1
|
Lee H, Kim BH, Lee EH, Shin D, Yoo H, Seo SW, Kim JP. Brain Metabolic Resilience in Alzheimer's Disease: A Predictor of Cognitive Decline and Conversion to Dementia. Am J Geriatr Psychiatry 2025; 33:678-688. [PMID: 39706744 DOI: 10.1016/j.jagp.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE Brain atrophy measured by structural imaging has been used to quantify resilience against neurodegeneration in Alzheimer's disease. Considering glucose hypometabolism is another marker of neurodegeneration, we quantified metabolic resilience (MR) based on Fluorodeoxyglucose positron emission tomography (FDG PET) and investigated its clinical implications. METHODS We quantified the MR and other resilience metrics, including brain resilience (BR) and cognitive resilience (CR), using partial least squares path modeling from the ADNI database. A linear mixed-effects model and a Cox proportional hazards model were used to identify the impact of each resilience on longitudinal cognitive function and conversion to dementia, respectively. RESULTS A total of 848 participants were included in this study. All resilience metrics (CR, BR, and MR) were associated with slower cognitive decline. Results from the ANOVA test, AIC and BIC values showed that the additional inclusion of MR improved the performances of the linear mixed effect models. In survival analysis, all resilience variables were negatively associated with the risk of conversion to dementia. In line with the results of the linear mixed effects models, the additional inclusion of MR into the models with different resilience variables increased the C-index. CONCLUSION Relative preservation of brain glucose metabolism is a valuable predictor of future cognitive decline and conversion to dementia, adding value to existing resilience metrics. While the utility of FDG PET in clinical settings is limited by cost and accessibility, it might have potential usefulness as a prognostic marker, especially in a context of resilience.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Neurology (HL, BHK, EHL, DS, HY, SWS, JPK), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Alzheimer's Disease Convergence Research Center (HL, BHK, EHL, DS, HY, SWS, JPK), Samsung Medical Center, Seoul, Republic of Korea; Department of Health Sciences and Technology (HL), Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Bo-Hyun Kim
- Department of Neurology (HL, BHK, EHL, DS, HY, SWS, JPK), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Alzheimer's Disease Convergence Research Center (HL, BHK, EHL, DS, HY, SWS, JPK), Samsung Medical Center, Seoul, Republic of Korea
| | - Eun Hye Lee
- Department of Neurology (HL, BHK, EHL, DS, HY, SWS, JPK), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Alzheimer's Disease Convergence Research Center (HL, BHK, EHL, DS, HY, SWS, JPK), Samsung Medical Center, Seoul, Republic of Korea; Neuroscience Center (EHL, DS, SWS, JPK), Samsung Medical Center, Seoul, Republic of Korea
| | - Daeun Shin
- Department of Neurology (HL, BHK, EHL, DS, HY, SWS, JPK), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Alzheimer's Disease Convergence Research Center (HL, BHK, EHL, DS, HY, SWS, JPK), Samsung Medical Center, Seoul, Republic of Korea; Neuroscience Center (EHL, DS, SWS, JPK), Samsung Medical Center, Seoul, Republic of Korea
| | - Heejin Yoo
- Department of Neurology (HL, BHK, EHL, DS, HY, SWS, JPK), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Alzheimer's Disease Convergence Research Center (HL, BHK, EHL, DS, HY, SWS, JPK), Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology (HL, BHK, EHL, DS, HY, SWS, JPK), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Alzheimer's Disease Convergence Research Center (HL, BHK, EHL, DS, HY, SWS, JPK), Samsung Medical Center, Seoul, Republic of Korea; Neuroscience Center (EHL, DS, SWS, JPK), Samsung Medical Center, Seoul, Republic of Korea
| | - Jun Pyo Kim
- Department of Neurology (HL, BHK, EHL, DS, HY, SWS, JPK), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Alzheimer's Disease Convergence Research Center (HL, BHK, EHL, DS, HY, SWS, JPK), Samsung Medical Center, Seoul, Republic of Korea; Neuroscience Center (EHL, DS, SWS, JPK), Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Llibre-Guerra JJ, Fernandez MV, Joseph-Mathurin N, Bian S, Carter K, Li Y, Aschenbrenner AJ, Pottier C, Sigurdson W, McDade E, Gordon BA, Renton AE, Benzinger TLS, Ibañez L, Barthelemy N, Johnson M, Hassenstab J, Wang G, Goate AM, Western D, Wang C, Hobbs D, Daniels A, Karch C, Morris JC, Cruchaga C, Johnson ECB, Bateman RJ. Longitudinal analysis of a dominantly inherited Alzheimer disease mutation carrier protected from dementia. Nat Med 2025; 31:1267-1275. [PMID: 39930140 DOI: 10.1038/s41591-025-03494-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/06/2025] [Indexed: 02/21/2025]
Abstract
We conducted an in-depth longitudinal study on an individual carrying the presenilin 2 p.Asn141Ile mutation, traditionally associated with dominantly inherited Alzheimer's disease (AD), who has remarkably remained asymptomatic past the expected age of clinical onset. This study combines genetic, neuroimaging and biomarker analyses to explore the underpinnings of this resilience. Unlike typical progression in dominantly inherited AD, tau pathology in this case was confined to the occipital region without evidence of spread, potentially explaining the preservation of cognitive functions. Genetic analysis revealed several variants that, although not previously associated with protection against AD, suggest new avenues for understanding disease resistance. Notably, environmental factors such as significant heat exposure and a unique proteomic profile rich in heat shock proteins might indicate adaptive mechanisms contributing to the observed phenotype. This case underscores the complexity of Alzheimer's pathology and suggests that blocking tau deposition could be a promising target for therapeutic intervention. The study highlights the need for further research to identify and validate the mechanisms that could inhibit or localize tau pathology as a strategy to mitigate or delay the onset of Alzheimer's dementia.
Collapse
Affiliation(s)
| | - M Victoria Fernandez
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | | | - Shijia Bian
- Emory University School of Medicine, Atlanta, GA, USA
| | | | - Yan Li
- Washington University in St Louis, St Louis, MO, USA
| | | | - Cyril Pottier
- Washington University in St Louis, St Louis, MO, USA
| | | | - Eric McDade
- Washington University in St Louis, St Louis, MO, USA
| | | | - Alan E Renton
- Ronald M. Loeb Center for Alzheimer's Disease, Dept of Genetics and Genomic Sciences, and Nash Family Dept of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Laura Ibañez
- Washington University in St Louis, St Louis, MO, USA
| | | | | | | | - Guoqiao Wang
- Washington University in St Louis, St Louis, MO, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Dept of Genetics and Genomic Sciences, and Nash Family Dept of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Western
- Washington University in St Louis, St Louis, MO, USA
| | - Ciyang Wang
- Washington University in St Louis, St Louis, MO, USA
| | - Diana Hobbs
- Washington University in St Louis, St Louis, MO, USA
| | | | - Celeste Karch
- Washington University in St Louis, St Louis, MO, USA
| | - John C Morris
- Washington University in St Louis, St Louis, MO, USA
| | | | - Erik C B Johnson
- Ronald M. Loeb Center for Alzheimer's Disease, Dept of Genetics and Genomic Sciences, and Nash Family Dept of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
3
|
Leisgang Osse AM, Kinney JW, Cummings JL. The Common Alzheimer's Disease Research Ontology (CADRO) for biomarker categorization. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2025; 11:e70050. [PMID: 39935614 PMCID: PMC11812129 DOI: 10.1002/trc2.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 02/13/2025]
Abstract
Biomarkers are vital to Alzheimer's disease (AD) drug development and clinical trials, and will have an increasing role in clinical care. In this narrative review, we demonstrate the use of the National Institutes on Aging/Alzheimer's Association (NIA/AA) Common Alzheimer's Disease Research Ontology (CADRO) system for the categorization of biomarkers based on the primary mechanism on which they report. We show that biomarkers are available (in various levels of validation) for all CADRO processes. Application of the CADRO system demonstrates gaps in the field where novel biomarkers are needed for specific aspects of the disease, and assays to detect and measure biological changes, in individuals with symptomatic or preclinical AD. We demonstrate the CADRO system as a means of categorizing established and candidate AD biomarkers, showing the feasibility and practicality of the system. CADRO can assist with biomarker selection for AD clinical trials and drug development, and may eventually be applied to implementing biomarkers in patient care. Highlights The Common Alzheimer's Disease Research Ontology (CADRO) system can be used to categorize biomarkers for drug development.We demonstrate the use of CADRO with Alzheimer's disease (AD) biomarkers.We identified AD biomarkers in each of the CADRO categories.CADRO can be incorporated into current AD drug development and clinical trial systems.
Collapse
Affiliation(s)
- Amanda M. Leisgang Osse
- Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Jefferson W. Kinney
- Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Jeffrey L. Cummings
- Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| |
Collapse
|
4
|
Wolk DA, Nelson PT, Apostolova L, Arfanakis K, Boyle PA, Carlsson CM, Corriveau‐Lecavalier N, Dacks P, Dickerson BC, Domoto‐Reilly K, Dugger BN, Edelmayer R, Fardo DW, Grothe MJ, Hohman TJ, Irwin DJ, Jicha GA, Jones DT, Kawas CH, Lee EB, Lincoln K, Maestre GE, Mormino EC, Onyike CU, Petersen RC, Rabinovici GD, Rademakers R, Raman R, Rascovsky K, Rissman RA, Rogalski E, Scheltens P, Sperling RA, Yang H, Yu L, Zetterberg H, Schneider JA. Clinical criteria for limbic-predominant age-related TDP-43 encephalopathy. Alzheimers Dement 2025; 21:e14202. [PMID: 39807681 PMCID: PMC11772733 DOI: 10.1002/alz.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 01/16/2025]
Abstract
Limbic predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is highly prevalent in late life and a common co-pathology with Alzheimer's disease neuropathologic change (ADNC). LATE-NC is a slowly progressive, amnestic clinical syndrome. Alternatively, when present with ADNC, LATE-NC is associated with a more rapid course. With the emergence of anti-amyloid therapeutics, discrimination of LATE-NC from ADNC is critical and will lead to greater clinical recognition of amnestic patients without ADNC. Furthermore, co-pathology with LATE-NC may influence outcomes of these therapeutics. Thus there is a need to identify patients during life with likely LATE-NC. We propose criteria for clinical diagnosis of LATE as an initial framework for further validation. In the context of progressive memory loss and substantial hippocampal atrophy, criteria are laid out for probable (amyloid negative) or possible LATE (amyloid biomarkers are unavailable or when amyloid is present, but hippocampal neurodegeneration is out of proportion to expected pure ADNC). HIGHLIGHTS: Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a highly prevalent driver of neuropathologic memory loss in late life. LATE neuropathologic change (LATE-NC) is a common co-pathology with Alzheimer's disease neuropathologic change (ADNC) and may influence outcomes with emerging disease-modifying medicines. We provide initial clinical criteria for diagnosing LATE during life either when LATE-NC is the likely primary driver of symptoms or when observed in conjunction with AD. Definitions of possible and probable LATE are provided.
