1
|
Simoes E, Uchida R, Nucci M, Duran F, Lima J, Gama L, Costa N, Otaduy M, Bin F, Otoch J, Alcantara P, Ramos A, Laviano A, Diaz M, Esiri M, DeLuca G, Herzig S, Filho G, Seelaender M. Cachexia Alters Central Nervous System Morphology and Functionality in Cancer Patients. J Cachexia Sarcopenia Muscle 2025; 16:e13742. [PMID: 39962362 PMCID: PMC11832348 DOI: 10.1002/jcsm.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Cachexia is a clinically challenging multifactorial and multi-organ syndrome, associated with poor outcome in cancer patients, and characterised by inflammation, wasting and loss of appetite. The syndrome leads to central nervous system (CNS) function dysregulation and to neuroinflammation; nevertheless, the mechanisms involved in human cachexia remain unclear. METHODS We used in vivo structural and functional magnetic resonance imaging (Cohort 1), as well as postmortem neuropathological analyses (Cohort 2) in cachectic cancer (CC) patients compared to weight stable cancer (WSC) patients. Cohort 1 included treatment-naïve adults diagnosed with colorectal cancer, further divided into WSC (n = 12; 6/6 [male/female], 61.3 ± 3.89 years) and CC (n = 10; 6/4, 63.0 ± 2.74 years). Cohort 2 was composed by human postmortem cases where gastrointestinal carcinoma was the underlying cause of death (WSC n = 6; 3/3, 82.7 ± 3.33 years and CC n = 10; 5/5, 84.2 ± 2.28 years). RESULTS Here we demonstrate that the CNS of CC patients presents regional structural differences within the grey matter (GM). Cachectic patients presented an augmented area within the region of the orbitofrontal cortex, olfactory tract and the gyrus rectus (coordinates X, Y, Z = 6, 20,-24; 311 voxels; pFWE = 0.023); increased caudate and putamen volume (-10, 20, -8; 110 voxel; pFWE = 0.005); and reduced GM in superior temporal gyrus and rolandic operculum (56,0,2; 156 voxels; pFWE = 0.010). Disrupted functional connectivity was found in several regions such as the salience network, subcortical and temporal cortical areas of cachectic patients (20 decreased and 5 increased regions connectivity pattern, pFDR < 0.05). Postmortem neuropathological analyses identified abnormal neuronal morphology and density, increased microglia/macrophage burden, astrocyte profile disruption and mTOR pathway related neuroinflammation (p < 0.05). CONCLUSIONS Our results indicate that cachexia compromises CNS morphology mostly causing changes in the GM of cachectic patients, leading to alterations in regional volume patterns, functional connectivity, neuronal morphology, neuroglia profile and inducing neuroinflammation, all of which may contribute to the loss of homeostasis control and to deficient information processing, as well as to the metabolic and behavioural derangements commonly observed in human cachexia. This first human mapping of CNS cachexia responses will now pave the way to mechanistically interrogate these pathways in terms of their therapeutic potential.
Collapse
Affiliation(s)
- Estefania Simoes
- Cancer Metabolism Research Group (LIM26‐HCFMUSP), Department of SurgerySão PauloBrazil
- Institute for Diabetes and Cancer, Helmholtz Munich, and German Center for Diabetes Research DZDNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Unit, Inner MedicineHeidelberg University HospitalHeidelbergGermany
| | - Ricardo Uchida
- Mental Health DepartmentSanta Casa de São Paulo School of Medical SciencesSão PauloBrazil
| | - Mariana P. Nucci
- Department of Radiology, Faculty of MedicineLaboratory of Magnetic Resonance in Neuroradiology (LIM44‐ HCFMUSP)São PauloBrazil
| | - Fabio L. S. Duran
- Neuroimaging Laboratory (LIM21‐HCFMUSP), institute PsychiatryUniversity of São PauloSão PauloBrazil
| | - Joanna D. C. C. Lima
- Cancer Metabolism Research Group (LIM26‐HCFMUSP), Department of SurgerySão PauloBrazil
| | - Leonardo R. Gama
- Center for Translational Research in Oncology, Cancer Institute of the State of São PauloUniversity of São PauloSão PauloBrazil
| | - Naomi A. Costa
- Neuroimaging Laboratory (LIM21‐HCFMUSP), institute PsychiatryUniversity of São PauloSão PauloBrazil
| | - Maria C. G. Otaduy
- Department of Radiology, Faculty of MedicineLaboratory of Magnetic Resonance in Neuroradiology (LIM44‐ HCFMUSP)São PauloBrazil
| | - Fang C. Bin
- Hospital Santa Casa de Misericórdia de São PauloSão PauloBrazil
| | - Jose P. Otoch
- Cancer Metabolism Research Group (LIM26‐HCFMUSP), Department of SurgerySão PauloBrazil
- Department of Clinical SurgeryUniversity Hospital USPSão PauloBrazil
| | - Paulo Alcantara
- Department of Clinical SurgeryUniversity Hospital USPSão PauloBrazil
| | - Alexandre Ramos
- Center for Translational Research in Oncology, Cancer Institute of the State of São PauloUniversity of São PauloSão PauloBrazil
- School of Arts, Sciences and HumanitiesUniversity of São PauloSão PauloBrazil
| | - Alessandro Laviano
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Munich, and German Center for Diabetes Research DZDNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Unit, Inner MedicineHeidelberg University HospitalHeidelbergGermany
| | - Margaret M. Esiri
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Gabriele C. DeLuca
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Munich, and German Center for Diabetes Research DZDNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Unit, Inner MedicineHeidelberg University HospitalHeidelbergGermany
- Chair Molecular Metabolic ControlTechnical University MunichMunichGermany
| | - Geraldo Busatto Filho
- Neuroimaging Laboratory (LIM21‐HCFMUSP), institute PsychiatryUniversity of São PauloSão PauloBrazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group (LIM26‐HCFMUSP), Department of SurgerySão PauloBrazil
| |
Collapse
|
2
|
Du D, Zheng T, Wang Z, Chen Y, Wu S, Yang L, Lu J, Liu L. Evaluating the therapeutic effect of LIPUS in the early stage of traumatic brain injury using FA and T2 * in rats. Aging (Albany NY) 2024; 16:11744-11754. [PMID: 39137314 PMCID: PMC11346775 DOI: 10.18632/aging.206060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
To evaluate the protective effect of LIPUS at the early stage of brain trauma in rats, 45 rats were randomly divided into 3 groups: sham (n = 15), TBI (n = 15) and LIPUS treatment groups (n = 15). Ipsilateral and contralateral cortical and thalamic parameters obtained by diffusion tensor imaging (DTI) and fast low-angle shot magnetic resonance imaging (FLASH-MRI) were measured at different times after trauma. For fractional anisotropy (FA) and T2* values, two-way repeated measures ANOVA with Tukey's post hoc was used for intergroup comparisons. With observation time prolonged, the FA values of the ipsilateral cortex in the TBI group gradually increased and were significantly higher than those in the LIPUS treatment group on Day 7 (adjusted P = 0.0067). FA values in the contralateral cortex decreased at this time and were significantly lower than those in the LIPUS treatment group (adjusted P = 0.0192). Meanwhile, compared with LIPUS group, FA values were significantly higher in the injured thalamus (adjusted P = 0.0025). Combined with correlation analysis, FA values were positively correlated with neuronal damage (P = 0.0148, r2 = 0.895). At 7 days after trauma, T2* values in the ipsilateral cortex of the TBI group were significantly lower. After analysis of ferritin content and correlation, we found that T2* values were negatively correlated with ferritin (P = 0.0259, r2 = -0.849). By measuring post-traumatic changes in FA and T2* values, it is possible to demonstrate a neuronal protective effect of LIPUS in the early phase of TBI rats and promote brain rehabilitation.
Collapse
Affiliation(s)
- Dan Du
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Tao Zheng
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Zhanqiu Wang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yansheng Chen
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Shuo Wu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Linsha Yang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Jiabin Lu
- Department of Radiology, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| |
Collapse
|
3
|
Huang S, Li M, Huang C, Liu J. Acute limbic system connectivity predicts chronic cognitive function in mild traumatic brain injury: An individualized differential structural covariance network study. Pharmacol Res 2024; 206:107274. [PMID: 38906205 DOI: 10.1016/j.phrs.2024.107274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Mild traumatic brain injury (mTBI) is a known risk factor for neurodegenerative diseases, yet the precise pathophysiological mechanisms remain poorly understand, often obscured by group-level analysis in non-invasive neuroimaging studies. Individual-based method is critical to exploring heterogeneity in mTBI. We recruited 80 mTBI patients and 40 matched healthy controls, obtaining high-resolution structural MRI for constructing Individual Differential Structural Covariance Networks (IDSCN). Comparisons were conducted at both the individual and group levels. Connectome-based Predictive Modeling (CPM) was applied to predict cognitive performance based on whole-brain connectivity. During the acute stage of mTBI, patients exhibited significant heterogeneity in the count and direction of altered edges, obscured by group-level analysis. In the chronic stage, the number of altered edges decreased and became more consistent, aligning with clinical observations of acute cognitive impairment and gradual improvement. Subgroup analysis based on loss of consciousness/post-traumatic amnesia revealed distinct patterns of alterations. The temporal lobe, particularly regions related to the limbic system, significantly predicted cognitive function from acute to chronic stage. The use of IDSCN and CPM has provided valuable individual-level insights, reconciling discrepancies from previous studies. Additionally, the limbic system may be an appropriate target for future intervention efforts.
Collapse
Affiliation(s)
- Sihong Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Mengjun Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chuxin Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Radiology Quality Control Center, Hunan Province, Changsha, Hunan 410011, China; Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan 410011, China.
| |
Collapse
|
4
|
Leontyev D, Pulliam AN, Ma X, Gaul DA, LaPlaca MC, Fernández FM. Spatial lipidomics maps brain alterations associated with mild traumatic brain injury. Front Chem 2024; 12:1394064. [PMID: 38873407 PMCID: PMC11169706 DOI: 10.3389/fchem.2024.1394064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Traumatic brain injury (TBI) is a global public health problem with 50-60 million incidents per year, most of which are considered mild (mTBI) and many of these repetitive (rmTBI). Despite their massive implications, the pathologies of mTBI and rmTBI are not fully understood, with a paucity of information on brain lipid dysregulation following mild injury event(s). To gain more insight on mTBI and rmTBI pathology, a non-targeted spatial lipidomics workflow utilizing high resolution mass spectrometry imaging was developed to map brain region-specific lipid alterations in rats following injury. Discriminant multivariate models were created for regions of interest including the hippocampus, cortex, and corpus callosum to pinpoint lipid species that differentiated between injured and sham animals. A multivariate model focused on the hippocampus region differentiated injured brain tissues with an area under the curve of 0.99 using only four lipid species. Lipid classes that were consistently discriminant included polyunsaturated fatty acid-containing phosphatidylcholines (PC), lysophosphatidylcholines (LPC), LPC-plasmalogens (LPC-P) and PC potassium adducts. Many of the polyunsaturated fatty acid-containing PC and LPC-P selected have never been previously reported as altered in mTBI. The observed lipid alterations indicate that neuroinflammation and oxidative stress are important pathologies that could serve to explain cognitive deficits associated with rmTBI. Therapeutics which target or attenuate these pathologies may be beneficial to limit persistent damage following a mild brain injury event.
Collapse
Affiliation(s)
- Dmitry Leontyev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alexis N. Pulliam
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States
| | - Xin Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, United States
| | - Michelle C. LaPlaca
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, United States
| |
Collapse
|
5
|
Hirad AA, Mix D, Venkataraman A, Meyers SP, Mahon BZ. Strain concentration drives the anatomical distribution of injury in acute and chronic traumatic brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595352. [PMID: 38826417 PMCID: PMC11142169 DOI: 10.1101/2024.05.22.595352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Brain tissue injury caused by mild traumatic brain injury (mTBI) disproportionately concentrates in the midbrain, cerebellum, mesial temporal lobe, and the interface between cortex and white matter at sulcal depths 1-12. The bio-mechanical principles that explain why physical impacts to different parts of the skull translate to common foci of injury concentrated in specific brain structures are unknown. A general and longstanding idea, which has not to date been directly tested in humans, is that different brain regions are differentially susceptible to strain loading11,13-15. We use Magnetic Resonance Elastography (MRE) in healthy participants to develop whole-brain bio-mechanical vulnerability maps that independently define which regions of the brain exhibit disproportionate strain concentration. We then validate those vulnerability maps in a prospective cohort of mTBI patients, using diffusion MRI data collected at three cross-sectional timepoints after injury: acute, sub-acute, chronic. We show that regions that exhibit high strain, measured with MRE, are also the sites of greatest injury, as measured with diffusion MR in mTBI patients. This was the case in acute, subacute, and chronic subgroups of the mTBI cohort. Follow-on analyses decomposed the biomechanical cause of increased strain by showing it is caused jointly by disproportionately higher levels of energy arriving to 'high-strain' structures, as well as the inability of 'high strain' structures to effectively disperse that energy. These findings establish a causal mechanism that explains the anatomy of injury in mTBI based on in vivo rheological properties of the human brain.
