1
|
Mrochen A, Meuth SG, Pfeuffer S. Should we stay or should we go? Recent insights on drug discontinuation in multiple sclerosis. Neurol Res Pract 2025; 7:25. [PMID: 40254626 PMCID: PMC12010584 DOI: 10.1186/s42466-025-00379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/14/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND The decision to discontinue disease-modifying therapies (DMTs) in patients with multiple sclerosis (PwMS) is a critical clinical challenge. Historically, DMTs were discontinued due to side effects, treatment limitations, or progression to secondary progressive MS. However, advancements in MS therapies, particularly high-efficacy DMTs (HE-DMTs) and the increased knowledge on disease courses and phenotypes have resulted in more personalized treatment approaches and introduced discussion on scheduled DMT discontinuation. This review explores the current evidence on DMT discontinuation, focusing on its implications for aging populations and the interplay between cardiovascular diseases (CVD) and MS. CURRENT EVIDENCE AND INTERPLAY WITH CVD Randomized trials such as DISCOMS and DOT-MS have provided insights into discontinuing DMTs in stable patients. In summary, both randomized clinical trials highlight the risk of disease reactivation following treatment discontinuation. Due to the limited sample size, neither study was able to conduct subgroup analyses based on age groups. Additionally, DOT-MS was terminated prematurely, direct comparisons with other studies should be avoided. While older studies and observational data (e.g., OFSEP) have shown relapse risks associated with discontinuation, particularly for drugs like natalizumab and fingolimod, there is limited data on HE-DMT discontinuation outcomes. Comorbidities, particularly CVDs, further complicate decisions regarding the continuation of DMTs in older adults. MS patients bear a higher burden of CVD, which is also associated with unfavorable disease courses. While optimizing cardiovascular risk profiles appears advisable, it remains unclear whether DMTs themselves have a positive impact on CVDs. CONCLUSION Given the complexities associated with discontinuing DMTs in MS patients, it is essential to balance the avoidance of polypharmacy with the potential risks of disease reactivation and the impact of comorbidities, especially CVDs, on disease progression. The interplay between MS and CVD highlights the importance of a holistic risk assessment when considering DMT discontinuation.
Collapse
Affiliation(s)
- Anne Mrochen
- Department of Neurology, University Hospital Giessen and Marburg, Justus-Liebig-University Giessen, Klinikstr. 33, 35392, Giessen, Germany
| | - Sven G Meuth
- Department of Neurology, University Hospital Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - Steffen Pfeuffer
- Department of Neurology, University Hospital Giessen and Marburg, Justus-Liebig-University Giessen, Klinikstr. 33, 35392, Giessen, Germany.
| |
Collapse
|
2
|
Desu H, Balthazard R, Daigneault A, Da Cal S, Klément W, Yu J, Clénet ML, Margarido C, Levert A, Fantodji C, Tastet O, Girard JM, Duquette P, Prat A, Macaron G, Rousseau MC, Arbour N, Larochelle C. Peripheral blood age-sensitive immune markers in multiple sclerosis: relation to sex, cytomegalovirus status, and treatment. EBioMedicine 2025; 112:105559. [PMID: 39837012 PMCID: PMC11788784 DOI: 10.1016/j.ebiom.2025.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Immunosenescence is accelerated by chronic infectious and autoimmune diseases and could contribute to the pathobiology of multiple sclerosis (MS). How MS and disease-modifying therapies (DMTs) impact age-sensitive immune biomarkers is only partially understood. METHODS We analyzed 771 serum samples from 147 healthy controls and 289 people with MS (PwMS) by multiplex immunoassays. We determined cytomegalovirus (CMV) serostatus and collected retrospective clinical information. We performed unsupervised and multivariable analyses. FINDINGS Unsupervised analyses revealed that MS immune profile was characterized by low relative levels of anti-inflammatory/neuroprotective factors IL-4, IL-10, TNF, and β-NGF but high levels of growth factors EGF and bFGF. Serum levels of IL-4, β-NGF, IL-27, BDNF, and leptin were significantly influenced by sex and/or CMV status. IL-4 and β-NGF levels were lower in untreated PwMS compared to controls, while EGF and bFGF levels were influenced by age and markedly elevated in PwMS in multivariable analysis. Samples from treated PwMS, but not untreated PwMS, showed lower levels of BDNF and TNF than controls. Initiation of high efficacy DMTs, but not low efficacy DMTs, was associated with reduced levels of bFGF and EGF. Samples associated with distinct DMTs exhibited specific profiles for age-sensitive immune markers. Finally, lower levels of IL-6, TNF, IL-10, and β-NGF were observed at baseline in PwMS who subsequently experienced clinical failure after DMTs initiation. INTERPRETATION Age, sex, CMV status, and specific DMTs significantly influence levels of age-sensitive immune biomarkers associated with MS and must be considered when investigating inflammation-related biomarkers. FUNDING This work was supported by a Grant for Multiple Sclerosis Innovation by Merck KGaA (ID: 10.12039/100009945).
Collapse
Affiliation(s)
- Haritha Desu
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Renaud Balthazard
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Audrey Daigneault
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Sandra Da Cal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Wendy Klément
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Jennifer Yu
- Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique (INRS), Laval, H7V 1B7, Canada
| | - Marie-Laure Clénet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Clara Margarido
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Annie Levert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Canisius Fantodji
- Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique (INRS), Laval, H7V 1B7, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Jean-Marc Girard
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada
| | - Pierre Duquette
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada
| | - Alexandre Prat
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada
| | - Gabrielle Macaron
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada
| | - Marie-Claude Rousseau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique (INRS), Laval, H7V 1B7, Canada; School of Public Health, Université de Montréal, Montreal, H3N 1X9, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada.
| | - Catherine Larochelle
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada.
| |
Collapse
|
3
|
Touil H, Luquez T, Comandante-Lou N, Lee AJ, Fujita M, Habeck C, Kroshilina A, Hegewisch-Solloa E, McInvale J, Zuroff L, Isnard S, Walker E, Zhang L, Routy JP, Zhang Y, Mace EM, Klotz L, Wiendl H, Xia Z, Bar-Or A, Menon V, Stern Y, De Jager PL. Relation of CMV and brain atrophy to trajectories of immunosenescence in diverse populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.614568. [PMID: 39416188 PMCID: PMC11482892 DOI: 10.1101/2024.10.07.614568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Immunosenescence (ISC), the aging of the immune system, has largely been studied in populations of European descent. Here, circulating immune cell cytometric data from African-American, Hispanic, and non-Hispanic White participants were generated. Known and novel age effects were identified using either a meta-analysis approach or a parallel genetic approach. Most results are consistent across the three populations, but some cell populations display evidence of heterogeneity, such as a PD-L1 + CD56 + NK cell subset. The study estimated "Immunological Age" (IA) during physiologic aging. While we found no relation of IA to Multiple Sclerosis, IA is associated with entorhinal cortex atrophy, a presymptomatic feature of Alzheimer's disease, linking neurodegeneration and peripheral immunity. ISC trajectories were also inferred, highlighting age, CMV status, and genetic ancestry as key influences. Our assessment offers reference ISC trajectories for personalization of assessments of immune function over the life course in diverse populations.
Collapse
|
4
|
Bolton C. Review of evidence linking exposure to environmental stressors and associated alterations in the dynamics of immunosenescence (ISC) with the global increase in multiple sclerosis (MS). Immun Ageing 2024; 21:73. [PMID: 39438909 PMCID: PMC11494837 DOI: 10.1186/s12979-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Historical survey confirms that, over the latter part of the 20th century, autoimmune-based diseases, including multiple sclerosis (MS), have shown a worldwide increase in incidence and prevalence. Analytical population studies have established that the exponential rise in MS is not solely due to improvements in diagnosis and healthcare but relates to an increase in autoimmune risk factors. Harmful environmental exposures, including non-communicable social determinants of health, anthropogens and indigenous or transmissible microbes, constitute a group of causal determinants that have been closely linked with the global rise in MS cases. Exposure to environmental stressors has profound effects on the adaptive arm of the immune system and, in particular, the associated intrinsic process of immune ageing or immunosenescence (ISC). Stressor-related disturbances to the dynamics of ISC include immune cell-linked untimely or premature (p) alterations and an accelerated replicative (ar) change. A recognised immune-associated feature of MS is pISC and current evidence supports the presence of an arISC during the disease. Moreover, collated data illustrates the immune-associated alterations that characterise pISC and arISC are inducible by environmental stressors strongly implicated in causing duplicate changes in adaptive immune cells during MS. The close relationship between exposure to environmental risk factors and the induction of pISC and arISC during MS offers a valid mechanism through which pro-immunosenescent stressors may act and contribute to the recorded increase in the global rate and number of new cases of the disease. Confirmation of alterations to the dynamics of ISC during MS provides a rational and valuable therapeutic target for the use of senolytic drugs to either prevent accumulation and enhance ablation of less efficient untimely senescent adaptive immune cells or decelerate the dysregulated process of replicative proliferation. A range of senotherapeutics are available including kinase and transcriptase inhibitors, rapalogs, flavanols and genetically-engineered T cells and the use of selective treatments to control emerging and unspecified aspects of pISC and arISC are discussed.
