significantly different (CIS, 22.18±8.2; MS, 23.41±11.9; NMO/NMOSD, 23.54±9.3ng/mL; p=0.857). Prevalence of vitamin D insufficiency and deficiency (≤30ng/mL) was 73-80%. Neither disability score nor disease activity was associated with vitamin D level. Vitamin D insufficiency was common in Thai CIS, MS, and NMO/NMOSD patients without association with disability or disease activity.
Collapse
Affiliation(s)
- Jiraporn Jitprapaikulsan
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sasitorn Siritho
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Bumrungrad International Hospital, Sukhumvit 3, Bangkok 10110, Thailand
| | - Naraporn Prayoonwiwat
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
26
|
Jarius S, Metz I, König FB, Ruprecht K, Reindl M, Paul F, Brück W, Wildemann B. Screening for MOG-IgG and 27 other anti-glial and anti-neuronal autoantibodies in 'pattern II multiple sclerosis' and brain biopsy findings in a MOG-IgG-positive case. Mult Scler 2016; 22:1541-1549. [PMID: 26869529 DOI: 10.1177/1352458515622986] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Histopathological studies have revealed four different immunopathological patterns of lesion pathology in early multiple sclerosis (MS). Pattern II MS is characterised by immunoglobulin and complement deposition in addition to T-cell and macrophage infiltration and is more likely to respond to plasma exchange therapy, suggesting a contribution of autoantibodies. OBJECTIVE To assess the frequency of anti-myelin oligodendrocyte glycoprotein (MOG), anti-M1-aquaporin-4 (AQP4), anti-M23-AQP4, anti-N-methyl-d-aspartate-type glutamate receptors (NMDAR) and 25 other anti-neural antibodies in pattern II MS. METHODS Thirty-nine serum samples from patients with MS who had undergone brain biopsy (n = 24; including 13 from patients with pattern II MS) and from histopathologically non-classified MS patients (n = 15) were tested for anti-MOG, anti-M1-AQP4, anti-M23-AQP4, anti-NMDAR, anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-type glutamate receptors (AMPAR), anti-gamma-aminobutyric acid receptors (GABABR), anti-leucine-rich, glioma-activated protein 1 (LGI1), anti-contactin-associated protein 2 (CASPR2), anti-dipeptidyl-peptidase-like protein-6 (DPPX), anti-Tr/Delta/notch-like epidermal growth factor-related receptor (DNER), anti-Hu, anti-Yo, anti-Ri, anti-Ma1/Ma2, anti-CV2/collapsin response mediator protein 5 (CRMP5), anti-glutamic acid decarboxylase (GAD), anti-amphiphysin, anti-Ca/RhoGTPase-activating protein 26 (ARHGAP26), anti-Sj/inositol-1,4,5-trisphosphate receptor 1 (ITPR1), anti-Homer3, anti-carbonic anhydrase-related protein (CARPVIII), anti-protein kinase gamma (PKCgamma), anti-glutamate receptor delta 2 (GluRdelta2), anti-metabotropic glutamate receptor 1 (mGluR1) and anti-mGluR5, as well as for anti-glial nuclei antibodies (AGNA) and Purkinje cell antibody 2 (PCA2). RESULTS Antibodies to MOG belonging to the complement-activating immunoglobulin G1 (IgG1) subclass were detected in a patient with pattern II MS. Detailed brain biopsy findings are shown. CONCLUSION This is the largest study on established anti-neural antibodies performed in MS so far. MOG-IgG may play a role in a small percentage of patients diagnosed with pattern II MS.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Imke Metz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Fatima Barbara König
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Friedemann Paul
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Berlin, Germany
| | - Wolfgang Brück
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Jarius S, Wildemann B. Devic's disease before Devic: Bilateral optic neuritis and simultaneous myelitis in a young woman (1874). J Neurol Sci 2015; 358:419-21. [PMID: 26303625 DOI: 10.1016/j.jns.2015.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022]
Abstract
Neuromyelitis optica (NMO, Devic's disease) is an often severely disabling disorder of the central nervous system (CNS) which mainly affects the optic nerves and spinal cord. NMO was long considered a clinical subform of multiple sclerosis (MS). In 2004, however, Lennon and colleagues described a novel autoantibody in NMO which targets aquaporin-4, the most abundant water channel in the CNS, and which was later shown to be directly pathogenic. This has led to the recognition of NMO as a distinct disease entity in its own right. While the history of 'classical' MS has been extensively studied, only little is known about the early history of NMO. The term neuromyelitis optica was coined in 1894 by Eugène Devic (1858-1930) and Fernand Gault (1873-1936), who were the first to provide a systematic description of that disorder. Here we re-present a very early description of a case of NMO by a Polish physician, Adolf Wurst, which appeared in 1876 in Przegląd Lekarski, one of the oldest Polish medical journals. This report predates Devic and Gault's seminal work on NMO by more than two decades. The patient, a 30-year-old woman, subacutely developed simultaneous bilateral optic neuritis with papilloedema and bilateral blindness and transverse myelitis with severe paraparesis, anaesthesia, and bladder and bowel dysfunction. At last follow-up, one year after onset, she had recovered except for a residual spastic gait and some visual deficit on the right side. Of note, this is the first known case of NMO in a Caucasian patient ever reported outside Western Europe.
