1
|
Carabias CS, Alves VC, Hernández Laín A, Lagares A. Characterization of Chitinase 3-like protein 1 spatiotemporal distribution in human post-traumatic brain contusions and other neuropathological scenarios. J Neuropathol Exp Neurol 2025; 84:305-328. [PMID: 39832298 DOI: 10.1093/jnen/nlaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Chitinase 3-like protein 1 (CHI3L1) is emerging as a promising biomarker for assessing intracranial lesion burden and predicting prognosis in traumatic brain injury (TBI) patients. Following experimental TBI, Chi3l1 transcripts were detected in reactive astrocytes located within the pericontusional cortex. However, the cellular sources of CHI3L1 in response to hemorrhagic contusions in human brain remain unidentified. Hence, we examined a comprehensive collection of histologically defined acute and subacute human cerebral contusions with various surgical intervals using immunohistochemistry, validated through double immunofluorescence for markers such as GFAP, NeuN, MBP, and Iba-1, along with Fluoro-Jade C histofluorescence staining. CHI3L1 was found at meningeal interfaces, showing significant thickening of subpial glial plate. Paradoxically, CHI3L1-positive astrocytes were identified in neuroanatomical locations distant from hemorrhagic foci, where numerous eosinophilic ischemic neurons also exhibited CHI3L1 immunoreactivity. CHI3L1 immunostaining extended into white matter tracts and highlighted various phagocytic or activated microglia forms after delayed surgical decompressions. Given these findings, we advise against using CHI3L1 as a reactive astrogliosis marker due to its expression in multiple cell types, including astrocytes, neurons, oligodendrocytes, ependymocytes, leptomeningeal cells, microglia, and blood vessels. This non-selective response underscores the potential for CHI3L1 elevation patterns in biofluids to reflect the overall lesion burden extent.
Collapse
Affiliation(s)
- Cristina Sánchez Carabias
- Neurotraumatology and Subarachnoid Hemorrhage Research Unit, Area 8: Neurosciences and Mental Health, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Victoria Cunha Alves
- Neurotraumatology and Subarachnoid Hemorrhage Research Unit, Area 8: Neurosciences and Mental Health, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Aurelio Hernández Laín
- Department of Neuropathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Neuro-oncology Research Unit, Area 1: Cancer, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Pathology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Alfonso Lagares
- Neurotraumatology and Subarachnoid Hemorrhage Research Unit, Area 8: Neurosciences and Mental Health, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Surgery, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
2
|
Mavroudis I, Petridis F, Ciobica A, Kamal FZ, Padurariu M, Kazis D. Advancements in diagnosing Post-concussion Syndrome: insights into epidemiology, pathophysiology, neuropathology, neuroimaging, and salivary biomarkers. Acta Neurol Belg 2025:10.1007/s13760-024-02695-7. [PMID: 39776059 DOI: 10.1007/s13760-024-02695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Post-Concussion Syndrome (PCS) represents a complex constellation of symptoms that persist following a concussion or mild traumatic brain injury (mTBI), with significant implications for patient care and outcomes. Despite its prevalence, diagnosing PCS presents considerable challenges due to the subjective nature of symptoms, the absence of specific diagnostic tests, and the overlap with other neurological and psychiatric conditions. This review explores the multifaceted diagnostic challenges associated with PCS, including the heterogeneity of symptom presentation, the limitations of current neuroimaging techniques, and the overlap of PCS symptoms with other disorders. We also discuss the potential of emerging biomarkers and advanced imaging modalities to enhance diagnostic accuracy and provide a more objective basis for PCS identification. Additionally, the review highlights the importance of a multidisciplinary approach in the diagnosis and management of PCS, integrating clinical evaluation with innovative diagnostic tools to improve patient outcomes. Through a comprehensive analysis of current practices and future directions, this review aims to shed light on the complexities of PCS diagnosis and pave the way for improved strategies in the identification and treatment of this condition.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Leeds University, Leeds, UK
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I nr. 20A, Iasi, 700505, Romania
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, no. 8, Iasi, 700506, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei no. 54, Sector 5, Bucharest, 050094, Romania
- Preclinical Department, Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | - Fatima Zahra Kamal
- Laboratory of Physical Chemistry of Processes, Faculty of Sciences and Techniques, Hassan First University, B.P. 539, Settat, 26000, Morocco.
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech, Morocco.
| | - Manuela Padurariu
- Socola Institute of Psychiatry, Șoseaua Bucium 36, Iași, 700282, Romania
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Howard E, Moody JN, Prieto S, Hayes JP. Higher Cerebrospinal Fluid Levels of Amyloid-β40 Following Traumatic Brain Injury Relate to Confrontation Naming Performance. J Alzheimers Dis 2024; 100:539-550. [PMID: 38943392 DOI: 10.3233/jad-240254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Background Traumatic brain injury (TBI) may confer risk for Alzheimer's disease (AD) through amyloid-β (Aβ) overproduction. However, the relationship between TBI and Aβ levels in cerebrospinal fluid (CSF) remains unclear. Objective To explore whether Aβ overproduction is implicated in the relationship between TBI and AD, we compared CSF levels of Aβ in individuals with a TBI history versus controls (CTRLs) and related CSF Aβ levels to cognitive markers associated with preclinical AD. Methods Participants were 112 non-impaired Veterans (TBI = 56, CTRL = 56) from the Alzheimer's Disease Neuroimaging Initiative-Department of Defense database with available cognitive data (Boston Naming Test [BNT], Rey Auditory Verbal Learning Test [AVLT]) and CSF measures of Aβ42, Aβ40, and Aβ38. Mediation models explored relationships between TBI history and BNT scores with Aβ peptides as mediators. Results The TBI group had higher CSF Aβ40 (t = -2.43, p = 0.017) and Aβ38 (t = -2.10, p = 0.038) levels than the CTRL group, but groups did not differ in CSF Aβ42 levels or Aβ42/Aβ40 ratios (p > 0.05). Both Aβ peptides negatively correlated with BNT (Aβ40: rho = -0.20, p = 0.032; Aβ38: rho = -0.19, p = 0.048) but not AVLT (p > 0.05). Aβ40 had a significant indirect effect on the relationship between TBI and BNT performance (β= -0.16, 95% CI [-0.393, -0.004], PM = 0.54). Conclusions TBI may increase AD risk and cognitive vulnerability through Aβ overproduction. Biomarker models incorporating multiple Aβ peptides may help identify AD risk among those with TBI.
Collapse
Affiliation(s)
- Erica Howard
- Psychology Department, The Ohio State University, Columbus, OH, USA
| | - Jena N Moody
- Psychology Department, The Ohio State University, Columbus, OH, USA
| | - Sarah Prieto
- Psychology Department, The Ohio State University, Columbus, OH, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jasmeet P Hayes
- Psychology Department, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Initiative, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Hossain I, Marklund N, Czeiter E, Hutchinson P, Buki A. Blood biomarkers for traumatic brain injury: A narrative review of current evidence. BRAIN & SPINE 2023; 4:102735. [PMID: 38510630 PMCID: PMC10951700 DOI: 10.1016/j.bas.2023.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 03/22/2024]
Abstract
Introduction A blood-based biomarker (BBBM) test could help to better stratify patients with traumatic brain injury (TBI), reduce unnecessary imaging, to detect and treat secondary insults, predict outcomes, and monitor treatment effects and quality of care. Research question What evidence is available for clinical applications of BBBMs in TBI and how to advance this field? Material and methods This narrative review discusses the potential clinical applications of core BBBMs in TBI. A literature search in PubMed, Scopus, and ISI Web of Knowledge focused on articles in English with the words "traumatic brain injury" together with the words "blood biomarkers", "diagnostics", "outcome prediction", "extracranial injury" and "assay method" alone-, or in combination. Results Glial fibrillary acidic protein (GFAP) combined with Ubiquitin C-terminal hydrolase-L1(UCH-L1) has received FDA clearance to aid computed tomography (CT)-detection of brain lesions in mild (m) TBI. Application of S100B led to reduction of head CT scans. GFAP may also predict magnetic resonance imaging (MRI) abnormalities in CT-negative cases of TBI. Further, UCH-L1, S100B, Neurofilament light (NF-L), and total tau showed value for predicting mortality or unfavourable outcome. Nevertheless, biomarkers have less role in outcome prediction in mTBI. S100B could serve as a tool in the multimodality monitoring of patients in the neurointensive care unit. Discussion and conclusion Largescale systematic studies are required to explore the kinetics of BBBMs and their use in multiple clinical groups. Assay development/cross validation should advance the generalizability of those results which implicated GFAP, S100B and NF-L as most promising biomarkers in the diagnostics of TBI.
Collapse
Affiliation(s)
- Iftakher Hossain
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, Neurotrauma Research Group, Szentagothai Research Centre, And HUN-REN-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Andras Buki
- Department of Neurosurgery, University of Örebro, Örebro, Sweden
| |
Collapse
|
5
|
Asken BM, Tanner JA, Gaynor LS, VandeVrede L, Mantyh WG, Casaletto KB, Staffaroni AM, Fonseca C, Shankar R, Grant H, Smith K, Lago AL, Xu H, La Joie R, Cobigo Y, Rosen H, Perry DC, Rojas JC, Miller BL, Gardner RC, Wang KKW, Kramer JH, Rabinovici GD. Alzheimer's pathology is associated with altered cognition, brain volume, and plasma biomarker patterns in traumatic encephalopathy syndrome. Alzheimers Res Ther 2023; 15:126. [PMID: 37480088 PMCID: PMC10360257 DOI: 10.1186/s13195-023-01275-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Traumatic encephalopathy syndrome (TES) is a clinical phenotype sensitive but non-specific to underlying chronic traumatic encephalopathy (CTE) neuropathology. However, cognitive symptoms of TES overlap with Alzheimer's disease (AD), and features of AD pathology like beta-amyloid (Aβ) plaques often co-occur with CTE, making clinical-to-pathological conclusions of TES diagnoses challenging. We investigated how Alzheimer's neuropathological changes associated with cognition, brain volume, and plasma biomarkers in patients with repetitive head impacts (RHI)/TES, clinical AD, or typically aging controls. METHODS We studied 154 participants including 33 with RHI/TES (age 61.5 ± 11.5, 100% male, 11/33 Aβ[ +]), 62 with AD and no known prior RHI (age 67.1 ± 10.2, 48% male, 62/62 Aβ[ +]), and 59 healthy controls without RHI (HC; age 73.0 ± 6.2, 40% male, 0/59 Aβ[ +]). Patients completed neuropsychological testing (memory, executive functioning, language, visuospatial) and structural MRI (voxel-based morphometry analysis), and provided plasma samples analyzed for GFAP, NfL, IL-6, IFN-γ, and YKL-40. For cognition and plasma biomarkers, patients with RHI/TES were stratified as Aβ[ +] or Aβ[ -] and compared to each other plus the AD and HC groups (ANCOVA adjusting for age and sex). Differences with at least a medium effect size (Cohen's d > 0.50) were interpreted as potentially meaningful. RESULTS Cognitively, within the TES group, Aβ[ +] RHI/TES performed worse than Aβ[-] RHI/TES on visuospatial (p = .04, d = 0.86) and memory testing (p = .07, d = 0.74). Comparing voxel-wise brain volume, both Aβ[ +] and Aβ[ -] RHI/TES had lower medial and anterior temporal lobe volume than HC and did not significantly differ from AD. Comparing plasma biomarkers, Aβ[ +] RHI/TES had higher plasma GFAP than HC (p = .01, d = 0.88) and did not significantly differ from AD. Conversely, Aβ[ -] RHI/TES had higher NfL than HC (p = .004, d = 0.93) and higher IL-6 than all other groups (p's ≤ .004, d's > 1.0). CONCLUSIONS Presence of Alzheimer's pathology in patients with RHI/TES is associated with altered cognitive and biomarker profiles. Patients with RHI/TES and positive Aβ-PET have cognitive and plasma biomarker changes that are more like patients with AD than patients with Aβ[ -] RHI/TES. Measuring well-validated Alzheimer's biomarkers in patients with RHI/TES could improve interpretation of research findings and heighten precision in clinical management.