Collapse
|
5
|
Feng H, Li J, Wang H, Wei Z, Feng S. Senescence- and Immunity-Related Changes in the Central Nervous System: A Comprehensive Review. Aging Dis 2024:AD.2024.0755. [PMID: 39325939 DOI: 10.14336/ad.2024.0755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Senescence is a cellular state characterized by an irreversible halt in the cell cycle, accompanied by alterations in cell morphology, function, and secretion. Senescent cells release a plethora of inflammatory and growth factors, extracellular matrix proteins, and other bioactive substances, collectively known as the senescence-associated secretory phenotype (SASP). These excreted substances serve as crucial mediators of senescent tissues, while the secretion of SASP by senescent neurons and glial cells in the central nervous system modulates the activity of immune cells. Senescent immune cells also influence the physiological activities of various cells in the central nervous system. Further, the interaction between cellular senescence and immune regulation collectively affects the physiological and pathological processes of the central nervous system. Herein, we explore the role of senescence in the physiological and pathological processes underlying embryonic development, aging, degeneration, and injury of the central nervous system, through the immune response. Further, we elucidate the role of senescence in the physiological and pathological processes of the central nervous system, proposing a new theoretical foundation for treating central nervous system diseases.
Collapse
Affiliation(s)
- Haiwen Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Junjin Li
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Hongda Wang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Zhijian Wei
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Neațu M, Hera-Drăguț A, Ioniță I, Jugurt A, Davidescu EI, Popescu BO. Understanding the Complex Dynamics of Immunosenescence in Multiple Sclerosis: From Pathogenesis to Treatment. Biomedicines 2024; 12:1890. [PMID: 39200354 PMCID: PMC11351992 DOI: 10.3390/biomedicines12081890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Immunosenescence, the gradual deterioration of immune function with age, holds profound implications for our understanding and management of multiple sclerosis (MS), a chronic autoimmune disease affecting the central nervous system. Traditionally diagnosed in young adults, advancements in disease-modifying therapies and increased life expectancy have led to a growing number of older individuals with MS. This demographic shift underscores the need for a deeper investigation into how age-related alterations in immune function shape the course of MS, influencing disease progression, treatment effectiveness, and overall patient outcomes. Age-related immunosenescence involves changes such as shifts in cytokine profiles, the accumulation of senescent immune cells, and compromised immune surveillance, collectively contributing to a state known as "inflammaging". In the context of MS, these immunological changes disturb the intricate balance between inflammatory and regulatory responses, thereby impacting mechanisms of central immune tolerance and peripheral regulation. This paper stands out by combining the most recent advancements in immunosenescence with both pathophysiological and treatment perspectives on multiple sclerosis, offering a cohesive and accessible discussion that bridges theory and practice, while also introducing novel insights into underexplored concepts such as therapy discontinuation and the latest senolytic, neuroprotective, and remyelination therapies. Enhancing our understanding of these complexities will guide tailored approaches to MS management, ultimately improving clinical outcomes for affected individuals.
Collapse
Affiliation(s)
- Monica Neațu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.H.-D.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Ana Hera-Drăguț
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.H.-D.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Iulia Ioniță
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.H.-D.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Ana Jugurt
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.H.-D.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Eugenia Irene Davidescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.H.-D.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.H.-D.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Cell Biology, Neurosciences and Experimental Myology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
7
|
Nekić J, Stanković Matić I, Rački V, Janko Labinac D, Vuletić V, Kapović M, Ristić S, Peterlin B, Starčević Čizmarević N. CCR5 Δ32 and CTLA-4 +49 A/G Gene Polymorphisms and Interferon-β Treatment Response in Croatian and Slovenian Multiple Sclerosis Patients. Int J Mol Sci 2024; 25:7412. [PMID: 39000519 PMCID: PMC11242381 DOI: 10.3390/ijms25137412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The aim of the present study was to investigate the impact of CCR5 Δ32 and CTLA-4 polymorphisms on the response to IFN-β treatment in our cohort of MS patients from Croatia and Slovenia. Genomic DNA was obtained from 295 MS patients (230 female; 65 male) classified as responders (n = 173) and non-responders (n = 122) based on clinical criteria for treatment efficacy. Genotyping was performed via PCR/PCR-RFLP. No significant differences in the genotype/allele frequencies of CCR5Δ32 and CTLA-4 +49 A/G were detected between male responders and non-responders. A significantly higher prevalence (p = 0.039) of the CTLA-4 +49 AA genotype was found in female responders (42.1%) compared to non-responders (28.9%). Using multiple forward regression analysis, the CTLA-4 +49 AA genotype significantly predicted a positive response to IFN-β therapy in females (p = 0.011) and contributed to 4.5% of response variability. Furthermore, the combined presence of the CCR5Δ32 wtwt/CTLA-4 +49 AA genotype significantly predicted a positive response to treatment in females (p = 0.025). The age at disease onset, pretreatment relapse rate, and baseline EDSS score were not reliable predictors of treatment response in MS patients. Our results indicate that the presence of the CCR5Δ32 polymorphism was not associated with the response to IFN-β treatment, whereas the CTLA-4 +49 polymorphism showed a positive correlation with an optimal response in female patients.
Collapse
Affiliation(s)
- Jasna Nekić
- Department of Nuclear Medicine, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Ivana Stanković Matić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Valentino Rački
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | | | - Vladimira Vuletić
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Miljenko Kapović
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Smiljana Ristić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Nada Starčević Čizmarević
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
8
|
Gelibter S, Saraceno L, Pirro F, Susani EL, Protti A. As time goes by: Treatment challenges in elderly people with multiple sclerosis. J Neuroimmunol 2024; 391:578368. [PMID: 38761652 DOI: 10.1016/j.jneuroim.2024.578368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
A demographic shift in multiple sclerosis (MS) is leading to an increased number of elderly people with MS (pwMS) and a rise in late-onset MS (LOMS) cases. This shift adds complexity to the treatment management of these patients, due to enhanced treatment-associated risks and the possible interplay between immunosenescence and disease-modifying therapies (DMTs). In the present paper, we performed a systematic review of the current evidence concerning the relationship between aging and treatment management in elderly pwMS. Our literature search identified 35 original studies relevant to this topic. The gathered evidence consistently indicates a diminished efficacy of DMTs in older pwMS, particularly in preventing disability accrual. Against this background, high-efficacy therapies (HETs) appear to show less benefit over moderate-low-efficacy DMTs in older patients. These data mainly derive from observational retrospective studies or meta-analyses conducted on randomized clinical trials (RCTs). RCTs, however, exclude pwMS older than 55 years, limiting our ability to acquire robust evidence regarding this patient group. Regarding treatment discontinuation in elderly pwMS with stable disease, the available data, which mainly focuses on older injectable DMTs, suggests that their suspension appears to be relatively safe in terms of disease activity. Nevertheless, the first RCT specifically targeting treatment discontinuation recently failed to demonstrate the non-inferiority of treatment discontinuation over continuation, in terms of MRI activity. On the other hand, the evidence on the impact of discontinuation on disease progression is more conflicting and less robust. Furthermore, there is an important lack of studies concerning sequestering DMTs and virtually no data on the discontinuation of anti-CD20 monoclonal antibodies. De-escalation strategy is gaining attention as a de-risking approach alternative to complete treatment discontinuation. It may be defined as the decision to shift from HETs to less potent DMTs in elderly pwMS who have a stable disease. This strategy could reduce treatment-related risks, while minimizing the risk of disease activity and progression potentially associated with treatment discontinuation. This approach, however, remains unexplored due to a lack of studies. Given these findings, the present scenario underlines the urgent need for more comprehensive and robust studies to develop optimized, data-driven treatment strategies for elderly pwMS and LOMS, addressing the unique challenges of MS treatment and aging.