Collapse
Affiliation(s)
- Adnan A. Hirad
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, 1462, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
- Del Monte Neuroscience Institute, University of Rochester, NY, USA
| | - Doran Mix
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, 1462, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, 1462
| | - Arun Venkataraman
- Department of Physics and Astronomy, University of Rochester, NY, 14623, USA
| | - Steven P. Meyers
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, 1462, USA
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 1462, USA
| | - Bradford Z. Mahon
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 1462, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15206
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15206
| |
Collapse
|
6
|
Buriti AKL, Luiz CBL, Oliveira LRDB, Suriano IC, Gil D. Central auditory processing and self-perception questionnaire after acoustically controlled auditory training in individuals with mild traumatic brain injury. Codas 2024; 36:e20230048. [PMID: 38695432 PMCID: PMC11086975 DOI: 10.1590/2317-1782/20232023048pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/31/2023] [Indexed: 05/14/2024] Open
Abstract
PURPOSE To correlate behavioral assessment results of central auditory processing and the self-perception questionnaire after acoustically controlled auditory training. METHODS The study assessed 10 individuals with a mean age of 44.5 years who had suffered mild traumatic brain injury. They underwent behavioral assessment of central auditory processing and answered the Formal Auditory Training self-perception questionnaire after the therapeutic intervention - whose questions address auditory perception, understanding orders, request to repeat statements, occurrence of misunderstandings, attention span, auditory performance in noisy environments, telephone communication, and self-esteem. Patients were asked to indicate the frequency with which the listed behaviors occurred. RESULTS Figure-ground, sequential memory for sounds, and temporal processing correlated with improvement in following instructions, fewer requests to repeat statements, increased attention span, improved communication, and understanding on the phone and when watching TV. CONCLUSION Auditory closure, figure-ground, and temporal processing had improved in the assessment after the acoustically controlled auditory training, and there were fewer auditory behavior complaints.
Collapse
Affiliation(s)
- Ana Karina Lima Buriti
- Departamento de Fonoaudiologia, Universidade Federal de São Paulo - UNIFESP - São Paulo (SP), Brasil.
| | | | | | - Italo Capraro Suriano
- Departamento de Fonoaudiologia, Universidade Federal de São Paulo - UNIFESP - São Paulo (SP), Brasil.
| | - Daniela Gil
- Departamento de Fonoaudiologia, Universidade Federal de São Paulo - UNIFESP - São Paulo (SP), Brasil.
| |
Collapse
|
7
|
Kadaba Sridhar S, Dysterheft Robb J, Gupta R, Cheong S, Kuang R, Samadani U. Structural neuroimaging markers of normal pressure hydrocephalus versus Alzheimer's dementia and Parkinson's disease, and hydrocephalus versus atrophy in chronic TBI-a narrative review. Front Neurol 2024; 15:1347200. [PMID: 38576534 PMCID: PMC10991762 DOI: 10.3389/fneur.2024.1347200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Normal Pressure Hydrocephalus (NPH) is a prominent type of reversible dementia that may be treated with shunt surgery, and it is crucial to differentiate it from irreversible degeneration caused by its symptomatic mimics like Alzheimer's Dementia (AD) and Parkinson's Disease (PD). Similarly, it is important to distinguish between (normal pressure) hydrocephalus and irreversible atrophy/degeneration which are among the chronic effects of Traumatic Brain Injury (cTBI), as the former may be reversed through shunt placement. The purpose of this review is to elucidate the structural imaging markers which may be foundational to the development of accurate, noninvasive, and accessible solutions to this problem. Methods By searching the PubMed database for keywords related to NPH, AD, PD, and cTBI, we reviewed studies that examined the (1) distinct neuroanatomical markers of degeneration in NPH versus AD and PD, and atrophy versus hydrocephalus in cTBI and (2) computational methods for their (semi-) automatic assessment on Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scans. Results Structural markers of NPH and those that can distinguish it from AD have been well studied, but only a few studies have explored its structural distinction between PD. The structural implications of cTBI over time have been studied. But neuroanatomical markers that can predict shunt response in patients with either symptomatic idiopathic NPH or post-traumatic hydrocephalus have not been reliably established. MRI-based markers dominate this field of investigation as compared to CT, which is also reflected in the disproportionate number of MRI-based computational methods for their automatic assessment. Conclusion Along with an up-to-date literature review on the structural neurodegeneration due to NPH versus AD/PD, and hydrocephalus versus atrophy in cTBI, this article sheds light on the potential of structural imaging markers as (differential) diagnostic aids for the timely recognition of patients with reversible (normal pressure) hydrocephalus, and opportunities to develop computational tools for their objective assessment.
Collapse
Affiliation(s)
- Sharada Kadaba Sridhar
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
- Neurotrauma Research Lab, Center for Veterans Research and Education, Minneapolis, MN, United States
| | - Jen Dysterheft Robb
- Neurotrauma Research Lab, Center for Veterans Research and Education, Minneapolis, MN, United States
| | - Rishabh Gupta
- Neurotrauma Research Lab, Center for Veterans Research and Education, Minneapolis, MN, United States
- University of Minnesota Twin Cities Medical School, Minneapolis, MN, United States
| | - Scarlett Cheong
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
- Neurotrauma Research Lab, Center for Veterans Research and Education, Minneapolis, MN, United States
| | - Rui Kuang
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Uzma Samadani
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
- Neurotrauma Research Lab, Center for Veterans Research and Education, Minneapolis, MN, United States
- University of Minnesota Twin Cities Medical School, Minneapolis, MN, United States
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
- Division of Neurosurgery, Department of Surgery, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States
| |
Collapse
|
8
|
Leontyev D, Pulliam AN, Ma X, Gaul DA, LaPlaca MC, Fernandez FM. Spatial Lipidomics Maps Brain Alterations Associated with Mild Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577203. [PMID: 38328252 PMCID: PMC10849710 DOI: 10.1101/2024.01.25.577203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Traumatic brain injury (TBI) is a global public health problem with 50-60 million incidents per year, most of which are considered mild (mTBI) and many of these repetitive (rmTBI). Despite their massive implications, the pathologies of mTBI and rmTBI are not fully understood, with a paucity of information on brain lipid dysregulation following mild injury event(s). To gain more insight on mTBI and rmTBI pathology, a non-targeted spatial lipidomics workflow utilizing ultrahigh resolution mass spectrometry imaging was developed to map brain region-specific lipid alterations in rats following injury. Discriminant multivariate models were created for regions of interest including the hippocampus, cortex, and corpus callosum to pinpoint lipid species that differentiated between injured and sham animals. A multivariate model focused on the hippocampus region differentiated injured brain tissues with an area under the curve of 0.994 using only four lipid species. Lipid classes that were consistently discriminant included polyunsaturated fatty acid-containing phosphatidylcholines (PC), lysophosphatidylcholines (LPC), LPC-plasmalogens (LPC-P) and PC potassium adducts. Many of the polyunsaturated fatty acid-containing PC and LPC-P selected have never been previously reported as altered in mTBI. The observed lipid alterations indicate that neuroinflammation, oxidative stress and disrupted sodium-potassium pumps are important pathologies that could serve to explain cognitive deficits associated with rmTBI. Therapeutics which target or attenuate these pathologies may be beneficial to limit persistent damage following a mild brain injury event.
Collapse
|
9
|
Goeckner BD, Brett BL, Mayer AR, España LY, Banerjee A, Muftuler LT, Meier TB. Associations of prior concussion severity with brain microstructure using mean apparent propagator magnetic resonance imaging. Hum Brain Mapp 2024; 45:e26556. [PMID: 38158641 PMCID: PMC10789198 DOI: 10.1002/hbm.26556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Magnetic resonance imaging (MRI) diffusion studies have shown chronic microstructural tissue abnormalities in athletes with history of concussion, but with inconsistent findings. Concussions with post-traumatic amnesia (PTA) and/or loss of consciousness (LOC) have been connected to greater physiological injury. The novel mean apparent propagator (MAP) MRI is expected to be more sensitive to such tissue injury than the conventional diffusion tensor imaging. This study examined effects of prior concussion severity on microstructure with MAP-MRI. Collegiate-aged athletes (N = 111, 38 females; ≥6 months since most recent concussion, if present) completed semistructured interviews to determine the presence of prior concussion and associated injury characteristics, including PTA and LOC. MAP-MRI metrics (mean non-Gaussian diffusion [NG Mean], return-to-origin probability [RTOP], and mean square displacement [MSD]) were calculated from multi-shell diffusion data, then evaluated for associations with concussion severity through group comparisons in a primary model (athletes with/without prior concussion) and two secondary models (athletes with/without prior concussion with PTA and/or LOC, and athletes with/without prior concussion with LOC only). Bayesian multilevel modeling estimated models in regions of interest (ROI) in white matter and subcortical gray matter, separately. In gray matter, the primary model showed decreased NG Mean and RTOP in the bilateral pallidum and decreased NG Mean in the left putamen with prior concussion. In white matter, lower NG Mean with prior concussion was present in all ROI across all models and was further decreased with LOC. However, only prior concussion with LOC was associated with decreased RTOP and increased MSD across ROI. Exploratory analyses conducted separately in male and female athletes indicate associations in the primary model may differ by sex. Results suggest microstructural measures in gray matter are associated with a general history of concussion, while a severity-dependent association of prior concussion may exist in white matter.
Collapse
Affiliation(s)
- Bryna D. Goeckner
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Benjamin L. Brett
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research InstituteAlbuquerqueNew MexicoUSA
- Departments of Neurology and PsychiatryUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Lezlie Y. España
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Anjishnu Banerjee
- Department of BiostatisticsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - L. Tugan Muftuler
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Timothy B. Meier
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of Biomedical EngineeringMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
10
|
Beaudouin F, Tröss T, Hadji A, Steendahl IB, Meyer T, Fünten KAD. Do Sports-related Concussions Induce Subsequent Injuries in Elite Male Football Players? Int J Sports Med 2023. [PMID: 36347430 DOI: 10.1055/a-1974-3965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To assess the players' risk of a subsequent injury after sustaining concussive injuries and their return-to-competition in German professional men's football. A prospective injury database in the 1st Bundesliga was created encompassing 7 seasons (2014/15-2020/21). Cox proportional hazard model analyzed whether a concussive injury increased the risk of a subsequent injury in the first year after the index injury. 6,651 injuries were reported (n=182 concussive injuries). The incidence rate was 0.15 (95% CI 0.13-0.17) per 1000 football hours. A concussive injury was associated with only a slightly numerical higher risk of 7% (HR=1.07, 95% CI 0.78-1.47) in the subsequent year after the injury compared to a randomly selected non-concussive injury, but the effect was not significant. The risk was higher after 6-12 months post-SRC reaching 70% (HR=1.70, 95% CI 1.15-2.52). For 0-3 months (HR=0.76, 95% CI 0.48-1.20) and 3-6 months (HR=0.97, 95% CI 0.62-1.50) the injury risk was lower. The present data do not confirm previously published investigations about an increased injury risk after SRC. Contrasting effects of lower hazard ratios were found early after SRC, followed by an increase after 6-12 months. Further research should look into compliance rates with regards to return-to-competition protocols.
Collapse
Affiliation(s)
- Florian Beaudouin
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | - Tobias Tröss
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | - Abed Hadji
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | - Ida Bo Steendahl
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | - Tim Meyer
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | - Karen Aus der Fünten
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| |
Collapse
|
11
|
Diffusion-Weighted Imaging in Mild Traumatic Brain Injury: A Systematic Review of the Literature. Neuropsychol Rev 2023; 33:42-121. [PMID: 33721207 DOI: 10.1007/s11065-021-09485-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
There is evidence that diffusion-weighted imaging (DWI) is able to detect tissue alterations following mild traumatic brain injury (mTBI) that may not be observed on conventional neuroimaging; however, findings are often inconsistent between studies. This systematic review assesses patterns of differences in DWI metrics between those with and without a history of mTBI. A PubMed literature search was performed using relevant indexing terms for articles published prior to May 14, 2020. Findings were limited to human studies using DWI in mTBI. Articles were excluded if they were not full-length, did not contain original data, if they were case studies, pertained to military populations, had inadequate injury severity classification, or did not report post-injury interval. Findings were reported independently for four subgroups: acute/subacute pediatric mTBI, acute/subacute adult mTBI, chronic adult mTBI, and sport-related concussion, and all DWI acquisition and analysis methods used were included. Patterns of findings between studies were reported, along with strengths and weaknesses of the current state of the literature. Although heterogeneity of sample characteristics and study methods limited the consistency of findings, alterations in DWI metrics were most commonly reported in the corpus callosum, corona radiata, internal capsule, and long association pathways. Many acute/subacute pediatric studies reported higher FA and lower ADC or MD in various regions. In contrast, acute/subacute adult studies most commonly indicate lower FA within the context of higher MD and RD. In the chronic phase of recovery, FA may remain low, possibly indicating overall demyelination or Wallerian degeneration over time. Longitudinal studies, though limited, generally indicate at least a partial normalization of DWI metrics over time, which is often associated with functional improvement. We conclude that DWI is able to detect structural mTBI-related abnormalities that may persist over time, although future DWI research will benefit from larger samples, improved data analysis methods, standardized reporting, and increasing transparency.