Collapse
Affiliation(s)
- S Jarius
- Department of Neurology, University of Heidelberg, Germany.
| | - B Wildemann
- Department of Neurology, University of Heidelberg, Germany
| |
Collapse
|
28
|
Jarius S, Wildemann B. 'Medusa head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook. J Neuroinflammation 2015; 12:168. [PMID: 26377319 PMCID: PMC4573944 DOI: 10.1186/s12974-015-0358-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/02/2015] [Indexed: 01/23/2023] Open
Abstract
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa head antibodies' due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| |
Collapse
|
29
|
Jarius S, Wildemann B, Stöcker W, Moser A, Wandinger K. Psychotic syndrome associated with anti-Ca/ARHGAP26 and voltage-gated potassium channel antibodies. J Neuroimmunol 2015; 286:79-82. [DOI: 10.1016/j.jneuroim.2015.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/16/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
|
30
|
Central Nervous System Idiopathic Inflammatory Demyelinating Disorders in South Americans: A Descriptive, Multicenter, Cross-Sectional Study. PLoS One 2015. [PMID: 26222205 PMCID: PMC4519274 DOI: 10.1371/journal.pone.0127757] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The idiopathic inflammatory demyelinating disease (IIDD) spectrum has been investigated among different populations, and the results have indicated a low relative frequency of neuromyelitis optica (NMO) among multiple sclerosis (MS) cases in whites (1.2%-1.5%), increasing in Mestizos (8%) and Africans (15.4%-27.5%) living in areas of low MS prevalence. South America (SA) was colonized by Europeans from the Iberian Peninsula, and their miscegenation with natives and Africans slaves resulted in significant racial mixing. The current study analyzed the IIDD spectrum in SA after accounting for the ethnic heterogeneity of its population. A cross-sectional multicenter study was performed. Only individuals followed in 2011 with a confirmed diagnosis of IIDD using new diagnostic criteria were considered eligible. Patients’ demographic, clinical and laboratory data were collected. In all, 1,917 individuals from 22 MS centers were included (73.7% female, 63.0% white, 28.0% African, 7.0% Mestizo, and 0.2% Asian). The main disease categories and their associated frequencies were MS (76.9%), NMO (11.8%), other NMO syndromes (6.5%), CIS (3.5%), ADEM (1.0%), and acute encephalopathy (0.4%). Females predominated in all main categories. The white ethnicity also predominated, except in NMO. Except in ADEM, the disease onset occurred between 20 and 39 years old, early onset in 8.2% of all cases, and late onset occurred in 8.9%. The long-term morbidity after a mean disease time of 9.28±7.7 years was characterized by mild disability in all categories except in NMO, which was scored as moderate. Disease time among those with MS was positively correlated with the expanded disability status scale (EDSS) score (r=0.374; p=<0.001). This correlation was not observed in people with NMO or those with other NMO spectrum disorders (NMOSDs). Among patients with NMO, 83.2% showed a relapsing-remitting course, and 16.8% showed a monophasic course. The NMO-IgG antibody tested using indirect immunofluorescence (IIF) with a composite substrate of mouse tissues in 200 NMOSD cases was positive in people with NMO (95/162; 58.6%), longitudinally extensive transverse myelitis (10/30; 33.3%) and bilateral or recurrent optic neuritis (8/8; 100%). No association of NMO-IgG antibody positivity was found with gender, age at onset, ethnicity, early or late onset forms, disease course, or long-term severe disability. The relative frequency of NMO among relapsing-remitting MS (RRMS) + NMO cases in SA was 14.0%. Despite the high degree of miscegenation found in SA, MS affects three quarters of all patients with IIDD, mainly white young women who share similar clinical characteristics to those in Western populations in the northern hemisphere, with the exception of ethnicity; approximately one-third of all cases occur among non-white individuals. At the last assessment, the majority of RRMS patients showed mild disability, and the risk for secondary progression was significantly superior among those of African ethnicity. NMO comprises 11.8% of all IIDD cases in SA, affecting mostly young African-Brazilian women, evolving with a recurrent course and causing moderate or severe disability in both ethnic groups. The South-North gradient with increasing NMO and non-white individuals from Argentina, Paraguay, Brazil and Venezuela confirmed previous studies showing a higher frequency of NMO among non-white populations.
Collapse
|
31
|
Melamed E, Levy M, Waters PJ, Sato DK, Bennett JL, John GR, Hooper DC, Saiz A, Bar-Or A, Kim HJ, Pandit L, Leite MI, Asgari N, Kissani N, Hintzen R, Marignier R, Jarius S, Marcelletti J, Smith TJ, Yeaman MR, Han MH, Aktas O, Apiwattanakul M, Banwell B, Bichuetti D, Broadley S, Cabre P, Chitnis T, De Seze J, Fujihara K, Greenberg B, Hellwig K, Iorio R, Jarius S, Klawiter E, Kleiter I, Lana-Peixoto M, Nakashima, O'Connor K, Palace J, Paul F, Prayoonwiwat N, Ruprecht K, Stuve O, Tedder T, Tenembaum S, Garrahan JP, Aires B, van Herle K, van Pelt D, Villoslada P, Waubant E, Weinshenker B, Wingerchuk D, Würfel J, Zamvil S. Update on biomarkers in neuromyelitis optica. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2015; 2:e134. [PMID: 26236760 PMCID: PMC4516398 DOI: 10.1212/nxi.0000000000000134] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/01/2015] [Indexed: 11/15/2022]
Abstract
Neuromyelitis optica (NMO) (and NMO spectrum disorder) is an autoimmune inflammatory disease of the CNS primarily affecting spinal cord and optic nerves. Reliable and sensitive biomarkers for onset, relapse, and progression in NMO are urgently needed because of the heterogeneous clinical presentation, severity of neurologic disability following relapses, and variability of therapeutic response. Detecting aquaporin-4 (AQP4) antibodies (AQP4-IgG or NMO-IgG) in serum supports the diagnosis of seropositive NMO. However, whether AQP4-IgG levels correlate with disease activity, severity, response to therapy, or long-term outcomes is unclear. Moreover, biomarkers for patients with seronegative NMO have yet to be defined and validated. Collaborative international studies hold great promise for establishing and validating biomarkers that are useful in therapeutic trials and clinical management. In this review, we discuss known and potential biomarkers for NMO.