Collapse
Affiliation(s)
- Stefano Gelibter
- Department of Neurosciences, Neurology and Stroke Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.
| | - Lorenzo Saraceno
- Department of Neurosciences, Neurology and Stroke Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fiammetta Pirro
- Department of Neurosciences, Neurology and Stroke Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Emanuela Laura Susani
- Department of Neurosciences, Neurology and Stroke Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessandra Protti
- Department of Neurosciences, Neurology and Stroke Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
9
|
de Seze J, Dive D, Ayrignac X, Castelnovo G, Payet M, Rayah A, Gobbi C, Vermersch P, Zecca C. Narrative Review on the Use of Cladribine Tablets as Exit Therapy for Stable Elderly Patients with Multiple Sclerosis. Neurol Ther 2024; 13:519-533. [PMID: 38587749 PMCID: PMC11136913 DOI: 10.1007/s40120-024-00603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
The number of ageing people with relapsing multiple sclerosis (RMS) is increasing. The efficacy of disease-modifying therapies (DMTs) for RMS declines with age. Also, older persons with MS may be more susceptible to infections, hospitalisations and malignancy. Aging people with MS have higher rates of comorbidities versus aged-matched controls, increasing the individual risk of disability. We review the therapeutic properties of cladribine tablets (CladT) in ageing people with RMS, with regard to their utility for allowing these individuals to cease continuous administration of a DMT (i.e. to act as an "exit therapy"). CladT is thought to be an immune reconstitution therapy, in that two short courses of oral treatment 1 year apart provide suppression of MS disease activity in responders that far outlasts the duration of treatment and post-treatment reductions in lymphocyte counts. Post hoc analyses, long-term follow-up of populations with RMS in randomised trials, and real-world evidence suggest that the efficacy of CladT is probably independent of age, although more data in the elderly are still needed. No clear adverse signals for lymphopenia or other adverse safety signals have emerged with increasing age, although immunosenescence in the setting of age-related "inflammaging" may predispose elderly patients to a higher risk of infections. Updating vaccination status is recommended, especially against pneumococci and herpes zoster for older patients, to minimise the risk of these infections. CladT may be a useful alternative treatment for ageing people with MS who often bear a burden of multiple comorbidities and polypharmacy and who are more exposed to the adverse effects of continuous immunosuppressive therapy.
Collapse
Affiliation(s)
- Jerome de Seze
- Department of Neurology, Strasbourg University Hospital, Strasbourg, France.
| | - Dominique Dive
- Department of Neurology, Liège University Hospital, Liège, Belgium
| | - Xavier Ayrignac
- Department of Neurology, University of Montpellier, INM, INSERM, Montpellier University Hospital, Montpellier, France
| | - Giovanni Castelnovo
- Department of Neurology, Nîmes University Hospital, Hopital Caremeau, Nîmes, France
| | - Marianne Payet
- Merck Santé S.A.S., an Affiliate of Merck KGaA, Lyon, France
| | - Amel Rayah
- Merck Santé S.A.S., an Affiliate of Merck KGaA, Lyon, France
| | - Claudio Gobbi
- Multiple Sclerosis Center, Neurocenter of Southern Switzerland, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Patrick Vermersch
- University of Lille, INSERM U1172 LilNCog, CHU Lille, FHU Precise, Lille, France
| | - Chiara Zecca
- Multiple Sclerosis Center, Neurocenter of Southern Switzerland, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
10
|
Kari S, Bucciarelli F, Angles T, Oster AC, Cauboue P, Laviolette K, Mougenot M, Morandi E, Bernard I, Pignolet B, Bost C, Thomas J, Nogueira L, Saoudi A, Liblau R, Astier AL. Increased levels of circulating soluble CD226 in multiple sclerosis. Mult Scler 2024; 30:654-663. [PMID: 38424741 DOI: 10.1177/13524585241234489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND The glycoprotein CD226 plays a key role in regulating immune cell function. Soluble CD226 (sCD226) is increased in sera of patients with several chronic inflammatory diseases but its levels in neuroinflammatory diseases such as multiple sclerosis (MS) are unknown. OBJECTIVE To investigate the presence and functional implications of sCD226 in persons with multiple sclerosis (pwMS) and other neurological diseases. METHODS The mechanisms of sCD226 production were first investigated by analyzing CD226 surface expression levels and supernatants of CD3/CD226-coactivated T cells. The role of sCD226 on dendritic cell maturation was evaluated. The concentration of sCD226 in the sera from healthy donors (HD), pwMS, neuromyelitis optica (NMO), and Alzheimer's disease (AD) was measured. RESULTS CD3/CD226-costimulation induced CD226 shedding. Addition of sCD226 to dendritic cells during their maturation led to an increased production of the pro-inflammatory cytokine interleukin (IL)-23. We observed a significant increase in sCD226 in sera from pwMS and NMO compared to HD and AD. In MS, levels were increased in both relapsing-remitting multiple sclerosis (RRMS) and secondary-progressive multiple sclerosis (SPMS) compared to clinically isolated syndrome (CIS). CONCLUSION Our data suggest that T-cell activation leads to release of sCD226 that could promote inflammation and raises the possibility of using sCD226 as a biomarker for neuroinflammation.
Collapse
Affiliation(s)
- Saniya Kari
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse Cedex 3, France
| | - Florence Bucciarelli
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse Cedex 3, France
| | - Thibault Angles
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse Cedex 3, France
| | - Anne-Cecile Oster
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse Cedex 3, France
| | - Pauline Cauboue
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse Cedex 3, France
| | - Karl Laviolette
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse Cedex 3, France
| | - Madeline Mougenot
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse Cedex 3, France
| | - Elena Morandi
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse Cedex 3, France
| | - Isabelle Bernard
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse Cedex 3, France
| | - Beatrice Pignolet
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse Cedex 3, France
- CRC-SEP, Neurosciences Department, Toulouse University Hospital, Toulouse, France
| | - Chloé Bost
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse Cedex 3, France
- Immunology Department Laboratory, Institut Fédératif de Biologie, Toulouse University Hospital Center, Toulouse, France
| | - Joelle Thomas
- CNRS UMR-5284, INSERM U-1314, MeLiS, Institut NeuroMyoGène, Universite de Lyon-Université Claude Bernard Lyon 1, Lyon, France
| | - Leonor Nogueira
- Laboratory of Cell Biology and Cytology, Toulouse University Hospital, Toulouse, France
| | - Abdelhadi Saoudi
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse Cedex 3, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse Cedex 3, France
| | - Anne L Astier
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse Cedex 3, France
| |
Collapse
|
11
|
Fernández Ó, Sörensen PS, Comi G, Vermersch P, Hartung HP, Leocani L, Berger T, Van Wijmeersch B, Oreja-Guevara C. Managing multiple sclerosis in individuals aged 55 and above: a comprehensive review. Front Immunol 2024; 15:1379538. [PMID: 38646534 PMCID: PMC11032020 DOI: 10.3389/fimmu.2024.1379538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Multiple Sclerosis (MS) management in individuals aged 55 and above presents unique challenges due to the complex interaction between aging, comorbidities, immunosenescence, and MS pathophysiology. This comprehensive review explores the evolving landscape of MS in older adults, including the increased incidence and prevalence of MS in this age group, the shift in disease phenotypes from relapsing-remitting to progressive forms, and the presence of multimorbidity and polypharmacy. We aim to provide an updated review of the available evidence of disease-modifying treatments (DMTs) in older patients, including the efficacy and safety of existing therapies, emerging treatments such as Bruton tyrosine kinase (BTKs) inhibitors and those targeting remyelination and neuroprotection, and the critical decisions surrounding the initiation, de-escalation, and discontinuation of DMTs. Non-pharmacologic approaches, including physical therapy, neuromodulation therapies, cognitive rehabilitation, and psychotherapy, are also examined for their role in holistic care. The importance of MS Care Units and advance care planning are explored as a cornerstone in providing patient-centric care, ensuring alignment with patient preferences in the disease trajectory. Finally, the review emphasizes the need for personalized management and continuous monitoring of MS patients, alongside advocating for inclusive study designs in clinical research to improve the management of this growing patient demographic.