Collapse
|
12
|
Bigler ED. Gray Matter Matters in Mild Traumatic Brain Injury. Neurology 2023; 100:e555-e557. [PMID: 36717233 DOI: 10.1212/wnl.0000000000206835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Erin D Bigler
- From the Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT and Departments of Neurology and Psychiatry, University of Utah, Salt Lake City, UT
| |
Collapse
|
13
|
Mayer AR, Meier TB, Dodd AB, Stephenson DD, Robertson-Benta CR, Ling JM, Pabbathi Reddy S, Zotev V, Vakamudi K, Campbell RA, Sapien RE, Erhardt EB, Phillips JP, Vakhtin AA. Prospective Study of Gray Matter Atrophy Following Pediatric Mild Traumatic Brain Injury. Neurology 2023; 100:e516-e527. [PMID: 36522161 PMCID: PMC9931084 DOI: 10.1212/wnl.0000000000201470] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The clinical and physiologic time course for recovery following pediatric mild traumatic brain injury (pmTBI) remains actively debated. The primary objective of the current study was to prospectively examine structural brain changes (cortical thickness and subcortical volumes) and age-at-injury effects. A priori study hypotheses predicted reduced cortical thickness and hippocampal volumes up to 4 months postinjury, which would be inversely associated with age at injury. METHODS Prospective cohort study design with consecutive recruitment. Study inclusion adapted from American Congress of Rehabilitation Medicine (upper threshold) and Zurich Concussion in Sport Group (minimal threshold) and diagnosed by Emergency Department and Urgent Care clinicians. Major neurologic, psychiatric, or developmental disorders were exclusionary. Clinical (Common Data Element) and structural (3 T MRI) evaluations within 11 days (subacute visit [SA]) and at 4 months (early chronic visit [EC]) postinjury. Age- and sex-matched healthy controls (HC) to control for repeat testing/neurodevelopment. Clinical outcomes based on self-report and cognitive testing. Structural images quantified with FreeSurfer (version 7.1.1). RESULTS A total of 208 patients with pmTBI (age = 14.4 ± 2.9; 40.4% female) and 176 HC (age = 14.2 ± 2.9; 42.0% female) were included in the final analyses (>80% retention). Reduced cortical thickness (right rostral middle frontal gyrus; d = -0.49) and hippocampal volumes (d = -0.24) observed for pmTBI, but not associated with age at injury. Hippocampal volume recovery was mediated by loss of consciousness/posttraumatic amnesia. Significantly greater postconcussive symptoms and cognitive deficits were observed at SA and EC visits, but were not associated with the structural abnormalities. Structural abnormalities slightly improved balanced classification accuracy above and beyond clinical gold standards (∆+3.9%), with a greater increase in specificity (∆+7.5%) relative to sensitivity (∆+0.3%). DISCUSSION Current findings indicate that structural brain abnormalities may persist up to 4 months post-pmTBI and are partially mediated by initial markers of injury severity. These results contribute to a growing body of evidence suggesting prolonged physiologic recovery post-pmTBI. In contrast, there was no evidence for age-at-injury effects or physiologic correlates of persistent symptoms in our sample.
Collapse
Affiliation(s)
- Andrew R Mayer
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque.
| | - Timothy B Meier
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Andrew B Dodd
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - David D Stephenson
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Cidney R Robertson-Benta
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Josef M Ling
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Sharvani Pabbathi Reddy
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Vadim Zotev
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Kishore Vakamudi
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Richard A Campbell
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Robert E Sapien
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Erik B Erhardt
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - John P Phillips
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Andrei A Vakhtin
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| |
Collapse
|
14
|
Lopez DA, Christensen ZP, Foxe JJ, Ziemer LR, Nicklas PR, Freedman EG. Association between mild traumatic brain injury, brain structure, and mental health outcomes in the Adolescent Brain Cognitive Development Study. Neuroimage 2022; 263:119626. [PMID: 36103956 DOI: 10.1016/j.neuroimage.2022.119626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Children that experience a mild traumatic brain injury (mTBI) are at an increased risk of neural alterations that can deteriorate mental health. We test the hypothesis that mTBI is associated with psychopathology and that structural brain metrics (e.g., volume, area) meaningfully mediate the relation in an adolescent population. METHODS We analyzed behavioral and brain MRI data from 11,876 children who participated in the Adolescent Brain Cognitive Development (ABCD) Study. Mixed-effects models were used to examine the longitudinal association between mTBI and mental health outcomes. Bayesian methods were used to investigate brain regions that are intermediate between mTBI and symptoms of poor mental health. RESULTS There were 199 children with mTBI and 527 with possible mTBI across the three ABCD Study visits. There was a 7% (IRR = 1.07, 95% CI: 1.01, 1.13) and 15% (IRR = 1.16, 95% CI: 1.05, 1.26) increased risk of emotional or behavioral problems in children that experienced possible mTBI or mTBI, respectively. Possible mTBI was associated with a 17% (IRR: 1.17, 95% CI: 0.99, 1.40) increased risk of experiencing distress following a psychotic-like experience. We did not find any brain regions that meaningfully mediated the relationship between mTBI and mental health outcomes. Analysis of volumetric measures found that approximately 2% to 5% of the total effect of mTBI on mental health outcomes operated through total cortical volume. Image intensity measure analyses determined that approximately 2% to 5% of the total effect was mediated through the left-hemisphere of the dorsolateral prefrontal cortex. CONCLUSION Results indicate an increased risk of emotional and behavioral problems in children that experienced possible mTBI or mTBI. Mediation analyses did not elucidate the mechanisms underlying the association between mTBI and mental health outcomes.
Collapse
Affiliation(s)
- Daniel A Lopez
- Department of Neuroscience, The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Public Health Sciences, Division of Epidemiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zachary P Christensen
- Department of Neuroscience, The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - John J Foxe
- Department of Neuroscience, The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Laura R Ziemer
- Department of Neuroscience, The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Paige R Nicklas
- Department of Neuroscience, The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Edward G Freedman
- Department of Neuroscience, The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
15
|
Li MJ, Huang SH, Huang CX, Liu J. Morphometric changes in the cortex following acute mild traumatic brain injury. Neural Regen Res 2022; 17:587-593. [PMID: 34380898 PMCID: PMC8504398 DOI: 10.4103/1673-5374.320995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Morphometric changes in cortical thickness (CT), cortical surface area (CSA), and cortical volume (CV) can reflect pathological changes after acute mild traumatic brain injury (mTBI). Most previous studies focused on changes in CT, CSA, and CV in subacute or chronic mTBI, and few studies have examined changes in CT, CSA, and CV in acute mTBI. Furthermore, acute mTBI patients typically show transient cognitive impairment, and few studies have reported on the relationship between cerebral morphological changes and cognitive function in patients with mTBI. This prospective cohort study included 30 patients with acute mTBI (15 males, 15 females, mean age 33.7 years) and 27 matched healthy controls (12 males, 15 females, mean age 37.7 years) who were recruited from the Second Xiangya Hospital of Central South University between September and December 2019. High-resolution T1-weighted images were acquired within 7 days after the onset of mTBI. The results of analyses using FreeSurfer software revealed significantly increased CSA and CV in the right lateral occipital gyrus of acute-stage mTBI patients compared with healthy controls, but no significant changes in CT. The acute-stage mTBI patients also showed reduced executive function and processing speed indicated by a lower score in the Digital Symbol Substitution Test, and reduced cognitive ability indicated by a longer time to complete the Trail Making Test-B. Both increased CSA and CV in the right lateral occipital gyrus were negatively correlated with performance in the Trail Making Test part A. These findings suggest that cognitive deficits and cortical alterations in CSA and CV can be detected in the acute stage of mTBI, and that increased CSA and CV in the right lateral occipital gyrus may be a compensatory mechanism for cognitive dysfunction in acute-stage mTBI patients. This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University, China (approval No. 086) on February 9, 2019.
Collapse
Affiliation(s)
- Meng-Jun Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Si-Hong Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Chu-Xin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
16
|
Muller AM, Panenka WJ, Lange RT, Iverson GL, Brubacher JR, Virji-Babul N. Longitudinal changes in brain parenchyma due to mild traumatic brain injury during the first year after injury. Brain Behav 2021; 11:e2410. [PMID: 34710284 PMCID: PMC8671787 DOI: 10.1002/brb3.2410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/11/2022] Open
Abstract
Chronic gray matter (GM) atrophy is a known consequence of moderate and severe traumatic brain injuries but has not been consistently shown in mild traumatic brain injury (mTBI). The aim of this study was to investigate the longitudinal effect of uncomplicated mTBI on the brain's GM and white matter (WM) from 6 weeks to 12 months after injury. Voxel-based-morphometry (VBM) was computed with the T1-weighted images of 48 uncomplicated mTBI patients and 37 orthopedic controls. Over the period from 6 weeks to 12 months, only patients who experienced uncomplicated mTBI, but not control participants, showed significant GM decrease predominantly in the right hemisphere along the GM-CSF border in lateral and medial portions of the sensorimotor cortex extending into the rolandic operculum, middle frontal gyrus, insula, and temporal pole. Additionally, only mTBI patients, but not controls, experienced significant WM decrease predominantly in the right hemisphere in the superior fasciculus longitudinalis, arcuate fasciculus, and cortical-pontine tracts as well as a significant WM increase in left arcuate fasciculus and left capsula extrema. We did not observe any significant change in the controls for the same time interval or any significant group differences in GM and WM probability at each of the two timepoints. This suggests that the changes along the brain tissue borders observed in the mTBI group represent a reorganization associated with subtle microscopical changes in intracortical myelin and not a direct degenerative process as a result of mTBI.
Collapse
Affiliation(s)
- Angela M Muller
- Faculty of Medicine, Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - William J Panenka
- British Columbia Neuropsychiatry Program, University of British Columbia, Vancouver, Canada.,Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Rael T Lange
- Department of Psychiatry, University of British Columbia, Vancouver, Canada.,Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey R Brubacher
- Department of Emergency Medicine, University of British Columbia, Vancouver, Canada
| | - Naznin Virji-Babul
- Faculty of Medicine, Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
17
|
Relationship Between Time-Weighted Head Impact Exposure on Directional Changes in Diffusion Imaging in Youth Football Players. Ann Biomed Eng 2021; 49:2852-2862. [PMID: 34549344 PMCID: PMC8978207 DOI: 10.1007/s10439-021-02862-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023]
Abstract
Approximately 3.5 million youth and adolescents in the US play football, a sport with one of the highest rates of concussion. Repeated subconcussive head impact exposure (HIE) may lead to negative neurological sequelae. To understand HIE as an independent predictive variable, quantitative cumulative kinematic metrics have been developed to capture the volume (i.e., number), severity (i.e., magnitude), and frequency (i.e., time-weighting by the interval between head impacts). In this study, time-weighted cumulative HIE metrics were compared with directional changes in diffusion tensor imaging (DTI) metrics. Changes in DTI conducted on a per-season, per-player basis were assessed as a dependent variable. Directional changes were defined separately as increases and decreases in the number of abnormal voxels relative to non-contact sport controls. Biomechanical and imaging data from 117 athletes (average age 11.9 ± 1.0 years) enrolled in this study was analyzed. Cumulative HIE metrics were more strongly correlated with increases in abnormal voxels than decreases in abnormal voxels. Additionally, across DTI sub-measures, increases and decreases in mean diffusivity (MD) had the strongest relationships with HIE metrics (increases in MD: average R2 = 0.1753, average p = 0.0002; decreases in MD: average R2 = 0.0997, average p = 0.0073). This encourages further investigation into the physiological phenomena represented by directional changes.