Collapse
Affiliation(s)
- Breton M Asken
- Department of Clinical & Health Psychology, 1Florida Alzheimer's Disease Research Center, University of Florida, 1225 Center Drive, Gainesville, FL, 32610, USA.
| | - Jeremy A Tanner
- Department of Neurology, Biggs Institute for Alzheimer's and Neurodegenerative Diseases, South Texas Alzheimer's Disease Research Center, University of Texas Health - San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Leslie S Gaynor
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Lawren VandeVrede
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - William G Mantyh
- Department of Neurology, University of Minnesota, PWB 12-100, 516 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Kaitlin B Casaletto
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Adam M Staffaroni
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Corrina Fonseca
- Department of Neuroscience, Helen Wills Neuroscience Institute, University of California, 132 Barker Hall MC#3190, Berkeley, CA, 94720, USA
| | - Ranjani Shankar
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Harli Grant
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Karen Smith
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Argentina Lario Lago
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Haiyan Xu
- Department of Surgery, University of Florida, PO Box 100128, Gainesville, FL, 32610, USA
| | - Renaud La Joie
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Yann Cobigo
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Howie Rosen
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - David C Perry
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Julio C Rojas
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Bruce L Miller
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Raquel C Gardner
- Sheba Medical Center, Tel Hashomer City of Health, Tel Aviv District, Derech Sheba 2, Ramat Gan, Israel
| | - Kevin K W Wang
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Joel H Kramer
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Gil D Rabinovici
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| |
Collapse
|
6
|
Mavroudis I, Balmus IM, Ciobica A, Luca AC, Gorgan DL, Dobrin I, Gurzu IL. A Review of the Most Recent Clinical and Neuropathological Criteria for Chronic Traumatic Encephalopathy. Healthcare (Basel) 2023; 11:1689. [PMID: 37372807 DOI: 10.3390/healthcare11121689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: Chronic traumatic encephalopathy (CTE) is a complex pathological condition characterized by neurodegeneration, as a result of repeated head traumas. Currently, the diagnosis of CTE can only be assumed postmortem. Thus, the clinical manifestations associated with CTE are referred to as traumatic encephalopathy syndrome (TES), for which diagnostic multiple sets of criteria can be used. (2) Objectives: In this study, we aimed to present and discuss the limitations of the clinical and neuropathological diagnostic criteria for TES/CTE and to suggest a diagnostic algorithm enabling a more accurate diagnostic procedure. (3) Results: The most common diagnostic criteria for TES/CTE discriminate between possible, probable, and improbable. However, several key variations between the available diagnostic criteria suggest that the diagnosis of CTE can still only be given with postmortem neurophysiological examination. Thus, a TES/CTE diagnosis during life imposes a different level of certainty. Here, we are proposing a comprehensive algorithm of diagnosis criteria for TES/CTE based on the similarities and differences between the previous criteria. (4) Conclusions: The diagnosis of TES/CTE requires a multidisciplinary approach; thorough investigation for other neurodegenerative disorders, systemic illnesses, and/or psychiatric conditions that can account for the symptoms; and also complex investigations of patient history, psychiatric assessment, and blood and cerebrospinal fluid biomarker evaluation.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals NHS Trust and Leeds University, Leeds LS9 7TF, UK
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Alexandru Lapusneanu Street, No. 26, 700057 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, B dul Carol I, No. 11, 700506 Iasi, Romania
| | - Alina-Costina Luca
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, B dul Carol I, No. 11, 700506 Iasi, Romania
| | - Irina Dobrin
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Irina Luciana Gurzu
- Department of Preventive Medicine and Interdisciplinarity, Discipline of Occupational Medicine, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| |
Collapse
|
7
|
Yeates KO, Räisänen AM, Premji Z, Debert CT, Frémont P, Hinds S, Smirl JD, Barlow K, Davis GA, Echemendia RJ, Feddermann-Demont N, Fuller C, Gagnon I, Giza CC, Iverson GL, Makdissi M, Schneider KJ. What tests and measures accurately diagnose persisting post-concussive symptoms in children, adolescents and adults following sport-related concussion? A systematic review. Br J Sports Med 2023; 57:780-788. [PMID: 37316186 DOI: 10.1136/bjsports-2022-106657] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To determine what tests and measures accurately diagnose persisting post-concussive symptoms (PPCS) in children, adolescents and adults following sport-related concussion (SRC). DESIGN A systematic literature review. DATA SOURCES MEDLINE, Embase, PsycINFO, Cochrane Central Register of Controlled Trials, CINAHL and SPORTDiscus through March 2022. ELIGIBILITY CRITERIA Original, empirical, peer-reviewed findings (cohort studies, case-control studies, cross-sectional studies and case series) published in English and focused on SRC. Studies needed to compare individuals with PPCS to a comparison group or their own baseline prior to concussion, on tests or measures potentially affected by concussion or associated with PPCS. RESULTS Of 3298 records screened, 26 articles were included in the qualitative synthesis, including 1016 participants with concussion and 531 in comparison groups; 7 studies involved adults, 8 involved children and adolescents and 11 spanned both age groups. No studies focused on diagnostic accuracy. Studies were heterogeneous in participant characteristics, definitions of concussion and PPCS, timing of assessment and the tests and measures examined. Some studies found differences between individuals with PPCS and comparison groups or their own pre-injury assessments, but definitive conclusions were not possible because most studies had small convenience samples, cross-sectional designs and were rated high risk of bias. CONCLUSION The diagnosis of PPCS continues to rely on symptom report, preferably using standardised symptom rating scales. The existing research does not indicate that any other specific tool or measure has satisfactory accuracy for clinical diagnosis. Future research drawing on prospective, longitudinal cohort studies could help inform clinical practice.
Collapse
Affiliation(s)
- Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anu M Räisänen
- Department of Physical Therapy Education - Oregon, Western University of Health Sciences, College of Health Sciences - Northwest, Lebanon, Oregon, USA
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, British Columbia, Canada
| | - Chantel T Debert
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pierre Frémont
- Department of Rehabilitation, Laval University, Quebec, Quebec, Canada
| | - Sidney Hinds
- Uniformed Services University, Bethesda, Maryland, USA
| | - Jonathan D Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Karen Barlow
- Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Cabrini Health, Malvern, Victoria, Australia
| | - Ruben J Echemendia
- Department of Psychology, University of Missouri, Kansas City, Missouri, USA
- Psychological and Neurobehavioral Associates, Inc, State College, Pennsylvania, USA
| | - Nina Feddermann-Demont
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Sports Neuroscience, University of Zurich, Zurich, Switzerland
| | - Colm Fuller
- College of Medicine and Health, University College Cork, Cork, Ireland
- Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland
| | - Isabelle Gagnon
- School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Trauma Center, Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
| | - Christopher C Giza
- Department of Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, California, USA
- Department of Pediatrics/Pediatric Neurology, Mattel Children's Hospital UCLA, Los Angeles, California, USA
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
- Sports Concussion Program, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| | - Michael Makdissi
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health - Austin Campus, Heidelberg, Victoria, Australia
- Australian Football League, Melbourne, Victoria, Australia
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Vig V, Garg I, Tuz-Zahra F, Xu J, Tripodis Y, Nicks R, Xia W, Alvarez VE, Alosco ML, Stein TD, Subramanian ML. Vitreous Humor Biomarkers Reflect Pathological Changes in the Brain for Alzheimer's Disease and Chronic Traumatic Encephalopathy. J Alzheimers Dis 2023:JAD230167. [PMID: 37182888 DOI: 10.3233/jad-230167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Patients with eye disease have an increased risk for developing neurodegenerative disease. Neurodegenerative proteins can be measured in the eye; however, correlations between biomarker levels in eye fluid and neuropathological diagnoses have not been established. OBJECTIVE This exploratory, retrospective study examined vitreous humor from 41 postmortem eyes and brain tissue with neuropathological diagnoses of Alzheimer's disease (AD, n = 7), chronic traumatic encephalopathy (CTE, n = 15), both AD + CTE (n = 10), and without significant neuropathology (controls, n = 9). METHODS Protein biomarkers i.e., amyloid-β (Aβ 40,42), total tau (tTau), phosphorylated tau (pTau181,231), neurofilament light chain (NfL), and eotaxin-1 were quantitatively measured by immunoassay. Non-parametric tests were used to compare vitreous biomarker levels between groups. Spearman's rank correlation tests were used to correlate biomarker levels in vitreous and cortical tissue. The level of significance was set to α= 0.10. RESULTS In pairwise comparisons, tTau levels were significantly increased in AD and CTE groups versus controls (p = 0.08 for both) as well as AD versus AD+CTE group and CTE versus AD+CTE group (p = 0.049 for both). Vitreous NfL levels were significantly increased in low CTE (Stage I/II) versus no CTE (p = 0.096) and in low CTE versus high CTE stage (p = 0.03). Vitreous and cortical tissue levels of pTau 231 (p = 0.02, r = 0.38) and t-Tau (p = 0.04, r = -0.34) were significantly correlated. CONCLUSION The postmortem vitreous humor biomarker levels significantly correlate with AD and CTE pathology in corresponding brains, while vitreous NfL was correlated with the CTE staging. This exploratory study indicates that biomarkers in the vitreous humor may serve as a proxy for neuropathological disease.