Collapse
Affiliation(s)
- David A. Wolk
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | | | - Konstantinos Arfanakis
- Rush University Medical CenterChicagoIllinoisUSA
- Illinois Institute of TechnologyChicagoIllinoisUSA
| | | | | | | | - Penny Dacks
- The Association for Frontotemporal DegenerationKing of PrussiaPennsylvaniaUSA
| | | | - Kimiko Domoto‐Reilly
- UW Alzheimer's Disease Research CenterUniversity of WashingtonSeattleWashingtonUSA
| | | | | | | | | | | | | | | | | | | | - Edward B. Lee
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | | | | | | | | | | | - Rosa Rademakers
- VIB Center for Molecular NeurologyAntwerpBelgium
- University of AntwerpAntwerpBelgium
| | - Rema Raman
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | | | | | - Emily Rogalski
- Healthy Aging & Alzheimer's Care (HAARC) Center, Department of NeurologyUniversity of ChicagoChicagoIllinoisUSA
| | | | - Reisa A. Sperling
- Harvard Medical SchoolBrigham and Women's Hospital, Massachusetts General HospitalBostonMassachusettsUSA
| | - Hyun‐Sik Yang
- Harvard Medical SchoolBrigham and Women's Hospital, Massachusetts General HospitalBostonMassachusettsUSA
| | - Lei Yu
- Rush University Medical CenterChicagoIllinoisUSA
| | - Henrik Zetterberg
- University of WisconsinMadisonWisconsinUSA
- University of GothenburgGothenburgSweden
- Institute of NeurologyUniversity College LondonLondonUK
| | | |
Collapse
|
5
|
Xu F, Huang H, Feng J, Shen Q, Bao Y, Zhang D, Xu Y. Cerebrospinal fluid tau and disease progression in early Parkinson's disease: an 8-year longitudinal study. J Neurol 2024; 272:61. [PMID: 39680223 DOI: 10.1007/s00415-024-12856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To explore whether CSF phosphorylated tau-181 (P-tau181) and total tau (T-tau) are associated with disease progression in early PD patients. METHODS We analyzed 8-year longitudinal clinical data from 368 early, drug-naive PD patients and 185 matched controls from the Parkinson's Progression Markers Initiative cohort. CSF P-tau181 and T-tau were measured over 5 years, while CSF α-synuclein was measured over 3 years. Dopamine transporter (DAT) imaging was performed at baseline and at 1, 2, and 4 years. RESULTS PD patients exhibited significantly lower CSF P-tau181, T-tau and P-tau181/T-tau ratio than controls at each visit. Higher baseline CSF P-tau181 predicted greater increases in Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III (estimate: 0.067, P < 0.001) and Montreal Cognitive Assessment (MoCA) scores (estimate: -0.010, P = 0.009). Similarly, higher baseline CSF T-tau predicted greater increases in MDS-UPDRS III (estimate: 0.005, P < 0.001) and MoCA scores (estimate: -0.001, P = 0.013). Higher baseline P-tau181/T-tau ratio predicted greater increases in MDS-UPDRS III (estimate: 0.552, P < 0.001) but was not significantly associated with changes in MoCA scores (estimate: -0.052, P = 0.114). CSF P-tau181 (estimate = 84.889, P < 0.001), T-tau (estimate = 8.297, P < 0.001) and P-tau181/T-tau ratio (estimate = 263.425, P < 0.001) were positively correlated with CSF α-synuclein but not correlated with striatal DAT uptake. CONCLUSIONS Elevated baseline CSF P-tau181, T-tau and P-tau181/T-tau ratio in early PD patients predict accelerated motor deterioration, with P-tau181 and T-tau also predicting cognitive decline, potentially through interactions with α-synuclein. However, the direct role of tau on nigrostriatal dopaminergic degeneration remains uncertain.
Collapse
Affiliation(s)
- Fang Xu
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Hongyan Huang
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Jiaming Feng
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiuyan Shen
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Yi Bao
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Dan Zhang
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Bi X, Cao N, He J. Recent advances in nanoenzymes for Alzheimer's disease treatment. Colloids Surf B Biointerfaces 2024; 244:114139. [PMID: 39121571 DOI: 10.1016/j.colsurfb.2024.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/14/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Alzheimer's disease (AD) remains one of the most challenging neurodegenerative disorders to treat, with oxidative stress playing a significant role in its pathology. Recent advancements in nanoenzymes technology offer a promising approach to mitigate this oxidative damage. Nanoenzymes, with their unique enzyme-mimicking activities, effectively scavenge reactive oxygen species and reduce oxidative stress, thereby providing neuroprotective effects. This review delves into the underlying mechanisms of AD, focusing on oxidative stress and its impact on disease progression. We explore the latest developments in nanoenzymes applications for AD treatment, highlighting their multifunctional capabilities and potential for targeted delivery to amyloid-beta plaques. Despite the exciting prospects, the clinical translation of nanoenzymes faces several challenges, including difficulties in brain targeting, consistent quality production, and ensuring safety and biocompatibility. We discuss these limitations in detail, emphasizing the need for rigorous evaluation and standardized protocols. This paper aims to provide a comprehensive overview of the current state of nanoenzymes research in AD, shedding light on both the opportunities and obstacles in the path towards effective clinical applications.
Collapse
Affiliation(s)
- Xiaojun Bi
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Ning Cao
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing 400000, China
| | - Jingteng He
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
7
|
Dilcher R, Wall S, Groß M, Katzdobler S, Wagemann O, Palleis C, Weidinger E, Fietzek U, Bernhardt A, Kurz C, Ferschmann C, Scheifele M, Zaganjori M, Gnörich J, Bürger K, Janowitz D, Rauchmann B, Stöcklein S, Bartenstein P, Villemagne V, Seibyl J, Sabri O, Barthel H, Perneczky R, Schöberl F, Zwergal A, Höglinger GU, Levin J, Franzmeier N, Brendel M. Combining cerebrospinal fluid and PI-2620 tau-PET for biomarker-based stratification of Alzheimer's disease and 4R-tauopathies. Alzheimers Dement 2024; 20:6896-6909. [PMID: 39263969 PMCID: PMC11485081 DOI: 10.1002/alz.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Recent advances in biomarker research have improved the diagnosis and monitoring of Alzheimer's disease (AD), but in vivo biomarker-based workflows to assess 4R-tauopathy (4RT) patients are currently missing. We suggest a novel biomarker-based algorithm to characterize AD and 4RTs. METHODS We cross-sectionally assessed combinations of cerebrospinal fluid measures (CSF p-tau181 and t-tau) and 18F-PI-2620 tau-positron emission tomography (PET) in patients with AD (n = 64), clinically suspected 4RTs (progressive supranuclear palsy or corticobasal syndrome, n = 82) and healthy controls (n = 19). RESULTS Elevated CSF p-tau181 and cortical 18F-PI-2620 binding was characteristic for AD while normal CSF p-tau181 with elevated subcortical 18F-PI-2620 binding was characteristic for 4RTs. 18F-PI-2620-assessed posterior cortical hypoperfusion could be used as an additional neuronal injury biomarker in AD. DISCUSSION The specific combination of CSF markers and 18F-PI-2620 tau-PET in disease-specific regions facilitates the biomarker-guided stratification of AD and 4RTs. This has implications for biomarker-aided diagnostic workflows and the advancement in clinical trials. HIGHLIGHTS Novel biomarker-based algorithm for differentiating AD and 4R-tauopathies. A combination of CSF p-tau181 and 18F-PI-2620 discriminates AD versus 4R tauopathies. Hypoperfusion serves as an additional neuronal injury biomarker in AD.