Collapse
Affiliation(s)
- Esther Melamed
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Michael Levy
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Patrick J Waters
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Douglas Kazutoshi Sato
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Jeffrey L Bennett
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Gareth R John
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Douglas C Hooper
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Albert Saiz
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Amit Bar-Or
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Ho Jin Kim
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Lakha Pandit
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Maria Isabel Leite
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Nasrin Asgari
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Najib Kissani
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Rogier Hintzen
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Romain Marignier
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Sven Jarius
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - John Marcelletti
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Terry J Smith
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Michael R Yeaman
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - May H Han
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li H, Dai Y, Wu AM, Sun X, Lin Y, Lv K, Lu Z. Anti-thyroid antibodies and cerebrospinal fluid findings in neuromyelitis optica spectrum disorders. J Neuroimmunol 2015; 281:38-43. [DOI: 10.1016/j.jneuroim.2015.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 11/27/2022]
|
33
|
Presence of anti-Ro/SSA antibody may be associated with anti-aquaporin-4 antibody positivity in neuromyelitis optica spectrum disorder. J Neurol Sci 2015; 348:132-5. [DOI: 10.1016/j.jns.2014.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 11/18/2022]
|
34
|
Jarius S, Scharf M, Begemann N, Stöcker W, Probst C, Serysheva II, Nagel S, Graus F, Psimaras D, Wildemann B, Komorowski L. Antibodies to the inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) in cerebellar ataxia. J Neuroinflammation 2014; 11:206. [PMID: 25498830 PMCID: PMC4300617 DOI: 10.1186/s12974-014-0206-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/22/2014] [Indexed: 11/22/2022] Open
Abstract
We report on a serum autoantibody associated with cerebellar ataxia. Immunohistochemical studies of sera from four patients referred for autoantibody testing revealed binding of high-titer (up to 1:5,000) IgG antibodies, mainly IgG1, to the molecular layer, Purkinje cell layer, and white matter on mouse, rat, porcine, and monkey cerebellum sections. The antibody bound to PC somata, dendrites, and axons, resulting in a binding pattern similar to that reported for anti-Ca/anti-ARHGAP26, but did not react with recombinant ARHGAP26. Extensive control studies were performed to rule out a broad panel of previously described paraneoplastic and non-paraneoplastic anti-neural autoantibodies. The characteristic binding pattern as well as double staining experiments suggested inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) as the target antigen. Verification of the antigen included specific neutralization of the tissue reaction following preadsorption with ITPR1 (but not ARHGAP26) and a dot-blot assay with purified ITPR1 protein. By contrast, anti-ARHGAP26-positive sera did not bind to ITPR1. In a parallel approach, a combination of histoimmunoprecipitation and mass spectrometry also identified ITPR1 as the target antigen. Finally, a recombinant cell-based immunofluorescence assay using HEK293 cells expressing ITPR1 and ARHGAP26, respectively, confirmed the identification of ITPR1. Mutations of ITPR1 have previously been implicated in spinocerebellar ataxia with and without cognitive decline. Our findings suggest a role of autoimmunity against ITPR1 in the pathogenesis of autoimmune cerebellitis and extend the panel of diagnostic markers for this disease.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Madeleine Scharf
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Seekamp 31, 23560, Lübeck, Germany.
| | - Nora Begemann
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Seekamp 31, 23560, Lübeck, Germany.
| | - Winfried Stöcker
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Seekamp 31, 23560, Lübeck, Germany.
| | - Christian Probst
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Seekamp 31, 23560, Lübeck, Germany.
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| | - Sigrun Nagel
- Leibniz Institute for Age Research/Fritz Lipmann Institute, Beutenbergstraße 11, D-07745, Jena, Germany.
| | - Francesc Graus
- Institut d' Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Villarroel 170, Barcelona, 08036, Spain.
| | - Dimitri Psimaras
- Department of Neurology Mazarin, Hôpital Pitié-Salpêtrière, University René Descartes, 47-83, Boulevard de l'Hôpital, 75651, Paris, Cedex 13, France.
| | - Brigitte Wildemann
- Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Lars Komorowski
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Seekamp 31, 23560, Lübeck, Germany.