Collapse
Affiliation(s)
- Viha Vig
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Itika Garg
- Department of Ophthalmology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jia Xu
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Geriatric Research Education and Clinical Center, Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Manju L Subramanian
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
9
|
Shahim P, Zetterberg H, Simren J, Ashton NJ, Norato G, Schöll M, Tegner Y, Diaz-Arrastia R, Blennow K. Association of Plasma Biomarker Levels With Their CSF Concentration and the Number and Severity of Concussions in Professional Athletes. Neurology 2022; 99:e347-e354. [PMID: 35654597 DOI: 10.1212/wnl.0000000000200615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/15/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To examine whether the brain biomarkers total-tau (T-tau), glial fibrillary acidic protein (GFAP), and β-amyloid (Aβ) isomers 40 and 42 in plasma relate to the corresponding concentrations in cerebrospinal fluid (CSF), blood-brain barrier integrity, and duration of post-concussion syndrome (PCS) due to repetitive head impacts (RHI) in professional athletes. METHOD In this cross-sectional study, professional athletes with persistent PCS due to RHI (median of 1.5 years after recent concussion) and uninjured controls were assessed with blood and CSF sampling. The diagnosis of PCS was based on the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition). The athletes were enrolled through information flyers about the study sent to the Swedish hockey league (SHL) and the SHL Medicine Committee. The controls were enrolled through flyers at University of Gothenburg and Sahlgrenska University Hospital, Sweden. The participants underwent lumbar puncture and blood assessment at Sahlgrenska University Hospital. The main outcome measures were history of RHI and PCS severity (PCS> 1 year versus PCS< 1 year) in relation to plasma and CSF concentrations of T-tau, GFAP, Aβ40, and Aβ42. Plasma T-tau, GFAP, Aβ40, and Aβ42 were quantified using an ultrasensitive assay technology. RESULTS A total of 47 participants (28 athletes [median age 28 years, range 18-52] with persistent PCS, due to RHI and 19 controls [median age, 25 years, range 21-35]) underwent paired blood and cerebrospinal fluid (CSF) sampling. T-tau, Aβ40 and Aβ42 concentrations measured in plasma did not correlate with the corresponding CSF concentrations, while there was a correlation between plasma and CSF levels of GFAP (r=0.45, p=0.020). There were no significant relationships between plasma T-tau, GFAP, and blood-brain barrier integrity as measured by CSF:serum albumin ratio. T-tau, GFAP, Aβ40, and Aβ42 measured in plasma did not relate to PCS severity. None of the markers measured in plasma correlated with number of concussions, except decreased Aβ42 in those with higher number of concussions (r=-0.40, p=0.04). CONCLUSIONS T-tau, GFAP, Aβ40 and Aβ42 measured in plasma do not correspond to CSF measures, and may have limited utility for the evaluation of the late effects of RHI, compared with when measured in CSF. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that in professional athletes with post-concussion symptoms, plasma concentrations of T-tau, GFAP, Aβ40, and Aβ42 are not informative in the diagnosis of late effects of repetitive head injuries.
Collapse
Affiliation(s)
- Pashtun Shahim
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden .,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Joel Simren
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Gina Norato
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michael Schöll
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Yelverton Tegner
- Division of Health, Medicine and Rehabilitation, Department of Health Science, Luleå University of Technology, Luleå, Sweden
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
10
|
Mavroudis I, Kazis D, Chowdhury R, Petridis F, Costa V, Balmus IM, Ciobica A, Luca AC, Radu I, Dobrin RP, Baloyannis S. Post-Concussion Syndrome and Chronic Traumatic Encephalopathy: Narrative Review on the Neuropathology, Neuroimaging and Fluid Biomarkers. Diagnostics (Basel) 2022; 12:diagnostics12030740. [PMID: 35328293 PMCID: PMC8947595 DOI: 10.3390/diagnostics12030740] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury is a significant public health issue and represents the main contributor to death and disability globally among all trauma-related injuries. Martial arts practitioners, military veterans, athletes, victims of physical abuse, and epileptic patients could be affected by the consequences of repetitive mild head injuries (RMHI) that do not resume only to short-termed traumatic brain injuries (TBI) effects but also to more complex and time-extended outcomes, such as post-concussive syndrome (PCS) and chronic traumatic encephalopathy (CTE). These effects in later life are not yet well understood; however, recent studies suggested that even mild head injuries can lead to an elevated risk of later-life cognitive impairment and neurodegenerative disease. While most of the PCS hallmarks consist in immediate consequences and only in some conditions in long-termed processes undergoing neurodegeneration and impaired brain functions, the neuropathological hallmark of CTE is the deposition of p-tau immunoreactive pre-tangles and thread-like neurites at the depths of cerebral sulci and neurofibrillary tangles in the superficial layers I and II which are also one of the main hallmarks of neurodegeneration. Despite different CTE diagnostic criteria in clinical and research approaches, their specificity and sensitivity remain unclear and CTE could only be diagnosed post-mortem. In CTE, case risk factors include RMHI exposure due to profession (athletes, military personnel), history of trauma (abuse), or pathologies (epilepsy). Numerous studies aimed to identify imaging and fluid biomarkers that could assist diagnosis and probably lead to early intervention, despite their heterogeneous outcomes. Still, the true challenge remains the prediction of neurodegeneration risk following TBI, thus in PCS and CTE. Further studies in high-risk populations are required to establish specific, preferably non-invasive diagnostic biomarkers for CTE, considering the aim of preventive medicine.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK; (I.M.); (R.C.)
- Laboratory of Neuropathology and Electron Microscopy, Aristotle University of Thessaloniki, 54634 Thessaloniki, Greece; (V.C.); (S.B.)
- Research Institute for Alzheimer’s Disease and Neurodegenerative Diseases, Heraklion Langada, 57200 Thessaloniki, Greece
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (D.K.); (F.P.)
| | - Rumana Chowdhury
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK; (I.M.); (R.C.)
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (D.K.); (F.P.)
| | - Vasiliki Costa
- Laboratory of Neuropathology and Electron Microscopy, Aristotle University of Thessaloniki, 54634 Thessaloniki, Greece; (V.C.); (S.B.)
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iași, 700057 Iași, Romania;
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 700506 Iași, Romania
- Correspondence: (A.C.); (A.-C.L.); (R.P.D.)
| | - Alina-Costina Luca
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
- Correspondence: (A.C.); (A.-C.L.); (R.P.D.)
| | - Iulian Radu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Romeo Petru Dobrin
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
- Correspondence: (A.C.); (A.-C.L.); (R.P.D.)
| | - Stavros Baloyannis
- Laboratory of Neuropathology and Electron Microscopy, Aristotle University of Thessaloniki, 54634 Thessaloniki, Greece; (V.C.); (S.B.)
- Research Institute for Alzheimer’s Disease and Neurodegenerative Diseases, Heraklion Langada, 57200 Thessaloniki, Greece
| |
Collapse
|
11
|
Shahim P, Zetterberg H. Neurochemical Markers of Traumatic Brain Injury: Relevance to Acute Diagnostics, Disease Monitoring, and Neuropsychiatric Outcome Prediction. Biol Psychiatry 2022; 91:405-412. [PMID: 34857362 DOI: 10.1016/j.biopsych.2021.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
Considerable advancements have been made in the quantification of biofluid-based biomarkers for traumatic brain injury (TBI), which provide a clinically accessible window to investigate disease mechanisms and progression. Methods with improved analytical sensitivity compared with standard immunoassays are increasingly used, and blood tests are being used in the diagnosis, monitoring, and outcome prediction of TBI. Most work to date has focused on acute TBI diagnostics, while the literature on biomarkers for long-term sequelae is relatively scarce. In this review, we give an update on the latest developments in biofluid-based biomarker research in TBI and discuss how acute and prolonged biomarker changes can be used to detect and quantify brain injury and predict clinical outcome and neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Pashtun Shahim
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at University College London, London, United Kingdom; Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.
| |
Collapse
|
12
|
Wilkerson GB, Bruce JR, Wilson AW, Huang N, Sartipi M, Acocello SN, Hogg JA, Mansouri M. Perceptual-Motor Efficiency and Concussion History Are Prospectively Associated With Injury Occurrences Among High School and Collegiate American Football Players. Orthop J Sports Med 2021; 9:23259671211051722. [PMID: 34722788 PMCID: PMC8552393 DOI: 10.1177/23259671211051722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Background: After a sport-related concussion (SRC), the risk for lower extremity injury is approximately 2 times greater, and the risk for another SRC may be as much as 3 to 5 times greater. Purpose: To assess the predictive validity of screening methods for identification of individual athletes who possess an elevated risk of SRC. Study Design: Case-control study; Level of evidence, 3. Methods: Metrics derived from a smartphone flanker test software application and self-ratings of both musculoskeletal function and overall wellness were acquired from American high school and college football players before study participation. Occurrences of core or lower extremity injury (CLEI) and SRC were documented for all practice sessions and games for 1 season. Receiver operating characteristic and logistic regression analyses were used to identify variables that provided the greatest predictive accuracy for CLEI or SRC occurrence. Results: Overall, there were 87 high school and 74 American college football players included in this study. At least 1 CLEI was sustained by 45% (39/87) of high school players and 55% (41/74) of college players. Predictors of CLEI included the flanker test conflict effect ≥69 milliseconds (odds ratio [OR], 2.12; 90% CI, 1.24-3.62) and a self-reported lifetime history of SRC (OR, 1.70; 90% CI, 0.90-3.23). Of players with neither risk factor, only 38% (29/77) sustained CLEI compared with 61% (51/84) of players with 1 or both of the risk factors (OR, 2.56; 90% CI, 1.50-4.36). SRC was sustained by 7 high school players and 3 college players. Predictors of SRC included the Overall Wellness Index score ≤78 (OR, 9.83; 90% CI, 3.17-30.50), number of postconcussion symptoms ≥4 (OR, 8.35; 90% CI, 2.71-25.72), the Sport Fitness Index score ≤78 (OR, 5.16; 90% CI, 1.70-15.65), history of SRC (OR, 4.03; 90% CI, 1.35-12.03), and the flanker test inverse efficiency ratio ≥1.7 (OR, 3.19; 90% CI, 1.08-9.47). Conclusion: Survey responses and smartphone flanker test metrics predicted greater injury incidence among individual football players classified as high-risk compared with that for players with a low-risk profile.