Collapse
Affiliation(s)
- Roxane Dilcher
- NeuroscienceMonash UniversityMelbourneAustralia
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Stephan Wall
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Mattes Groß
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Sabrina Katzdobler
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Olivia Wagemann
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Carla Palleis
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Endy Weidinger
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Urban Fietzek
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Alexander Bernhardt
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Carolin Kurz
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Christian Ferschmann
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Maximilian Scheifele
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Mirlind Zaganjori
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Johannes Gnörich
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Katharina Bürger
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Daniel Janowitz
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Boris‐Stephan Rauchmann
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
- Institute for NeuroradiologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Sophia Stöcklein
- Department of RadiologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Peter Bartenstein
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Victor Villemagne
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergAustralia
| | - John Seibyl
- Institute for Neurodegenerative DisordersNew HavenConnecticutUSA
| | - Osama Sabri
- Department of Nuclear MedicineUniversity Hospital LeipzigLeipzigGermany
| | - Henryk Barthel
- Department of Nuclear MedicineUniversity Hospital LeipzigLeipzigGermany
| | - Robert Perneczky
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Florian Schöberl
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Andreas Zwergal
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- German Center for Vertigo and Balance Disorders (DSGZ)University Hospital of Munich, LMU MunichMünchenGermany
| | - Günter U. Höglinger
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Johannes Levin
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of Psychiatry and NeurochemistryUniversity of GothenburgThe Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyMölndal and GothenburgSweden
| | - Matthias Brendel
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| |
Collapse
|
8
|
Zhang Y, Bi K, Zhou L, Wang J, Huang L, Sun Y, Peng G, Wu W. Advances in Blood Biomarkers for Alzheimer's Disease: Ultra-Sensitive Detection Technologies and Impact on Clinical Diagnosis. Degener Neurol Neuromuscul Dis 2024; 14:85-102. [PMID: 39100640 PMCID: PMC11297492 DOI: 10.2147/dnnd.s471174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease has escalated into a critical public health concern, marked by its neurodegenerative nature that progressively diminishes cognitive abilities. Recognized as a continuously advancing and presently incurable condition, AD underscores the necessity for early-stage diagnosis and interventions aimed at delaying the decline in mental function. Despite the proven efficacy of cerebrospinal fluid and positron emission tomography in diagnosing AD, their broader utility is constrained by significant costs and the invasive nature of these procedures. Consequently, the innovation of blood biomarkers such as Amyloid-beta, phosphorylated-tau, total-tau et al, distinguished by their high sensitivity, minimal invasiveness, accessibility, and cost-efficiency, emerges as a promising avenue for AD diagnosis. The advent of ultra-sensitive detection methodologies, including single-molecule enzyme-linked immunosorbent assay and immunoprecipitation-mass spectrometry, has revolutionized the detection of AD plasma biomarkers, supplanting previous low-sensitivity techniques. This rapid advancement in detection technology facilitates the more accurate quantification of pathological brain proteins and AD-associated biomarkers in the bloodstream. This manuscript meticulously reviews the landscape of current research on immunological markers for AD, anchored in the National Institute on Aging-Alzheimer's Association AT(N) research framework. It highlights a selection of forefront ultra-sensitive detection technologies now integral to assessing AD blood immunological markers. Additionally, this review examines the crucial pre-analytical processing steps for AD blood samples that significantly impact research outcomes and addresses the practical challenges faced during clinical testing. These discussions are crucial for enhancing our comprehension and refining the diagnostic precision of AD using blood-based biomarkers. The review aims to shed light on potential avenues for innovation and improvement in the techniques employed for detecting and investigating AD, thereby contributing to the broader field of neurodegenerative disease research.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Linfu Zhou
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Lingtong Huang
- Department of Critical Care Units, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yan Sun
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guoping Peng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
9
|
Huszár Z, Engh MA, Pavlekovics M, Sato T, Steenkamp Y, Hanseeuw B, Terebessy T, Molnár Z, Hegyi P, Csukly G. Risk of conversion to mild cognitive impairment or dementia among subjects with amyloid and tau pathology: a systematic review and meta-analysis. Alzheimers Res Ther 2024; 16:81. [PMID: 38610055 PMCID: PMC11015617 DOI: 10.1186/s13195-024-01455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Measurement of beta-amyloid (Aβ) and phosphorylated tau (p-tau) levels offers the potential for early detection of neurocognitive impairment. Still, the probability of developing a clinical syndrome in the presence of these protein changes (A+ and T+) remains unclear. By performing a systematic review and meta-analysis, we investigated the risk of mild cognitive impairment (MCI) or dementia in the non-demented population with A+ and A- alone and in combination with T+ and T- as confirmed by PET or cerebrospinal fluid examination. METHODS A systematic search of prospective and retrospective studies investigating the association of Aβ and p-tau with cognitive decline was performed in three databases (MEDLINE via PubMed, EMBASE, and CENTRAL) on January 9, 2024. The risk of bias was assessed using the Cochrane QUIPS tool. Odds ratios (OR) and Hazard Ratios (HR) were pooled using a random-effects model. The effect of neurodegeneration was not studied due to its non-specific nature. RESULTS A total of 18,162 records were found, and at the end of the selection process, data from 36 cohorts were pooled (n= 7,793). Compared to the unexposed group, the odds ratio (OR) for conversion to dementia in A+ MCI patients was 5.18 [95% CI 3.93; 6.81]. In A+ CU subjects, the OR for conversion to MCI or dementia was 5.79 [95% CI 2.88; 11.64]. Cerebrospinal fluid Aβ42 or Aβ42/40 analysis and amyloid PET imaging showed consistent results. The OR for conversion in A+T+ MCI subjects (11.60 [95% CI 7.96; 16.91]) was significantly higher than in A+T- subjects (2.73 [95% CI 1.65; 4.52]). The OR for A-T+ MCI subjects was non-significant (1.47 [95% CI 0.55; 3.92]). CU subjects with A+T+ status had a significantly higher OR for conversion (13.46 [95% CI 3.69; 49.11]) than A+T- subjects (2.04 [95% CI 0.70; 5.97]). Meta-regression showed that the ORs for Aβ exposure decreased with age in MCI. (beta = -0.04 [95% CI -0.03 to -0.083]). CONCLUSIONS Identifying Aβ-positive individuals, irrespective of the measurement technique employed (CSF or PET), enables the detection of the most at-risk population before disease onset, or at least at a mild stage. The inclusion of tau status in addition to Aβ, especially in A+T+ cases, further refines the risk assessment. Notably, the higher odds ratio associated with Aβ decreases with age. TRIAL REGISTRATION The study was registered in PROSPERO (ID: CRD42021288100).
Collapse
Affiliation(s)
- Zsolt Huszár
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, Budapest, 1083, Hungary
| | - Marie Anne Engh
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Márk Pavlekovics
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Department of Neurology, Jahn Ferenc Teaching Hospital, Köves utca 1, Budapest, 1204, Hungary
| | - Tomoya Sato
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Yalea Steenkamp
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Bernard Hanseeuw
- Department of Neurology and Institute of Neuroscience, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, 1200, Belgium
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02155, USA
| | - Tamás Terebessy
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Zsolt Molnár
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Üllői út 78/A, Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy, Poznan University of Medical Sciences, 49 Przybyszewskiego St, Poznan, Poland
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, 7624, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Tömő 25-29, Budapest, 1083, Hungary
- Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation University of Szeged, Budapesti 9, Szeged, 6728, Hungary
| | - Gábor Csukly
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, Budapest, 1083, Hungary.
| |
Collapse
|
10
|
Wang S, Xie S, Zheng Q, Zhang Z, Wang T, Zhang G. Biofluid biomarkers for Alzheimer's disease. Front Aging Neurosci 2024; 16:1380237. [PMID: 38659704 PMCID: PMC11039951 DOI: 10.3389/fnagi.2024.1380237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease, with a complex pathogenesis and an irreversible course. Therefore, the early diagnosis of AD is particularly important for the intervention, prevention, and treatment of the disease. Based on the different pathophysiological mechanisms of AD, the research progress of biofluid biomarkers are classified and reviewed. In the end, the challenges and perspectives of future research are proposed.
Collapse
Affiliation(s)
- Sensen Wang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Sitan Xie
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Qinpin Zheng
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Zhihui Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Guirong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| |
Collapse
|
11
|
Lai YLL, Hsu FT, Yeh SY, Kuo YT, Lin HH, Lin YC, Kuo LW, Chen CY, Liu HS. Atrophy of the cholinergic regions advances from early to late mild cognitive impairment. Neuroradiology 2024; 66:543-556. [PMID: 38240769 DOI: 10.1007/s00234-024-03290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE We investigated the volumetric changes in the components of the cholinergic pathway for patients with early mild cognitive impairment (EMCI) and those with late mild cognitive impairment (LMCI). The effect of patients' apolipoprotein 4 (APOE-ε4) allele status on the structural changes were analyzed. METHODS Structural magnetic resonance imaging data were collected. Patients' demographic information, plasma data, and validated global cognitive composite scores were included. Relevant features were extracted for constructing machine learning models to differentiate between EMCI (n = 312) and LMCI (n = 541) and predict patients' neurocognitive function. The data were analyzed primarily through one-way analysis of variance and two-way analysis of covariance. RESULTS Considerable differences were observed in cholinergic structural changes between patients with EMCI and LMCI. Cholinergic atrophy was more prominent in the LMCI cohort than in the EMCI cohort (P < 0.05 family-wise error corrected). APOE-ε4 differentially affected cholinergic atrophy in the LMCI and EMCI cohorts. For LMCI cohort, APOE-ε4 carriers exhibited increased brain atrophy (left amygdala: P = 0.001; right amygdala: P = 0.006, and right Ch123, P = 0.032). EMCI and LCMI patients showed distinctive associations of gray matter volumes in cholinergic regions with executive (R2 = 0.063 and 0.030 for EMCI and LMCI, respectively) and language (R2 = 0.095 and 0.042 for EMCI and LMCI, respectively) function. CONCLUSIONS Our data confirmed significant cholinergic atrophy differences between early and late stages of mild cognitive impairment. The impact of the APOE-ε4 allele on cholinergic atrophy varied between the LMCI and EMCI groups.
Collapse
Affiliation(s)
- Ying-Liang Larry Lai
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Yi Yeh
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tzu Kuo
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hui-Hsien Lin
- CT/MR Division, Rotary Trading CO., LTD, Taipei, Taiwan
| | - Yi-Chun Lin
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Yu Chen
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Medical Imaging, Taipei Medical University Hospital, Medical University, Taipei, Taiwan.
| | - Hua-Shan Liu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
12
|
Lesman-Segev OH, Golan Shekhtman S, Springer RR, Livny A, Lin HM, Yuxia O, Zadok M, Ganmore I, Heymann A, Hoffmann C, Domachevsky L, Schnaider Beeri M. Amyloid deposition and small vessel disease are associated with cognitive function in older adults with type 2 diabetes. Sci Rep 2024; 14:2741. [PMID: 38302529 PMCID: PMC10834442 DOI: 10.1038/s41598-024-53043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/27/2024] [Indexed: 02/03/2024] Open
Abstract
Diabetes is associated with cognitive decline, but the underlying mechanisms are complex and their relationship with Alzheimer's Disease biomarkers is not fully understood. We assessed the association of small vessel disease (SVD) and amyloid burden with cognitive functioning in 47 non-demented older adults with type-2 diabetes from the Israel Diabetes and Cognitive Decline Study (mean age 78Y, 64% females). FLAIR-MRI, Vizamyl amyloid-PET, and T1W-MRI quantified white matter hyperintensities as a measure of SVD, amyloid burden, and gray matter (GM) volume, respectively. Mean hemoglobin A1c levels and duration of type-2 diabetes were used as measures of diabetic control. Cholesterol level and blood pressure were used as measures of cardiovascular risk. A broad neuropsychological battery assessed cognition. Linear regression models revealed that both higher SVD and amyloid burden were associated with lower cognitive functioning. Additional adjustments for type-2 diabetes-related characteristics, GM volume, and cardiovascular risk did not alter the results. The association of amyloid with cognition remained unchanged after further adjustment for SVD, and the association of SVD with cognition remained unchanged after further adjustment for amyloid burden. Our findings suggest that SVD and amyloid pathology may independently contribute to lower cognitive functioning in non-demented older adults with type-2 diabetes, supporting a multimodal approach for diagnosing, preventing, and treating cognitive decline in this population.
Collapse
Affiliation(s)
- Orit H Lesman-Segev
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel.