Collapse
|
18
|
Ross DE, Seabaugh JD, Seabaugh JM, Plumley J, Ha J, Burton JA, Vandervaart A, Mischel R, Blount A, Seabaugh D, Shepherd K, Barcelona J, Ochs AL. Patients with chronic mild or moderate traumatic brain injury have abnormal longitudinal brain volume enlargement more than atrophy. JOURNAL OF CONCUSSION 2021. [DOI: 10.1177/20597002211018049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction Many studies have found brain atrophy in patients with traumatic brain injury (TBI), but most of those studies examined patients with moderate or severe TBI. A few recent studies in patients with chronic mild or moderate TBI found abnormally large brain volume. Some of these studies used NeuroQuant®, FDA-cleared software for measuring MRI brain volume. It is not known if the abnormal enlargement occurs before or after injury. The purpose of the current study was to test the hypothesis that it occurs after injury. Methods 55 patients with chronic mild or moderate TBI were compared to NeuroQuant® normal controls ( n > 4000) with respect to MRI brain volume change from before injury (time 0 [t0], estimated volume) to after injury (t1, measured volume). A subset of 36 patients were compared to the normal controls with respect to longitudinal change of brain volume after injury from t1 to t2. Results The patients had abnormally fast increase of brain volume for multiple brain regions, including whole brain, cerebral cortical gray matter, and subcortical regions. Discussion This is the first report of extensive abnormal longitudinal brain volume enlargement in patients with TBI. In particular, the findings suggested that the previously reported findings of cross-sectional brain volume abnormal enlargement were due to longitudinal enlargement after, not before, injury. Abnormal longitudinal enlargement of the posterior cingulate cortex correlated with neuropathic headaches, partially replicating a previously reported finding that was associated with neuroinflammation.
Collapse
Affiliation(s)
- David E Ross
- Virginia Institute of Neuropsychiatry, Midlothian, USA
| | | | | | | | - Junghoon Ha
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | - Jason A Burton
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | | | - Ryan Mischel
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | - Alyson Blount
- Randolph Macon College, Undergraduate Program, Ashland, USA
| | | | - Katherine Shepherd
- Virginia Institute of Neuropsychiatry, Midlothian, USA
- James Madison University, Undergraduate Program, Harrisonburg, USA
| | | | - Alfred L Ochs
- Virginia Institute of Neuropsychiatry, Midlothian, USA
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | | |
Collapse
|
19
|
Bourassa ME, Dumel G, Charlebois-Plante C, Gagnon JF, De Beaumont L. Persistent implicit motor learning alterations following a mild traumatic brain injury sustained during late adulthood. J Clin Exp Neuropsychol 2021; 43:105-115. [PMID: 33563109 DOI: 10.1080/13803395.2021.1879735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: The neurocognitive outcomes of sustaining a mild traumatic brain injury (mTBI) during late adulthood are vastly understudied. In young, asymptomatic adults, mTBI-related synaptic plasticity alterations have been associated with persistent implicit motor sequence learning impairments outlasting the usual cognitive recovery period. The current study examined whether uncomplicated mTBI sustained during late adulthood could exert persistent deleterious consequences on implicit motor sequence learning.Method: Thirty participants (aged 50-70 years) who experienced an uncomplicated mTBI within 3 to 24 months of testing, and 40 age-, sex- and education-equivalent healthy controls performed an implicit serial reaction time task (SRT task). The SRT task consisted of 10 blocks of a repeating sequence embedded among 4 random blocks. Participants also completed a battery of standardized neuropsychological tests of attention, memory and executive functioning.Results: While both mTBI participants and controls showed significant implicit motor sequence learning effects, the mTBI group achieved a lower level of competence at performing the SRT task as evidenced by smaller gains in reaction times across the 10 training blocks of the repeating sequence. The time elapsed since the injury was unrelated to implicit motor learning effects. There was no evidence of a persistent effect of mTBI on any neuropsychological domain compared to controls.Conclusions: Findings from this study suggest that a single mTBI sustained during older age may have persistent repercussions on training-dependent motor sequence learning capacity outlasting the recovery of mTBI symptoms and gold-standard neuropsychological tests performance.
Collapse
Affiliation(s)
- Marie-Eve Bourassa
- Centre de recherche de l'Hôpital du Sacré-Cœur de Montréal, CIUSSS du nord-de-l'Île-de-Montréal, Montréal, QC, Canada.,Département de Psychologie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Gaëlle Dumel
- Centre de recherche de l'Hôpital du Sacré-Cœur de Montréal, CIUSSS du nord-de-l'Île-de-Montréal, Montréal, QC, Canada.,Département de Psychologie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Camille Charlebois-Plante
- Centre de recherche de l'Hôpital du Sacré-Cœur de Montréal, CIUSSS du nord-de-l'Île-de-Montréal, Montréal, QC, Canada.,Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Jean-François Gagnon
- Centre de recherche de l'Hôpital du Sacré-Cœur de Montréal, CIUSSS du nord-de-l'Île-de-Montréal, Montréal, QC, Canada.,Département de Psychologie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Louis De Beaumont
- Centre de recherche de l'Hôpital du Sacré-Cœur de Montréal, CIUSSS du nord-de-l'Île-de-Montréal, Montréal, QC, Canada.,Département de Chirurgie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
20
|
Mills BD, Goubran M, Parivash SN, Dennis EL, Rezaii P, Akers C, Bian W, Mitchell LA, Boldt B, Douglas D, Sami S, Mouchawar N, Wilson EW, DiGiacomo P, Parekh M, Do H, Lopez J, Rosenberg J, Camarillo D, Grant G, Wintermark M, Zeineh M. Longitudinal alteration of cortical thickness and volume in high-impact sports. Neuroimage 2020; 217:116864. [DOI: 10.1016/j.neuroimage.2020.116864] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/08/2023] Open
|
21
|
Meningher I, Bernstein-Eliav M, Rubovitch V, Pick CG, Tavor I. Alterations in Network Connectivity after Traumatic Brain Injury in Mice. J Neurotrauma 2020; 37:2169-2179. [PMID: 32434427 DOI: 10.1089/neu.2020.7063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Victims of mild traumatic brain injury (mTBI) usually do not display clear morphological brain defects, but frequently have long-lasting cognitive deficits, emotional difficulties, and behavioral disturbances. In the present study we used diffusion magnetic resonance imaging (dMRI) combined with graph theory measurements to investigate the effects of mTBI on brain network connectivity. We employed a non-invasive closed-head weight-drop mouse model to produce mTBI. Mice were scanned at two time points, 24 h before the injury and either 7 or 30 days following the injury. Connectivity matrices were computed for each animal at each time point, and these were subsequently used to extract graph theory measures reflecting network integration and segregation, on both the global (i.e., whole brain) and local (i.e., single regions) levels. We found that cluster coefficient, reflecting network segregation, decreased 7 days post-injury and then returned to baseline level 30 days following the injury. Global efficiency, reflecting network integration, demonstrated opposite patterns in the left and right hemispheres, with an increase of right hemisphere efficiency at 7 days and then a decrease in efficiency following 30 days, and vice versa in the left hemisphere. These findings suggest a possible compensation mechanism acting to moderate the influence of mTBI on the global network. Moreover, these results highlight the importance of tracking the dynamic changes in mTBI over time, and the potential of structural connectivity as a promising approach for studying network integrity and pathology progression in mTBI.
Collapse
Affiliation(s)
- Inbar Meningher
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Bernstein-Eliav
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv, Israel
| | - Ido Tavor
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
22
|
Ross DE, Seabaugh JD, Seabaugh JM, Alvarez C, Ellis LP, Powell C, Hall C, Reese C, Cooper L, Ochs AL. Patients with chronic mild or moderate traumatic brain injury have abnormal brain enlargement. Brain Inj 2019; 34:11-19. [DOI: 10.1080/02699052.2019.1669074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- David E. Ross
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
| | | | | | - Claudia Alvarez
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Randolph Macon College, Ashland, VA, USA
| | - Laura Peyton Ellis
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Randolph Macon College, Ashland, VA, USA
| | - Christopher Powell
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher Hall
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- University of Virginia, Charlottesville, VA, USA
| | - Christopher Reese
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- University of North Carolina at Wilmington, Wilmington, NC, USA
| | - Leah Cooper
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alfred L. Ochs
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
23
|
Terry DP, Miller LS. Repeated mild traumatic brain injuries is not associated with volumetric differences in former high school football players. Brain Imaging Behav 2019; 12:631-639. [PMID: 28434160 DOI: 10.1007/s11682-017-9719-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We investigated potential brain volumetric differences in a sample of former high school football players many years after these injuries. Forty community-dwelling males ages 40-65 who played high school football, but not college or professional sports, were recruited. The experimental group (n = 20) endorsed experiencing two or more mTBIs on an empirically validated mTBI assessment tool (median = 3, range = 2-15). The control group (n = 20) denied ever experiencing an mTBI. Participants completed a self-report index of current mTBI symptomatology and underwent high-resolution T1-weighted MRI scanning, which were analyzed using the Freesurfer software package. A priori regions of interest (ROIs) included total intracranial volume (ICV), total gray matter, total white matter, bilateral anterior cingulate cortex, bilateral hippocampi, and lateral ventricles. ROIs were corrected for head size using a normalization method that took ICV into account. Despite an adequate sample size and being matched on age, education, estimated premorbid IQ, current concussive symptomatology, there were no statistically significant volumetric group differences across all of the ROIs. These data suggest that multiple mTBIs from high school football may not be associated with measurable brain atrophy later in life. Accounting for the severity of injury and chronicity of sport exposure may be especially important when measuring long-term neuroanatomical differences.
Collapse
Affiliation(s)
- Douglas P Terry
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Network, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - L Stephen Miller
- Department of Psychology, University of Georgia, 110 Hooper St, Psychology Building, Room 163, Athens, GA, 30602, USA. .,BioImaging Research Center, Biomedical & Health Science Institute, University of Georgia, Athens, GA, USA.
| |
Collapse
|
24
|
Soni N, Mohamed AZ, Kurniawan ND, Borges K, Nasrallah F. Diffusion Magnetic Resonance Imaging Unveils the Spatiotemporal Microstructural Gray Matter Changes following Injury in the Rodent Brain. J Neurotrauma 2018; 36:1306-1317. [PMID: 30381993 DOI: 10.1089/neu.2018.5972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with gray and white matter alterations in brain tissue. Gray matter alterations are not yet as well studied as those of the white matter counterpart. This work utilized T2-weighted structural imaging, diffusion tensor imaging (DTI), and diffusion kurtosis imaging to unveil the gray matter changes induced in a controlled cortical impact (CCI) mouse model of TBI at 5 h, 1 day, 3 days, 7 days, 14 days, and 30 days post-CCI. A cross-sectional histopathology approach was used to confer validity of the magnetic resonance imaging (MRI) data by performing cresyl violet staining and glial fibrillary acidic protein (GFAP) immunohistochemistry. The results demonstrated a significant increase in lesion volume up to 3 days post-injury followed by a significant decrease in the cavity volume for the period of 1 month. GFAP signals peaked on Day 7 and persisted until Day 30 in both ipsilateral and contralateral hippocampus, ipsilateral cortex, and thalamic areas. An increase in fractional anisotropy (FA) was seen at Day 7 in the pericontusional area but decreased FA in the contralateral cortex, hippocampus, and thalamus. Mean diffusivity (MD) was significantly lower in the pericontusional cortex. Increased MD and decreased mean kurtosis were limited to the injury site on Days 7 to 30 and to the contralateral hippocampus and thalamus on Days 3 and 7. This work is one of the few cross-sectional studies to demonstrate a link between MRI measures and histopathological readings to track gray matter changes in the progression of TBI.
Collapse
Affiliation(s)
- Neha Soni
- 1 Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Abdalla Z Mohamed
- 1 Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Nyoman D Kurniawan
- 3 Center for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Karin Borges
- 2 School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Fatima Nasrallah
- 1 Queensland Brain Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|
25
|
Vascak M, Jin X, Jacobs KM, Povlishock JT. Mild Traumatic Brain Injury Induces Structural and Functional Disconnection of Local Neocortical Inhibitory Networks via Parvalbumin Interneuron Diffuse Axonal Injury. Cereb Cortex 2018; 28:1625-1644. [PMID: 28334184 PMCID: PMC5907353 DOI: 10.1093/cercor/bhx058] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/20/2017] [Indexed: 12/18/2022] Open
Abstract
Diffuse axonal injury (DAI) plays a major role in cortical network dysfunction posited to cause excitatory/inhibitory imbalance after mild traumatic brain injury (mTBI). Current thought holds that white matter (WM) is uniquely vulnerable to DAI. However, clinically diagnosed mTBI is not always associated with WM DAI. This suggests an undetected neocortical pathophysiology, implicating GABAergic interneurons. To evaluate this possibility, we used mild central fluid percussion injury to generate DAI in mice with Cre-driven tdTomato labeling of parvalbumin (PV) interneurons. We followed tdTomato+ profiles using confocal and electron microscopy, together with patch-clamp analysis to probe for DAI-mediated neocortical GABAergic interneuron disruption. Within 3 h post-mTBI tdTomato+ perisomatic axonal injury (PSAI) was found across somatosensory layers 2-6. The DAI marker amyloid precursor protein colocalized with GAD67 immunoreactivity within tdTomato+ PSAI, representing the majority of GABAergic interneuron DAI. At 24 h post-mTBI, we used phospho-c-Jun, a surrogate DAI marker, for retrograde assessments of sustaining somas. Via this approach, we estimated DAI occurs in ~9% of total tdTomato+ interneurons, representing ~14% of pan-neuronal DAI. Patch-clamp recordings of tdTomato+ interneurons revealed decreased inhibitory transmission. Overall, these data show that PV interneuron DAI is a consistent and significant feature of experimental mTBI with important implications for cortical network dysfunction.