| |
Collapse
|
35
|
Liao MF, Chang KH, Lyu RK, Huang CC, Chang HS, Wu YR, Chen CM, Chu CC, Kuo HC, Ro LS. Comparison between the cranial magnetic resonance imaging features of neuromyelitis optica spectrum disorder versus multiple sclerosis in Taiwanese patients. BMC Neurol 2014; 14:218. [PMID: 25433369 PMCID: PMC4264553 DOI: 10.1186/s12883-014-0218-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/04/2014] [Indexed: 11/18/2022] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS) are inflammatory diseases of the central nervous system with different pathogenesis, brain lesion patterns, and treatment strategies. However, it is still difficult to distinguish these two disease entities by neuroimaging studies. Herein, we attempt to differentiate NMOSD from MS by comparing brain lesion patterns on magnetic resonance imaging (MRI). Methods The medical records and cranial MRI studies of patients with NMOSD diagnosed according to the 2006 Wingerchuk criteria and the presence of anti-aquaporin 4 (anti-AQP4) antibodies, and patients with MS diagnosed according to the Poser criteria, were retrospectively reviewed. Results Twenty-five NMOSD and 29 MS patients were recruited. The NMOSD patients became wheelchair dependent earlier than MS patients (log rank test; P = 0.036). Linear ependymal (28% vs. 0%, P = 0.003) and punctate lesions (64% vs. 28%, P = 0.013) were more frequently seen in NMOSD patients. Ten NMOSD patients (40%) had brain lesions that did not meet the Matthews criteria (MS were separated from NMOSD by the presence of at least 1 lesion adjacent to the body of the lateral ventricle and in the inferior temporal lobe; or the presence of a subcortical U-fiber lesion or a Dawson finger-type lesion). The different image patterns of NMOSD didn’t correlate with the clinical prognosis. However, NMOSD patients with more (≧10) brain lesions at onset became wheelchair dependence earlier than those with fewer (<10) brain lesions (log rank test; P < 0.001). Conclusions The diagnostic sensitivity of NMOSD criteria can be increased to 56% by combining the presence of linear ependymal lesions with unmet the Matthews criteria. The prognoses of NMOSD and MS are different. A specific imaging marker, the linear ependymal lesion, was present in some NMOSD patients. The diagnosis of NMOSD can be improved by following the evolution of this imaging feature when anti-AQP4 antibody test results are not available.
Collapse
|
36
|
Biomarkers for neuromyelitis optica. Clin Chim Acta 2014; 440:64-71. [PMID: 25444748 DOI: 10.1016/j.cca.2014.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 02/06/2023]
Abstract
Neuromyelitis optica (NMO) is an acquired, heterogeneous inflammatory disorder, which is characterized by recurrent optic neuritis and longitudinally extensive spinal cord lesions. The discovery of the serum autoantibody marker, anti-aquaporin 4 (anti-AQP4) antibody, revolutionizes our understanding of pathogenesis of NMO. In addition to anti-AQP4 antibody, other biomarkers for NMO are also reported. These candidate biomarkers are particularly involved in T helper (Th)17 and astrocytic damages, which play a critical role in the development of NMO lesions. Among them, IL-6 in the peripheral blood is associated with anti-AQP4 antibody production. Glial fibrillary acidic protein (GFAP) in CSF demonstrates good correlations with clinical severity of NMO relapses. Detecting these useful biomarkers may be useful in the diagnosis and evaluation of disease activity of NMO. Development of compounds targeting these biomarkers may provide novel therapeutic strategies for NMO. This article will review the related biomarker studies in NMO and discuss the potential therapeutics targeting these biomarkers.
Collapse
|
37
|
Waters PJ, Pittock SJ, Bennett JL, Jarius S, Weinshenker BG, Wingerchuk DM. Evaluation of aquaporin-4 antibody assays. CLINICAL & EXPERIMENTAL NEUROIMMUNOLOGY 2014. [PMID: 27840658 DOI: 10.1111/cen3.12107"] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aquaporin-4 (AQP4) is a water channel protein that is most highly, but not exclusively, expressed in the central nervous system. In 2005 AQP4 was shown to be the antigenic target of neuromyelitis optica-immunoglobulin G (NMO-IgG, or AQP4-IgG), an antibody found specifically in patients with NMO and in formes frustes of NMO, such as longitudinally extensive transverse myelitis (LETM) or optic neuritis (ON). This discovery facilitated the clinical, pathological, and radiological distinction of NMO and the spectrum of NMO-related disorders from classical multiple sclerosis. In addition to its use as a diagnostic tool, AQP4-IgG predicts a high risk of relapse in patients with a clinically isolated syndrome of either LETM or ON. As disability in NMO is attack-related, early diagnosis and treatment are predicted to have a major effect on long-term disability. Thus, the importance of sensitive and specific assays to detect AQP4-IgG cannot be overstated. Both academic institutions and commercial companies have developed assays to identify AQP4-IgG in patients' sera or cerebrospinal fluid. Both AQP4 isoforms from different species have been used as the antigenic target in the form of frozen tissue sections in indirect immunofluorescence assays, partially purified protein for fluorescence immunoprecipitation assay, radioimmunoprecipita-tion assay or enzyme-linked immunosorbent assay, or transfected into cells for cell based assays or flow cytometry. We carried out a systematic review of the literature reporting different methodologies used to identify AQP4-IgG, examine whether longitudinal AQP4-IgG titers predict relapses in seropositive patients, and attempt to establish a reasonable timeframe for retesting negative serum samples.