Collapse
Affiliation(s)
- Gary B Wilkerson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| | - Jeremy R Bruce
- Department of Orthopaedic Surgery, University of Tennessee College of Medicine, Chattanooga, Tennessee, USA
| | - Andrew W Wilson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| | - Neal Huang
- Department of Orthopaedic Surgery, University of Tennessee College of Medicine, Chattanooga, Tennessee, USA
| | - Mina Sartipi
- Center for Urban Informatics and Progress, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| | - Shellie N Acocello
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| | - Jennifer A Hogg
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| | - Misagh Mansouri
- Center for Urban Informatics and Progress, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| |
Collapse
|
13
|
Wilkerson GB, Nabhan DC, Perry TS. A Novel Approach to Assessment of Perceptual-Motor Efficiency and Training-Induced Improvement in the Performance Capabilities of Elite Athletes. Front Sports Act Living 2021; 3:729729. [PMID: 34661098 PMCID: PMC8517233 DOI: 10.3389/fspor.2021.729729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Standard clinical assessments of mild traumatic brain injury are inadequate to detect subtle abnormalities that can be revealed by sophisticated diagnostic technology. An association has been observed between sport-related concussion (SRC) and subsequent musculoskeletal injury, but the underlying neurophysiological mechanism is not currently understood. A cohort of 16 elite athletes (10 male, 6 female), which included nine individuals who reported a history of SRC (5 male, 4 female) that occurred between 4 months and 8 years earlier, volunteered to participate in a 12-session program for assessment and training of perceptual-motor efficiency. Performance metrics derived from single- and dual-task whole-body lateral and diagonal reactive movements to virtual reality targets in left and right directions were analyzed separately and combined in various ways to create composite representations of global function. Intra-individual variability across performance domains demonstrated very good SRC history classification accuracy for the earliest 3-session phase of the program (Reaction Time Dispersion AUC = 0.841; Deceleration Dispersion AUC = 0.810; Reaction Time Discrepancy AUC = 0.825, Deceleration Discrepancy AUC = 0.794). Good earliest phase discrimination was also found for Composite Asymmetry between left and right movement directions (AUC = 0.778) and Excursion Average distance beyond the minimal body displacement necessary for virtual target deactivation (AUC = 0.730). Sensitivity derived from Youden's Index for the 6 global factors ranged from 67 to 89% and an identical specificity value of 86% for all of them. Median values demonstrated substantial improvement from the first 3-session phase to the last 3-session phase for Composite Asymmetry and Excursion Average. The results suggest that a Composite Asymmetry value ≥ 0.15 and an Excursion Average value ≥ 7 m, provide reasonable qualitative approximations for clinical identification of suboptimal perceptual-motor performance. Despite acknowledged study limitations, the findings support a hypothesized relationship between whole-body reactive agility performance and functional connectivity among brain networks subserving sensory perception, cognitive decision-making, and motor execution. A complex systems approach appears to perform better than traditional data analysis methods for detection of subtle perceptual-motor impairment, which has the potential to advance both clinical management of SRC and training for performance enhancement.
Collapse
Affiliation(s)
- Gary B Wilkerson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Dustin C Nabhan
- Oslo Sports Trauma Research Center, Norwegian School of Sport Science, Oslo, Norway
| | - Tyler S Perry
- Orthopedics and Sports Medicine, Emory Healthcare, Atlanta, GA, United States
| |
Collapse
|
14
|
Werner JK, Shahim P, Pucci JU, Lai C, Raiciulescu S, Gill JM, Nakase-Richardson R, Diaz-Arrastia R, Kenney K. Poor sleep correlates with biomarkers of neurodegeneration in mild traumatic brain injury patients: a CENC study. Sleep 2021; 44:6024975. [PMID: 33280032 DOI: 10.1093/sleep/zsaa272] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/19/2020] [Indexed: 01/24/2023] Open
Abstract
STUDY OBJECTIVES Sleep disorders affect over half of mild traumatic brain injury (mTBI) patients. Despite evidence linking sleep and neurodegeneration, longitudinal TBI-related dementia studies have not considered sleep. We hypothesized that poor sleepers with mTBI would have elevated markers of neurodegeneration and lower cognitive function compared to mTBI good sleepers and controls. Our objective was to compare biomarkers of neurodegeneration and cognitive function with sleep quality in warfighters with chronic mTBI. METHODS In an observational warfighters cohort (n = 138 mTBI, 44 controls), the Pittsburgh Sleep Quality Index (PSQI) was compared with plasma biomarkers of neurodegeneration and cognitive scores collected an average of 8 years after injury. RESULTS In the mTBI cohort, poor sleepers (PSQI ≥ 10, n = 86) had elevated plasma neurofilament light (NfL, x̅ = 11.86 vs 7.91 pg/mL, p = 0.0007, d = 0.63) and lower executive function scores by the categorical fluency (x̅ = 18.0 vs 21.0, p = 0.0005, d = -0.65) and stop-go tests (x̅ = 30.1 vs 31.1, p = 0.024, d = -0.37). These findings were not observed in controls (n = 44). PSQI predicted NfL (beta = 0.22, p = 0.00002) and tau (beta = 0.14, p = 0.007), but not amyloid β42. Poor sleepers showed higher obstructive sleep apnea (OSA) risk by STOP-BANG scores (x̅ = 3.8 vs 2.7, p = 0.0005), raising the possibility that the PSQI might be partly secondary to OSA. CONCLUSIONS Poor sleep is linked to neurodegeneration and select measures of executive function in mTBI patients. This supports implementation of validated sleep measures in longitudinal studies investigating pathobiological mechanisms of TBI related neurodegeneration, which could have therapeutic implications.
Collapse
Affiliation(s)
- J Kent Werner
- Department of Neurology, Uniformed Services University of Health Sciences, Bethesda, MD.,Center for Neuroscience and Regenerative Medicine, Bethesda, MD
| | - Pashtun Shahim
- National Institutes of Health, Bethesda, MD.,Center for Neuroscience and Regenerative Medicine, Bethesda, MD
| | - Josephine U Pucci
- Department of Neurology, Uniformed Services University of Health Sciences, Bethesda, MD
| | - Chen Lai
- National Institutes of Health, Bethesda, MD
| | - Sorana Raiciulescu
- Department of Neurology, Uniformed Services University of Health Sciences, Bethesda, MD
| | | | - Risa Nakase-Richardson
- Department of Internal Medicine, Sleep and Pulmonary Division, University of South Florida, Tampa, FL.,Defense and Veterans Brain Injury Center, Tampa, FL.,James A. Haley Veterans Hospital, Tampa, FL
| | | | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of Health Sciences, Bethesda, MD
| |
Collapse
|
15
|
Pin E, Petricoin EF, Cortes N, Bowman TG, Andersson E, Uhlén M, Nilsson P, Caswell SV. Immunoglobulin A Autoreactivity toward Brain Enriched and Apoptosis-Regulating Proteins in Saliva of Athletes after Acute Concussion and Subconcussive Impacts. J Neurotrauma 2021; 38:2373-2383. [PMID: 33858214 DOI: 10.1089/neu.2020.7375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The diagnosis and management of concussion is hindered by its diverse clinical presentation and assessment tools reliant on subjectively experienced symptoms. The biomechanical threshold of concussion is also not well understood, and asymptomatic concussion or "subconcussive impacts" of variable magnitudes are common in contact sports. Concerns have risen because athletes returning to activity too soon have an increased risk of prolonged recovery or long-term adverse health consequences. To date, little is understood on a molecular level regarding concussion and subconcussive impacts. Recent research suggests that neuroinflammatory mechanisms may serve an important role subsequent to concussion and possibly to subconcussive impacts. These studies suggest that autoantibodies may be a valuable tool for detection of acute concussion and monitoring for changes caused by cumulative exposure to subconcussive impacts. Hence, we aimed to profile the immunoglobulin (Ig)A autoantibody repertoire in saliva by screening a unique sport-related head trauma biobank. Saliva samples (n = 167) were donated by male and female participants enrolled in either the concussion (24-48 h post-injury) or subconcussion (non-concussed participants having moderate or high cumulative subconcussive impact exposure) cohorts. Study design included discovery and verification phases. Discovery aimed to identify new candidate autoimmune targets of IgA. Verification tested whether concussion and subconcussion cohorts increased IgA reactivity and whether cohorts showed similarities. The results show a significant increase in the prevalence of IgA toward protein fragments representing 5-hydroxytryptamine receptor 1A (HTR1A), serine/arginine repetitive matrix 4 (SRRM4) and FAS (tumor necrosis factor receptor superfamily member 6) after concussion and subconcussion. These results may suggest that concussion and subconcussion induce similar physiological effects, especially in terms of immune response. Our study demonstrates that saliva is a potential biofluid for autoantibody detection in concussion and subconcussion. After rigorous confirmation in much larger independent study sets, a validated salivary autoantibody assay could provide a non-subjective quantitative means of assessing concussive and subconcussive events.
Collapse
Affiliation(s)
- Elisa Pin
- Division of Affinity Proteomics, Department of Protein Science, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Kinesiology, George Mason University, Manassas, Virginia, USA.,Institute for BioHealth Innovation, and School of Kinesiology, George Mason University, Manassas, Virginia, USA
| | - Nelson Cortes
- Institute for BioHealth Innovation, and School of Kinesiology, George Mason University, Manassas, Virginia, USA.,Sports Medicine Assessment Research and Testing Laboratory, School of Kinesiology, George Mason University, Manassas, Virginia, USA
| | - Thomas G Bowman
- Department of Athletic Training, University of Lynchburg, Lynchburg, Virginia, USA
| | - Eni Andersson
- Division of Affinity Proteomics, Department of Protein Science, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Mathias Uhlén
- Division of Systems Biology, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Shane V Caswell
- Institute for BioHealth Innovation, and School of Kinesiology, George Mason University, Manassas, Virginia, USA.,Sports Medicine Assessment Research and Testing Laboratory, School of Kinesiology, George Mason University, Manassas, Virginia, USA
| |
Collapse
|
16
|
Tsitsopoulos PP, Holmström U, Blennow K, Zetterberg H, Marklund N. Cerebrospinal fluid biomarkers of glial and axonal injury in cervical spondylotic myelopathy. J Neurosurg Spine 2021; 34:632-641. [PMID: 33513577 DOI: 10.3171/2020.8.spine20965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/07/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Degenerative cervical spondylotic myelopathy (CSM) is a major cause of spinal cord dysfunction with an unpredictable prognosis. Βiomarkers reflecting pathophysiological processes in CSM have been insufficiently investigated. It was hypothesized that preoperative cerebrospinal fluid (CSF) biomarker levels are altered in patients with CSM and correlate with neurological status and outcome. METHODS CSF biomarkers from patients with CSM and controls were analyzed with immunoassays. Spinal cord changes were evaluated with MRI. The American Spinal Cord Injury Association Impairment Scale, the Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ), and the EQ-5D questionnaire were applied prior to and 3 months after surgery. A p value < 0.05 was considered statistically significant. RESULTS Twenty consecutive CSM patients with a mean age of 67.7 ± 13 years and 63 controls with a mean age of 65.2 ± 14.5 years (p > 0.05) were included in the study. In the CSM subjects, CSF neurofilament light subunit (NF-L) and glial fibrillary acidic protein (GFAP) concentrations were higher (p < 0.05), whereas fatty acid-binding protein 3 (FABP3), soluble amyloid precursor proteins (sAPPα and sAPPβ), and amyloid β (Aβ) peptide (Aβ38, Aβ40, and Aβ42) concentrations were lower than in controls (p < 0.05). Aβ peptide levels correlated positively with symptom duration. Preoperative JOACMEQ lower extremity function and CSF NF-L levels correlated positively, and the JOACMEQ bladder function correlated negatively with sAPPα and sAPPβ (p < 0.05). CSF NF-L and FABP3 levels were higher in patients with improved outcome (EQ-5D visual analog scale difference > 20). CONCLUSIONS CSF biomarkers of glial and axonal damage, inflammation, and synaptic changes are altered in symptomatic CSM patients, indicating that axonal injury, astroglial activation, and Aβ dysmetabolism may be present in these individuals. These findings reflect CSM pathophysiology and may aid in prognostication. However, future studies including larger patient cohorts, postoperative biomarker data and imaging, and longer follow-up times are required to validate the present findings.