Collapse
Affiliation(s)
- Óscar Fernández
- Departament of Pharmacology, Faculty of Medicine; Institute of Biomedical Research of Malaga (IBIMA), Regional University Hospital of Malaga, Malaga, Spain
- Department of Pharmacology and Pediatry, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Per Soelberg Sörensen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Copenhagen and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giancarlo Comi
- Department of Neurorehabilitation Sciences, Multiple Sclerosis Centre Casa di Cura Igea, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Patrick Vermersch
- Univ. Lille, Inserm U1172 LilNCog, CHU Lille, FHU Precise, Lille, France
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czechia
| | - Letizia Leocani
- Department of Neurorehabilitation Sciences, Multiple Sclerosis Centre Casa di Cura Igea, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Bart Van Wijmeersch
- University MS Centre, Hasselt-Pelt, Belgium
- Rehabilitation and Multiple Sclerosis (MS), Noorderhart Hospitals, Pelt, Belgium
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico Universitario San Carlos, IdISSC, Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
12
|
Goyne CE, Fair AE, Sumowski PE, Graves JS. The Impact of Aging on Multiple Sclerosis. Curr Neurol Neurosci Rep 2024; 24:83-93. [PMID: 38416310 DOI: 10.1007/s11910-024-01333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) is a chronic, immune-mediated demyelinating disorder of the central nervous system. Age is one of the most important factors in determining MS phenotype. This review provides an overview of how age influences MS clinical characteristics, pathology, and treatment. RECENT FINDINGS New methods for measuring aging have improved our understanding of the aging process in MS. New studies have characterized the molecular and cellular composition of chronic active or smoldering plaques in MS. These lesions are important contributors to disability progression in MS. These studies highlight the important role of immunosenescence and the innate immune system in sustaining chronic inflammation. Given these changes in immune function, several studies have assessed optimal treatment strategies in aging individuals with MS. MS phenotype is intimately linked with chronologic age and immunosenescence. While there are many unanswered questions, there has been much progress in understanding this relationship which may lead to more effective treatments for progressive disease.
Collapse
Affiliation(s)
- Christopher E Goyne
- Department of Neurosciences, University of California San Diego, 9452 Medical Center Drive, Ste 4W-222, La Jolla, San Diego, CA, 92037, USA
| | - Ashley E Fair
- Department of Neurosciences, University of California San Diego, 9452 Medical Center Drive, Ste 4W-222, La Jolla, San Diego, CA, 92037, USA
| | - Paige E Sumowski
- Department of Neurosciences, University of California San Diego, 9452 Medical Center Drive, Ste 4W-222, La Jolla, San Diego, CA, 92037, USA
| | - Jennifer S Graves
- Department of Neurosciences, University of California San Diego, 9452 Medical Center Drive, Ste 4W-222, La Jolla, San Diego, CA, 92037, USA.
| |
Collapse
|
13
|
Akaishi T, Misu T, Takahashi T, Fujihara K, Fujimori J, Nakashima I, Aoki M. Stochastic models for the onset and disease course of multiple sclerosis. Clin Neurol Neurosurg 2024; 239:108224. [PMID: 38447482 DOI: 10.1016/j.clineuro.2024.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Exact causes and mechanisms regulating the onset and progression in many chronic diseases, including multiple sclerosis (MS), remain uncertain. Until now, the potential role of random process based on stochastic models in the temporal course of chronic diseases remains largely unevaluated. Therefore, the present study investigated the applicability of stochastic models for the onset and disease course of MS. METHODS Stochastic models with random temporal process in disease activity, underlying clinical relapse and/or subclinical brain atrophy, were developed. The models incorporated parameters regarding the distribution of temporal changes in disease activity and the drift constant. RESULTS By adjusting the parameters (temporal change dispersion and drift constant) and the threshold for the onset of disease, the stochastic disease progression models could reproduce various types of subsequent disease course, such as clinically isolated syndrome (monophasic), relapsing-remitting MS, primary-progressive MS, and secondary-progressive MS. Furthermore, the disease prevalence and distribution of onset age could be also reproduced with stochastic models by adjusting the parameters. The models could further explain why approximately half of the patients with relapsing-remitting MS will eventually experience a transition to secondary-progressive MS. CONCLUSION Stochastic models with random temporal changes in disease activity could reproduce the characteristic onset age distribution and disease course forms in MS. Further studies by using real-world data to underscore the significance of random process in the occurrence and progression of MS are warranted.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology, National Hospital Organization Yonezawa National Hospital, Yonezawa, Japan
| | - Kazuo Fujihara
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis Therapeutics, Fukushima Medical University, Fukushima, Japan
| | - Juichi Fujimori
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
14
|
Huang Y, Luo W, Cheng X, Sun X, Wang Y, Shu Y, Lu Z, Hu X, Qiu W, Kermode A, Zhong X. Clinical and imaging features of patients with late-onset myelin oligodendrocyte glycoprotein antibody-associated disease. Mult Scler Relat Disord 2024; 82:105405. [PMID: 38194895 DOI: 10.1016/j.msard.2023.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND There is an age-dependent change in the clinical phenotype of Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). However, the clinical features of late-onset MOGAD have not been well described. METHODS Clinical data of 110 MOGAD patients, including 21 late-onset patients with onset age greater than or equal to 50 years old were retrospectively analyzed. RESULTS Compared to pediatric- and younger adult-onset ones, late-onset MOGAD patients experienced milder disease onset (p < 0.001), more monophasic course (p < 0.001), fewer relapses (p = 0.007), less cerebrospinal fluid leukocytosis (p = 0.021), less longitudinally extensive transverse myelitis (onset p = 0.026, whole course p = 0.028), fewer lesions in basal ganglia (whole course p = 0.012), thalamus (whole course p = 0.040) and cerebellum (whole course p = 0.028). However, they had more cerebral symptoms (p = 0.021 onset and whole course), more lesions in white matter (onset p = 0.005, whole course p < 0.001) and periventricular area (onset p = 0.026), along with longer and delayed therapeutic intervention (p < 0.001). The main differences in clinical characteristics between late-onset patients with and without these brain involvements might be comorbidities. CONCLUSIONS Late-onset MOGAD are more likely to experience delayed diagnosis. Brain involvement may be modulated by comorbidities of the elderly, which alter the clinical manifestations of late-onset MOGAD.
Collapse
Affiliation(s)
- Yiying Huang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjing Luo
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi Cheng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaobo Sun
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xueqiang Hu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Allan Kermode
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia; Institute for Immunology and Infectious Disease, Murdoch University, Perth, Australia.
| | - Xiaonan Zhong
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Jacober SLS, Disanto G, Sacco R, Meng D, Mallucci G, Candrian U, Semini S, Tiberti M, Gobbi C, Zecca C. Interplay between age and disease-modifying treatments in influencing infection risk in multiple sclerosis. Mult Scler 2023; 29:1765-1775. [PMID: 37786964 DOI: 10.1177/13524585231199820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
BACKGROUND Disease-modifying treatments (DMTs) can increase the risk of infections in multiple sclerosis (MS). Aged individuals are usually excluded from clinical trials, and there is uncertainty regarding safety of immunosuppressive DMTs in these patients. OBJECTIVE To investigate the association of DMTs, ageing and other clinical variables with risk of infections in MS patients. METHODS Prospective single-centre observational study collecting information on occurrence, type and grade of infections in patients followed at the MS centre, Lugano (Switzerland). Associations with infection risk were tested using multivariable Poisson and Cox regressions. RESULTS A total of 503 patients were included (injectables/untreated, n = 127; orals, n = 139; monoclonal antibodies (MAB), n = 237) and 326 infections recorded over 12.6 (11.6-14.0) months. As compared to injectable DMTs/no treatment, MAB and oral DMTs were positively associated with infection incidence (IRR = 2.32, 95% confidence interval (CI) = 1.39-3.89, p = 0.001; IRR = 2.04, 95% CI = 1.19-3.49, p = 0.009, respectively). After excluding COVID-19, the effect of MAB was stronger among patients <50 years (IRR = 5.90, 95% CI = 2.80-12.45, p < 0.001) than >50 years (IRR = 1.95, 95% CI = 0.91-4.15, p = 0.084). Higher disability and male sex were the only variables associated with severe infections. CONCLUSION Treatment with MAB and oral DMTs is associated with higher incidence of infections, with a stronger effect in young MS patients. Disability appears the main predictor of severe infections regardless of treatment.