Collapse
Affiliation(s)
- Patrick J Waters
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Sean J Pittock
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA; Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, University of Colorado Denver, Aurora, CO, USA
| | - Sven Jarius
- Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brian G Weinshenker
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dean M Wingerchuk
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| |
Collapse
|
38
|
CD19 as a molecular target in CNS autoimmunity. Acta Neuropathol 2014; 128:177-90. [PMID: 24993505 DOI: 10.1007/s00401-014-1313-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/18/2014] [Accepted: 06/18/2014] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) and neuromyelitis optica (NMO) are the most prevalent neuroinflammatory diseases of the central nervous system (CNS). The immunological cascade of these disorders is complex, and the exact spatial and temporal role of different immune cells is not fully understood. Although MS has been considered for many years to be primarily T cell driven, it is well established that B cells and the humoral immune response play an important role in its pathogenesis. This has long been evident from laboratory findings that include the presence of oligoclonal bands in the CSF. In NMO, the importance of the humoral immune system appears even more obvious as evidenced by pathogenic antibodies against aquaporin 4 (AQP4). Besides their capacity to mature into antibody-producing plasma cells, B cells are potent antigen-presenting cells to T lymphocytes and they can provide soluble factors for cell activation and differentiation to other immune-competent cells. In MS and NMO, there are substantial data from clinical trials that B cell depletion with CD20-directed agents is effective and relatively safe. Plasma cells, which produce antibodies against molecular targets expressed by the host, but which also provide humoral immune responses against pathogens, are not targeted by anti-CD20 therapies. Therefore, the depletion of CD19-expressing cells would offer potential advantages with regard to efficacy, but potentially higher risks with regard to infectious complications. This review will outline the rationale for CD19 as a molecular target in CNS autoimmunity. The current stage of drug development is illustrated. Potential safety concerns will be discussed.
Collapse
|
39
|
Jarius S, Paul F, Fechner K, Ruprecht K, Kleiter I, Franciotta D, Ringelstein M, Pache F, Aktas O, Wildemann B. Aquaporin-4 antibody testing: direct comparison of M1-AQP4-DNA-transfected cells with leaky scanning versus M23-AQP4-DNA-transfected cells as antigenic substrate. J Neuroinflammation 2014; 11:129. [PMID: 25074611 PMCID: PMC4128531 DOI: 10.1186/1742-2094-11-129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/08/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Neuromyelitis optica (NMO, Devic syndrome) is associated with antibodies to aquaporin-4 (NMO-IgG/AQP4-Ab) in the majority of cases. NMO-IgG/AQP4-Ab seropositivity in patients with NMO and its spectrum disorders has important differential diagnostic, prognostic and therapeutic implications. So-called cell-based assays (CBA) are thought to provide the best AQP4-Ab detection rates. OBJECTIVE To compare directly the AQP4-IgG detection rates of the currently most widely used commercial CBA, which employs cells transfected with a full-length (M1)-human AQP4 DNA in a fashion that allows leaky scanning (LS) and thus expression of M23-AQP4 in addition to M1-AQP, to that of a newly developed CBA from the same manufacturer employing cells transfected with human M23-AQP4-DNA. METHODS Results from 368 serum samples that had been referred for routine AQP4-IgG determination and had been tested in parallel in the two assays were compared. RESULTS Seventy-seven out of 368 samples (20.9%) were positive for NMO-IgG/AQP4-Ab in at least one assay. Of these, 73 (94.8%) were positive in both assays. A single sample (1.3%) was exclusively positive in the novel assay; three samples (3.9%) were unequivocally positive only in the 'classic' assay due to high background intensity in the novel assay. Both median fluorescence intensity and background intensity were higher in the new assay. CONCLUSIONS This large study did not reveal significant differences in AQP4-IgG detection rates between the 'classic' CBA and a new M23-DNA-based CBA. Importantly, our results largely re-affirm the validity of previous studies that had used the 'classic' AQP4-CBA to establish NMO-IgG/AQP4-Ab seropositivity rates in NMO and in a variety of NMO spectrum disorders.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sánchez Gomar I, Díaz Sánchez M, Uclés Sánchez AJ, Casado Chocán JL, Ramírez-Lorca R, Serna A, Villadiego J, Toledo-Aral JJ, Echevarría M. An immunoassay that distinguishes real neuromyelitis optica signals from a labeling detected in patients receiving natalizumab. BMC Neurol 2014; 14:139. [PMID: 24980919 PMCID: PMC4096525 DOI: 10.1186/1471-2377-14-139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell-based assays for neuromyelitis optica (NMO) diagnosis are the most sensitive and specific methods to detect anti-aquaporin 4 (AQP4) antibodies in serum, but some improvements in their quantitative and specificity capacities would be desirable. Thus the aim of the present work was to develop a sensitive quantitative method for detection of anti-AQP4 antibodies that allows clear diagnosis of NMO and distinction of false labeling produced by natalizumab treatment. METHODS Sera from 167 individuals, patients diagnosed with NMO (16), multiple sclerosis (85), optic neuritis (24), idiopathic myelitis (21), or other neurological disorders (13) and healthy controls (8), were used as the primary antibody in an immunofluorescence assay on HEK cells transfected with the M23 isoform of human AQP4 fused with enhanced green fluorescent protein. Cells used were freshly transfected or stored frozen and then thawed just before adding the serum. RESULTS Microscopic observation and fluorescence quantification produced similar results in fresh and frozen samples. Serum samples from patients diagnosed with NMO were 100% positive for anti-AQP4 antibodies, while all the other sera were negative. Using serum from patients treated with natalizumab, a small and unspecific fluorescent signal was produced from all HEK cells, regardless of AQP4 expression. CONCLUSIONS Our cell-based double-label fluorescence immunoassay protocol significantly increases the signal specificity and reduces false diagnosis of NMO patients, especially in those receiving natalizumab treatment. Frozen pretreated cells allow faster detection of anti-AQP4 antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Miriam Echevarría
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av, Manuel Siurot s/n, Seville 41013, Spain.