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Sapir Golan Shekhtman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ramit Ravona Springer
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Memory Clinic, Sheba Medical Center, Tel Hashomer, Israel
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hung-Mo Lin
- Department of Population Health Science and Policy, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ouyang Yuxia
- Department of Population Health Science and Policy, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maya Zadok
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Ithamar Ganmore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Memory Clinic, Sheba Medical Center, Tel Hashomer, Israel
| | - Anthony Heymann
- Maccabi Healthcare Services, Tel Aviv, Israel
- Department of Family Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Hoffmann
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liran Domachevsky
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Blazhenets G, Soleimani-Meigooni DN, Thomas W, Mundada N, Brendel M, Vento S, VandeVrede L, Heuer HW, Ljubenkov P, Rojas JC, Chen MK, Amuiri AN, Miller Z, Gorno-Tempini ML, Miller BL, Rosen HJ, Litvan I, Grossman M, Boeve B, Pantelyat A, Tartaglia MC, Irwin DJ, Dickerson BC, Baker SL, Boxer AL, Rabinovici GD, La Joie R. [ 18F]PI-2620 Binding Patterns in Patients with Suspected Alzheimer Disease and Frontotemporal Lobar Degeneration. J Nucl Med 2023; 64:1980-1989. [PMID: 37918868 PMCID: PMC10690126 DOI: 10.2967/jnumed.123.265856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Tau PET has enabled the visualization of paired helical filaments of 3 or 4 C-terminal repeat tau in Alzheimer disease (AD), but its ability to detect aggregated tau in frontotemporal lobar degeneration (FTLD) spectrum disorders is uncertain. We investigated 2-(2-([18F]fluoro)pyridin-4-yl)-9H-pyrrolo[2,3-b:4,5c']dipyridine ([18F]PI-2620), a newer tracer with ex vivo evidence for binding to FTLD tau, in a convenience sample of patients with suspected FTLD and AD using a static acquisition protocol and parametric SUV ratio (SUVr) images. Methods: We analyzed [18F]PI-2620 PET data from 65 patients with clinical diagnoses associated with AD or FTLD neuropathology; most (60/65) also had amyloid-β (Aβ) PET. Scans were acquired 30-60 min after injection; SUVr maps (reference, inferior cerebellar cortex) were created for the full acquisition and for 10-min truncated sliding windows (30-40, 35-45,…50-60 min). Age- and sex-adjusted z score maps were computed for each patient, relative to 23 Aβ-negative cognitively healthy controls (HC). Mean SUVr in the globus pallidus, substantia nigra, subthalamic nuclei, dentate nuclei, white matter, and temporal gray matter was extracted for the full and truncated windows. Results: Patients with suspected AD neuropathology (Aβ-positive patients with mild cognitive impairment or AD dementia) showed high-intensity temporoparietal cortex-predominant [18F]PI-2620 binding. At the group level, patients with clinical diagnoses associated with FTLD (progressive supranuclear palsy with Richardson syndrome [PSP Richardson syndrome], corticobasal syndrome, and nonfluent-variant primary progressive aphasia) exhibited higher globus pallidus SUVr than did HCs; pallidal retention was highest in the PSP Richardson syndrome group, in whom SUVr was correlated with symptom severity (ρ = 0.53, P = 0.05). At the individual level, only half of PSP Richardson syndrome, corticobasal syndrome, and nonfluent-variant primary progressive aphasia patients had a pallidal SUVr above that of HCs. Temporal SUVr discriminated AD patients from HCs with high accuracy (area under the receiver operating characteristic curve, 0.94 [95% CI, 0.83-1.00]) for all time windows, whereas discrimination between patients with PSP Richardson syndrome and HCs using pallidal SUVr was fair regardless of time window (area under the receiver operating characteristic curve, 0.77 [95% CI, 0.61-0.92] at 30-40 min vs. 0.81 [95% CI, 0.66-0.96] at 50-60 min; P = 0.67). Conclusion: [18F]PI-2620 SUVr shows an intense and consistent signal in AD but lower-intensity, heterogeneous, and rapidly decreasing binding in patients with suspected FTLD. Further work is needed to delineate the substrate of [18F]PI-2620 binding and the usefulness of [18F]PI2620 SUVr quantification outside the AD continuum.
Collapse
Affiliation(s)
- Ganna Blazhenets
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Wesley Thomas
- Lawrence Berkeley National Laboratory, Berkeley, California
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Stephanie Vento
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Lawren VandeVrede
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Hilary W Heuer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Peter Ljubenkov
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Julio C Rojas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Miranda K Chen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Alinda N Amuiri
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Maria L Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Howie J Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Irene Litvan
- University of California, San Diego, San Diego, California
| | - Murray Grossman
- Penn FTD Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | - David J Irwin
- Penn FTD Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California;
| |
Collapse
|
14
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
15
|
Yang Z, Sreenivasan K, Toledano Strom EN, Osse AML, Pasia LG, Cosme CG, Mugosa MRN, Chevalier EL, Ritter A, Miller JB, Cordes D, Cummings JL, Kinney JW. Clinical and biological relevance of glial fibrillary acidic protein in Alzheimer's disease. Alzheimers Res Ther 2023; 15:190. [PMID: 37924152 PMCID: PMC10623866 DOI: 10.1186/s13195-023-01340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
INTRODUCTION There is a tremendous need for identifying reliable blood-based biomarkers for Alzheimer's disease (AD) that are tied to the biological ATN (amyloid, tau and neurodegeneration) framework as well as clinical assessment and progression. METHODS One hundred forty-four elderly participants underwent 18F-AV45 positron emission tomography (PET) scan, structural magnetic resonance imaging (MRI) scan, and blood sample collection. The composite standardized uptake value ratio (SUVR) was derived from 18F-AV45 PET to assess brain amyloid burden, and the hippocampal volume was determined from structural MRI scans. Plasma glial fibrillary acidic protein (GFAP), phosphorylated tau-181 (ptau-181), and neurofilament light (NfL) measured by single molecular array (SIMOA) technology were assessed with respect to ATN framework, genetic risk factor, age, clinical assessment, and future functional decline among the participants. RESULTS Among the three plasma markers, GFAP best discriminated participants stratified by clinical diagnosis and brain amyloid status. Age was strongly associated with NfL, followed by GFAP and ptau-181 at much weaker extent. Brain amyloid was strongly associated with plasma GFAP and ptau-181 and to a lesser extent with plasma NfL. Moderate association was observed between plasma markers. Hippocampal volume was weakly associated with all three markers. Elevated GFAP and ptau-181 were associated with worse cognition, and plasma GFAP was the most predictive of future functional decline. Combining GFAP and ptau-181 together was the best model to predict brain amyloid status across all participants (AUC = 0.86) or within cognitively impaired participants (AUC = 0.93); adding NfL as an additional predictor only had a marginal improvement. CONCLUSION Our findings indicate that GFAP is of potential clinical utility in screening amyloid pathology and predicting future cognitive decline. GFAP, NfL, and ptau-181 were moderately associated with each other, with discrepant relevance to age, sex, and AD genetic risk, suggesting their relevant but differential roles for AD assessment. The combination of GFAP with ptau-181 provides an accurate model to predict brain amyloid status, with the superior performance of GFAP over ptau-181 when the prediction is limited to cognitively impaired participants.
Collapse
Affiliation(s)
- Zhengshi Yang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA.
- Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Karthik Sreenivasan
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | | | | | - Celica Glenn Cosme
- Kirk Kerkorian School of Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Maya Rae N Mugosa
- Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Emma Léa Chevalier
- Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Aaron Ritter
- Hoag's Pickup Family Neurosciences Institute, Newport Beach, CA, USA
| | - Justin B Miller
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, 80309, USA
| | - Jeffrey L Cummings
- Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jefferson W Kinney
- Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
16
|
Mantyh WG, Cochran JN, Taylor JW, Broce IJ, Geier EG, Bonham LW, Anderson AG, Sirkis DW, Joie RL, Iaccarino L, Chaudhary K, Edwards L, Strom A, Grant H, Allen IE, Miller ZA, Gorno‐Tempini ML, Kramer JH, Miller BL, Desikan RS, Rabinovici GD, Yokoyama JS. Early-onset Alzheimer's disease explained by polygenic risk of late-onset disease? ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12482. [PMID: 37780862 PMCID: PMC10535074 DOI: 10.1002/dad2.12482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Early-onset Alzheimer's disease (AD) is highly heritable, yet only 10% of cases are associated with known pathogenic mutations. For early-onset AD patients without an identified autosomal dominant cause, we hypothesized that their early-onset disease reflects further enrichment of the common risk-conferring single nucleotide polymorphisms associated with late-onset AD. We applied a previously validated polygenic hazard score for late-onset AD to 193 consecutive patients diagnosed at our tertiary dementia referral center with symptomatic early-onset AD. For comparison, we included 179 participants with late-onset AD and 70 healthy controls. Polygenic hazard scores were similar in early- versus late-onset AD. The polygenic hazard score was not associated with age-of-onset or disease biomarkers within early-onset AD. Early-onset AD does not represent an extreme enrichment of the common single nucleotide polymorphisms associated with late-onset AD. Further exploration of novel genetic risk factors of this highly heritable disease is warranted.Highlights: There is a unique genetic architecture of early- versus late-onset Alzheimer's disease (AD).Late-onset AD polygenic risk is not an explanation for early-onset AD.Polygenic risk of late-onset AD does not predict early-onset AD biology.Unique genetic architecture of early- versus late-onset AD parallels AD heterogeneity.
Collapse
Affiliation(s)
- William G. Mantyh
- Department of NeurologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | | | - Iris J. Broce
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ethan G. Geier
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Luke W. Bonham
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Daniel W. Sirkis
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Renaud La Joie
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Leonardo Iaccarino
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kiran Chaudhary
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lauren Edwards
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Amelia Strom
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Harli Grant
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Isabel E. Allen
- Department of Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Zachary A. Miller
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Marilu L. Gorno‐Tempini
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Joel H. Kramer
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Rahul S. Desikan
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Gil D. Rabinovici
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Life Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Jennifer S. Yokoyama
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
17
|
Lepinay E, Cicchetti F. Tau: a biomarker of Huntington's disease. Mol Psychiatry 2023; 28:4070-4083. [PMID: 37749233 DOI: 10.1038/s41380-023-02230-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023]
Abstract
Developing effective treatments for patients with Huntington's disease (HD)-a neurodegenerative disorder characterized by severe cognitive, motor and psychiatric impairments-is proving extremely challenging. While the monogenic nature of this condition enables to identify individuals at risk, robust biomarkers would still be extremely valuable to help diagnose disease onset and progression, and especially to confirm treatment efficacy. If measurements of cerebrospinal fluid neurofilament levels, for example, have demonstrated use in recent clinical trials, other proteins may prove equal, if not greater, relevance as biomarkers. In fact, proteins such as tau could specifically be used to detect/predict cognitive affectations. We have herein reviewed the literature pertaining to the association between tau levels and cognitive states, zooming in on Alzheimer's disease, Parkinson's disease and traumatic brain injury in which imaging, cerebrospinal fluid, and blood samples have been interrogated or used to unveil a strong association between tau and cognition. Collectively, these areas of research have accrued compelling evidence to suggest tau-related measurements as both diagnostic and prognostic tools for clinical practice. The abundance of information retrieved in this niche of study has laid the groundwork for further understanding whether tau-related biomarkers may be applied to HD and guide future investigations to better understand and treat this disease.