Collapse
Affiliation(s)
- Michal Vascak
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| | - Xiaotao Jin
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| |
Collapse
|
26
|
Multimodal Assessment of Recurrent MTBI across the Lifespan. J Clin Med 2018; 7:jcm7050095. [PMID: 29723976 PMCID: PMC5977134 DOI: 10.3390/jcm7050095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 12/25/2022] Open
Abstract
Recurrent mild traumatic brain injuries (mTBI) and its neurological sequelae have been the focus of a large number of studies, indicating cognitive, structural, and functional brain alterations. However, studies often focused on single outcome measures in small cohorts of specific populations only. We conducted a multimodal evaluation of the impact of recurrent mTBI on a broad range of cognitive functions, regional brain volume, white matter integrity, and resting state functional connectivity (RSFC) in young and older adults in the chronic stage (>6 months after the last mTBI). Seventeen young participants with mTBI (age: 24.2 ± 2.8 (mean ± SD)) and 21 group-wise matched healthy controls (age: 25.8 ± 5.4 (mean ± SD)), as well as 17 older participants with mTBI (age: 62.7 ± 7.7 (mean ± SD)) and 16 group-wise matched healthy controls (age: 61.7 ± 5.9 (mean ± SD)) were evaluated. We found significant differences in the verbal fluency between young participants with mTBI and young healthy controls. Furthermore, differences in the regional volume of precuneus and medial orbitofrontal gyrus between participants with mTBI and controls for both age groups were seen. A significant age by group interaction for the right hippocampal volume was noted, indicating an accelerated hippocampal volume loss in older participants with mTBI. Other cognitive parameters, white matter integrity, and RSFC showed no significant differences. We confirmed some of the previously reported detrimental effects of recurrent mTBI, but also demonstrated inconspicuous findings for the majority of parameters.
Collapse
|
27
|
Davis-Hayes C, Baker DR, Bottiglieri TS, Levine WN, Desai N, Gossett JD, Noble JM. Medical retirement from sport after concussions: A practical guide for a difficult discussion. Neurol Clin Pract 2018. [PMID: 29517059 PMCID: PMC5839677 DOI: 10.1212/cpj.0000000000000424] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Purpose of review In patients with a considerable history of sports-related concussion, the decision of when to discontinue participation in sports due to medical concerns including neurologic disorders has potentially life-altering consequences, especially for young athletes, and merits a comprehensive evaluation involving nuanced discussion. Few resources exist to aid the sports medicine provider. Recent findings In this narrative review, we describe 10 prototypical vignettes based upon the authors' collective experience in concussion management and propose an algorithm to help clinicians navigate retirement discussions. Issues for consideration include absolute and relative contraindications to return to sport, ranging from clinical or radiographic evidence of lasting neurologic injury to prolonged concussion recovery periods or reduced injury threshold to patient-centered factors including personal identity through sport, financial motivations, and navigating uncertainty in the context of long-term risks. Summary The authors propose a novel treatment algorithm based on real patient cases to guide medical retirement decisions after concussion in sport.
Collapse
Affiliation(s)
- Cecilia Davis-Hayes
- College of Physicians & Surgeons (CD-H); Department of Pediatrics (DRB), Montefiore Medical Center; Department of Orthopedics (TSB, WNL, ND), Columbia University Medical Center; and Athletics Department (JDG), Department of Neurology, Taub Institute for Research on Alzheimer Disease and the Aging Brain (JMN), and G.H. Sergievsky Center (JMN), Columbia University, New York, NY
| | - David R Baker
- College of Physicians & Surgeons (CD-H); Department of Pediatrics (DRB), Montefiore Medical Center; Department of Orthopedics (TSB, WNL, ND), Columbia University Medical Center; and Athletics Department (JDG), Department of Neurology, Taub Institute for Research on Alzheimer Disease and the Aging Brain (JMN), and G.H. Sergievsky Center (JMN), Columbia University, New York, NY
| | - Thomas S Bottiglieri
- College of Physicians & Surgeons (CD-H); Department of Pediatrics (DRB), Montefiore Medical Center; Department of Orthopedics (TSB, WNL, ND), Columbia University Medical Center; and Athletics Department (JDG), Department of Neurology, Taub Institute for Research on Alzheimer Disease and the Aging Brain (JMN), and G.H. Sergievsky Center (JMN), Columbia University, New York, NY
| | - William N Levine
- College of Physicians & Surgeons (CD-H); Department of Pediatrics (DRB), Montefiore Medical Center; Department of Orthopedics (TSB, WNL, ND), Columbia University Medical Center; and Athletics Department (JDG), Department of Neurology, Taub Institute for Research on Alzheimer Disease and the Aging Brain (JMN), and G.H. Sergievsky Center (JMN), Columbia University, New York, NY
| | - Natasha Desai
- College of Physicians & Surgeons (CD-H); Department of Pediatrics (DRB), Montefiore Medical Center; Department of Orthopedics (TSB, WNL, ND), Columbia University Medical Center; and Athletics Department (JDG), Department of Neurology, Taub Institute for Research on Alzheimer Disease and the Aging Brain (JMN), and G.H. Sergievsky Center (JMN), Columbia University, New York, NY
| | - James D Gossett
- College of Physicians & Surgeons (CD-H); Department of Pediatrics (DRB), Montefiore Medical Center; Department of Orthopedics (TSB, WNL, ND), Columbia University Medical Center; and Athletics Department (JDG), Department of Neurology, Taub Institute for Research on Alzheimer Disease and the Aging Brain (JMN), and G.H. Sergievsky Center (JMN), Columbia University, New York, NY
| | - James M Noble
- College of Physicians & Surgeons (CD-H); Department of Pediatrics (DRB), Montefiore Medical Center; Department of Orthopedics (TSB, WNL, ND), Columbia University Medical Center; and Athletics Department (JDG), Department of Neurology, Taub Institute for Research on Alzheimer Disease and the Aging Brain (JMN), and G.H. Sergievsky Center (JMN), Columbia University, New York, NY
| |
Collapse
|
28
|
Bajaj S, Dailey NS, Rosso IM, Rauch SL, Killgore WDS. Time-dependent differences in cortical measures and their associations with behavioral measures following mild traumatic brain injury. Hum Brain Mapp 2018; 39:1886-1897. [PMID: 29359498 DOI: 10.1002/hbm.23951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/20/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022] Open
Abstract
There is currently a critical need to establish an improved understanding of time-dependent differences in brain structure following mild traumatic brain injury (mTBI). We compared differences in brain structure, specifically cortical thickness (CT), cortical volume (CV), and cortical surface area (CSA) in 54 individuals who sustained a recent mTBI and 33 healthy controls (HCs). Individuals with mTBI were split into three groups, depending on their time since injury. By comparing structural measures between mTBI and HC groups, differences in CT reflected cortical thickening within several areas following 0-3 (time-point, TP1) and 3-6 months (TP2) post-mTBI. Compared with the HC group, the mTBI group at TP2 showed lower CSA within several areas. Compared with the mTBI group at TP2, the mTBI group during the most chronic stage (TP3: 6-18 months post-mTBI) showed significantly higher CSA in several areas. All the above reported differences in CT and CSA were significant at a cluster-forming p < .01 (corrected for multiple comparisons). We also found that in the mTBI group at TP2, CT within two clusters (i.e., the left rostral middle frontal gyrus (L. RMFG) and the right postcentral gyrus (R. PostCG)) was negatively correlated with basic attention abilities (L. RMFG: r = -.41, p = .05 and R. PostCG: r = -.44, p = .03). Our findings suggest that alterations in CT and associated neuropsychological assessments may be more prominent during the early stages of mTBI. However, alterations in CSA may reflect compensatory structural recovery during the chronic stages of mTBI.
Collapse
Affiliation(s)
- Sahil Bajaj
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, University of Arizona, Tucson, Arizona
| | - Natalie S Dailey
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, University of Arizona, Tucson, Arizona
| | - Isabelle M Rosso
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts
| | - Scott L Rauch
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts
| | - William D S Killgore
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, University of Arizona, Tucson, Arizona.,McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts
| |
Collapse
|
29
|
Davenport ND, Gullickson JT, Grey SF, Hirsch S, Sponheim SR. Longitudinal evaluation of ventricular volume changes associated with mild traumatic brain injury in military service members. Brain Inj 2018; 32:1245-1255. [PMID: 29985658 DOI: 10.1080/02699052.2018.1494854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PRIMARY OBJECTIVE To investigate differences in longitudinal trajectories of ventricle-brain ratio (VBR), a general measure of brain atrophy, between Veterans with and without history of mild traumatic brain injury (mTBI). RESEARCH DESIGN Structural magnetic resonance imaging (MRI) was used to calculate VBR in 70 Veterans with a history of mTBI and 34 Veterans without such history at two time points approximately 3 and 8 years after a combat deployment. MAIN OUTCOMES AND RESULTS Both groups demonstrated a quadratic relationship between VBR and age that is consistent with normal developmental trajectories. Veterans with history of mTBI had larger total brain volume, but no interaction between mTBI and age was observed for brain volume, ventricular volume, or VBR. CONCLUSIONS In our longitudinal sample of deployed Veterans, mTBI was not associated with gross brain atrophy as reflected by abnormally high VBR or abnormal increases in VBR over time.
Collapse
Affiliation(s)
- Nicholas D Davenport
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,b Department of Psychiatry , University of Minnesota , Minneapolis , MN , USA
| | - James T Gullickson
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,b Department of Psychiatry , University of Minnesota , Minneapolis , MN , USA
| | - Scott F Grey
- c RTI International , Research Triangle Park , NC , USA
| | - Shawn Hirsch
- c RTI International , Research Triangle Park , NC , USA
| | - Scott R Sponheim
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,b Department of Psychiatry , University of Minnesota , Minneapolis , MN , USA
| | -
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,b Department of Psychiatry , University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
30
|
Dall'Acqua P, Johannes S, Mica L, Simmen HP, Glaab R, Fandino J, Schwendinger M, Meier C, Ulbrich EJ, Müller A, Jäncke L, Hänggi J. Prefrontal Cortical Thickening after Mild Traumatic Brain Injury: A One-Year Magnetic Resonance Imaging Study. J Neurotrauma 2017; 34:3270-3279. [PMID: 28847215 DOI: 10.1089/neu.2017.5124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to evaluate group-by-time interactions between gray matter morphology of healthy controls and that of patients with mild traumatic brain injury (mTBI) as they transitioned from acute to chronic stages, and to relate these findings to long-term cognitive alterations to identify distinct recovery trajectories between good outcome (GO) and poor outcome (PO). High-resolution T1-weighted magnetic resonance images were acquired in 49 mTBI patients within 7 days and 1 year post-injury and at equivalent times in 49 healthy controls. Using linear mixed-effects models, we performed mass-univariate analyses and associated the results of the interaction with changes in cognitive performance. Morphological alterations indexed by increased or decreased cortical thickness have been expected mainly in frontal, parietal, and temporal brain regions. A significant interaction was found in cortical thickness, spatially restricted to bilateral structures of the prefrontal cortex, showing thickening in mTBI and normal developmental thinning in controls. A discrete thickness increase that can interpreted as the absence of cortical thinning typically seen in the healthy population was associated with cognitive recovery in the GO subgroup, while the exaggerated cortical thickening in the PO patients was linked to worsening cognitive performance. Thickness of the prefrontal cortex is subject to structural alterations during the first year after mTBI. Beside beneficial neuroplasticity, a prolonged state of neuroinflammation for symptomatic patients (maladaptive neuroplasticity) cannot be excluded. If the underlying cellular processes responsible for cortical thickening following mTBI have been determined, brain stimulation or even pharmacological intervention targeting the prefrontal cortex might promote endogenous neural restoration.