Collapse
Affiliation(s)
- Sarah Lena Susanna Jacober
- Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Giulio Disanto
- Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Rosaria Sacco
- Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Delania Meng
- Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Giulia Mallucci
- Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Ursula Candrian
- Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Sebastiano Semini
- Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Massimiliano Tiberti
- Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Claudio Gobbi
- Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Chiara Zecca
- Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
16
|
Daei Sorkhabi A, Komijani E, Sarkesh A, Ghaderi Shadbad P, Aghebati-Maleki A, Aghebati-Maleki L. Advances in immune checkpoint-based immunotherapies for multiple sclerosis: rationale and practice. Cell Commun Signal 2023; 21:321. [PMID: 37946301 PMCID: PMC10634124 DOI: 10.1186/s12964-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/19/2023] [Indexed: 11/12/2023] Open
Abstract
Beyond the encouraging results and broad clinical applicability of immune checkpoint (ICP) inhibitors in cancer therapy, ICP-based immunotherapies in the context of autoimmune disease, particularly multiple sclerosis (MS), have garnered considerable attention and hold great potential for developing effective therapeutic strategies. Given the well-established immunoregulatory role of ICPs in maintaining a balance between stimulatory and inhibitory signaling pathways to promote immune tolerance to self-antigens, a dysregulated expression pattern of ICPs has been observed in a significant proportion of patients with MS and its animal model called experimental autoimmune encephalomyelitis (EAE), which is associated with autoreactivity towards myelin and neurodegeneration. Consequently, there is a rationale for developing immunotherapeutic strategies to induce inhibitory ICPs while suppressing stimulatory ICPs, including engineering immune cells to overexpress ligands for inhibitory ICP receptors, such as program death-1 (PD-1), or designing fusion proteins, namely abatacept, to bind and inhibit the co-stimulatory pathways involved in overactivated T-cell mediated autoimmunity, and other strategies that will be discussed in-depth in the current review. Video Abstract.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Komijani
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pedram Ghaderi Shadbad
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Macaron G, Larochelle C, Arbour N, Galmard M, Girard JM, Prat A, Duquette P. Impact of aging on treatment considerations for multiple sclerosis patients. Front Neurol 2023; 14:1197212. [PMID: 37483447 PMCID: PMC10361071 DOI: 10.3389/fneur.2023.1197212] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 07/25/2023] Open
Abstract
With a rapidly aging global population and improvement of outcomes with newer multiple sclerosis (MS)-specific disease-modifying therapies (DMTs), the epidemiology of MS has shifted to an older than previously described population, with a peak prevalence of the disease seen in the 55-65 years age group. Changes in the pathophysiology of MS appear to be age-dependent. Several studies have identified a consistent phase of disability worsening around the fifth decade of life. The latter appears to be independent of prior disease duration and inflammatory activity and concomitant to pathological changes from acute focal active demyelination to chronic smoldering plaques, slow-expanding lesions, and compartmentalized inflammation within the central nervous system (CNS). On the other hand, decreased CNS tissue reserve and poorer remyelinating capacity with aging lead to loss of relapse recovery potential. Aging with MS may imply longer exposure to DMTs, although treatment efficacy in patients >55 years has not been evaluated in pivotal randomized controlled trials and appears to decrease with age. Older individuals are more prone to adverse effects of DMTs, an important aspect of treatment individualization. Aging with MS also implies a higher global burden of comorbid illnesses that contribute to overall impairments and represent a crucial confounder in interpreting clinical worsening. Discontinuation of DMTs after age 55, when no evidence of clinical or radiological activity is detected, is currently under the spotlight. In this review, we will discuss the impact of aging on MS pathobiology, the effect of comorbidities and other confounders on clinical worsening, and focus on current therapeutic considerations in this age group.
Collapse
Affiliation(s)
- Gabrielle Macaron
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Faculté de Médecine, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Catherine Larochelle
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Nathalie Arbour
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Manon Galmard
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Jean Marc Girard
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Alexandre Prat
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Pierre Duquette
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
18
|
Astbury L, Kalra S, Tanasescu R, Constantinescu CS. CSF lymphocytic pleocytosis does not predict a less favourable long-term prognosis in MS. J Neurol 2023; 270:2042-2047. [PMID: 36565347 PMCID: PMC10025177 DOI: 10.1007/s00415-022-11521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The role of CSF lymphocytic pleocytosis in predicting the clinical outcome of multiple sclerosis is unclear. We explored the impact of CSF pleocytosis at diagnosis on long-term disease progression in a large UK cohort. METHODS We extracted demographic, clinical and CSF data of people with MS attending the MS clinics between 1996 and 2014 at two MS centres from the English Midlands. We compared EDSS at onset, follow up EDSS and progression indices Multiple Sclerosis Severity Score (MSSS), annualized change in EDSS and transition to secondary progression in the presence/absence of pleocytosis. Two-tailed student t-test, Mann-Whitney U test, Chi-Square or Fisher's exact tests were used for detecting the differences. RESULTS A total of 247 patients with MS (178 females; mean age 42.4; 217 with relapsing onset) were followed up for an average of 13.56 years (median 12 years). Almost 18% had lymphocytic CSF ≥ 5 per microliter. CSF pleocytosis was not associated with higher EDSS at the time of LP or at follow up, and other progression indices like MSSS, annualized change in EDSS or transition to secondary progression. DISCUSSION CSF pleocytosis at MS diagnosis does not predict higher long-term disability and has no long-term prognostic value in routine clinical circumstances. Differences between MS populations and potential differences in disease activity at the time of CSF analysis may account for differences between studies.
Collapse
Affiliation(s)
- Lauren Astbury
- Academic Unit of Mental Health and Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham Centre for MS and Neuroinflammation, Nottingham University Hospitals QMC, Nottingham, NG7 2UH, UK
| | - Seema Kalra
- University Hospitals of North Midlands NHS Trust, Royal Stoke MS Centre of Excellence, Stoke On Trent, UK
| | - Radu Tanasescu
- Academic Unit of Mental Health and Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham Centre for MS and Neuroinflammation, Nottingham University Hospitals QMC, Nottingham, NG7 2UH, UK
| | - Cris S Constantinescu
- Academic Unit of Mental Health and Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham Centre for MS and Neuroinflammation, Nottingham University Hospitals QMC, Nottingham, NG7 2UH, UK.
- Cooper University Hospital, Cooper Neurological Institute, Cooper Medical School at Rowan University, Camden, NJ, 08103, USA.
| |
Collapse
|
19
|
Tan Y, Zhang C, Li D, Huang J, Liu Z, Chen T, Zou X, Qin B. Bibliometric and visualization analysis of global research trends on immunosenescence (1970-2021). Exp Gerontol 2023; 173:112089. [PMID: 36646295 DOI: 10.1016/j.exger.2023.112089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Immunosenescence, the aging of the immune system, leads to a decline in the body's adaptability to the environment and plays an important role in various diseases. Immunosenescence has been widely studied in recent years. However, to date, no relevant bibliometric analyses have been conducted. This study aimed to analyze the foundation and frontiers of immunosenescence research through bibliometric analysis. METHODS Articles and reviews on immunosenescence from 1970 to 2021 were obtained from the Web of Science Core Collection. Countries, institutions, authors, journals, references, and keywords were analyzed and visualized using VOSviewer and CiteSpace. The R language and Microsoft Excel 365 were used for statistical analyses. RESULTS In total, 3763 publications were included in the study. The global literature on immunosenescence research has increased from 1970 to 2021. The United States was the most productive country with 1409 papers and the highest H-index. Italy had the highest average number of citations per article (58.50). Among the top 10 institutions, 50 % were in the United States. The University of California was the most productive institution, with 159 articles. Kroemer G, Franceschi C, Goronzy JJ, Solana R, and Fulop T were among the top 10 most productive and co-cited authors. Experimental Gerontology (n = 170) published the most papers on immunosenescence. The analysis of keywords found that current research focuses on "inflammaging", "gut microbiota", "cellular senescence", and "COVID-19". CONCLUSIONS Immunosenescence research has increased over the years, and future cooperation and interaction between countries and institutions must be expanded. The connection between inflammaging, gut microbiota, age-related diseases, and immunosenescence is a current research priority. Individualized treatment of immunosenescence, reducing its negative effects, and promoting healthy longevity will become an emerging research direction.
Collapse
Affiliation(s)
- Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Chuanhe Zhang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Deshuang Li
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Jianguo Huang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Ziling Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Tianyu Chen
- Medical Department, Wuxi Second People's Hospital, Wuxi, China
| | - Xuyan Zou
- Changsha Aier Eye Hospital, Aier Eye Hospital Group, Changsha, China.