| |
Collapse
|
41
|
Jarius S, Wildemann B, Paul F. Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol 2014; 176:149-64. [PMID: 24666204 DOI: 10.1111/cei.12271] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2014] [Indexed: 12/11/2022] Open
Abstract
The term 'neuromyelitis optica' ('Devic's syndrome', NMO) refers to a syndrome characterized by optic neuritis and myelitis. In recent years, the condition has raised enormous interest among scientists and clinical neurologists, fuelled by the detection of a specific serum immunoglobulin (Ig)G reactivity (NMO-IgG) in up to 80% of patients with NMO. These autoantibodies were later shown to target aquaporin-4 (AQP4), the most abundant water channel in the central nervous system (CNS). Here we give an up-to-date overview of the clinical and paraclinical features, immunopathogenesis and treatment of NMO. We discuss the widening clinical spectrum of AQP4-related autoimmunity, the role of magnetic resonance imaging (MRI) and new diagnostic means such as optical coherence tomography in the diagnosis of NMO, the role of NMO-IgG, T cells and granulocytes in the pathophysiology of NMO, and outline prospects for new and emerging therapies for this rare, but often devastating condition.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
42
|
Jarius S, Wildemann B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. Brain Pathol 2014; 23:661-83. [PMID: 24118483 DOI: 10.1111/bpa.12084] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 01/19/2023] Open
Abstract
Antibodies to aquaporin-4 (called NMO-IgG or AQP4-Ab) constitute a sensitive and highly specific serum marker of neuromyelitis optica (NMO) that can facilitate the differential diagnosis of NMO and classic multiple sclerosis. NMO-IgG/AQP4-Ab seropositive status has also important prognostic and therapeutic implications in patients with isolated longitudinally extensive myelitis (LETM) or optic neuritis (ON). In this article, we comprehensively review and critically appraise the existing literature on NMO-IgG/AQP4-Ab testing. All available immunoassays-including tissue-based (IHC), cell-based (ICC, FACS) and protein-based (RIPA, FIPA, ELISA, Western blotting) assays-and their differential advantages and disadvantages are discussed. Estimates for sensitivity, specificity, and positive and negative likelihood ratios are calculated for all published studies and accuracies of the various immunoassay techniques compared. Subgroup analyses are provided for NMO, LETM and ON, for relapsing vs. monophasic disease, and for various control groups (eg, MS vs. other controls). Numerous aspects of NMO-IgG/AQP4-Ab testing relevant for clinicians (eg, impact of antibody titers and longitudinal testing, indications for repeat testing, relevance of CSF testing and subclass analysis, NMO-IgG/AQP4-Ab in patients with rheumatic diseases) as well as technical aspects (eg, AQP4-M1 vs. AQP4-M23-based assays, intact AQP4 vs. peptide substrates, effect of storage conditions and freeze/thaw cycles) and pitfalls are discussed. Finally, recommendations for the clinical application of NMO-IgG/AQP4-Ab serology are given.
Collapse
Affiliation(s)
- Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
43
|
Colpak Aİ, Kalyoncu U, Gürsoy Özdemir Y. The Presence of Autoantibodies Against Vascular and Nervous Tissue in Sera From Patients with Neuro-Behçet's Disease. Noro Psikiyatr Ars 2014; 51:141-147. [PMID: 28360614 DOI: 10.4274/npa.y6987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/01/2013] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Behçet's disease is a chronic inflammatory disease of unknown aetiology that affects multiple organ systems. Since the diagnosis of this disease mainly relies on clinical criteria, a diagnostic laboratory test is required especially for neuro-Behçet's patients without systemic involvement. METHOD In this study, we searched for the presence of autoantibodies against brain tissue, by means of indirect immunofluorescent staining technique in sera obtained from patients with neuro-Behçet's disease, based on reports that humoral immune dysregulation may play a role in susceptibility to Behçet's disease. After pre-absorbtion of sera with guinea pig liver powder to reduce nonspecific staining, serum samples were applied to mouse brain sections and immunoreactivity was detected with fluorescein (FITC)-conjugated goat antibody against human IgG. RESULTS Ten sera from neuro-Behçet's patients and 10 age-matched control sera were screened for immunoreactivity. We detected specific immunoreactivity to both parenchymal and vascular brain structures in the patients' sera. Parenchymal vessel immunopositivity was detected in 8 of 10 patients, whereas only two of control sera showed no significant parenchymal vascular immunoreactivity (p=.025). In addition to vascular immunoreactivity, filamentous and reticular immunopositive structures were detected in brain sections of 5 out of 10 patients. No such immunoreactivity was detected in sections incubated with control sera (p=.016). CONCLUSION We detected a specific immunoreactivity against vascular and parenchymal filamentous structures in neuro-Behçet patients' sera. Humoral autoimmunity may play a role in the pathogenesis of neuro-Behçet's disease in addition to cellular immune response. Findings of this preliminary study will be evaluated with a large number of patients and controls, to determine whether it is the cause or the result and, further studies are underway to disclose the nature of epitope to which the immunoreactivity was directed against and to develop a diagnostic laboratory method for investigating central nervous system involvement in Behçet's patients.