Collapse
Affiliation(s)
- Patrizia Dall'Acqua
- 1 Bellikon Rehabilitation Clinic , Bellikon, Switzerland
- 2 Department of Psychology, University of Zurich , Zurich, Switzerland
| | - Sönke Johannes
- 1 Bellikon Rehabilitation Clinic , Bellikon, Switzerland
| | - Ladislav Mica
- 3 Division of Trauma Surgery, University Hospital Zurich , Zurich, Switzerland
| | - Hans-Peter Simmen
- 3 Division of Trauma Surgery, University Hospital Zurich , Zurich, Switzerland
| | | | - Javier Fandino
- 5 Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Markus Schwendinger
- 6 Interdisciplinary Emergency Center , Baden Cantonal Hospital, Baden, Switzerland
| | - Christoph Meier
- 7 Department of Surgery, Waid Hospital Zurich , Zurich, Switzerland
| | - Erika Jasmin Ulbrich
- 8 Institute of Diagnostic and Interventional Radiology, University Hospital Zurich , Zurich, Switzerland
| | - Andreas Müller
- 9 Brain and Trauma Foundation Grisons , Chur, Switzerland
| | - Lutz Jäncke
- 2 Department of Psychology, University of Zurich , Zurich, Switzerland
- 10 International Normal Aging and Plasticity Imaging Center, University of Zurich , Zurich, Switzerland
- 11 University Research Priority Program, Dynamic of Healthy Aging, University of Zurich , Zurich, Switzerland
| | - Jürgen Hänggi
- 2 Department of Psychology, University of Zurich , Zurich, Switzerland
| |
Collapse
|
31
|
España LY, Lee RM, Ling JM, Jeromin A, Mayer AR, Meier TB. Serial Assessment of Gray Matter Abnormalities after Sport-Related Concussion. J Neurotrauma 2017; 34:3143-3152. [DOI: 10.1089/neu.2017.5002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Lezlie Y. España
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ryan M. Lee
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Josef M. Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | | | - Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
- Neurology Department, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| |
Collapse
|
32
|
Veenith TV, Carter EL, Grossac J, Newcombe VFJ, Outtrim JG, Nallapareddy S, Lupson V, Correia MM, Mada MM, Williams GB, Menon DK, Coles JP. Normobaric hyperoxia does not improve derangements in diffusion tensor imaging found distant from visible contusions following acute traumatic brain injury. Sci Rep 2017; 7:12419. [PMID: 28963497 PMCID: PMC5622132 DOI: 10.1038/s41598-017-12590-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/01/2017] [Indexed: 11/09/2022] Open
Abstract
We have previously shown that normobaric hyperoxia may benefit peri-lesional brain and white matter following traumatic brain injury (TBI). This study examined the impact of brief exposure to hyperoxia using diffusion tensor imaging (DTI) to identify axonal injury distant from contusions. Fourteen patients with acute moderate/severe TBI underwent baseline DTI and following one hour of 80% oxygen. Thirty-two controls underwent DTI, with 6 undergoing imaging following graded exposure to oxygen. Visible lesions were excluded and data compared with controls. We used the 99% prediction interval (PI) for zero change from historical control reproducibility measurements to demonstrate significant change following hyperoxia. Following hyperoxia DTI was unchanged in controls. In patients following hyperoxia, mean diffusivity (MD) was unchanged despite baseline values lower than controls (p < 0.05), and fractional anisotropy (FA) was lower within the left uncinate fasciculus, right caudate and occipital regions (p < 0.05). 16% of white and 14% of mixed cortical and grey matter patient regions showed FA decreases greater than the 99% PI for zero change. The mechanistic basis for some findings are unclear, but suggest that a short period of normobaric hyperoxia is not beneficial in this context. Confirmation following a longer period of hyperoxia is required.
Collapse
Affiliation(s)
- Tonny V Veenith
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
- Department of Critical Care Medicine, University Hospital of Birmingham NHS Trust, Queen Elizabeth Medical Centre, Birmingham, B15 2TH, UK
| | - Eleanor L Carter
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Julia Grossac
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
- Anesthesiology and Critical Care Department, University Hospital of Toulouse, 31000, Toulouse, France
| | - Virginia F J Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Joanne G Outtrim
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Sri Nallapareddy
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Victoria Lupson
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Marta M Correia
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Marius M Mada
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Guy B Williams
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Jonathan P Coles
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK.
| |
Collapse
|
33
|
Ng LJ, Volman V, Gibbons MM, Phohomsiri P, Cui J, Swenson DJ, Stuhmiller JH. A Mechanistic End-to-End Concussion Model That Translates Head Kinematics to Neurologic Injury. Front Neurol 2017; 8:269. [PMID: 28663736 PMCID: PMC5471336 DOI: 10.3389/fneur.2017.00269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/26/2017] [Indexed: 11/13/2022] Open
Abstract
Past concussion studies have focused on understanding the injury processes occurring on discrete length scales (e.g., tissue-level stresses and strains, cell-level stresses and strains, or injury-induced cellular pathology). A comprehensive approach that connects all length scales and relates measurable macroscopic parameters to neurological outcomes is the first step toward rationally unraveling the complexity of this multi-scale system, for better guidance of future research. This paper describes the development of the first quantitative end-to-end (E2E) multi-scale model that links gross head motion to neurological injury by integrating fundamental elements of tissue and cellular mechanical response with axonal dysfunction. The model quantifies axonal stretch (i.e., tension) injury in the corpus callosum, with axonal functionality parameterized in terms of axonal signaling. An internal injury correlate is obtained by calculating a neurological injury measure (the average reduction in the axonal signal amplitude) over the corpus callosum. By using a neurologically based quantity rather than externally measured head kinematics, the E2E model is able to unify concussion data across a range of exposure conditions and species with greater sensitivity and specificity than correlates based on external measures. In addition, this model quantitatively links injury of the corpus callosum to observed specific neurobehavioral outcomes that reflect clinical measures of mild traumatic brain injury. This comprehensive modeling framework provides a basis for the systematic improvement and expansion of this mechanistic-based understanding, including widening the range of neurological injury estimation, improving concussion risk correlates, guiding the design of protective equipment, and setting safety standards.
Collapse
Affiliation(s)
- Laurel J Ng
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Vladislav Volman
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Melissa M Gibbons
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Pi Phohomsiri
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Jianxia Cui
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Darrell J Swenson
- Cardiac Rhythm and Heart Failure Numerical Modeling, Medtronic, Mounds View, MN, United States
| | - James H Stuhmiller
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| |
Collapse
|
34
|
Vascak M, Sun J, Baer M, Jacobs KM, Povlishock JT. Mild Traumatic Brain Injury Evokes Pyramidal Neuron Axon Initial Segment Plasticity and Diffuse Presynaptic Inhibitory Terminal Loss. Front Cell Neurosci 2017. [PMID: 28634442 PMCID: PMC5459898 DOI: 10.3389/fncel.2017.00157] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The axon initial segment (AIS) is the site of action potential (AP) initiation, thus a crucial regulator of neuronal activity. In excitatory pyramidal neurons, the high density of voltage-gated sodium channels (NaV1.6) at the distal AIS regulates AP initiation. A surrogate AIS marker, ankyrin-G (ankG) is a structural protein regulating neuronal functional via clustering voltage-gated ion channels. In neuronal circuits, changes in presynaptic input can alter postsynaptic output via AIS structural-functional plasticity. Recently, we showed experimental mild traumatic brain injury (mTBI) evokes neocortical circuit disruption via diffuse axonal injury (DAI) of excitatory and inhibitory neuronal systems. A key finding was that mTBI-induced neocortical electrophysiological changes involved non-DAI/ intact excitatory pyramidal neurons consistent with AIS-specific alterations. In the current study we employed Thy1-yellow fluorescent protein (YFP)-H mice to test if mTBI induces AIS structural and/or functional plasticity within intact pyramidal neurons 2 days after mTBI. We used confocal microscopy to assess intact YFP+ pyramidal neurons in layer 5 of primary somatosensory barrel field (S1BF), whose axons were continuous from the soma of origin to the subcortical white matter (SCWM). YFP+ axonal traces were superimposed on ankG and NaV1.6 immunofluorescent profiles to determine AIS position and length. We found that while mTBI had no effect on ankG start position, the length significantly decreased from the distal end, consistent with the site of AP initiation at the AIS. However, NaV1.6 structure did not change after mTBI, suggesting uncoupling from ankG. Parallel quantitative analysis of presynaptic inhibitory terminals along the postsynaptic perisomatic domain of these same intact YFP+ excitatory pyramidal neurons revealed a significant decrease in GABAergic bouton density. Also within this non-DAI population, patch-clamp recordings of intact YFP+ pyramidal neurons showed AP acceleration decreased 2 days post-mTBI, consistent with AIS functional plasticity. Simulations of realistic pyramidal neuron computational models using experimentally determined AIS lengths showed a subtle decrease is NaV1.6 density is sufficient to attenuate AP acceleration. Collectively, these findings highlight the complexity of mTBI-induced neocortical circuit disruption, involving changes in extrinsic/presynaptic inhibitory perisomatic input interfaced with intrinsic/postsynaptic intact excitatory neuron AIS output.
Collapse
Affiliation(s)
- Michal Vascak
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States
| | - Jianli Sun
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States
| | - Matthew Baer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States
| |
Collapse
|
35
|
Hellstrøm T, Westlye LT, Sigurdardottir S, Brunborg C, Soberg HL, Holthe Ø, Server A, Lund MJ, Andreassen OA, Andelic N. Longitudinal changes in brain morphology from 4 weeks to 12 months after mild traumatic brain injury: Associations with cognitive functions and clinical variables. Brain Inj 2017; 31:674-685. [DOI: 10.1080/02699052.2017.1283537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- T. Hellstrøm
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - L. T. Westlye
- KG Jebsen Centre for Psychosis Research/Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - S. Sigurdardottir
- Department of Research, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norwa
- CHARM Resarch Centre for Habilitation and Rehabilitation Models & Services, Oslo, Norway
| | - C. Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - H. L. Soberg
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Ø. Holthe
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - A. Server
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - M. J. Lund
- KG Jebsen Centre for Psychosis Research/Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - O. A. Andreassen
- KG Jebsen Centre for Psychosis Research/Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - N. Andelic
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
- CHARM Resarch Centre for Habilitation and Rehabilitation Models & Services, Oslo, Norway
| |
Collapse
|
36
|
Leh SE, Schroeder C, Chen JK, Mallar Chakravarty M, Park MTM, Cheung B, Huntgeburth SC, Gosselin N, Hock C, Ptito A, Petrides M. Microstructural Integrity of Hippocampal Subregions Is Impaired after Mild Traumatic Brain Injury. J Neurotrauma 2017; 34:1402-1411. [DOI: 10.1089/neu.2016.4591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Sandra E. Leh
- Institute for Regenerative Medicine, University of Zurich, Switzerland
| | - Clemens Schroeder
- Institute for Regenerative Medicine, University of Zurich, Switzerland
| | - Jen-Kai Chen
- Cognitive Neuroscience Unit, Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Psychology, McGill University Health Centre, Montreal, Quebec, Canada
| | - M. Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
- Departments of Psychiatry and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Min Tae M. Park
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Bob Cheung
- Defense Research and Development Canada (DRDC) Toronto, Ontario, Canada
| | - Sonja C. Huntgeburth
- Cognitive Neuroscience Unit, Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Nadia Gosselin
- Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, Switzerland
| | - Alain Ptito
- Cognitive Neuroscience Unit, Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Psychology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Michael Petrides
- Cognitive Neuroscience Unit, Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Hellstrøm T, Westlye LT, Server A, Løvstad M, Brunborg C, Lund MJ, Nordhøy W, Andreassen OA, Andelic N. Volumetric and morphometric MRI findings in patients with mild traumatic brain injury. Brain Inj 2016; 30:1683-1691. [PMID: 27996331 DOI: 10.1080/02699052.2016.1199905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study compared cortical and sub-cortical volumes between patients with complicated (i.e. presence of intracranial abnormality on the day-of-injury CT) and uncomplicated (i.e. absence of intracranial abnormality) mild traumatic brain injury (MTBI) 4 weeks post-injury. The study hypothesized regionally decreased brain volumes and reduced cortical thickness in patients with complicated MTBIs compared with uncomplicated MTBI. METHODS This study was part of a larger 2 years cohort study on MTBI. Baseline clinical and magnetic resonance imaging (MRI) data were compared for those with complicated and uncomplicated MTBI. It identified 168 patients with MTBI (90 uncomplicated and 78 complicated), aged 16-65 years. 3T MRI-system (Signa HDxt, GE Medical Systems, Milwaukee, WI) and cortical reconstruction and volumetric segmentation by FreeSurfer software have been used. RESULTS No significant differences between uncomplicated and complicated MTBIs were found in neuroanatomic volumes and cortical thickness after controlling for age, gender and education. The complicated MTBI group showed larger ventricles compared with the uncomplicated group, but this effect diluted when adjusting for potential confounders. CONCLUSION The study findings suggest that the classification of complicated and uncomplicated MTBI may be too broad to differentiate volumetric and morphometric effects of injury in the early post-injury phase.