Collapse
Affiliation(s)
- Eva Lepinay
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
18
|
Mundada NS, Rojas JC, Vandevrede L, Thijssen EH, Iaccarino L, Okoye OC, Shankar R, Soleimani-Meigooni DN, Lago AL, Miller BL, Teunissen CE, Heuer H, Rosen HJ, Dage JL, Jagust WJ, Rabinovici GD, Boxer AL, La Joie R. Head-to-head comparison between plasma p-tau217 and flortaucipir-PET in amyloid-positive patients with cognitive impairment. Alzheimers Res Ther 2023; 15:157. [PMID: 37740209 PMCID: PMC10517500 DOI: 10.1186/s13195-023-01302-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Plasma phosphorylated tau (p-tau) has emerged as a promising biomarker for Alzheimer's disease (AD). Studies have reported strong associations between p-tau and tau-PET that are mainly driven by differences between amyloid-positive and amyloid-negative patients. However, the relationship between p-tau and tau-PET is less characterized within cognitively impaired patients with a biomarker-supported diagnosis of AD. We conducted a head-to-head comparison between plasma p-tau217 and tau-PET in patients at the clinical stage of AD and further assessed their relationships with demographic, clinical, and biomarker variables. METHODS We retrospectively included 87 amyloid-positive patients diagnosed with MCI or dementia due to AD who underwent structural MRI, amyloid-PET (11C-PIB), tau-PET (18F-flortaucipir, FTP), and blood draw assessments within 1 year (age = 66 ± 10, 48% female). Amyloid-PET was quantified in Centiloids (CL) while cortical tau-PET binding was measured using standardized uptake value ratios (SUVRs) referenced against inferior cerebellar cortex. Plasma p-tau217 concentrations were measured using an electrochemiluminescence-based assay on the Meso Scale Discovery platform. MRI-derived cortical volume was quantified with FreeSurfer. Mini-Mental State Examination (MMSE) scores were available at baseline (n = 85) and follow-up visits (n = 28; 1.5 ± 0.7 years). RESULTS Plasma p-tau217 and cortical FTP-SUVR were correlated (r = 0.61, p < .001), especially in temporo-parietal and dorsolateral frontal cortices. Both higher p-tau217 and FTP-SUVR values were associated with younger age, female sex, and lower cortical volume, but not with APOE-ε4 carriership. PIB-PET Centiloids were weakly correlated with FTP-SUVR (r = 0.26, p = 0.02), but not with p-tau217 (r = 0.10, p = 0.36). Regional PET-plasma associations varied with amyloid burden, with p-tau217 being more strongly associated with tau-PET in temporal cortex among patients with moderate amyloid-PET burden, and with tau-PET in primary cortices among patients with high amyloid-PET burden. Higher p-tau217 and FTP-SUVR values were independently associated with lower MMSE scores cross-sectionally, while only baseline FTP-SUVR predicted longitudinal MMSE decline when both biomarkers were included in the same model. CONCLUSION Plasma p-tau217 and tau-PET are strongly correlated in amyloid-PET-positive patients with MCI or dementia due to AD, and they exhibited comparable patterns of associations with demographic variables and with markers of downstream neurodegeneration.
Collapse
Affiliation(s)
- Nidhi S Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Julio C Rojas
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lawren Vandevrede
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Elisabeth H Thijssen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Ranjani Shankar
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Argentina L Lago
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hillary Heuer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Howie J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey L Dage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Global Brain Health Institute, San Francisco, CA, USA.
| |
Collapse
|
19
|
Quattrini G, Ferrari C, Pievani M, Geviti A, Ribaldi F, Scheffler M, Frisoni GB, Garibotto V, Marizzoni M. Unsupervised [ 18F]Flortaucipir cutoffs for tau positivity and staging in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2023; 50:3265-3275. [PMID: 37272955 PMCID: PMC10542510 DOI: 10.1007/s00259-023-06280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE Several [18F]Flortaucipir cutoffs have been proposed for tau PET positivity (T+) in Alzheimer's disease (AD), but none were data-driven. The aim of this study was to establish and validate unsupervised T+ cutoffs by applying Gaussian mixture models (GMM). METHODS Amyloid negative (A-) cognitively normal (CN) and amyloid positive (A+) AD-related dementia (ADRD) subjects from ADNI (n=269) were included. ADNI (n=475) and Geneva Memory Clinic (GMC) cohorts (n=98) were used for validation. GMM-based cutoffs were extracted for the temporal meta-ROI, and validated against previously published cutoffs and visual rating. RESULTS GMM-based cutoffs classified less subjects as T+, mainly in the A- CN (<3.4% vs >28.5%) and A+ CN (<14.5% vs >42.9%) groups and showed higher agreement with visual rating (ICC=0.91 vs ICC<0.62) than published cutoffs. CONCLUSION We provided reliable data-driven [18F]Flortaucipir cutoffs for in vivo T+ detection in AD. These cutoffs might be useful to select participants in clinical and research studies.
Collapse
Affiliation(s)
- Giulia Quattrini
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Clarissa Ferrari
- FONDAZIONE POLIAMBULANZA ISTITUTO OSPEDALIERO via Bissolati, 57, 25124, Brescia, Italy
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Andrea Geviti
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Federica Ribaldi
- LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, 1205, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni B Frisoni
- LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, 1205, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocentre, Faculty of Medicine, University of Geneva, 1205, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, 1205, Geneva, Switzerland
- Centre for Biomedical Imaging (CIBM), 1205, Geneva, Switzerland
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy.
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy.
| |
Collapse
|
20
|
Peretti DE, Ribaldi F, Scheffler M, Mu L, Treyer V, Gietl AF, Hock C, Frisoni GB, Garibotto V. ATN profile classification across two independent prospective cohorts. Front Med (Lausanne) 2023; 10:1168470. [PMID: 37559930 PMCID: PMC10407659 DOI: 10.3389/fmed.2023.1168470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Background The ATN model represents a research framework used to describe in subjects the presence or absence of Alzheimer's disease (AD) pathology through biomarkers. The aim of this study was to describe the prevalence of different ATN profiles using quantitative imaging biomarkers in two independent cohorts, and to evaluate the pertinence of ATN biomarkers to identify comparable populations across independent cohorts. Methods A total of 172 subjects from the Geneva Memory Clinic and 113 volunteers from a study on healthy aging at the University Hospital of Zurich underwent amyloid (A) and tau (T) PET, as well as T1-weigthed MRI scans using site-specific protocols. Subjects were classified by cognition (cognitively unimpaired, CU, or impaired, CI) based on clinical assessment by experts. Amyloid data converted into the standardized centiloid scale, tau PET data normalized to cerebellar uptake, and hippocampal volume expressed as a ratio over total intracranial volume ratio were considered as biomarkers for A, T, and neurodegeneration (N), respectively. Positivity for each biomarker was defined based on previously published thresholds. Subjects were then classified according to the ATN model. Differences among profiles were tested using Kruskal-Wallis ANOVA, and between cohorts using Wilcoxon tests. Results Twenty-nine percent of subjects from the Geneva cohorts were classified with a normal (A-T-N-) profile, while the Zurich cohort included 64% of subjects in the same category. Meanwhile, 63% of the Geneva and 16% of the Zurich cohort were classified within the AD continuum (being A+ regardless of other biomarkers' statuses). Within cohorts, ATN profiles were significantly different for age and mini-mental state examination scores, but not for years of education. Age was not significantly different between cohorts. In general, imaging A and T biomarkers were significantly different between cohorts, but they were no longer significantly different when stratifying the cohorts by ATN profile. N was not significantly different between cohorts. Conclusion Stratifying subjects into ATN profiles provides comparable groups of subjects even when individual recruitment followed different criteria.
Collapse
Affiliation(s)
- Débora E. Peretti
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Faculty of Medicine, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
| | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Linjing Mu
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Anton F. Gietl
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Christoph Hock
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Giovanni B. Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Faculty of Medicine, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
- Center for Biomedical Imaging, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Basheer N, Smolek T, Hassan I, Liu F, Iqbal K, Zilka N, Novak P. Does modulation of tau hyperphosphorylation represent a reasonable therapeutic strategy for Alzheimer's disease? From preclinical studies to the clinical trials. Mol Psychiatry 2023; 28:2197-2214. [PMID: 37264120 PMCID: PMC10611587 DOI: 10.1038/s41380-023-02113-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
Protein kinases (PKs) have emerged as one of the most intensively investigated drug targets in current pharmacological research, with indications ranging from oncology to neurodegeneration. Tau protein hyperphosphorylation was the first pathological post-translational modification of tau protein described in Alzheimer's disease (AD), highlighting the role of PKs in neurodegeneration. The therapeutic potential of protein kinase inhibitors (PKIs)) and protein phosphatase 2 A (PP2A) activators in AD has recently been explored in several preclinical and clinical studies with variable outcomes. Where a number of preclinical studies demonstrate a visible reduction in the levels of phospho-tau in transgenic tauopathy models, no reduction in neurofibrillary lesions is observed. Amongst the few PKIs and PP2A activators that progressed to clinical trials, most failed on the efficacy front, with only a few still unconfirmed and potential positive trends. This suggests that robust preclinical and clinical data is needed to unequivocally evaluate their efficacy. To this end, we take a systematic look at the results of preclinical and clinical studies of PKIs and PP2A activators, and the evidence they provide regarding the utility of this approach to evaluate the potential of targeting tau hyperphosphorylation as a disease modifying therapy.
Collapse
Affiliation(s)
- Neha Basheer
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10, Slovakia
| | - Tomáš Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10, Slovakia
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10, Slovakia.
- AXON Neuroscience R&D Services SE, Bratislava, 811 02, Slovakia.
| | - Petr Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10, Slovakia.
- AXON Neuroscience CRM Services SE, Bratislava, 811 02, Slovakia.
| |
Collapse
|
22
|
Xu Y, Jiang H, Zhu B, Cao M, Feng T, Sun Z, Du G, Zhao Z. Advances and applications of fluids biomarkers in diagnosis and therapeutic targets of Alzheimer's disease. CNS Neurosci Ther 2023. [PMID: 37144603 DOI: 10.1111/cns.14238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disease with challenging early diagnosis and effective treatments due to its complex pathogenesis. AD patients are often diagnosed after the appearance of the typical symptoms, thereby delaying the best opportunity for effective measures. Biomarkers could be the key to resolving the challenge. This review aims to provide an overview of application and potential value of AD biomarkers in fluids, including cerebrospinal fluid, blood, and saliva, in diagnosis and treatment. METHODS A comprehensive search of the relevant literature was conducted to summarize potential biomarkers for AD in fluids. The paper further explored the biomarkers' utility in disease diagnosis and drug target development. RESULTS Research on biomarkers mainly focused on amyloid-β (Aβ) plaques, Tau protein abnormal phosphorylation, axon damage, synaptic dysfunction, inflammation, and related hypotheses associated with AD mechanisms. Aβ42 , total Tau (t-Tau), and phosphorylated Tau (p-Tau), have been endorsed for their diagnostic and predictive capability. However, other biomarkers remain controversial. Drugs targeting Aβ have shown some efficacy and those that target BACE1 and Tau are still undergoing development. CONCLUSION Fluid biomarkers hold considerable potential in the diagnosis and drug development of AD. However, improvements in sensitivity and specificity, and approaches for managing sample impurities, need to be addressed for better diagnosis.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| | - Hailun Jiang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongshi Sun
- Department of Pharmacy, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Leffa DT, Ferrari-Souza JP, Bellaver B, Tissot C, Ferreira PCL, Brum WS, Caye A, Lord J, Proitsi P, Martins-Silva T, Tovo-Rodrigues L, Tudorascu DL, Villemagne VL, Cohen AD, Lopez OL, Klunk WE, Karikari TK, Rosa-Neto P, Zimmer ER, Molina BSG, Rohde LA, Pascoal TA. Genetic risk for attention-deficit/hyperactivity disorder predicts cognitive decline and development of Alzheimer's disease pathophysiology in cognitively unimpaired older adults. Mol Psychiatry 2023; 28:1248-1255. [PMID: 36476732 DOI: 10.1038/s41380-022-01867-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) persists in older age and is postulated as a risk factor for cognitive impairment and Alzheimer's Disease (AD). However, these findings rely primarily on electronic health records and can present biased estimates of disease prevalence. An obstacle to investigating age-related cognitive decline in ADHD is the absence of large-scale studies following patients with ADHD into older age. Alternatively, this study aimed to determine whether genetic liability for ADHD, as measured by a well-validated ADHD polygenic risk score (ADHD-PRS), is associated with cognitive decline and the development of AD pathophysiology in cognitively unimpaired (CU) older adults. We calculated a weighted ADHD-PRS in 212 CU individuals without a clinical diagnosis of ADHD (55-90 years). These individuals had baseline amyloid-β (Aβ) positron emission tomography, longitudinal cerebrospinal fluid (CSF) phosphorylated tau at threonine 181 (p-tau181), magnetic resonance imaging, and cognitive assessments for up to 6 years. Linear mixed-effects models were used to test the association of ADHD-PRS with cognition and AD biomarkers. Higher ADHD-PRS was associated with greater cognitive decline over 6 years. The combined effect between high ADHD-PRS and brain Aβ deposition on cognitive deterioration was more significant than each individually. Additionally, higher ADHD-PRS was associated with increased CSF p-tau181 levels and frontoparietal atrophy in CU Aβ-positive individuals. Our results suggest that genetic liability for ADHD is associated with cognitive deterioration and the development of AD pathophysiology. Findings were mostly observed in Aβ-positive individuals, suggesting that the genetic liability for ADHD increases susceptibility to the harmful effects of Aβ pathology.