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China.
| |
Collapse
|
20
|
Carmena Moratalla A, Carpentier Solorio Y, Lemaître F, Farzam-Kia N, Da Cal S, Guimond JV, Haddad E, Duquette P, Girard JM, Prat A, Larochelle C, Arbour N. Specific alterations in NKG2D + T lymphocytes in relapsing-remitting and progressive multiple sclerosis patients. Mult Scler Relat Disord 2023; 71:104542. [PMID: 36716577 DOI: 10.1016/j.msard.2023.104542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND T lymphocytes exhibit numerous alterations in relapsing-remitting (RRMS), secondary progressive (SPMS), and primary progressive multiple sclerosis (PPMS). The NKG2D pathway has been involved in MS pathology. NKG2D is a co-activating receptor on subsets of CD4+ and most CD8+ T lymphocytes. The ligands of NKG2D are expressed at low levels in normal tissues but are elevated in MS postmortem brain tissues compared with controls. Whether the NKG2D pathway shows specific changes in different forms of MS remains unclear. METHODS We performed unsupervised and supervised flow cytometry analysis to characterize peripheral blood T lymphocytes from RRMS, SPMS, and PPMS patients and healthy controls (HC). We used an in vitro microscopy approach to assess the role of NKG2D in the interactions between human CD8+T lymphocytes and human astrocytes. RESULTS Specific CD8+, CD4+, and CD4-CD8- T cell populations exhibited altered frequency in MS patients' subgroups. The proportion of NKG2D+ T lymphocytes declined with age in PPMS patients but not in RRMS and HC. This reduced percentage of NKG2D+ cells was due to lower abundance of γδ and αβ CD4-CD8- T lymphocytes in PPMS patients. NKG2D+ T lymphocytes were significantly less abundant in RRMS than in HC; this was caused by a decreased frequency of CD4-CD8- and CD8+ T lymphocytes and was not linked to age. Blocking NKG2D increased the motility of CD8+ T lymphocytes co-cultured with astrocytes expressing NKG2D ligand. Moreover, preventing NKG2D from interacting with its ligands increased the proportion of CD8+ T lymphocytes exhibiting a kinapse-like behavior characterized by short-term interaction while reducing those displaying a long-lasting synapse-like behavior. These results support that NKG2D participates in the establishment of long-term interactions between activated CD8+ T lymphocytes and astrocytes. CONCLUSION Our data demonstrate specific alterations in NKG2D+ T lymphocytes in MS patients' subgroups and suggest that NKG2D contributes to the interactions between human CD8+ T lymphocytes and human astrocytes.
Collapse
Affiliation(s)
- Ana Carmena Moratalla
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9
| | - Yves Carpentier Solorio
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9
| | - Florent Lemaître
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9
| | - Negar Farzam-Kia
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9
| | - Sandra Da Cal
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9
| | - Jean Victor Guimond
- CLSC des Faubourgs, CIUSSS du Centre-Sud-de-l'Ile-de-Montréal, Montreal, QC, Canada
| | - Elie Haddad
- Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics, Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Pierre Duquette
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9; MS-CHUM Clinic 900 St-Denis Street, Montreal, QC, Canada, H2X0A9
| | - J Marc Girard
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9; MS-CHUM Clinic 900 St-Denis Street, Montreal, QC, Canada, H2X0A9
| | - Alexandre Prat
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9; MS-CHUM Clinic 900 St-Denis Street, Montreal, QC, Canada, H2X0A9
| | - Catherine Larochelle
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9; MS-CHUM Clinic 900 St-Denis Street, Montreal, QC, Canada, H2X0A9
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9.
| |
Collapse
|
21
|
Graves JS, Krysko KM, Hua LH, Absinta M, Franklin RJM, Segal BM. Ageing and multiple sclerosis. Lancet Neurol 2023; 22:66-77. [PMID: 36216015 DOI: 10.1016/s1474-4422(22)00184-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 11/07/2022]
Abstract
The factor that is most relevant and strongly associated with the clinical course of multiple sclerosis is chronological age. Very young patients exclusively have relapsing remitting disease, whereas those with later onset disease face a more rapid development of permanent disability. For people with progressive multiple sclerosis, the poor response to current disease modifying therapies might be related to ageing in the immune system and CNS. Ageing is also associated with increased risks of side-effects caused by some multiple sclerosis therapies. Both somatic and reproductive ageing processes might contribute to development of progressive multiple sclerosis. Understanding the role of ageing in immune and neural cell function in patients with multiple sclerosis might be key to halting non-relapse-related progression. The growing literature on potential therapies that target senescent cells and ageing processes might provide effective strategies for remyelination and neuroprotection.
Collapse
Affiliation(s)
- Jennifer S Graves
- Department of Neurosciences, University of California, San Diego, CA, USA; Pediatric Multiple Sclerosis Center, Rady Children's Hospital, San Diego, CA, USA; Department of Neurology, San Diego VA Hospital, San Diego, CA, USA.
| | - Kristen M Krysko
- Division of Neurology, Department of Medicine, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Le H Hua
- Department of Neurology, Cleveland Clinic, Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA; Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Robin J M Franklin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Benjamin M Segal
- Department of Neurology and the Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
22
|
Capasso N, Palladino R, Cerbone V, Spiezia AL, Covelli B, Fiore A, Lanzillo R, Carotenuto A, Petracca M, Stanziola L, Scalia G, Brescia Morra V, Moccia M. Ocrelizumab effect on humoral and cellular immunity in multiple sclerosis and its clinical correlates: a 3-year observational study. J Neurol 2023; 270:272-282. [PMID: 36048265 PMCID: PMC9813008 DOI: 10.1007/s00415-022-11350-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We aim to evaluate 3-year effects of ocrelizumab (humanized anti-CD20 monoclonal antibody for the treatment of multiple sclerosis (MS)) on lymphocytes, neutrophils and immunoglobulins: (1) when compared with pre-infusion assessment; (2) over the course of treatment; and (3) possible clinical correlates of the observed immunological modifications. METHODS This real-world observational cohort study has been conducted on prospectively collected data from 78 MS patients (mean age 47.8 ± 10.5 years; females 48.7%) commencing on ocrelizumab from 2018, with mean follow-up of 36.5 ± 6.8 months. Clinical data and blood samples were collected every three months. Total lymphocyte count and subpopulations were assessed on peripheral blood using flow cytometry. Serum immunoglobulins were evaluated with nephelometry. RESULTS When compared with pre-infusion values, we observed reduction of total, CD19 and CD20 lymphocyte counts; however, after the first infusion, their levels remained substantially stable. Over time we observed a progressive reduction of CD8 lymphocytes, while no changes were observed for CD4, CD27, CD3CD27, and CD19CD27. After the first infusion, we observed reduction in IgG, which further decreased during the follow-up. Higher probability of EDSS progression was associated with reduced modulation of CD8 lymphocytes. INTERPRETATION Ocrelizumab affects both humoral and cellular immune responses. Disability progression over the follow-up was associated with lower CD8 cytotoxic T-lymphocyte reduction. Changes in humoral response are immediate and sustained, while modulation of cellular immunity occurs progressively through regular re-treatment, and is related to clinical stability.
Collapse
Affiliation(s)
- Nicola Capasso
- Multiple Sclerosis Unit, Federico II University Hospital, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Raffaele Palladino
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | | | - Antonio Luca Spiezia
- Multiple Sclerosis Unit, Federico II University Hospital, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Bianca Covelli
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Antonia Fiore
- Centre for Advanced Biotechnology (CEINGE), Naples, Italy
| | - Roberta Lanzillo
- Multiple Sclerosis Unit, Federico II University Hospital, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Antonio Carotenuto
- Multiple Sclerosis Unit, Federico II University Hospital, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Maria Petracca
- Multiple Sclerosis Unit, Federico II University Hospital, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Lucia Stanziola
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Giulia Scalia
- Centre for Advanced Biotechnology (CEINGE), Naples, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Unit, Federico II University Hospital, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Marcello Moccia
- Multiple Sclerosis Unit, Federico II University Hospital, Via Sergio Pansini 5, 80131, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
23
|
Petrušić M, Stojić-Vukanić Z, Pilipović I, Kosec D, Prijić I, Leposavić G. Thymic changes as a contributing factor in the increased susceptibility of old Albino Oxford rats to EAE development. Exp Gerontol 2023; 171:112009. [PMID: 36334894 DOI: 10.1016/j.exger.2022.112009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The study was aimed to examine putative contribution of thymic involution to ageing-associated increase in susceptibility of Albino Oxford (AO) rats to the development of clinical EAE, and vice versa influence of the disease on the progression of thymic involution. To this end we examined (i) the parameters of thymocyte negative selection efficacy, the thymic generation of CD4+CD25+Foxp3+ T regulatory cells (Tregs) and thymic capacity to instruct/predetermine IL-17-producing T-cell differentiation, and thymopietic efficacy-associated accumulation of "inflammescent" cytotoxic CD28- T cells in the periphery, and (ii) the key underlying mechanisms in young and old non-immunised AO rats and their counterparts immunised for EAE (on the 16th day post-immunisation when the disease in old rats reached the plateau) using flow cytometry analysis and/or RT-qPCR. It was found that thymic involution impairs: (i) the efficacy of negative selection (by affecting thymocyte expression of CD90, negative regulator of selection threshold and the expression of thymic stromal cell integrity factors) and (ii) Treg generation (by diminishing expression of cytokines supporting their differentiation/maturation). Additionally, the results suggest that thymic involution facilitates CD8+ T-cell differentiation into IL-17-producing cells (previously linked to the development of clinical EAE in old AO rats). Furthermore, they confirmed that ageing-related decrease in thymic T-cell output (as indicated by diminished frequency of recent thymic emigrants in peripheral blood) resulted in the accumulation of CD28- T cells in peripheral blood and, upon immunisation, in the target organ. On the other hand, the development of EAE (most likely by increasing circulatory levels of proinflammatory cytokines) contributed to the decline in thymic output of T cells, including Tregs, and thereby to the progression/maintenance of clinical EAE. Thus, in AO rats thymic involution via multi-layered mechanisms may favour the development of clinically manifested autoimmunity, which, in turn, precipitates the thymus atrophy.