Collapse
Affiliation(s)
- T Hellstrøm
- a Department of Physical Medicine and Rehabilitation , Oslo University Hospital , Oslo , Norway
| | - L T Westlye
- b KG Jebsen Centre for Psychosis Research/Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction , Oslo University Hospital , Oslo , Norway.,c Department of Psychology , University of Oslo , Oslo , Norway
| | - A Server
- d Department of Radiology and Nuclear Medicine , Oslo University Hospital , Oslo , Norway
| | - M Løvstad
- c Department of Psychology , University of Oslo , Oslo , Norway.,e Sunnaas Rehabilitation Hospital, Department of Research , Nesoddtangen , Norway
| | - C Brunborg
- f Oslo Centre for Biostatistics and Epidemiology, Research Support Services , Oslo University Hospital , Oslo , Norway
| | - M J Lund
- b KG Jebsen Centre for Psychosis Research/Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction , Oslo University Hospital , Oslo , Norway
| | - W Nordhøy
- g The Intervention Centre , Oslo University Hospital , Oslo , Norway
| | - O A Andreassen
- b KG Jebsen Centre for Psychosis Research/Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction , Oslo University Hospital , Oslo , Norway
| | - N Andelic
- a Department of Physical Medicine and Rehabilitation , Oslo University Hospital , Oslo , Norway.,h CHARM Research Centre for Habilitation and Rehabilitation Models & Services, Institute of Health and Society, University of Oslo , Oslo , Norway
| |
Collapse
|
38
|
Sullivan KA, Lurie JK. Principal components analysis of the Neurobehavioral Symptom Inventory in a nonclinical civilian sample. APPLIED NEUROPSYCHOLOGY-ADULT 2016; 24:522-531. [DOI: 10.1080/23279095.2016.1216433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Karen A. Sullivan
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Janine K. Lurie
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
39
|
Wang X, Xie H, Cotton AS, Brickman KR, Lewis TJ, Wall JT, Tamburrino MB, Bauer WR, Law K, McLean SA, Liberzon I. Early Changes in Cortical Emotion Processing Circuits after Mild Traumatic Brain Injury from Motor Vehicle Collision. J Neurotrauma 2016; 34:273-280. [PMID: 27169480 DOI: 10.1089/neu.2015.4392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mild traumatic brain injury (mTBI) patients frequently experience emotion dysregulation symptoms, including post-traumatic stress. Although mTBI likely affects cortical activation and structure, resulting in cognitive symptoms after mTBI, early effects of mTBI on cortical emotion processing circuits have rarely been examined. To assess early mTBI effects on cortical functional and structural components of emotion processing, we assessed cortical activation to fearful faces within the first 2 weeks after motor vehicle collision (MVC) in survivors who did and did not experience mTBI. We also examined the thicknesses of cortical regions with altered activation. MVC survivors with mTBI (n = 21) had significantly less activation in left superior parietal gyrus (SPG) (-5.9, -81.8, 33.8; p = 10-3.623), left medial orbitofrontal gyrus (mOFG) (-4.7, 36.1, -19.3; p = 10-3.231), and left and right lateral orbitofrontal gyri (lOFG) (left: -16.0, 41.4, -16.6; p = 10-2.573; right: 18.7, 22.7, -17.7; p = 10-2.764) than MVC survivors without mTBI (n = 23). SPG activation in mTBI survivors within 2 weeks after MVC was negatively correlated with subsequent post-traumatic stress symptom severity at 3 months (r = -0.68, p = 0.03). Finally, the SPG region was thinner in the mTBI survivors than in the non-mTBI survivors (F = 11.07, p = 0.002). These results suggest that early differences in activation and structure in cortical emotion processing circuits in trauma survivors who sustain mTBI may contribute to the development of emotion-related symptoms.
Collapse
Affiliation(s)
- Xin Wang
- 1 Department of Psychiatry, University of Toledo , Toledo, Ohio.,2 Department of Neurosciences, University of Toledo , Toledo, Ohio.,3 Department of Radiology, University of Toledo , Toledo, Ohio
| | - Hong Xie
- 2 Department of Neurosciences, University of Toledo , Toledo, Ohio
| | - Andrew S Cotton
- 1 Department of Psychiatry, University of Toledo , Toledo, Ohio
| | | | | | - John T Wall
- 2 Department of Neurosciences, University of Toledo , Toledo, Ohio
| | | | - William R Bauer
- 2 Department of Neurosciences, University of Toledo , Toledo, Ohio
| | - Kenny Law
- 1 Department of Psychiatry, University of Toledo , Toledo, Ohio
| | - Samuel A McLean
- 5 Department of Anesthesiology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Israel Liberzon
- 6 Department of Psychiatry, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
40
|
Ozolins B, Aimers N, Parrington L, Pearce AJ. Movement disorders and motor impairments following repeated head trauma: A systematic review of the literature 1990-2015. Brain Inj 2016; 30:937-47. [PMID: 27120772 DOI: 10.3109/02699052.2016.1147080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND There is increasing attention on the long-term sequelae following multiple concussions and traumatic brain injury (TBI) in later life. The majority of the research has focused on long-term cognitive impairments and behavioural changes. Despite being researched and reported, long-term motor dysfunction and movement disorders as a consequence of concussions and TBI have not received due consideration. REVIEW This study used a systematic review and qualitative analysis that focused on two key areas: (1) identified movement disorders in individuals with a reported history of repeated concussions or repeated mild-to-moderate TBIs; and (2) identified motor impairments in individuals with a history of repeated concussions or repeated mild-to-moderate TBIs. Fourteen studies investigating long-term movement disorders or motor impairments as a result of repeated concussions or TBI met the selection criteria. Study ratings were moderate-to-high; therefore, evidence was strong enough to conclude that repeated concussions or repeated mild/moderate TBIs did affect the motor system. CONCLUSION The evidence in this systematic review highlights the need for future studies to include motor outcomes along with cognitive and behavioural outcomes when assessing the long-term effects of repeated concussions or repeated mild/moderate TBIs.
Collapse
Affiliation(s)
- Bede Ozolins
- a Faculty of Health , Deakin University , Melbourne , Australia
| | - Nicole Aimers
- b Centre for Design Innovation (CDI) , Swinburne University of Technology , Melbourne , Australia
| | - Lucy Parrington
- c Department of Biomedical and Health Sciences , Swinburne University of Technology , Melbourne , Australia
| | - Alan J Pearce
- b Centre for Design Innovation (CDI) , Swinburne University of Technology , Melbourne , Australia.,d Melbourne School of Health Sciences , The University of Melbourne , Australia
| |
Collapse
|
41
|
Dall'Acqua P, Johannes S, Mica L, Simmen HP, Glaab R, Fandino J, Schwendinger M, Meier C, Ulbrich EJ, Müller A, Jäncke L, Hänggi J. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury. Front Hum Neurosci 2016; 10:127. [PMID: 27065831 PMCID: PMC4809899 DOI: 10.3389/fnhum.2016.00127] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/09/2016] [Indexed: 02/01/2023] Open
Abstract
Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork suggests that mTBI can be conceptualized as a dysconnection syndrome. It remains unclear whether reduced WM integrity is the trigger for changes in cortical surface area or whether tissue deformations are the direct result of mechanical forces acting on the brain. The findings suggest that rapid identification of high-risk patients with the use of clinical scales should be assessed acutely as part of the mTBI protocol.
Collapse
Affiliation(s)
- Patrizia Dall'Acqua
- Bellikon Rehabilitation ClinicBellikon, Switzerland
- Division Neuropsychology, Department of Psychology, University of ZurichZurich, Switzerland
| | | | - Ladislav Mica
- Division of Trauma Surgery, University Hospital ZurichZurich, Switzerland
| | - Hans-Peter Simmen
- Division of Trauma Surgery, University Hospital ZurichZurich, Switzerland
| | - Richard Glaab
- Department of Traumatology, Cantonal Hospital AarauAarau, Switzerland
| | - Javier Fandino
- Department of Neurosurgery, Cantonal Hospital AarauAarau, Switzerland
| | - Markus Schwendinger
- Interdisciplinary Emergency Centre, Baden Cantonal HospitalBaden, Switzerland
| | - Christoph Meier
- Department of Surgery, Waid Hospital ZurichZurich, Switzerland
| | - Erika J. Ulbrich
- Institute of Diagnostic and Interventional Radiology, University Hospital ZurichZurich, Switzerland
| | | | - Lutz Jäncke
- Division Neuropsychology, Department of Psychology, University of ZurichZurich, Switzerland
- International Normal Aging and Plasticity Imaging Center, University of ZurichZurich, Switzerland
- Center for Integrative Human Physiology, University of ZurichZurich, Switzerland
- University Research Priority Program, Dynamic of Healthy Aging, University of ZurichZurich, Switzerland
| | - Jürgen Hänggi
- Division Neuropsychology, Department of Psychology, University of ZurichZurich, Switzerland
| |
Collapse
|
42
|
Delouche A, Attyé A, Heck O, Grand S, Kastler A, Lamalle L, Renard F, Krainik A. Diffusion MRI: Pitfalls, literature review and future directions of research in mild traumatic brain injury. Eur J Radiol 2016; 85:25-30. [PMID: 26724645 DOI: 10.1016/j.ejrad.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/06/2015] [Accepted: 11/01/2015] [Indexed: 12/27/2022]
|
43
|
Mayer AR, Ling JM, Dodd AB, Gasparovic C, Klimaj SD, Meier TB. A Longitudinal Assessment of Structural and Chemical Alterations in Mixed Martial Arts Fighters. J Neurotrauma 2015; 32:1759-67. [PMID: 26096140 DOI: 10.1089/neu.2014.3833] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growing evidence suggests that temporally proximal acute concussions and repetitive subconcussive head injuries may lead to long-term neurological deficits. However, the underlying mechanisms of injury and their relative time-scales are not well documented in human injury models. The current study therefore investigated whether biomarkers of brain chemistry (magnetic resonance [MR] spectroscopy: N-acetylaspartate [NAA], combined glutamate and glutamine [Glx], total creatine [Cre], choline compounds [Cho], and myo-inositol [mI]) and structure (cortical thickness, white matter [WM]/subcortical volume) differed between mixed martial artists (MMA; n = 13) and matched healthy controls (HC) without a history of contact sport participation (HC; n = 14). A subset of participants (MMA = 9; HC = 10) returned for follow-up visits, with MMA (n = 3) with clinician-documented acute concussions also scanned serially. As expected, MMA self-reported a higher incidence of previous concussions and significantly more cognitive symptoms during prior concussion recovery. Fighters also exhibited reduced memory and processing speed relative to controls on neuropsychological testing coupled with cortical thinning in the left posterior cingulate gyrus and right occipital cortex at baseline assessment. Over a 1-year follow-up period, MMA experienced a significant decrease in both WM volume and NAA concentration, as well as relative thinning in the left middle and superior frontal gyri. These longitudinal changes did not correlate with self-reported metrics of injury (i.e., fight diary). In contrast, HC did not exhibit significant longitudinal changes over a 4-month follow-up period (p > 0.05). Collectively, current results provide preliminary evidence of progressive changes in brain chemistry and structure over a relatively short time period in individuals with high exposure to repetitive head hits. These findings require replication in independent samples.