Collapse
Affiliation(s)
- Douglas T Leffa
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - João Pedro Ferrari-Souza
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Bellaver
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cécile Tissot
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroimaging Laboratory, McGill University, Montreal, Quebec, Canada
| | | | - Wagner S Brum
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arthur Caye
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Center for Innovation in Mental Health (CISM)/National Institute for Developmental Psychiatry (INPD), São Paulo, Brazil
| | - Jodie Lord
- Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | - Petroula Proitsi
- Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | - Thais Martins-Silva
- Human Development and Violence Research Centre (DOVE), Post-Graduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciana Tovo-Rodrigues
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University, Montreal, Quebec, Canada
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Pharmacology, Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Brooke S G Molina
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luis Augusto Rohde
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
- Center for Innovation in Mental Health (CISM)/National Institute for Developmental Psychiatry (INPD), São Paulo, Brazil.
- UniEduk, Indaiatuba, São Paulo, Brazil.
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Stocks J, Heywood A, Popuri K, Beg MF, Rosen H, Wang L. Longitudinal Spatial Relationships Between Atrophy and Hypometabolism Across the Alzheimer's Disease Continuum. J Alzheimers Dis 2023; 92:513-527. [PMID: 36776061 DOI: 10.3233/jad-220975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND The A/T/N framework allows for the assessment of pathology-specific markers of MRI-derived structural atrophy and hypometabolism on 18FDG-PET. However, how these measures relate to each other locally and distantly across pathology-defined A/T/N groups is currently unclear. OBJECTIVE To determine the regions of association between atrophy and hypometabolism in A/T/N groups both within and across time points. METHODS We examined multivariate multimodal neuroimaging relationships between MRI and 18FDG-PET among suspected non-Alzheimer's disease pathology (SNAP) (A-T/N+; n = 14), Amyloid Only (A+T-N-; n = 24) and Probable AD (A+T+N+; n = 77) groups. Sparse canonical correlation analyses were employed to model spatially disjointed regions of association between MRI and 18FDG-PET data. These relationships were assessed at three combinations of time points -cross-sectionally, between baseline visits and between month 12 (M-12) follow-up visits, as well as longitudinally between baseline and M-12 follow-up. RESULTS In the SNAP group, spatially overlapping relationships between atrophy and hypometabolism were apparent in the bilateral temporal lobes when both modalities were assessed at the M-12 timepoint. Amyloid-Only subjects showed spatially discordant distributed atrophy-hypometabolism relationships at all time points assessed. In Probable AD subjects, local correlations were evident in the bilateral temporal lobes when both modalities were assessed at baseline and at M-12. Across groups, hypometabolism at baseline correlated with non-local, or distant, atrophy at M-12. CONCLUSION These results support the view that local concordance of atrophy and hypometabolism is the result of a tau-mediated process driving neurodegeneration.
Collapse
Affiliation(s)
- Jane Stocks
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ashley Heywood
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karteek Popuri
- School of Engineering Science, Simon Fraser University, Canada.,Memorial University of Newfoundland, Department of Computer Science, St. John's, NL, Canada
| | | | - Howie Rosen
- School of Medicine, University of California, San Francisco, CA, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | |
Collapse
|
25
|
Hoenig MC, Drzezga A. Clear-headed into old age: Resilience and resistance against brain aging-A PET imaging perspective. J Neurochem 2023; 164:325-345. [PMID: 35226362 DOI: 10.1111/jnc.15598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
With the advances in modern medicine and the adaptation towards healthier lifestyles, the average life expectancy has doubled since the 1930s, with individuals born in the millennium years now carrying an estimated life expectancy of around 100 years. And even though many individuals around the globe manage to age successfully, the prevalence of aging-associated neurodegenerative diseases such as sporadic Alzheimer's disease has never been as high as nowadays. The prevalence of Alzheimer's disease is anticipated to triple by 2050, increasing the societal and economic burden tremendously. Despite all efforts, there is still no available treatment defeating the accelerated aging process as seen in this disease. Yet, given the advances in neuroimaging techniques that are discussed in the current Review article, such as in positron emission tomography (PET) or magnetic resonance imaging (MRI), pivotal insights into the heterogenous effects of aging-associated processes and the contribution of distinct lifestyle and risk factors already have and are still being gathered. In particular, the concepts of resilience (i.e. coping with brain pathology) and resistance (i.e. avoiding brain pathology) have more recently been discussed as they relate to mechanisms that are associated with the prolongation and/or even stop of the progressive brain aging process. Better understanding of the underlying mechanisms of resilience and resistance may one day, hopefully, support the identification of defeating mechanism against accelerating aging.
Collapse
Affiliation(s)
- Merle C Hoenig
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Alexander Drzezga
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany
| |
Collapse
|
26
|
Chen CD, Ponisio MR, Lang JA, Flores S, Schindler SE, Fagan AM, Morris JC, Benzinger TL. Comparing Tau PET Visual Interpretation with Tau PET Quantification, Cerebrospinal Fluid Biomarkers, and Longitudinal Clinical Assessment. J Alzheimers Dis 2023; 93:765-777. [PMID: 37092225 PMCID: PMC10200228 DOI: 10.3233/jad-230032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND 18F-flortaucipir PET received FDA approval to visualize aggregated neurofibrillary tangles (NFTs) in brains of adult patients with cognitive impairment being evaluated for Alzheimer's disease (AD). However, manufacturer's guidelines for visual interpretation of 18F-flortaucipir PET differ from how 18F-flortaucipir PET has been measured in research settings using standardized uptake value ratios (SUVRs). How visual interpretation relates to 18F-flortaucipir PET SUVR, cerebrospinal fluid (CSF) biomarkers, or longitudinal clinical assessment is not well understood. OBJECTIVE We compare various diagnostic methods in participants enrolled in longitudinal observational studies of aging and memory (n = 189, 23 were cognitively impaired). METHODS Participants had tau PET, Aβ PET, MRI, and clinical and cognitive evaluation within 18 months (n = 189); the majority (n = 144) also underwent lumbar puncture. Two radiologists followed manufacturer's guidelines for 18F-flortaucipir PET visual interpretation. RESULTS Visual interpretation had high agreement with SUVR (98.4%)and moderate agreement with CSF p-tau181 (86.1%). Two participants demonstrated 18F-flortaucipir uptake from meningiomas. Visual interpretation could not predict follow-up clinical assessment in 9.52% of cases. CONCLUSION Visual interpretation was highly consistent with SUVR (discordant participants had hemorrhagic infarcts or occipital-predominant AD NFT deposition) and moderately consistent with CSF p-tau181 (discordant participants had AD pathophysiology not detectable on tau PET). However, close association between AD NFT deposition and clinical onset in group-level studies does not necessarily hold at the individual level, with discrepancies arising from atypical AD, vascular dementia, or frontotemporal dementia. A better understanding of relationships across imaging, CSF biomarkers, and clinical assessment is needed to provide appropriate diagnoses for these individuals.
Collapse
Affiliation(s)
- Charles D. Chen
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Maria Rosana Ponisio
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan A. Lang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Shaney Flores
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Anne M. Fagan
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - John C. Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Tammie L.S. Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
27
|
Bullich S, Mueller A, De Santi S, Koglin N, Krause S, Kaplow J, Kanekiyo M, Roé-Vellvé N, Perrotin A, Jovalekic A, Scott D, Gee M, Stephens A, Irizarry M. Evaluation of tau deposition using 18F-PI-2620 PET in MCI and early AD subjects—a MissionAD tau sub-study. Alzheimers Res Ther 2022; 14:105. [PMID: 35897078 PMCID: PMC9327167 DOI: 10.1186/s13195-022-01048-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022]
Abstract
Background The ability of 18F-PI-2620 PET to measure the spatial distribution of tau pathology in Alzheimer’s disease (AD) has been demonstrated in previous studies. The objective of this work was to evaluate tau deposition using 18F-PI-2620 PET in beta-amyloid positive subjects with a diagnosis of mild cognitive impairment (MCI) or mild AD dementia and characterize it with respect to amyloid deposition, cerebrospinal fluid (CSF) assessment, hippocampal volume, and cognition. Methods Subjects with a diagnosis of MCI due to AD or mild AD dementia and a visually amyloid-positive 18F-florbetaben PET scan (n=74, 76 ± 7 years, 38 females) underwent a baseline 18F-PI-2620 PET, T1-weighted magnetic resonance imaging (MRI), CSF assessment (Aβ42/Aβ40 ratio, p-tau, t-tau) (n=22) and several cognitive tests. A 1-year follow-up 18F-PI-2620 PET scans and cognitive assessments were done in 15 subjects. Results Percentage of visually tau-positive scans increased with amyloid-beta deposition measured in 18F-florbetaben Centiloids (CL) (7.7% (<36 CL), 80% (>83 CL)). 18F-PI-2620 standardized uptake value ratio (SUVR) was correlated with increased 18F-florbetaben CL in several regions of interest. Elevated 18F-PI-2620 SUVR (fusiform gyrus) was associated to high CSF p-tau and t-tau (p=0.0006 and p=0.01, respectively). Low hippocampal volume was associated with increased tau load at baseline (p=0.006 (mesial temporal); p=0.01 (fusiform gyrus)). Significant increases in tau SUVR were observed after 12 months, particularly in the mesial temporal cortex, fusiform gyrus, and inferior temporal cortex (p=0.04, p=0.047, p=0.02, respectively). However, no statistically significant increase in amyloid-beta load was measured over the observation time. The MMSE (Recall score), ADAS-Cog14 (Word recognition score), and CBB (One-card learning score) showed the strongest association with tau deposition at baseline. Conclusions The findings support the hypothesis that 18F-PI-2620 PET imaging of neuropathologic tau deposits may reflect underlying neurodegeneration in AD with significant correlations with hippocampal volume, CSF biomarkers, and amyloid-beta load. Furthermore, quantifiable increases in 18F-PI-2620 SUVR over a 12-month period in regions with early tau deposition are consistent with the hypothesis that cortical tau is associated with cognitive impairment. This study supports the utility of 18F-PI-2620 PET to assess tau deposits in an early AD population. Quantifiable tau load and its corresponding increase in early AD cases could be a relevant target engagement marker in clinical trials of anti-amyloid and anti-tau agents. Trial registration Data used in this manuscript belong to a tau PET imaging sub-study of the elenbecestat MissionAD Phase 3 program registered in ClinicalTrials.gov (NCT02956486; NCT03036280). Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01048-x.