Collapse
Affiliation(s)
- Marija Petrušić
- Department of Pathobiology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Prijić
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
24
|
Murata R, Kinoshita S, Matsuda K, Kawaguchi A, Shibuya A, Shibuya K. G307S DNAM-1 Mutation Exacerbates Autoimmune Encephalomyelitis via Enhancing CD4 + T Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2304-2312. [PMID: 36323412 DOI: 10.4049/jimmunol.2200608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 02/17/2024]
Abstract
Although rs763361, which causes a nonsynonymous glycine-to-serine mutation at residue 307 (G307S mutation) of the DNAX accessory molecule-1 (DNAM-1) immunoreceptor, is a single-nucleotide polymorphism associated with autoimmune disease susceptibility, little is known about how the single-nucleotide polymorphism is involved in pathogenesis. In this study, we established human CD4+ T cell transfectants stably expressing wild-type (WT) or G307S DNAM-1 and showed that the costimulatory signal from G307S DNAM-1 induced greater proinflammatory cytokine production and cell proliferation than that from wild-type DNAM-1. The G307S mutation also enhanced the recruitment of the tyrosine kinase Lck and augmented p-Tyr322 of DNAM-1. We also established a mouse myelin Ag-specific CD4+ T cell transfectant stably expressing the chimeric DNAM-1 (chDNAM-1) consisting of the extracellular, transmembrane, and a part of intracellular regions of mouse DNAM-1 (residues 1-285) fused with the part of the intracellular region (residues 286-336) of human WT or G307S chDNAM-1. Adoptive transfer of the mouse T cell transfectant expressing the G307S chDNAM-1 into mice exacerbated experimental autoimmune encephalomyelitis compared with the transfer of cells expressing the WT chDNAM-1. These findings suggest that rs763361 is a gain-of-function mutation that enhances DNAM-1-mediated costimulatory signaling for proinflammatory responses.
Collapse
Affiliation(s)
- Rikito Murata
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- PhD Program in Human Biology, University of Tsukuba, Tsukuba, Japan
| | - Shota Kinoshita
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- PhD Program in Human Biology, University of Tsukuba, Tsukuba, Japan
| | - Kenshiro Matsuda
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Kawaguchi
- Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; and
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan;
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan;
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
25
|
Association between LAG3/CD4 Genes Variants and Risk for Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms232315244. [PMID: 36499569 PMCID: PMC9735634 DOI: 10.3390/ijms232315244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Several recent works have raised the possibility of the contribution of the lymphocyte activation gene 3 (LAG3) protein in the inflammatory processes of multiple sclerosis (MS). Results of studies on the possible association between LAG3 gene variants and the risk of MS have been inconclusive. In this study, we tried to show the possible association between the most common single nucleotide variants (SNVs) in the CD4 and LAG3 genes (these two genes are closely related) and the risk of MS in the Caucasian Spanish population. We studied the genotypes and allelic variants CD4 rs1922452, CD4 rs951818, and LAG3 rs870849 in 300 patients diagnosed with MS and 400 healthy patients using specific TaqMan-based qPCR assays. We analyzed the possible influence of the genotype frequency on age at the onset of MS, the severity of MS, clinical evolutive subtypes of MS, and the HLADRB1*1501 genotype. The frequencies of the CD4 rs1922452, CD4 rs951818, and LAG3 rs870849 genotypes and allelic variants were not associated with the risk of MS and were unrelated to gender, age at onset and severity of MS, the clinical subtype of MS, and HLADRB1*1501 genotype. The results of the current study showed a lack of association between the CD4 rs1922452, CD4 rs951818, and LAG3 rs870849 SNVs and the risk of developing MS in the Caucasian Spanish population.
Collapse
|
26
|
Rommer PS, Bsteh G, Zrzavy T, Hoeftberger R, Berger T. Immunosenescence in Neurological Diseases-Is There Enough Evidence? Biomedicines 2022; 10:2864. [PMID: 36359383 PMCID: PMC9687682 DOI: 10.3390/biomedicines10112864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2023] Open
Abstract
The aging of the immune system has recently attracted a lot of attention. Immune senescence describes changes that the immune system undergoes over time. The importance of immune senescence in neurological diseases is increasingly discussed. For this review, we considered studies that investigated cellular changes in the aging immune system and in neurological disease. Twenty-six studies were included in our analysis (for the following diseases: multiple sclerosis, stroke, Parkinson's disease, and dementia). The studies differed considerably in terms of the patient groups included and the cell types studied. Evidence for immunosenescence in neurological diseases is currently very limited. Prospective studies in well-defined patient groups with appropriate control groups, as well as comprehensive methodology and reporting, are essential prerequisites to generate clear insights into immunosenescence in neurological diseases.
Collapse
Affiliation(s)
- Paulus S Rommer
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Hoeftberger
- Department of Neurology, Division of Neuropathology and Neurochemistry, Comprohensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
27
|
Zuroff L, Rezk A, Shinoda K, Espinoza DA, Elyahu Y, Zhang B, Chen AA, Shinohara RT, Jacobs D, Alcalay RN, Tropea TF, Chen-Plotkin A, Monsonego A, Li R, Bar-Or A. Immune aging in multiple sclerosis is characterized by abnormal CD4 T cell activation and increased frequencies of cytotoxic CD4 T cells with advancing age. EBioMedicine 2022; 82:104179. [PMID: 35868128 PMCID: PMC9305354 DOI: 10.1016/j.ebiom.2022.104179] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/12/2022] [Accepted: 07/05/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Immunosenescence (ISC) describes age-related changes in immune-system composition and function. Multiple sclerosis (MS) is a lifelong inflammatory condition involving effector and regulatory T-cell imbalance, yet little is known about T-cell ISC in MS. We examined age-associated changes in circulating T cells in MS compared to normal controls (NC). METHODS Forty untreated MS (Mean Age 43·3, Range 18-72) and 49 NC (Mean Age 48·6, Range 20-84) without inflammatory conditions were included in cross-sectional design. T-cell subsets were phenotypically and functionally characterized using validated multiparametric flow cytometry. Their aging trajectories, and differences between MS and NC, were determined using linear mixed-effects models. FINDINGS MS patients demonstrated early and persistent redistribution of naïve and memory CD4 T-cell compartments. While most CD4 and CD8 T-cell aging trajectories were similar between groups, MS patients exhibited abnormal age-associated increases of activated (HLA-DR+CD38+; (P = 0·013) and cytotoxic CD4 T cells, particularly in patients >60 (EOMES: P < 0·001). Aging MS patients also failed to upregulate CTLA-4 expression on both CD4 (P = 0·014) and CD8 (P = 0·009) T cells, coupled with abnormal age-associated increases in frequencies of B cells expressing costimulatory molecules. INTERPRETATION While many aspects of T-cell aging in MS are conserved, the older MS patients harbour abnormally increased frequencies of CD4 T cells with activated and cytotoxic effector profiles. Age-related decreased expression of T-cell co-inhibitory receptor CTLA-4, and increased B-cell costimulatory molecule expression, may provide a mechanism that drives aberrant activation of effector CD4 T cells that have been implicated in progressive disease. FUNDING Stated in Acknowledgements section of manuscript.