Collapse
Affiliation(s)
- Parmenion P Tsitsopoulos
- 1Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
- 2Department of Neurosurgery, Hippokratio General Hospital, Aristotle University School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Ulrika Holmström
- 1Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Kaj Blennow
- 3Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal
- 4Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- 3Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal
- 4Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- 5Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London
- 6UK Dementia Research Institute at University College of London, United Kingdom; and
| | - Niklas Marklund
- 1Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
- 7Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| |
Collapse
|
17
|
Deakin ND, Suckling J, Hutchinson PJ. Research Evaluating Sports ConcUssion Events-Rapid Assessment of Concussion and Evidence for Return (RESCUE-RACER): a two-year longitudinal observational study of concussion in motorsport. BMJ Open Sport Exerc Med 2021; 7:e000879. [PMID: 33500784 PMCID: PMC7812087 DOI: 10.1136/bmjsem-2020-000879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Concussion is a clinical diagnosis, based on self-reported patient symptoms supported by clinical assessments across many domains including postural control, ocular/vestibular dysfunction, and neurocognition. Concussion incidence may be rising in motorsport which, combined with unresolved challenges to accurate diagnosis and lack of guidance on the optimal return-to-race timeframe, creates a difficult environment for healthcare practitioners. METHODS AND ANALYSIS Research Evaluating Sports ConcUssion Events-Rapid Assessment of Concussion and Evidence for Return (RESCUE-RACER) evaluates motorsports competitors at baseline (Competitor Assessment at Baseline; Ocular, Neuroscientific (CArBON) study) and post-injury (Concussion Assessment and Return to motorSport (CARS) study), including longitudinal data. CArBON collects pre-injury neuroscientific data; CARS repeats the CArBON battery sequentially during recovery for competitors involved in a potentially concussive event. As its primary outcome, RESCUE-RACER will develop the evidence base for an accurate trackside diagnostic tool. Baseline objective clinical scoring (Sport Concussion Assessment Tool-5th edition (SCAT5)) and neurocognitive data (Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT)) will be assessed for specificity to motorsport and relationship to existing examinations. Changes to SCAT5 and ocular, vestibular, and reaction time function (Dx 100) will be estimated by the reliability change index as a practical tool for trackside diagnosis. Neuropsychological (Cambridge Neuropsychological Test Automated Battery (CANTAB)) assessments, brain MRI (7 Tesla) and salivary biomarkers will be compared with the new tool to establish utility in diagnosing and monitoring concussive injuries. ETHICS AND DISSEMINATION Ethical approval was received from East of England-Cambridge Central Research Ethics Committee (18/EE/0141). Participants will be notified of study outcomes via publications (to administrators) and summary reports (funder communications). Ideally, all publications will be open access. TRIAL REGISTRATION NUMBER February 2019 nationally (Central Portfolio Management System 38259) and internationally (ClinicalTrials.gov NCT03844282).
Collapse
Affiliation(s)
- Naomi D Deakin
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, Cambridgeshire, UK
| | | |
Collapse
|
18
|
Kazakova M, Pavlov G, Dichev V, Simitchiev K, Stefanov C, Sarafian V. Relationship between YKL-40, neuron-specific enolase, tumor necrosis factor-a, interleukin-6, and clinical assessment scores in traumatic brain injury. ARCHIVES OF TRAUMA RESEARCH 2021. [DOI: 10.4103/atr.atr_43_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Pattinson CL, Meier TB, Guedes VA, Lai C, Devoto C, Haight T, Broglio SP, McAllister T, Giza C, Huber D, Harezlak J, Cameron K, McGinty G, Jackson J, Guskiewicz K, Mihalik J, Brooks A, Duma S, Rowson S, Nelson LD, Pasquina P, McCrea M, Gill JM. Plasma Biomarker Concentrations Associated With Return to Sport Following Sport-Related Concussion in Collegiate Athletes-A Concussion Assessment, Research, and Education (CARE) Consortium Study. JAMA Netw Open 2020; 3:e2013191. [PMID: 32852552 PMCID: PMC7453307 DOI: 10.1001/jamanetworkopen.2020.13191] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE Identifying plasma biomarkers associated with the amount of time an athlete may need before they return to sport (RTS) following a sport-related concussion (SRC) is important because it may help to improve the health and safety of athletes. OBJECTIVE To examine whether plasma biomarkers can differentiate collegiate athletes who RTS in less than 14 days or 14 days or more following SRC. DESIGN, SETTING, AND PARTICIPANTS This multicenter prospective diagnostic study, conducted by the National Collegiate Athletics Association-Department of Defense Concussion Assessment, Research, and Education Consortium, included 127 male and female athletes who had sustained an SRC while enrolled at 6 Concussion Assessment, Research, and Education Consortium Advanced Research Core sites as well as 2 partial-Advanced Research Core military service academies. Data were collected between February 2015 and May 2018. Athletes with SRC completed clinical testing and blood collection at preseason (baseline), postinjury (0-21 hours), 24 to 48 hours postinjury, time of symptom resolution, and 7 days after unrestricted RTS. MAIN OUTCOMES AND MEASURES A total of 3 plasma biomarkers (ie, total tau protein, glial fibrillary acidic protein [GFAP], and neurofilament light chain protein [Nf-L]) were measured using an ultrasensitive single molecule array technology and were included in the final analysis. RTS was examined between athletes who took less than 14 days vs those who took 14 days or more to RTS following SRC. Linear mixed models were used to identify significant interactions between period by RTS group. Area under the receiver operating characteristic curve analyses were conducted to examine whether these plasma biomarkers could discriminate between RTS groups. RESULTS The 127 participants had a mean (SD) age of 18.9 (1.3) years, and 97 (76.4%) were men; 65 (51.2%) took less than 14 days to RTS, and 62 (48.8%) took 14 days or more to RTS. Linear mixed models identified significant associations for both mean (SE) plasma total tau (24-48 hours postinjury, <14 days RTS vs ≥14 days RTS: -0.65 [0.12] pg/mL vs -0.14 [0.14] pg/mL; P = .008) and GFAP (postinjury, 14 days RTS vs ≥14 days RTS: 4.72 [0.12] pg/mL vs 4.39 [0.11] pg/mL; P = .04). Total tau at the time of symptom resolution had acceptable discrimination power (area under the receiver operating characteristic curve, 0.75; 95% CI, 0.63-0.86; P < .001). We also examined a combined plasma biomarker panel that incorporated Nf-L, GFAP, and total tau at each period to discriminate RTS groups. Although the analyses did reach significance at each time period when combined, results indicated that they were poor at distinguishing the groups (area under the receiver operating characteristic curve, <0.7). CONCLUSIONS AND RELEVANCE The findings of this study suggest that measures of total tau and GFAP may identify athletes who will require more time to RTS. However, further research is needed to improve our ability to determine recovery following an SRC.
Collapse
Affiliation(s)
- Cassandra L Pattinson
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland
- Institute for Social Science Research, University of Queensland, Brisbane
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee
| | - Vivian A Guedes
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland
| | - Chen Lai
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland
| | - Christina Devoto
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland
| | - Thaddeus Haight
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | | | - Thomas McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis
| | - Christopher Giza
- Department of Neurosurgery and Pediatrics, UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles
| | - Daniel Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington
| | | | | | | | - Kevin Guskiewicz
- Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill
| | - Jason Mihalik
- Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill
| | - Alison Brooks
- Department of Orthopedics and Sports Medicine, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Stefan Duma
- Department of Biomedical Engineering, Virginia Tech, Blacksburg
| | - Steven Rowson
- Department of Biomedical Engineering, Virginia Tech, Blacksburg
| | - Lindsay D Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee
| | - Paul Pasquina
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Michael McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee
| | - Jessica M Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
20
|
Shahim P, Gill JM, Blennow K, Zetterberg H. Fluid Biomarkers for Chronic Traumatic Encephalopathy. Semin Neurol 2020; 40:411-419. [PMID: 32740901 DOI: 10.1055/s-0040-1715095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neuropathological condition that has been described in individuals who have been exposed to repetitive head impacts, including concussions and subconcussive trauma. Currently, there is no fluid or imaging biomarker for diagnosing CTE during life. Based on retrospective clinical data, symptoms of CTE include changes in behavior, cognition, and mood, and may develop after a latency phase following the injuries. However, these symptoms are often nonspecific, making differential diagnosis based solely on clinical symptoms unreliable. Thus, objective biomarkers for CTE pathophysiology would be helpful in understanding the course of the disease as well as in the development of preventive and therapeutic measures. Herein, we review the literature regarding fluid biomarkers for repetitive concussive and subconcussive head trauma, postconcussive syndrome, as well as potential candidate biomarkers for CTE. We also discuss technical challenges with regard to the current fluid biomarkers and potential pathways to advance the most promising biomarker candidates into clinical routine.
Collapse
Affiliation(s)
- Pashtun Shahim
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at UCL, London, United Kingdom
| |
Collapse
|
21
|
Ledreux A, Pryhoda MK, Gorgens K, Shelburne K, Gilmore A, Linseman DA, Fleming H, Koza LA, Campbell J, Wolff A, Kelly JP, Margittai M, Davidson BS, Granholm AC. Assessment of Long-Term Effects of Sports-Related Concussions: Biological Mechanisms and Exosomal Biomarkers. Front Neurosci 2020; 14:761. [PMID: 32848549 PMCID: PMC7406890 DOI: 10.3389/fnins.2020.00761] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Concussion or mild traumatic brain injury (mTBI) in athletes can cause persistent symptoms, known as post-concussion syndrome (PCS), and repeated injuries may increase the long-term risk for an athlete to develop neurodegenerative diseases such as chronic traumatic encephalopathy (CTE), and Alzheimer's disease (AD). The Center for Disease Control estimates that up to 3.8 million sport-related mTBI are reported each year in the United States. Despite the magnitude of the phenomenon, there is a current lack of comprehensive prognostic indicators and research has shown that available monitoring tools are moderately sensitive to short-term concussion effects but less sensitive to long-term consequences. The overall aim of this review is to discuss novel, quantitative, and objective measurements that can predict long-term outcomes following repeated sports-related mTBIs. The specific objectives were (1) to provide an overview of the current clinical and biomechanical tools available to health practitioners to ensure recovery after mTBIs, (2) to synthesize potential biological mechanisms in animal models underlying the long-term adverse consequences of mTBIs, (3) to discuss the possible link between repeated mTBI and neurodegenerative diseases, and (4) to discuss the current knowledge about fluid biomarkers for mTBIs with a focus on novel exosomal biomarkers. The conclusions from this review are that current post-concussion clinical tests are not sufficiently sensitive to injury and do not accurately quantify post-concussion alterations associated with repeated mTBIs. In the current review, it is proposed that current practices should be amended to include a repeated symptom inventory, a cognitive assessment of executive function and impulse control, an instrumented assessment of balance, vestibulo-ocular assessments, and an improved panel of blood or exosome biomarkers.