Collapse
|
28
|
Abstract
Alzheimer's disease (AD) characterization has progressed from being indexed using clinical symptomatology followed by neuropathological examination at autopsy to in vivo signatures using cerebrospinal fluid (CSF) biomarkers and positron emission tomography. The core AD biomarkers reflect amyloid-β plaques (A), tau pathology (T) and neurodegeneration (N), following the ATN schedule, and are now being introduced into clinical routine practice. This is an important development, as disease-modifying treatments are now emerging. Further, there are now reproducible data on CSF biomarkers which reflect synaptic pathology, neuroinflammation and common co-pathologies. In addition, the development of ultrasensitive techniques has enabled the core CSF biomarkers of AD pathophysiology to be translated to blood (e.g., phosphorylated tau, amyloid-β and neurofilament light). In this chapter, we review where we stand with both core and novel CSF biomarkers, as well as the explosion of data on blood biomarkers. Also, we discuss potential applications in research aiming to better understand the disease, as well as possible use in routine clinical practice and therapeutic trials.
Collapse
Affiliation(s)
- Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Anders Elmgren
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom; UK Dementia Research Institute, University College London, London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
29
|
van der Flier WM, Scheltens P. The ATN Framework—Moving Preclinical Alzheimer Disease to Clinical Relevance. JAMA Neurol 2022; 79:968-970. [DOI: 10.1001/jamaneurol.2022.2967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- EQT Life Sciences, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Cogswell PM, Wiste HJ, Mielke MM, Schwarz CG, Weigand SD, Lowe VJ, Therneau TM, Knopman DS, Graff-Radford J, Vemuri P, Senjem ML, Gunter JL, Algeciras-Schimnich A, Petersen RC, Jack CR. CSF phosphorylated tau as an indicator of subsequent tau accumulation. Neurobiol Aging 2022; 117:189-200. [PMID: 35764037 PMCID: PMC9361359 DOI: 10.1016/j.neurobiolaging.2022.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/19/2022]
Abstract
We evaluated the relationship between baseline CSF p-tau181 and the rate of tau PET change in the temporal meta-ROI and entorhinal cortex (ERC) and how it varied by amyloid level (CSF Aβ42 or amyloid PET) among 143 individuals from the Mayo Clinic Study of Aging and Mayo Alzheimer Disease Research Center. Higher CSF p-tau181, lower CSF Aβ42, and higher amyloid PET levels were associated with faster rates of tau PET change in both the temporal meta-ROI and ERC. In the temporal meta-ROI, longitudinal tau PET accumulation occurred primarily in participants with abnormal biomarker levels and a diagnosis of dementia, which supports the hypothesis that tau aggregation begins later in the disease process. Compared to the temporal meta-ROI, the ERC showed greater change in tau PET in non-demented participants but less change in later disease stages, supporting ERC as a more sensitive marker of early tau PET changes but with less dynamic range over the disease spectrum. We found both amyloid and CSF p-tau181 were associated with rates of tau PET change but there were some differences in associations by region, amyloid biomarker, and disease stage.
Collapse
Affiliation(s)
| | - Heather J Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Stephen D Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Terry M Therneau
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Information Technology, Mayo Clinic, Rochester, MN USA
| | | | | | - Ronald C Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
31
|
Zhao Y, Zhang J, Chen Y, Jiang J. A Novel Deep Learning Radiomics Model to Discriminate AD, MCI and NC: An Exploratory Study Based on Tau PET Scans from ADNI. Brain Sci 2022; 12:1067. [PMID: 36009130 PMCID: PMC9406185 DOI: 10.3390/brainsci12081067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We explored a novel model based on deep learning radiomics (DLR) to differentiate Alzheimer's disease (AD) patients, mild cognitive impairment (MCI) patients and normal control (NC) subjects. This model was validated in an exploratory study using tau positron emission tomography (tau-PET) scans. METHODS In this study, we selected tau-PET scans from the Alzheimer's Disease Neuroimaging Initiative database (ADNI), which included a total of 211 NC, 197 MCI, and 117 AD subjects. The dataset was divided into one training/validation group and one separate external group for testing. The proposed DLR model contained the following three steps: (1) pre-training of candidate deep learning models; (2) extraction and selection of DLR features; (3) classification based on support vector machine (SVM). In the comparative experiments, we compared the DLR model with three traditional models, including the SUVR model, traditional radiomics model, and a clinical model. Ten-fold cross-validation was carried out 200 times in the experiments. RESULTS Compared with other models, the DLR model achieved the best classification performance, with an accuracy of 90.76% ± 2.15% in NC vs. MCI, 88.43% ± 2.32% in MCI vs. AD, and 99.92% ± 0.51% in NC vs. AD. CONCLUSIONS Our proposed DLR model had the potential clinical value to discriminate AD, MCI and NC.
Collapse
Affiliation(s)
- Yan Zhao
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jieming Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jiehui Jiang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
- Institute of Biomedical Engineering, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
32
|
Dilcher R, Malpas CB, Walterfang M, Velakoulis D, O’Brien TJ, Vivash L. Sodium selenate as a therapeutic for tauopathies: A hypothesis paper. Front Aging Neurosci 2022; 14:915460. [PMID: 35992608 PMCID: PMC9389397 DOI: 10.3389/fnagi.2022.915460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
In a large proportion of individuals with fronto-temporal lobar degeneration (FTLD), the underlying pathology is associated with the misfolding and aggregation of the microtubule associated protein tau (FTLD-tau). With disease progression, widespread protein accumulation throughout cortical and subcortical brain regions may be responsible for neurodegeneration. One of the syndromes of FTLD is the behavioral variant of frontotemporal dementia (bvFTD), in which the underlying pathology is heterogenous, with half of the cases being related to FTLD-tau. Currently, there are no approved disease-modifying treatments for FTLD-tau, therefore representing a major unmet therapeutic need. These descriptive, preliminary findings of the phase 1 open-label trial provide data to support the potential of sodium selenate to halt the cognitive and behavioral decline, as well as to reduce tau levels in a small group of participants with bvFTD (N = 11). All participants were treated with sodium selenate over a period of 52 weeks. Cognition was assessed with the Neuropsychiatry Unit Cognitive Assessment Tool (NUCOG, total scores), social cognition with the Revised Self-Monitoring Scale (RSMS, total scores), behavior with the Cambridge Behavioral Inventory (CBI), and carer burden with the Caregiver Buden Scale (CBS). Fluid biomarker measures include cerebrospinal fluid of total tau (t-tau), phosphorylated tau (p-tau181), NfL, p-tau181/t-tau, t-tau/Aβ1-42, and p-tau181/Aβ1-42 levels. After treatment at follow-up, cognition and behavior showed further negative change (based on a reliable change criterion cut-off of annual NUCOG decline) in the "progressors," but not in the "non-progressors." "Non-progressors" also showed elevated baseline CSF tau levels and no increase after treatment, indicating underlying tau pathology and a positive response to sodium selenate treatment. Significant changes in MRI were not observed. The findings provide useful information for future clinical trials to systematically assess the disease-modifying treatment effects of sodium selenate in randomized controlled designs for bvFTD and FTLD-tau pathologies.
Collapse
Affiliation(s)
- Roxane Dilcher
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Charles B. Malpas
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine and Radiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Clinical Outcomes Research Unit (CORe), Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Psychiatry and Melbourne Neuropsychiatry Center, University of Melbourne, Melbourne, VIC, Australia
| | - Dennis Velakoulis
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Psychiatry and Melbourne Neuropsychiatry Center, University of Melbourne, Melbourne, VIC, Australia
| | - Terence J. O’Brien
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine and Radiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
| | - Lucy Vivash
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine and Radiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Mohamed AZ, Cumming P, Nasrallah FA. Escalation of Tau Accumulation after a Traumatic Brain Injury: Findings from Positron Emission Tomography. Brain Sci 2022; 12:876. [PMID: 35884683 PMCID: PMC9313362 DOI: 10.3390/brainsci12070876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury (TBI) has come to be recognized as a risk factor for Alzheimer's disease (AD), with poorly understood underlying mechanisms. We hypothesized that a history of TBI would be associated with greater tau deposition in elders with high-risk for dementia. A Groups of 20 participants with self-reported history of TBI and 100 without any such history were scanned using [18F]-AV1451 positron emission tomography as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Scans were stratified into four groups according to TBI history, and by clinical dementia rating scores into cognitively normal (CDR = 0) and those showing cognitive decline (CDR ≥ 0.5). We pursued voxel-based group comparison of [18F]-AV1451 uptake to identify the effect of TBI history on brain tau deposition, and for voxel-wise correlation analyses between [18F]-AV1451 uptake and different neuropsychological measures and cerebrospinal fluid (CSF) biomarkers. Compared to the TBI-/CDR ≥ 0.5 group, the TBI+/CDR ≥ 0.5 group showed increased tau deposition in the temporal pole, hippocampus, fusiform gyrus, and inferior and middle temporal gyri. Furthermore, the extent of tau deposition in the brain of those with TBI history positively correlated with the extent of cognitive decline, CSF-tau, and CSF-amyloid. This might suggest TBI to increase the risk for tauopathies and Alzheimer's disease later in life.