Collapse
Affiliation(s)
- Ayşe İlksen Colpak
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Umut Kalyoncu
- Department of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | |
Collapse
|
44
|
Levy M, Wildemann B, Jarius S, Orellano B, Sasidharan S, Weber MS, Stuve O. Immunopathogenesis of neuromyelitis optica. Adv Immunol 2014; 121:213-42. [PMID: 24388217 DOI: 10.1016/b978-0-12-800100-4.00006-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuromyelitis optica (NMO, Devic's syndrome) is a clinical syndrome characterized by optic neuritis and (mostly longitudinally extensive) myelitis. If untreated, NMO usually takes a relapsing course and often results in blindness and tetra- or paraparesis. The discovery of autoantibodies to aquaporin-4, the most abundant water channel in the CNS, in 70-80% of patients with NMO (termed NMO-IgG or AQP4-Ab) and subsequent investigations into the pathogenic impact of this new reactivity have led to the recognition of NMO as an autoimmune condition and as a disease entity in its own right, distinct from classic multiple sclerosis. Here, we comprehensively review the current knowledge on the role of NMO-IgG/AQP4-Ab, B cells, T cells, and the innate immune system in the pathogenesis of NMO.
Collapse
Affiliation(s)
- Michael Levy
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA.
| | - Brigitte Wildemann
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Benjamine Orellano
- Department of Neurology & Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Saranya Sasidharan
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Martin S Weber
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany; Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Olaf Stuve
- Department of Neurology & Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA; Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, Texas, USA; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, München, Germany; Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
45
|
Waters PJ, Pittock SJ, Bennett JL, Jarius S, Weinshenker BG, Wingerchuk DM. Evaluation of aquaporin-4 antibody assays. ACTA ACUST UNITED AC 2014; 5:290-303. [PMID: 27840658 DOI: 10.1111/cen3.12107] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aquaporin-4 (AQP4) is a water channel protein that is most highly, but not exclusively, expressed in the central nervous system. In 2005 AQP4 was shown to be the antigenic target of neuromyelitis optica-immunoglobulin G (NMO-IgG, or AQP4-IgG), an antibody found specifically in patients with NMO and in formes frustes of NMO, such as longitudinally extensive transverse myelitis (LETM) or optic neuritis (ON). This discovery facilitated the clinical, pathological, and radiological distinction of NMO and the spectrum of NMO-related disorders from classical multiple sclerosis. In addition to its use as a diagnostic tool, AQP4-IgG predicts a high risk of relapse in patients with a clinically isolated syndrome of either LETM or ON. As disability in NMO is attack-related, early diagnosis and treatment are predicted to have a major effect on long-term disability. Thus, the importance of sensitive and specific assays to detect AQP4-IgG cannot be overstated. Both academic institutions and commercial companies have developed assays to identify AQP4-IgG in patients' sera or cerebrospinal fluid. Both AQP4 isoforms from different species have been used as the antigenic target in the form of frozen tissue sections in indirect immunofluorescence assays, partially purified protein for fluorescence immunoprecipitation assay, radioimmunoprecipita-tion assay or enzyme-linked immunosorbent assay, or transfected into cells for cell based assays or flow cytometry. We carried out a systematic review of the literature reporting different methodologies used to identify AQP4-IgG, examine whether longitudinal AQP4-IgG titers predict relapses in seropositive patients, and attempt to establish a reasonable timeframe for retesting negative serum samples.
Collapse
Affiliation(s)
- Patrick J Waters
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Sean J Pittock
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA; Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, University of Colorado Denver, Aurora, CO, USA
| | - Sven Jarius
- Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brian G Weinshenker
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dean M Wingerchuk
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| |
Collapse
|
46
|
Jarius S, Kleffner I, Dörr JM, Sastre-Garriga J, Illes Z, Eggenberger E, Chalk C, Ringelstein M, Aktas O, Montalban X, Fechner K, Stöcker W, Ringelstein EB, Paul F, Wildemann B. Clinical, paraclinical and serological findings in Susac syndrome: an international multicenter study. J Neuroinflammation 2014; 11:46. [PMID: 24606999 PMCID: PMC3995917 DOI: 10.1186/1742-2094-11-46] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 02/13/2014] [Indexed: 11/10/2022] Open
Abstract
Background Susac syndrome (SuS) is a rare disorder thought to be caused by autoimmune-mediated occlusions of microvessels in the brain, retina and inner ear leading to central nervous system (CNS) dysfunction, visual disturbances due to branch retinal artery occlusions (BRAO), and hearing deficits. Recently, a role for anti-endothelial cell antibodies (AECA) in SuS has been proposed. Objectives To report the clinical and paraclinical findings in the largest single series of patients so far and to investigate the frequency, titers, and clinical relevance of AECA in SuS. Patients and methods A total of 107 serum samples from 20 patients with definite SuS, 5 with abortive forms of SuS (all with BRAO), and 70 controls were tested for AECA by immunohistochemistry employing primate brain tissue sections. Results IgG-AECA >1:100 were detected in 25% (5/20) of patients with definite SuS and in 4.3% (3/70) of the controls. Median titers were significantly higher in SuS (1:3200, range 1:100 to 1:17500) than in controls (1:100, range 1:10 to 1:320); IgG-AECA titers >1:320 were exclusively present in patients with SuS; three controls had very low titers (1:10). Follow-up samples (n = 4) from a seropositive