Collapse
Affiliation(s)
- Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - Moira K. Pryhoda
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, United States
| | - Kim Gorgens
- Graduate School of Professional Psychology, University of Denver, Denver, CO, United States
| | - Kevin Shelburne
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, United States
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - Daniel A. Linseman
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
- Biological Sciences, University of Denver, Denver, CO, United States
| | - Holly Fleming
- Biological Sciences, University of Denver, Denver, CO, United States
| | - Lilia A. Koza
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
- Biological Sciences, University of Denver, Denver, CO, United States
| | - Julie Campbell
- Pioneer Health and Performance, University of Denver, Denver, CO, United States
| | - Adam Wolff
- Denver Neurological Clinic, Denver, CO, United States
| | - James P. Kelly
- Marcus Institute for Brain Health, Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, United States
| | - Bradley S. Davidson
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, United States
| | | |
Collapse
|
22
|
Sauerbeck AD, Gangolli M, Reitz SJ, Salyards MH, Kim SH, Hemingway C, Gratuze M, Makkapati T, Kerschensteiner M, Holtzman DM, Brody DL, Kummer TT. SEQUIN Multiscale Imaging of Mammalian Central Synapses Reveals Loss of Synaptic Connectivity Resulting from Diffuse Traumatic Brain Injury. Neuron 2020; 107:257-273.e5. [PMID: 32392471 PMCID: PMC7381374 DOI: 10.1016/j.neuron.2020.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/04/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
Abstract
The brain's complex microconnectivity underlies its computational abilities and vulnerability to injury and disease. It has been challenging to illuminate the features of this synaptic network due to the small size and dense packing of its elements. Here, we describe a rapid, accessible super-resolution imaging and analysis workflow-SEQUIN-that quantifies central synapses in human tissue and animal models, characterizes their nanostructural and molecular features, and enables volumetric imaging of mesoscale synaptic networks without the production of large histological arrays. Using SEQUIN, we identify cortical synapse loss resulting from diffuse traumatic brain injury, a highly prevalent connectional disorder. Similar synapse loss is observed in three murine models of Alzheimer-related neurodegeneration, where SEQUIN mesoscale mapping identifies regional synaptic vulnerability. These results establish an easily implemented and robust nano-to-mesoscale synapse quantification and characterization method. They furthermore identify a shared mechanism-synaptopathy-between Alzheimer neurodegeneration and its best-established epigenetic risk factor, brain trauma.
Collapse
Affiliation(s)
- Andrew D Sauerbeck
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mihika Gangolli
- McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA; Currently, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sydney J Reitz
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maverick H Salyards
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel H Kim
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher Hemingway
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians Universität München, Munich 82152, Germany
| | - Maud Gratuze
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tejaswi Makkapati
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians Universität München, Munich 82152, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich 81377, Germany
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David L Brody
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Currently, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Terrance T Kummer
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Guedes VA, Devoto C, Leete J, Sass D, Acott JD, Mithani S, Gill JM. Extracellular Vesicle Proteins and MicroRNAs as Biomarkers for Traumatic Brain Injury. Front Neurol 2020; 11:663. [PMID: 32765398 PMCID: PMC7378746 DOI: 10.3389/fneur.2020.00663] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous condition, associated with diverse etiologies, clinical presentations and degrees of severity, and may result in chronic neurobehavioral sequelae. The field of TBI biomarkers is rapidly evolving to address the many facets of TBI pathology and improve its clinical management. Recent years have witnessed a marked increase in the number of publications and interest in the role of extracellular vesicles (EVs), which include exosomes, cell signaling, immune responses, and as biomarkers in a number of pathologies. Exosomes have a well-defined lipid bilayer with surface markers that reflect the cell of origin and an aqueous core that contains a variety of biological material including proteins (e.g., cytokines and growth factors) and nucleic acids (e.g., microRNAs). The presence of proteins associated with neurodegenerative changes such as amyloid-β, α-synuclein and phosphorylated tau in exosomes suggests a role in the initiation and propagation of neurological diseases. However, mechanisms of cell communication involving exosomes in the brain and their role in TBI pathology are poorly understood. Exosomes are promising TBI biomarkers as they can cross the blood-brain barrier and can be isolated from peripheral fluids, including serum, saliva, sweat, and urine. Exosomal content is protected from enzymatic degradation by exosome membranes and reflects the internal environment of their cell of origin, offering insights into tissue-specific pathological processes. Challenges in the clinical use of exosomal cargo as biomarkers include difficulty in isolating pure exosomes, variable yields of the isolation processes, quantification of vesicles, and lack of specificity of exosomal markers. Moreover, there is no consensus regarding nomenclature and characteristics of EV subtypes. In this review, we discuss current technical limitations and challenges of using exosomes and other EVs as blood-based biomarkers, highlighting their potential as diagnostic and prognostic tools in TBI.
Collapse
Affiliation(s)
- Vivian A Guedes
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Christina Devoto
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jacqueline Leete
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Delia Sass
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jedidiah D Acott
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Sara Mithani
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jessica M Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
24
|
Hossain I, Mohammadian M, Takala RSK, Tenovuo O, Azurmendi Gil L, Frantzén J, van Gils M, Hutchinson PJ, Katila AJ, Maanpää HR, Menon DK, Newcombe VF, Tallus J, Hrusovsky K, Wilson DH, Gill J, Blennow K, Sanchez JC, Zetterberg H, Posti JP. Admission Levels of Total Tau and β-Amyloid Isoforms 1-40 and 1-42 in Predicting the Outcome of Mild Traumatic Brain Injury. Front Neurol 2020; 11:325. [PMID: 32477238 PMCID: PMC7237639 DOI: 10.3389/fneur.2020.00325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The purpose of this study was to investigate if admission levels of total tau (T-tau) and β-amyloid isoforms 1-40 (Aβ40) and 1-42 (Aβ42) could predict clinical outcome in patients with mild traumatic brain injury (mTBI). Methods: A total of 105 patients with mTBI [Glasgow Coma Scale (GCS) ≥ 13] recruited in Turku University Hospital, Turku, Finland were included in this study. Blood samples were drawn within 24 h of admission for analysis of plasma T-tau, Aβ40, and Aβ42. Patients were divided into computed tomography (CT)-positive and CT-negative groups. The outcome was assessed 6–12 months after the injury using the Extended Glasgow Outcome Scale (GOSE). Outcomes were defined as complete (GOSE 8) or incomplete (GOSE < 8) recovery. The Rivermead Post Concussion Symptoms Questionnaire (RPCSQ) was also used to assess mTBI-related symptoms. Predictive values of the biomarkers were analyzed independently, in panels and together with clinical parameters. Results: The admission levels of plasma T-tau, Aβ40, and Aβ42 were not significantly different between patients with complete and incomplete recovery. The levels of T-tau, Aβ40, and Aβ42 could poorly predict complete recovery, with areas under the receiver operating characteristic curve 0.56, 0.52, and 0.54, respectively. For the whole cohort, there was a significant negative correlation between the levels of T-tau and ordinal GOSE score (Spearman ρ = −0.231, p = 0.018). In a multivariate logistic regression model including age, GCS, duration of posttraumatic amnesia, Injury Severity Score (ISS), time from injury to sampling, and CT findings, none of the biomarkers could predict complete recovery independently or together with the other two biomarkers. Plasma levels of T-tau, Aβ40, and Aβ42 did not significantly differ between the outcome groups either within the CT-positive or CT-negative subgroups. Levels of Aβ40 and Aβ42 did not significantly correlate with outcome, but in the CT-positive subgroup, the levels of T-tau significantly correlated with ordinal GOSE score (Spearman ρ = −0.288, p = 0.035). The levels of T-tau, Aβ40, and Aβ42 were not correlated with the RPCSQ scores. Conclusions: The early levels of T-tau are correlated with the outcome in patients with mTBI, but none of the biomarkers either alone or in any combinations could predict complete recovery in patients with mTBI.
Collapse
Affiliation(s)
- Iftakher Hossain
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mehrbod Mohammadian
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland.,Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - Olli Tenovuo
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Leire Azurmendi Gil
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Janek Frantzén
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Mark van Gils
- VTT Technical Research Centre of Finland Ltd., Tampere, Finland
| | - Peter J Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Ari J Katila
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland.,Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - Henna-Riikka Maanpää
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Virginia F Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jussi Tallus
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Department of Radiology, Turku University Hospital, Turku, Finland
| | | | | | - Jessica Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jean-Charles Sanchez
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Jussi P Posti
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
25
|
Chitinase-3-Like Protein 1, Serum Amyloid A1, C-Reactive Protein, and Procalcitonin Are Promising Biomarkers for Intracranial Severity Assessment of Traumatic Brain Injury: Relationship with Glasgow Coma Scale and Computed Tomography Volumetry. World Neurosurg 2019; 134:e120-e143. [PMID: 31606503 DOI: 10.1016/j.wneu.2019.09.143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The volume and location of intracranial hematomas are well-known prognostic factors for traumatic brain injury. The aim of this study was to determine the relationship of serum biomarkers S100β, glial fibrillary acidic protein, neuron-specific enolase, total tau, phosphorylated neurofilament heavy chain, serum amyloid A1 (SAA1), C-reactive protein, procalcitonin (PCT), and chitinase-3-like protein 1 (YKL-40) with traumatic brain injury severity and the amount and location of hemorrhagic traumatic lesions. METHODS A prospective observational cohort of 115 patients with a Glasgow Coma Scale (GCS) score of 3-15 were evaluated. Intracranial lesion volume was measured from the semiautomatic segmentation of hematoma on computed tomography using Analyze software. The establishment of possible biomarker cutoff points for intracranial lesion detection was estimated using the Youden Index (J) obtained from the area under the receiver operating characteristic curve. RESULTS SAA1, YKL-40, PCT, and S100β showed the most robust association with level of consciousness, both with total GCS and motor score. Biomarkers significantly correlated with volumetric measurements of subdural hematoma, traumatic subarachnoid hemorrhage, intraparenchymal hemorrhage, intraventricular hemorrhage, and total amount of bleeding. The type of intracranial hemorrhage was associated with various release patterns of neurobiochemical markers. CONCLUSIONS YKL-40, SAA1, C-reactive protein, and PCT combined with S100β were the most promising biomarkers to determine the presence, location, and extent of traumatic intracranial lesions. Combination of biomarkers further increased the discriminatory capacity for the detection of intracranial bleeding.
Collapse
|
26
|
Hunter LE, Branch CA, Lipton ML. The neurobiological effects of repetitive head impacts in collision sports. Neurobiol Dis 2019; 123:122-126. [PMID: 29936233 PMCID: PMC6453577 DOI: 10.1016/j.nbd.2018.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/30/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022] Open
Abstract
It is now recognized that repetitive head impacts (RHI) in sport have the potential for long-term neurological impairments. In order to identify targets for intervention and/or pharmacological treatment, it is necessary to characterize the neurobiological mechanisms associated with RHI. This review aims to summarize animal and human studies that specifically address Blood Brain Barrier (BBB) dysfunction, abnormal neuro-metabolic and neuro-inflammatory processes as well as Tau aggregation associated with RHI in collision sports. Additionally, we examine the influence of physical activity and genetics on outcomes of RHI, discuss methodological considerations, and provide suggestions for future directions of this burgeoning area of research.