Collapse
Affiliation(s)
- Leah Zuroff
- The Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ayman Rezk
- The Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Koji Shinoda
- The Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Diego A Espinoza
- The Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences; Zlotowski Neuroscience Center and Regenerative Medicine and Stem Cell Research Center; and National Institute for Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Bo Zhang
- Department of Cardiology, The fourth affiliated hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Andrew A Chen
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dina Jacobs
- The Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University, New York, NY 10032, USA; The Center for Movement Disorders, Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6423914, Israel
| | - Thomas F Tropea
- Department of Neurology, Perelman school of medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman school of medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences; Zlotowski Neuroscience Center and Regenerative Medicine and Stem Cell Research Center; and National Institute for Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Rui Li
- The Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Amit Bar-Or
- The Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
28
|
Cellular senescence in neuroinflammatory disease: new therapies for old cells? Trends Mol Med 2022; 28:850-863. [DOI: 10.1016/j.molmed.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
29
|
Basile MS, Bramanti P, Mazzon E. The Role of Cytotoxic T-Lymphocyte Antigen 4 in the Pathogenesis of Multiple Sclerosis. Genes (Basel) 2022; 13:genes13081319. [PMID: 35893056 PMCID: PMC9394409 DOI: 10.3390/genes13081319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disorder of the central nervous system that presents heterogeneous clinical manifestations and course. It has been shown that different immune checkpoints, including Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), can be involved in the pathogenesis of MS. CTLA-4 is a critical regulator of T-cell homeostasis and self-tolerance and represents a key inhibitor of autoimmunity. In this scopingreview, we resume the current preclinical and clinical studies investigating the role of CTLA-4 in MS with different approaches. While some of these studies assessed the expression levels of CTLA-4 on T cells by comparing MS patients with healthy controls, others focused on the evaluation of the effects of common MS therapies on CTLA-4 modulation or on the study of the CTLA-4 blockade or deficiency in experimental autoimmune encephalomyelitis models. Moreover, other studies in this field aimed to discover if the CTLA-4 gene might be involved in the predisposition to MS, whereas others evaluated the effects of treatment with CTLA4-Ig in MS. Although these results are of great interest, they are often conflicting. Therefore, further studies are needed to reveal the exact mechanisms underlying the action of a crucial immune checkpoint such as CTLA-4 in MS to identify novel immunotherapeutic strategies for MS patients.
Collapse
|
30
|
Masanneck L, Rolfes L, Regner-Nelke L, Willison A, Räuber S, Steffen F, Bittner S, Zipp F, Albrecht P, Ruck T, Hartung HP, Meuth SG, Pawlitzki M. Detecting ongoing disease activity in mildly affected multiple sclerosis patients under first-line therapies. Mult Scler Relat Disord 2022; 63:103927. [DOI: 10.1016/j.msard.2022.103927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022]
|
31
|
Moser T, Ziemssen T, Sellner J. Real-world evidence for cladribine tablets in multiple sclerosis: further insights into efficacy and safety. Wien Med Wochenschr 2022; 172:365-372. [PMID: 35451662 PMCID: PMC9026047 DOI: 10.1007/s10354-022-00931-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 01/31/2023]
Abstract
Cladribine (CLAD) is a purine nucleoside analog approved in tablet form to treat highly active multiple sclerosis (MS). CLAD tablets are the first oral therapy with an infrequent dosing schedule, administered in two annual treatment courses, each divided into two treatment cycles comprising 4–5 days of treatment. The efficacy and safety of CLAD tablets have been verified in randomized controlled clinical trials. Clinical observational studies are performed in more representative populations and over more extended periods, and thus provide valuable complementary insights. Here, we summarize the available evidence for CLAD tablets from post-marketing trials, including two observational, four long-term extensions, and two comparative studies. The patients in the post-marketing setting differed from the cohort recruited in the pivotal phase III trials regarding demographics and MS-related disability. The limited number of studies with small cohorts corroborate the disease-modifying capacity of oral CLAD and report on a durable benefit after active treatment periods. Skin-related adverse events were common in the studies focusing on safety aspects. In addition, single cases of CLAD-associated autoimmune events have been reported. Lastly, CLAD tablets appear safe regarding COVID-19 concerns, and patients mount a robust humoral immune response to SARS-CoV‑2 vaccination. We conclude that the current real-world evidence for CLAD tablets as immune reconstitution therapy for treatment of MS is based on a small number of studies and a population distinct from the cohorts randomized in the pivotal phase III trials. Further research should advance the understanding of long-term disease control after active treatment periods and the mitigation of adverse events.
Collapse
Affiliation(s)
- Tobias Moser
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Tjalf Ziemssen
- Department of Neurology, Multiple Sclerosis Center, Center of Clinical Neuroscience, Carl Gustav Carus University Hospital, Technical University Dresden, Dresden, Germany
| | - Johann Sellner
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Liechtensteinstraße 67, 2130, Mistelbach, Austria.
| |
Collapse
|
32
|
Therapeutic opportunities for targeting cellular senescence in progressive multiple sclerosis. Curr Opin Pharmacol 2022; 63:102184. [DOI: 10.1016/j.coph.2022.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 11/22/2022]
|
33
|
CD8 + T Cell Senescence: Lights and Shadows in Viral Infections, Autoimmune Disorders and Cancer. Int J Mol Sci 2022; 23:ijms23063374. [PMID: 35328795 PMCID: PMC8955595 DOI: 10.3390/ijms23063374] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
CD8+ T lymphocytes are a heterogeneous class of cells that play a crucial role in the adaptive immune response against pathogens and cancer. During their lifetime, they acquire cytotoxic functions to ensure the clearance of infected or transformed cells and, in addition, they turn into memory lymphocytes, thus providing a long-term protection. During ageing, the thymic involution causes a reduction of circulating T cells and an enrichment of memory cells, partially explaining the lowering of the response towards novel antigens with implications in vaccine efficacy. Moreover, the persistent stimulation by several antigens throughout life favors the switching of CD8+ T cells towards a senescent phenotype contributing to a low-grade inflammation that is a major component of several ageing-related diseases. In genetically predisposed young people, an immunological stress caused by viral infections (e.g., HIV, CMV, SARS-CoV-2), autoimmune disorders or tumor microenvironment (TME) could mimic the ageing status with the consequent acceleration of T cell senescence. This, in turn, exacerbates the inflamed conditions with dramatic effects on the clinical progression of the disease. A better characterization of the phenotype as well as the functions of senescent CD8+ T cells can be pivotal to prevent age-related diseases, to improve vaccine strategies and, possibly, immunotherapies in autoimmune diseases and cancer.
Collapse
|
34
|
Buscarinu MC, Reniè R, Morena E, Romano C, Bellucci G, Marrone A, Bigi R, Salvetti M, Ristori G. Late-Onset MS: Disease Course and Safety-Efficacy of DMTS. Front Neurol 2022; 13:829331. [PMID: 35356454 PMCID: PMC8960027 DOI: 10.3389/fneur.2022.829331] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS), an inflammatory demyelinating and neurodegenerative disease of the central nervous system, usually begins between the ages of 20 and 49 years, though in rare cases it is diagnosed in childhood and adolescence before the age of 18 years, or at the age of 50 years and later. When the onset of the disease occurs at 50 years or older it is conventionally defined as late onset MS (LOMS). Compared to classical MS, the LOMS is characterized by progressive course, a greater delay in diagnosis and a higher prevalence of motor disability. The older the patients, the greater is the risk of comorbidities that can negatively influence the course of the disease and can limit therapeutic strategies. To date, there is no study focused on the efficacy of Disease Modifying Therapies (DMT) in older patients with MS. The only data available are retrievable from subgroup analysis from phase-3 trials of DMT efficacy. In this work, we discuss how the aging process influences the onset, the clinical course and the therapeutic approach in LOMS.
Collapse
Affiliation(s)
- Maria Chiara Buscarinu
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Roberta Reniè
- Department of Clinical-Experimental Neuroscience and Psychiatry, Sapienza University, Rome, Italy
| | - Emanuele Morena
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
| | - Carmela Romano
- Department of Clinical-Experimental Neuroscience and Psychiatry, Sapienza University, Rome, Italy
| | - Gianmarco Bellucci
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
| | - Antonio Marrone
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
| | - Rachele Bigi
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
- *Correspondence: Marco Salvetti
| | - Giovanni Ristori
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Giovanni Ristori
| |
Collapse
|