SuS patient obtained over a period of 29 months remained positive at high titers. In all seropositive cases, AECA belonged to the complement-activating IgG1 subclass. All but one of the IgG-AECA-positive samples were positive also for IgA-AECA and 45% for IgM-AECA. SuS took a severe and relapsing course in most patients and was associated with bilateral visual and hearing impairment, a broad panel of neurological and neuropsychological symptoms, and brain atrophy in the majority of cases. Seropositive and seronegative patients did not differ with regard to any of the clinical or paraclinical parameters analyzed. Conclusions SuS took a severe and protracted course in the present cohort, resulting in significant impairment. Our finding of high-titer IgG1 and IgM AECA in some patients suggest that humoral autoimmunity targeting the microvasculature may play a role in the pathogenesis of SuS, at least in a subset of patients. Further studies are warranted to define the exact target structures of AECA in SuS.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Reske D, Haupt WF. Use of rituximab in multiple sclerosis: current progress and future perspectives. Expert Rev Clin Immunol 2014; 4:573-82. [DOI: 10.1586/1744666x.4.5.573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
İdiman E, Özakbaş S. The limited demyelinating diseases: the voyage of optic neuritis and transverse myelitis to multiple sclerosis and neuromyelitis. Expert Rev Neurother 2014. [DOI: 10.1586/ern.11.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Trebst C, Jarius S, Berthele A, Paul F, Schippling S, Wildemann B, Borisow N, Kleiter I, Aktas O, Kümpfel T. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol 2013; 261:1-16. [PMID: 24272588 PMCID: PMC3895189 DOI: 10.1007/s00415-013-7169-7] [Citation(s) in RCA: 407] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/26/2022]
Abstract
Neuromyelitis optica (NMO, Devic’s syndrome), long considered a clinical variant of multiple sclerosis, is now regarded as a distinct disease entity. Major progress has been made in the diagnosis and treatment of NMO since aquaporin-4 antibodies (AQP4-Ab; also termed NMO-IgG) were first described in 2004. In this review, the Neuromyelitis Optica Study Group (NEMOS) summarizes recently obtained knowledge on NMO and highlights new developments in its diagnosis and treatment, based on current guidelines, the published literature and expert discussion at regular NEMOS meetings. Testing of AQP4-Ab is essential and is the most important test in the diagnostic work-up of suspected NMO, and helps to distinguish NMO from other autoimmune diseases. Furthermore, AQP4-Ab testing has expanded our knowledge of the clinical presentation of NMO spectrum disorders (NMOSD). In addition, imaging techniques, particularly magnetic resonance imaging of the brain and spinal cord, are obligatory in the diagnostic workup. It is important to note that brain lesions in NMO and NMOSD are not uncommon, do not rule out the diagnosis, and show characteristic patterns. Other imaging modalities such as optical coherence tomography are proposed as useful tools in the assessment of retinal damage. Therapy of NMO should be initiated early. Azathioprine and rituximab are suggested as first-line treatments, the latter being increasingly regarded as an established therapy with long-term efficacy and an acceptable safety profile in NMO patients. Other immunosuppressive drugs, such as methotrexate, mycophenolate mofetil and mitoxantrone, are recommended as second-line treatments. Promising new therapies are emerging in the form of anti-IL6 receptor, anti-complement or anti-AQP4-Ab biologicals.
Collapse
Affiliation(s)
- Corinna Trebst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jarius S, Wildemann B. Aquaporin-4 antibodies, CNS acidosis and neuromyelitis optica: a potential link. Med Hypotheses 2013; 81:1090-5. [PMID: 24182872 DOI: 10.1016/j.mehy.2013.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/17/2013] [Accepted: 10/09/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuromyelitis optica (NMO, Devic's syndrome) is a severely disabling disorder of the central nervous system characterized by optic neuritis and longitudinally extensive myelitis. In around 80% of cases, NMO is caused by autoantibodies to astrocytic aquaporin-4 (AQP4), the most abundant water channel in the CNS. Acute NMO attacks are frequently accompanied by elevated levels of lactate in the cerebrospinal fluid (CSF). As a strongly dissociated anion (pK'=3.7) directly changing the strong ion difference, lactate causes a reduction in the dependent anion [HCO3-] and a rise in [H+], resulting in "metabolic" acidosis in the CSF. CSF acidosis also develops during respiratory failure due to brainstem or high cervical spinal cord lesions, the most common cause of death in NMO. However, lactic acid and more generally, a decrease in pH, has been shown to increase the membrane expression of AQP4 in astrocytes. An increase in AQP4 membrane expression during acute NMO attacks could potentially enhance the complement-mediated humoral immune reaction against AQP4-expressing astrocytes characteristic for NMO and, thus, result in more severe astrocytic damage. Moreover, lactate and acidosis have been shown to cause astrocytic swelling and to affect astrocytic viability, potentially rendering astrocytes more susceptible to AQP4-Ab-mediated damage. Finally, increased AQP4 expression could be an independent risk factor in NMO and other forms of CNS inflammation, as indicated by the finding of grossly attenuated experimental autoimmune encephalomyelitis in AQP4-null mice. Therefore, we hypothesize that CSF acidosis might play a role in the pathophysiology of AQP4-Ab-positive NMO and that alterations in CSF pH might possibly influence the outcome of acute attacks in this condition. In addition, we discuss potential clinical implications and make proposals on how to test the hypothesis. Finally, other factors that influence astrocytic AQP4 membrane expression and might play a role in NMO are discussed.
Collapse
Affiliation(s)
- S Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Germany.
| | | |
Collapse
|