Collapse
Affiliation(s)
- Andrew R Mayer
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico.,2 Neurology Department, School of Medicine, University of New Mexico , Albuquerque, New Mexico.,3 Department of Psychology, University of New Mexico , Albuquerque, New Mexico
| | - Josef M Ling
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Andrew B Dodd
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Charles Gasparovic
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Stefan D Klimaj
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Timothy B Meier
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| |
Collapse
|
44
|
Mayer AR, Hanlon FM, Dodd AB, Ling JM, Klimaj SD, Meier TB. A functional magnetic resonance imaging study of cognitive control and neurosensory deficits in mild traumatic brain injury. Hum Brain Mapp 2015; 36:4394-406. [PMID: 26493161 DOI: 10.1002/hbm.22930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/11/2015] [Accepted: 07/22/2015] [Indexed: 12/26/2022] Open
Abstract
Mild traumatic brain injury patients (mTBI) frequently report symptoms of increased distractability and sensory disturbances during mutisensory stimulation. These common post-concussive symptoms could putatively result from dysfunction within the cognitive control network (CCN; top-down) or from unisensory cortex (bottom-up) itself. Functional magnetic resonance imaging (fMRI) and high-resolution structural data were therefore prospectively collected during a multisensory (audio-visual) cognitive control task from 46 mTBI patients within 3 weeks of injury and 46 matched healthy controls (HC), with a subset of participants returning at 4 months. Multisensory stimuli were presented at two frequencies to manipulate cognitive and perceptual load. Patients self-reported more cognitive, emotional, somatic, vestibular and visual symptoms relative to HC, which improved, but did not entirely resolve, over the 4 month follow-up period. There were no group differences in behavior or functional activation during cognitive control (incongruent--congruent trials). In contrast, patients exhibited abnormal activation within different regions of visual cortex that depended on whether attention was focused on auditory or visual information streams. Patients also exhibited increased activation within bilateral inferior parietal lobules during higher cognitive/perceptual loads, suggesting a compensatory mechanism to achieve similar levels of behavioral performance. Functional abnormalities within the visual cortex and inferior parietal lobules were only partially resolved at 4 months post-injury, suggesting that neural abnormalities may take longer to resolve than behavioral measures used in most clinical settings. In summary, current results indicate that abnormalities within unisensory cortex (particularly visual areas) following mTBI, which likely contribute to deficits commonly reported during multisensory stimulation.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.,Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Faith M Hanlon
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Josef M Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Stefan D Klimaj
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Timothy B Meier
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| |
Collapse
|
45
|
Meier TB, Bellgowan PSF, Bergamino M, Ling JM, Mayer AR. Thinner Cortex in Collegiate Football Players With, but not Without, a Self-Reported History of Concussion. J Neurotrauma 2015; 33:330-8. [PMID: 26061068 DOI: 10.1089/neu.2015.3919] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Emerging evidence suggests that a history of sports-related concussions can lead to long-term neuroanatomical changes. The extent to which similar changes are present in young athletes is undetermined at this time. Here, we tested the hypothesis that collegiate football athletes with (n = 25) and without (n = 24) a self-reported history of concussion would have cortical thickness differences and altered white matter integrity relative to healthy controls (n = 27) in fronto-temporal regions that appear particularly susceptible to traumatic brain injury. Freesurfer software was used to estimate cortical thickness, fractional anisotropy was calculated in a priori white matter tracts, and behavior was assessed using a concussion behavioral battery. Groups did not differ in self-reported symptoms (p > 0.10) or cognitive performance (p > 0.10). Healthy controls reported significantly higher happiness levels than both football groups (all p < 0.01). Contrary to our hypothesis, no differences in fractional anisotropy were observed between our groups (p > 0.10). However, football athletes with a history of concussion had significantly thinner cortex in the left anterior cingulate cortex, orbital frontal cortex, and medial superior frontal cortex relative to healthy controls (p = 0.02, d = -0.69). Further, football athletes with a history of concussion had significantly thinner cortex in the right central sulcus and precentral gyrus relative to football athletes without a history of concussion (p = 0.03, d = -0.71). No differences were observed between football athletes without a history of concussion and healthy controls. These results suggest that previous concussions, but not necessarily football exposure, may be associated with cortical thickness differences in collegiate football athletes.
Collapse
Affiliation(s)
- Timothy B Meier
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico .,2 Laureate Institute for Brain Research , Tulsa, Oklahoma
| | - Patrick S F Bellgowan
- 3 National Institute of Neurological Disorders and Stroke, National Institute of Health , North Bethesda, Maryland
| | | | - Josef M Ling
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Andrew R Mayer
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico .,4 Neurology Department, University of New Mexico School of Medicine , Albuquerque, New Mexico .,5 Department of Psychology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
46
|
Oliver J, Abbas K, Lightfoot JT, Baskin K, Collins B, Wier D, Bramhall JP, Huang J, Puschett JB. Comparison of Neurocognitive Testing and the Measurement of Marinobufagenin in Mild Traumatic Brain Injury: A Preliminary Report. J Exp Neurosci 2015; 9:67-72. [PMID: 26351409 PMCID: PMC4517832 DOI: 10.4137/jen.s27921] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 11/24/2022] Open
Abstract
The evaluation of concussed athletes, including testing to determine if and when they may return to play, has become an important task of athletic trainers and team physicians. Currently, concussion protocols are in place, which depend largely upon assessments based upon neurocognitive testing (NCT). The authors have evaluated the use of a biomarker of brain trauma, marinobufagenin (MBG), and compared its application in concussed athletes with the performance of NTC. We found a disparity between these two testing procedures. In this communication, the findings of these comparative data are presented. We noted that athletes whose NCT evaluations had returned to baseline and who were allowed to again participate in play then showed a recurrence of elevated urinary MBG excretion. These observations raise concern as to the processes currently in effect with regard to the decision as to returning athletes to the full activity. They suggest a need for further evaluation.
Collapse
Affiliation(s)
- Joel Oliver
- Department of Pathobiology, College of Veterinary Medicine and Biosciences, Texas A&M University, College Station, TX, USA
| | - Kamran Abbas
- Department of Pathobiology, College of Veterinary Medicine and Biosciences, Texas A&M University, College Station, TX, USA
| | - J Timothy Lightfoot
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Kelly Baskin
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Blaise Collins
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - David Wier
- The Department of Athletics, Texas A&M University, College Station, TX, USA
| | - Joe P Bramhall
- The Department of Athletics, Texas A&M University, College Station, TX, USA
| | - Jason Huang
- The Department of Neurosurgery, Baylor Scott & White Healthcare and Texas A&M Health Science Center College of Medicine, Temple, TX, USA
| | - Jules B Puschett
- Department of Pathobiology, College of Veterinary Medicine and Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
47
|
Zagorchev L, Meyer C, Stehle T, Wenzel F, Young S, Peters J, Weese J, Paulsen K, Garlinghouse M, Ford J, Roth R, Flashman L, McAllister T. Differences in Regional Brain Volumes Two Months and One Year after Mild Traumatic Brain Injury. J Neurotrauma 2015; 33:29-34. [PMID: 25970552 DOI: 10.1089/neu.2014.3831] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conventional structural imaging is often normal after mild traumatic brain injury (mTBI). There is a need for structural neuroimaging biomarkers that facilitate detection of milder injuries, allow recovery trajectory monitoring, and identify those at risk for poor functional outcome and disability. We present a novel approach to quantifying volumes of candidate brain regions at risk for injury. Compared to controls, patients with mTBI had significantly smaller volumes in several regions including the caudate, putamen, and thalamus when assessed 2 months after injury. These differences persisted but were reduced in magnitude 1 year after injury, suggesting the possibility of normalization over time in the affected regions. More pronounced differences, however, were found in the amygdala and hippocampus, suggesting the possibility of regionally specific responses to injury.
Collapse
Affiliation(s)
- Lyubomir Zagorchev
- 1 Philips Research North America , Briarcliff Manor, New York.,2 Thayer School of Engineering, Dartmouth College , Hanover, New Hampshire
| | - Carsten Meyer
- 3 Digital Imaging, Philips Research Hamburg , Hamburg, Germany
| | - Thomas Stehle
- 3 Digital Imaging, Philips Research Hamburg , Hamburg, Germany
| | - Fabian Wenzel
- 3 Digital Imaging, Philips Research Hamburg , Hamburg, Germany
| | - Stewart Young
- 3 Digital Imaging, Philips Research Hamburg , Hamburg, Germany
| | - Jochen Peters
- 3 Digital Imaging, Philips Research Hamburg , Hamburg, Germany
| | - Juergen Weese
- 3 Digital Imaging, Philips Research Hamburg , Hamburg, Germany
| | - Keith Paulsen
- 2 Thayer School of Engineering, Dartmouth College , Hanover, New Hampshire
| | | | - James Ford
- 4 Geisel School of Medicine, Dartmouth College , Hanover, New Hampshire
| | - Robert Roth
- 4 Geisel School of Medicine, Dartmouth College , Hanover, New Hampshire
| | - Laura Flashman
- 4 Geisel School of Medicine, Dartmouth College , Hanover, New Hampshire
| | - Thomas McAllister
- 4 Geisel School of Medicine, Dartmouth College , Hanover, New Hampshire
| |
Collapse
|
48
|
List J, Ott S, Bukowski M, Lindenberg R, Flöel A. Cognitive function and brain structure after recurrent mild traumatic brain injuries in young-to-middle-aged adults. Front Hum Neurosci 2015; 9:228. [PMID: 26052275 PMCID: PMC4440350 DOI: 10.3389/fnhum.2015.00228] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/09/2015] [Indexed: 12/14/2022] Open
Abstract
Recurrent mild traumatic brain injuries (mTBIs) are regarded as an independent risk factor for developing dementia in later life. We here aimed to evaluate associations between recurrent mTBIs, cognition, and gray matter volume and microstructure as revealed by structural magnetic resonance imaging (MRI) in the chronic phase after mTBIs in young adulthood. We enrolled 20 young-to-middle-aged subjects, who reported two or more sports-related mTBIs, with the last mTBI > 6 months prior to study enrolment (mTBI group), and 21 age-, sex- and education matched controls with no history of mTBI (control group). All participants received comprehensive neuropsychological testing, and high resolution T1-weighted and diffusion tensor MRI in order to assess cortical thickness (CT) and microstructure, hippocampal volume, and ventricle size. Compared to the control group, subjects of the mTBI group presented with lower CT within the right temporal lobe and left insula using an a priori region of interest approach. Higher number of mTBIs was associated with lower CT in bilateral insula, right middle temporal gyrus and right entorhinal area. Our results suggest persistent detrimental effects of recurrent mTBIs on CT already in young-to-middle-aged adults. If additional structural deterioration occurs during aging, subtle neuropsychological decline may progress to clinically overt dementia earlier than in age-matched controls, a hypothesis to be assessed in future prospective trials.
Collapse
Affiliation(s)
- Jonathan List
- Department of Neurology, Charité Universitätsmedizin Berlin Berlin, Germany
| | - Stefanie Ott
- Department of Neurology, Charité Universitätsmedizin Berlin Berlin, Germany
| | - Martin Bukowski
- Department of Neurology, Charité Universitätsmedizin Berlin Berlin, Germany
| | - Robert Lindenberg
- Department of Neurology, Charité Universitätsmedizin Berlin Berlin, Germany ; Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, Charité Universitätsmedizin Berlin Berlin, Germany ; Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin Berlin, Germany ; NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
49
|
Dodd AB, Epstein K, Ling JM, Mayer AR. Diffusion tensor imaging findings in semi-acute mild traumatic brain injury. J Neurotrauma 2015; 31:1235-48. [PMID: 24779720 DOI: 10.1089/neu.2014.3337] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The past 10 years have seen a rapid increase in the use of diffusion tensor imaging to identify biomarkers of traumatic brain injury (TBI). Although the literature generally indicates decreased anisotropic diffusion at more chronic injury periods and in more severe injuries, considerable debate remains regarding the direction (i.e., increased or decreased) of anisotropic diffusion in the acute to semi-acute phase (here defined as less than 3 months post-injury) of mild TBI (mTBI). A systematic review of the literature was therefore performed to (1) determine the prevalence of different anisotropic diffusion findings (increased, decreased, bidirectional, or null) during the semi-acute injury phase of mTBI and to (2) identify clinical (e.g., age of injury, post-injury scan time, etc.) and experimental factors (e.g., number of unique directions, field strength) that may influence these findings. Results from the literature review indicated 31 articles with independent samples of semi-acute mTBI patients, with 13 studies reporting decreased anisotropic diffusion, 11 reporting increased diffusion, 2 reporting bidirectional findings, and 5 reporting null findings. Chi-squared analyses indicated that the total number of diffusion-weighted (DW) images was significantly associated with findings of either increased (DW ≥ 30) versus decreased (DW ≤ 25) anisotropic diffusion. Other clinical and experimental factors were not statistically significant for direction of anisotropic diffusion, but these results may have been limited by the relatively small number of studies within each domain (e.g., pediatric studies). In summary, current results indicate roughly equivalent number of studies reporting increased versus decreased anisotropic diffusion during semi-acute mTBI, with the number of unique diffusion images being statistically associated with the direction of findings.
Collapse
Affiliation(s)
- Andrew B Dodd
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | | | | | | |
Collapse
|
50
|
Recent imaging advances in neurology. J Neurol 2015; 262:2182-94. [PMID: 25808503 DOI: 10.1007/s00415-015-7711-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 01/08/2023]
Abstract
Over the recent years, the application of neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) has considerably advanced the understanding of complex neurological disorders. PET is a powerful molecular imaging tool, which investigates the distribution and binding of radiochemicals attached to biologically relevant molecules; as such, this technique is able to give information on biochemistry and metabolism of the brain in health and disease. MRI uses high intensity magnetic fields and radiofrequency pulses to provide structural and functional information on tissues and organs in intact or diseased individuals, including the evaluation of white matter integrity, grey matter thickness and brain perfusion. The aim of this article is to review the most recent advances in neuroimaging research in common neurological disorders such as movement disorders, dementia, epilepsy, traumatic brain injury and multiple sclerosis, and to evaluate their contribution in the diagnosis and management of patients.
Collapse
|