Collapse
Affiliation(s)
- Liane E Hunter
- The Gruss Magnetic Resonance Imaging Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| | - Craig A Branch
- The Gruss Magnetic Resonance Imaging Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Departments of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Departments of Physiology and Biophysics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Michael L Lipton
- The Gruss Magnetic Resonance Imaging Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Departments of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Departments of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
27
|
Shahim P, Tegner Y, Marklund N, Blennow K, Zetterberg H. Neurofilament light and tau as blood biomarkers for sports-related concussion. Neurology 2018; 90:e1780-e1788. [PMID: 29653990 PMCID: PMC5957307 DOI: 10.1212/wnl.0000000000005518] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/27/2018] [Indexed: 01/24/2023] Open
Abstract
Objective To compare neurofilament light (NfL) and tau as blood-based biomarkers for acute sports-related concussion (SRC) and determine whether their concentrations at different time points after the injury are associated with prolonged time to return to play (RTP). Methods A total of 288 professional hockey players were followed longitudinally from September 1, 2012, to April 30, 2015. Data collection and biomarker analyses were conducted between 2015 and 2017. Associations were tested between blood concentrations of NfL and tau, and RTP time. Serum concentrations of S100B and neuron-specific enolase (NSE) were also measured for comparison. Results Of 288 players, 105 sustained an SRC. Of these, 87 underwent blood sampling 1, 12, 36, and 144 hours after SRC and at the RTP time point. Serum NfL concentrations 1, 12, 36, and 144 hours after SRC were related to prolonged RTP time, and could separate players with RTP >10 days from those with RTP ≤10 days (area under the receiver operating characteristic curve [AUROC] 0.82). Also, serum NfL 144 hours after SRC discriminated players who resigned from the game due to persistent postconcussion symptoms (PCS) from those who returned to play (AUROC 0.89). Plasma tau 1 hour after SRC was related to RTP but less strongly than NfL, while S100B and NSE showed no such associations. Conclusion Serum NfL outperformed tau, S100B, and NSE as a biomarker for SRC. From a clinical standpoint, serum NfL may be useful to identify individuals at risk of prolonged PCS, and may aid in biomarker-informed decisions with regard to when RTP should be considered.
Collapse
Affiliation(s)
- Pashtun Shahim
- From the Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry (P.S., K.B., H.Z.), the Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (P.S., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal; Division of Medical Sciences, Department of Health Sciences (P.S.), Luleå University of Technology; Department of Clinical Sciences (Y.T.), Skåne University Hospital, Lund University, Sweden; Department of Neurology (N.M.), Washington University School of Medicine, St. Louis, MO; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square; and UK Dementia Research Institute (H.Z.), London.
| | - Yelverton Tegner
- From the Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry (P.S., K.B., H.Z.), the Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (P.S., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal; Division of Medical Sciences, Department of Health Sciences (P.S.), Luleå University of Technology; Department of Clinical Sciences (Y.T.), Skåne University Hospital, Lund University, Sweden; Department of Neurology (N.M.), Washington University School of Medicine, St. Louis, MO; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square; and UK Dementia Research Institute (H.Z.), London
| | - Niklas Marklund
- From the Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry (P.S., K.B., H.Z.), the Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (P.S., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal; Division of Medical Sciences, Department of Health Sciences (P.S.), Luleå University of Technology; Department of Clinical Sciences (Y.T.), Skåne University Hospital, Lund University, Sweden; Department of Neurology (N.M.), Washington University School of Medicine, St. Louis, MO; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square; and UK Dementia Research Institute (H.Z.), London
| | - Kaj Blennow
- From the Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry (P.S., K.B., H.Z.), the Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (P.S., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal; Division of Medical Sciences, Department of Health Sciences (P.S.), Luleå University of Technology; Department of Clinical Sciences (Y.T.), Skåne University Hospital, Lund University, Sweden; Department of Neurology (N.M.), Washington University School of Medicine, St. Louis, MO; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square; and UK Dementia Research Institute (H.Z.), London
| | - Henrik Zetterberg
- From the Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry (P.S., K.B., H.Z.), the Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (P.S., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal; Division of Medical Sciences, Department of Health Sciences (P.S.), Luleå University of Technology; Department of Clinical Sciences (Y.T.), Skåne University Hospital, Lund University, Sweden; Department of Neurology (N.M.), Washington University School of Medicine, St. Louis, MO; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square; and UK Dementia Research Institute (H.Z.), London
| |
Collapse
|
28
|
Kim HJ, Tsao JW, Stanfill AG. The current state of biomarkers of mild traumatic brain injury. JCI Insight 2018; 3:97105. [PMID: 29321373 DOI: 10.1172/jci.insight.97105] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a common occurrence, with over 3 million cases reported every year in the United States. While research into the underlying pathophysiology is ongoing, there is an urgent need for better clinical guidelines that allow more consistent diagnosis of mTBI and ensure safe return-to-play timelines for athletes, nonathletes, and military personnel. The development of a suite of biomarkers that indicate the pathogenicity of mTBI could lead to clinically useful tools for establishing both diagnosis and prognosis. Here, we review the current evidence for mTBI biomarkers derived from investigations of the multifactorial pathology of mTBI. While the current literature lacks the scope and size for clarification of these biomarkers' clinical utility, early studies have identified some promising candidates.
Collapse
Affiliation(s)
- Han Jun Kim
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jack W Tsao
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Neurology, Memphis Veterans Affairs Medical Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Ansley Grimes Stanfill
- Department of Acute and Tertiary Care, College of Nursing, and.,Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
29
|
Zetterberg H, Blennow K. Chronic traumatic encephalopathy: fluid biomarkers. HANDBOOK OF CLINICAL NEUROLOGY 2018; 158:323-333. [PMID: 30482360 DOI: 10.1016/b978-0-444-63954-7.00030-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neuropathologic condition that has been described in individuals who have been exposed to repetitive head impacts, including concussions and subconcussive trauma. CTE cannot currently be diagnosed during life. Clinical symptoms of CTE (including changes in mood, behavior, and cognition) are nonspecific and may develop after a latency phase following the injuries. Differential diagnosis based solely on clinical features is, therefore, difficult. For example, some younger patients who do not experience the latency phase (i.e., symptoms of CTE may begin while still being exposed to the repetitive head impacts) may be clinically diagnosed with postconcussive syndrome, a vaguely defined condition that is described in a minority of concussed patients. Some older patients whose initial features of CTE include memory and executive dysfunction and progress to impaired activities of daily living may be clinically diagnosed with Alzheimer disease or another dementia. Although concussions are common in athletes and nonathletes, contact/collision sport athletes, such as boxers, American football players, and ice hockey players, are at greater risk of exposure to both concussion and repetitive subconcussive head impacts. Biomarkers for CTE pathophysiology would be of great value to study and improve our understanding of when and how the disease process starts and develops, as well as how it can be prevented or treated. Here, we review the literature regarding fluid biomarkers for repetitive subconcussive impacts, concussion, postconcussive syndrome, and CTE. We also discuss technical issues and potential pathways forward regarding how to move the most promising biomarker candidates into clinical laboratory practice.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom; UK Dementia Research Institute, UCL, London, United Kingdom.
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
30
|
Pertab JL, Merkley TL, Cramond AJ, Cramond K, Paxton H, Wu T. Concussion and the autonomic nervous system: An introduction to the field and the results of a systematic review. NeuroRehabilitation 2018; 42:397-427. [PMID: 29660949 PMCID: PMC6027940 DOI: 10.3233/nre-172298] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recent evidence suggests that autonomic nervous dysfunction may be one of many potential factors contributing to persisting post-concussion symptoms. OBJECTIVE This is the first systematic review to explore the impact of concussion on multiple aspects of autonomic nervous system functioning. METHODS The methods employed are in compliance with the American Academy of Neurology (AAN) and PRISMA standards. Embase, MEDLINE, PsychINFO, and Science Citation Index literature searches were performed using relevant indexing terms for articles published prior to the end of December 2016. Data extraction was performed by two independent groups, including study quality indicators to determine potential risk for bias according to the 4-tiered classification scheme of the AAN. RESULTS Thirty-six articles qualified for inclusion in the analysis. Only three studies (one Class II and two Class IV) did not identify anomalies in measures of ANS functioning in concussed populations. CONCLUSIONS The evidence supports the conclusion that it is likely that concussion causes autonomic nervous system anomalies. An awareness of this relationship increases our understanding of the physical impact of concussion, partially explains the overlap of concussion symptoms with other medical conditions, presents opportunities for further research, and has the potential to powerfully inform treatment decisions.
Collapse
Affiliation(s)
- Jon L. Pertab
- Neurosciences Institute, Intermountain Healthcare, Murray, UT, USA
| | - Tricia L. Merkley
- Department of Clinical Neuropsychology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Kelly Cramond
- Summit Neuropsychology, Reno, NV, USA
- VA Sierra Nevada Healthcare System, Reno, NV, USA
| | - Holly Paxton
- Hauenstein Neurosciences of Mercy Health and Department of Translational Science and Molecular Medicine, Michigan State University, MI, USA
| | - Trevor Wu
- Hauenstein Neurosciences of Mercy Health and Department of Translational Science and Molecular Medicine, Michigan State University, MI, USA
| |
Collapse
|
31
|
Gallo V, McElvenny D, Hobbs C, Davoren D, Morris H, Crutch S, Zetterberg H, Fox NC, Kemp S, Cross M, Arden NK, Davies MAM, Malaspina A, Pearce N. BRain health and healthy AgeINg in retired rugby union players, the BRAIN Study: study protocol for an observational study in the UK. BMJ Open 2017; 7:e017990. [PMID: 29282262 PMCID: PMC5770902 DOI: 10.1136/bmjopen-2017-017990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Relatively little is known about the long-term health of former elite rugby players, or former sportspeople more generally. As well as the potential benefits of being former elite sportspersons, there may be potential health risks from exposures occurring during an individual's playing career, as well as following retirement. Each contact sport has vastly different playing dynamics, therefore exposing its players to different types of potential traumas. Current evidence suggests that these are not necessarily comparable in terms of pathophysiology, and their potential long-term adverse effects might also differ. There is currently limited but increasing evidence that poorer age-related and neurological health exists among former professional sportsmen exposed to repetitive concussions; however the evidence is limited on rugby union players, specifically. METHODS AND ANALYSIS We present the protocol for a cross-sectional study to assess the association between self-reported history of concussion during a playing career, and subsequent measures of healthy ageing and neurological and cognitive impairment. We are recruiting a sample of approximately 200 retired rugby players (former Oxford and Cambridge University rugby players and members of the England Rugby International Club) aged 50 years or more, and collecting a number of general and neurological health-related outcome measures though validated assessments. Biomarkers of neurodegeneration (neurofilaments and tau) will be also be measured. Although the study is focusing on rugby union players specifically, the general study design and the methods for assessing neurological health are likely to be relevant to other studies of former elite sportspersons. ETHICS AND DISSEMINATION The study has been approved by the Ethical Committee of London School of Hygiene and Tropical Medicine (reference: 11634-2). It is intended that results of this study will be published in peer-reviewed medical journals, communicated to participants, the general public and all relevant stakeholders.
Collapse
Affiliation(s)
- Valentina Gallo
- School of Public Health, Imperial College London, London, UK
- Epidemiology and Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Primary Care and Public Health, Queen Mary, University of London, London, UK
| | - Damien McElvenny
- Research Division, Institute of Occupational Medicine, Edinburgh, UK
| | - Catherine Hobbs
- Epidemiology and Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Donna Davoren
- Epidemiology and Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Huw Morris
- Department of Clinical Neuroscience, University College London, London, UK
| | - Sebastian Crutch
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- Department of molecular neuroscience, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nick C Fox
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | | | | | - Nigel K Arden
- Arthritis Research UK Centre for Sport, exercise and osteoarthritis, University of Oxford, Oxford, UK
| | - Madeleine A M Davies
- Arthritis Research UK Centre for Sport, exercise and osteoarthritis, University of Oxford, Oxford, UK
| | - Andrea Malaspina
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary, University of London, London, UK
| | - Neil Pearce
- Epidemiology and Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
32
|
Dall'Acqua P, Johannes S, Mica L, Simmen HP, Glaab R, Fandino J, Schwendinger M, Meier C, Ulbrich EJ, Müller A, Jäncke L, Hänggi J. Prefrontal Cortical Thickening after Mild Traumatic Brain Injury: A One-Year Magnetic Resonance Imaging Study. J Neurotrauma 2017; 34:3270-3279. [PMID: 28847215 DOI: 10.1089/neu.2017.5124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to evaluate group-by-time interactions between gray matter morphology of healthy controls and that of patients with mild traumatic brain injury (mTBI) as they transitioned from acute to chronic stages, and to relate these findings to long-term cognitive alterations to identify distinct recovery trajectories between good outcome (GO) and poor outcome (PO). High-resolution T1-weighted magnetic resonance images were acquired in 49 mTBI patients within 7 days and 1 year post-injury and at equivalent times in 49 healthy controls. Using linear mixed-effects models, we performed mass-univariate analyses and associated the results of the interaction with changes in cognitive performance. Morphological alterations indexed by increased or decreased cortical thickness have been expected mainly in frontal, parietal, and temporal brain regions. A significant interaction was found in cortical thickness, spatially restricted to bilateral structures of the prefrontal cortex, showing thickening in mTBI and normal developmental thinning in controls. A discrete thickness increase that can interpreted as the absence of cortical thinning typically seen in the healthy population was associated with cognitive recovery in the GO subgroup, while the exaggerated cortical thickening in the PO patients was linked to worsening cognitive performance. Thickness of the prefrontal cortex is subject to structural alterations during the first year after mTBI. Beside beneficial neuroplasticity, a prolonged state of neuroinflammation for symptomatic patients (maladaptive neuroplasticity) cannot be excluded. If the underlying cellular processes responsible for cortical thickening following mTBI have been determined, brain stimulation or even pharmacological intervention targeting the prefrontal cortex might promote endogenous neural restoration.
Collapse
Affiliation(s)
- Patrizia Dall'Acqua
- 1 Bellikon Rehabilitation Clinic , Bellikon, Switzerland
- 2 Department of Psychology, University of Zurich , Zurich, Switzerland
| | - Sönke Johannes
- 1 Bellikon Rehabilitation Clinic , Bellikon, Switzerland
| | - Ladislav Mica
- 3 Division of Trauma Surgery, University Hospital Zurich , Zurich, Switzerland
| | - Hans-Peter Simmen
- 3 Division of Trauma Surgery, University Hospital Zurich , Zurich, Switzerland
| | | | - Javier Fandino
- 5 Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Markus Schwendinger
- 6 Interdisciplinary Emergency Center , Baden Cantonal Hospital, Baden, Switzerland
| | - Christoph Meier
- 7 Department of Surgery, Waid Hospital Zurich , Zurich, Switzerland
| | - Erika Jasmin Ulbrich
- 8 Institute of Diagnostic and Interventional Radiology, University Hospital Zurich , Zurich, Switzerland
| | - Andreas Müller
- 9 Brain and Trauma Foundation Grisons , Chur, Switzerland
| | - Lutz Jäncke
- 2 Department of Psychology, University of Zurich , Zurich, Switzerland
- 10 International Normal Aging and Plasticity Imaging Center, University of Zurich , Zurich, Switzerland
- 11 University Research Priority Program, Dynamic of Healthy Aging, University of Zurich , Zurich, Switzerland
| | - Jürgen Hänggi
- 2 Department of Psychology, University of Zurich , Zurich, Switzerland
| |
Collapse
|
33
|
Tsitsopoulos PP, Abu Hamdeh S, Marklund N. Current Opportunities for Clinical Monitoring of Axonal Pathology in Traumatic Brain Injury. Front Neurol 2017; 8:599. [PMID: 29209266 PMCID: PMC5702013 DOI: 10.3389/fneur.2017.00599] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/25/2017] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a multidimensional and highly complex disease commonly resulting in widespread injury to axons, due to rapid inertial acceleration/deceleration forces transmitted to the brain during impact. Axonal injury leads to brain network dysfunction, significantly contributing to cognitive and functional impairments frequently observed in TBI survivors. Diffuse axonal injury (DAI) is a clinical entity suggested by impaired level of consciousness and coma on clinical examination and characterized by widespread injury to the hemispheric white matter tracts, the corpus callosum and the brain stem. The clinical course of DAI is commonly unpredictable and it remains a challenging entity with limited therapeutic options, to date. Although axonal integrity may be disrupted at impact, the majority of axonal pathology evolves over time, resulting from delayed activation of complex intracellular biochemical cascades. Activation of these secondary biochemical pathways may lead to axonal transection, named secondary axotomy, and be responsible for the clinical decline of DAI patients. Advances in the neurocritical care of TBI patients have been achieved by refinements in multimodality monitoring for prevention and early detection of secondary injury factors, which can be applied also to DAI. There is an emerging role for biomarkers in blood, cerebrospinal fluid, and interstitial fluid using microdialysis in the evaluation of axonal injury in TBI. These biomarker studies have assessed various axonal and neuroglial markers as well as inflammatory mediators, such as cytokines and chemokines. Moreover, modern neuroimaging can detect subtle or overt DAI/white matter changes in diffuse TBI patients across all injury severities using magnetic resonance spectroscopy, diffusion tensor imaging, and positron emission tomography. Importantly, serial neuroimaging studies provide evidence for evolving axonal injury. Since axonal injury may be a key risk factor for neurodegeneration and dementias at long-term following TBI, the secondary injury processes may require prolonged monitoring. The aim of the present review is to summarize the clinical short- and long-term monitoring possibilities of axonal injury in TBI. Increased knowledge of the underlying pathophysiology achieved by advanced clinical monitoring raises hope for the development of novel treatment strategies for axonal injury in TBI.
Collapse
Affiliation(s)
- Parmenion P Tsitsopoulos
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
| | - Sami Abu Hamdeh
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Department of Clinical Sciences Lund, Neurosurgery, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
34
|
Llorens F, Thüne K, Tahir W, Kanata E, Diaz-Lucena D, Xanthopoulos K, Kovatsi E, Pleschka C, Garcia-Esparcia P, Schmitz M, Ozbay D, Correia S, Correia Â, Milosevic I, Andréoletti O, Fernández-Borges N, Vorberg IM, Glatzel M, Sklaviadis T, Torres JM, Krasemann S, Sánchez-Valle R, Ferrer I, Zerr I. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol Neurodegener 2017; 12:83. [PMID: 29126445 PMCID: PMC5681777 DOI: 10.1186/s13024-017-0226-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND YKL-40 (also known as Chitinase 3-like 1) is a glycoprotein produced by inflammatory, cancer and stem cells. Its physiological role is not completely understood but YKL-40 is elevated in the brain and cerebrospinal fluid (CSF) in several neurological and neurodegenerative diseases associated with inflammatory processes. Yet the precise characterization of YKL-40 in dementia cases is missing. METHODS In the present study, we comparatively analysed YKL-40 levels in the brain and CSF samples from neurodegenerative dementias of different aetiologies characterized by the presence of cortical pathology and disease-specific neuroinflammatory signatures. RESULTS YKL-40 was normally expressed in fibrillar astrocytes in the white matter. Additionally YKL-40 was highly and widely expressed in reactive protoplasmic cortical and perivascular astrocytes, and fibrillar astrocytes in sporadic Creutzfeldt-Jakob disease (sCJD). Elevated YKL-40 levels were also detected in Alzheimer's disease (AD) but not in dementia with Lewy bodies (DLB). In AD, YKL-40-positive astrocytes were commonly found in clusters, often around β-amyloid plaques, and surrounding vessels with β-amyloid angiopathy; they were also distributed randomly in the cerebral cortex and white matter. YKL-40 overexpression appeared as a pre-clinical event as demonstrated in experimental models of prion diseases and AD pathology. CSF YKL-40 levels were measured in a cohort of 288 individuals, including neurological controls (NC) and patients diagnosed with different types of dementia. Compared to NC, increased YKL-40 levels were detected in sCJD (p < 0.001, AUC = 0.92) and AD (p < 0.001, AUC = 0.77) but not in vascular dementia (VaD) (p > 0.05, AUC = 0.71) or in DLB/Parkinson's disease dementia (PDD) (p > 0.05, AUC = 0.70). Further, two independent patient cohorts were used to validate the increased CSF YKL-40 levels in sCJD. Additionally, increased YKL-40 levels were found in genetic prion diseases associated with the PRNP-D178N (Fatal Familial Insomnia) and PRNP-E200K mutations. CONCLUSIONS Our results unequivocally demonstrate that in neurodegenerative dementias, YKL-40 is a disease-specific marker of neuroinflammation showing its highest levels in prion diseases. Therefore, YKL-40 quantification might have a potential for application in the evaluation of therapeutic intervention in dementias with a neuroinflammatory component.
Collapse
Affiliation(s)
- Franc Llorens
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Katrin Thüne
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Waqas Tahir
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Eirini Kanata
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniela Diaz-Lucena
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Present address: Unit of Lymphoid Malignancies, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Eleni Kovatsi
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Paula Garcia-Esparcia
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Matthias Schmitz
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Duru Ozbay
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Susana Correia
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Ângela Correia
- Department of Neurology, University Medical School, Göttingen, Germany
| | | | - Olivier Andréoletti
- Institut National de la Recherche Agronomique/Ecole Nationale Vétérinaire, Toulouse, France
| | | | - Ina M. Vorberg
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isidro Ferrer
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Inga Zerr
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|