Collapse
Affiliation(s)
- Abdalla Z. Mohamed
- Thompson Institute, University of Sunshine Coast, Birtinya, QLD 4575, Australia;
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, 3010 Bern, Switzerland;
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Fatima A. Nasrallah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
34
|
Tau as a Biomarker of Neurodegeneration. Int J Mol Sci 2022; 23:ijms23137307. [PMID: 35806324 PMCID: PMC9266883 DOI: 10.3390/ijms23137307] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Less than 50 years since tau was first isolated from a porcine brain, its detection in femtolitre concentrations in biological fluids is revolutionizing the diagnosis of neurodegenerative diseases. This review highlights the molecular and technological advances that have catapulted tau from obscurity to the forefront of biomarker diagnostics. Comprehensive updates are provided describing the burgeoning clinical applications of tau as a biomarker of neurodegeneration. For the clinician, tau not only enhances diagnostic accuracy, but holds promise as a predictor of clinical progression, phenotype, and response to drug therapy. For patients living with neurodegenerative disorders, characterization of tau dysregulation could provide much-needed clarity to a notoriously murky diagnostic landscape.
Collapse
|
35
|
Lagarde J, Olivieri P, Tonietto M, Tissot C, Rivals I, Gervais P, Caillé F, Moussion M, Bottlaender M, Sarazin M. Tau-PET imaging predicts cognitive decline and brain atrophy progression in early Alzheimer's disease. J Neurol Neurosurg Psychiatry 2022; 93:459-467. [PMID: 35228270 DOI: 10.1136/jnnp-2021-328623] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To explore whether regional tau binding measured at baseline is associated with the rapidity of Alzheimer's disease (AD) progression over 2 years, as assessed by the decline in specified cognitive domains, and the progression of regional brain atrophy, in comparison with amyloid-positron emission tomography (PET), MRI and cerebrospinal fluid (CSF) biomarkers. METHODS Thirty-six patients with AD (positive CSF biomarkers and amyloid-PET) and 15 controls underwent a complete neuropsychological assessment, 3T brain MRI, [11C]-PiB and [18F]-flortaucipir PET imaging, and were monitored annually over 2 years, with a second brain MRI after 2 years. We used mixed effects models to explore the relations between tau-PET, amyloid-PET, CSF biomarkers and MRI at baseline and cognitive decline and the progression of brain atrophy over 2 years in patients with AD. RESULTS Baseline tau-PET was strongly associated with the subsequent cognitive decline in regions that are usually associated with each cognitive domain. No significant relationship was observed between the cognitive decline and initial amyloid load, regional cortical atrophy or CSF biomarkers. Baseline tau tracer binding in the superior temporal gyrus was associated with subsequent atrophy in an inferomedial temporal volume of interest, as was the voxelwise tau tracer binding with subsequent cortical atrophy in the superior temporal, parietal and frontal association cortices. CONCLUSIONS These results suggest that tau tracer binding is predictive of cognitive decline in AD in domain-specific brain areas, which provides important insights into the interaction between tau burden and neurodegeneration, and is of the utmost importance to develop new prognostic markers that will help improve the design of therapeutic trials.
Collapse
Affiliation(s)
- Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France .,Université de Paris, Paris, France.,Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| | - Pauline Olivieri
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France.,Université de Paris, Paris, France.,Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| | - Matteo Tonietto
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| | - Cecile Tissot
- McGill University Research Centre for Studies in Aging, Montreal, Quebec, Canada
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, INSERM, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 10 rue Vauquelin, Paris, France
| | - Philippe Gervais
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| | - Fabien Caillé
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| | - Martin Moussion
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France.,Centre d'évaluation Troubles Psychiques et Vieillissement, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Michel Bottlaender
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France.,Université Paris-Saclay, UNIACT, Neurospin, Joliot Institute, CEA, Gif sur Yvette, France
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France.,Université de Paris, Paris, France.,Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| |
Collapse
|
36
|
Stocks J, Popuri K, Heywood A, Tosun D, Alpert K, Beg MF, Rosen H, Wang L. Network-wise concordance of multimodal neuroimaging features across the Alzheimer's disease continuum. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12304. [PMID: 35496375 PMCID: PMC9043119 DOI: 10.1002/dad2.12304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 01/18/2023]
Abstract
Background Concordance between cortical atrophy and cortical glucose hypometabolism within distributed brain networks was evaluated among cerebrospinal fluid (CSF) biomarker-defined amyloid/tau/neurodegeneration (A/T/N) groups. Method We computed correlations between cortical thickness and fluorodeoxyglucose metabolism within 12 functional brain networks. Differences among A/T/N groups (biomarker normal [BN], Alzheimer's disease [AD] continuum, suspected non-AD pathologic change [SNAP]) in network concordance and relationships to longitudinal change in cognition were assessed. Results Network-wise markers of concordance distinguish SNAP subjects from BN subjects within the posterior multimodal and language networks. AD-continuum subjects showed increased concordance in 9/12 networks assessed compared to BN subjects, as well as widespread atrophy and hypometabolism. Baseline network concordance was associated with longitudinal change in a composite memory variable in both SNAP and AD-continuum subjects. Conclusions Our novel study investigates the interrelationships between atrophy and hypometabolism across brain networks in A/T/N groups, helping disentangle the structure-function relationships that contribute to both clinical outcomes and diagnostic uncertainty in AD.
Collapse
Affiliation(s)
- Jane Stocks
- Department of Psychiatry and Behavioral SciencesFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Karteek Popuri
- School of Engineering ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Ashley Heywood
- Department of Psychiatry and Behavioral SciencesFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Duygu Tosun
- School of MedicineUniversity of CaliforniaSan Francisco, CaliforniaUSA
| | - Kate Alpert
- Department of Psychiatry and Behavioral SciencesFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Mirza Faisal Beg
- School of Engineering ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Howard Rosen
- School of MedicineUniversity of CaliforniaSan Francisco, CaliforniaUSA
| | - Lei Wang
- Department of Psychiatry and Behavioral SciencesFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of Psychiatry and Behavioral HealthOhio State University Wexner Medical CenterColumbusOhioUSA
| | | |
Collapse
|
37
|
Ebenau JL, Pelkmans W, Verberk IMW, Verfaillie SCJ, van den Bosch KA, van Leeuwenstijn M, Collij LE, Scheltens P, Prins ND, Barkhof F, van Berckel BNM, Teunissen CE, van der Flier WM. Association of CSF, Plasma, and Imaging Markers of Neurodegeneration With Clinical Progression in People With Subjective Cognitive Decline. Neurology 2022; 98:e1315-e1326. [PMID: 35110378 PMCID: PMC8967429 DOI: 10.1212/wnl.0000000000200035] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Multiple biomarkers have been suggested to measure neurodegeneration (N) in the AT(N) framework, leading to inconsistencies between studies. We investigated the association of 5 N biomarkers with clinical progression and cognitive decline in individuals with subjective cognitive decline (SCD). METHODS We included individuals with SCD from the Amsterdam Dementia Cohort and SCIENCe project, a longitudinal cohort study (follow-up 4±3 years). We used the following N biomarkers: CSF total tau (t-tau), medial temporal atrophy visual rating on MRI, hippocampal volume (HV), serum neurofilament light (NfL), and serum glial fibrillary acidic protein (GFAP). We determined correlations between biomarkers. We assessed associations between N biomarkers and clinical progression to mild cognitive impairment or dementia (Cox regression) and Mini-Mental State Examination (MMSE) over time (linear mixed models). Models included age, sex, CSF β-amyloid (Aβ) (A), and CSF p-tau (T) as covariates, in addition to the N biomarker. RESULT We included 401 individuals (61±9 years, 42% female, MMSE 28 ± 2, vascular comorbidities 8%-19%). N biomarkers were modestly to moderately correlated (range r -0.28 - 0.58). Serum NfL and GFAP correlated most strongly (r 0.58, p < 0.01). T-tau was strongly correlated with p-tau (r 0.89, p < 0.01), although these biomarkers supposedly represent separate biomarker groups. All N biomarkers individually predicted clinical progression, but only HV, NfL, and GFAP added predictive value beyond Aβ and p-tau (hazard ratio 1.52 [95% CI 1.11-2.09]; 1.51 [1.05-2.17]; 1.50 [1.04-2.15]). T-tau, HV, and GFAP individually predicted MMSE slope (range β -0.17 to -0.11, p < 0.05), but only HV remained associated beyond Aβ and p-tau (β -0.13 [SE 0.04]; p < 0.05). DISCUSSION In cognitively unimpaired older adults, correlations between different N biomarkers were only moderate, indicating they reflect different aspects of neurodegeneration and should not be used interchangeably. T-tau was strongly associated with p-tau (T), which makes it less desirable to use as a measure for N. HV, NfL, and GFAP predicted clinical progression beyond A and T. Our results do not allow to choose one most suitable biomarker for N, but illustrate the added prognostic value of N beyond A and T. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that HV, NfL, and GFAP predicted clinical progression beyond A and T in individuals with SCD.
Collapse
Affiliation(s)
- Jarith L Ebenau
- From the Alzheimer Center, Departments of Neurology (J.L.E., W.P., I.M.W.V., K.A.v.d.B., M.v.L., P.S., N.D.P., B.N.M.v.B., W.M.V.d.F.) and Radiology & Nuclear Medicine (S.C.J.V., L.E.C., F.B., B.N.M.v.B.), Amsterdam Neuroscience, and Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; and UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK.
| | - Wiesje Pelkmans
- From the Alzheimer Center, Departments of Neurology (J.L.E., W.P., I.M.W.V., K.A.v.d.B., M.v.L., P.S., N.D.P., B.N.M.v.B., W.M.V.d.F.) and Radiology & Nuclear Medicine (S.C.J.V., L.E.C., F.B., B.N.M.v.B.), Amsterdam Neuroscience, and Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; and UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK
| | - Inge M W Verberk
- From the Alzheimer Center, Departments of Neurology (J.L.E., W.P., I.M.W.V., K.A.v.d.B., M.v.L., P.S., N.D.P., B.N.M.v.B., W.M.V.d.F.) and Radiology & Nuclear Medicine (S.C.J.V., L.E.C., F.B., B.N.M.v.B.), Amsterdam Neuroscience, and Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; and UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK
| | - Sander C J Verfaillie
- From the Alzheimer Center, Departments of Neurology (J.L.E., W.P., I.M.W.V., K.A.v.d.B., M.v.L., P.S., N.D.P., B.N.M.v.B., W.M.V.d.F.) and Radiology & Nuclear Medicine (S.C.J.V., L.E.C., F.B., B.N.M.v.B.), Amsterdam Neuroscience, and Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; and UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK
| | - Karlijn A van den Bosch
- From the Alzheimer Center, Departments of Neurology (J.L.E., W.P., I.M.W.V., K.A.v.d.B., M.v.L., P.S., N.D.P., B.N.M.v.B., W.M.V.d.F.) and Radiology & Nuclear Medicine (S.C.J.V., L.E.C., F.B., B.N.M.v.B.), Amsterdam Neuroscience, and Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; and UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK
| | - Mardou van Leeuwenstijn
- From the Alzheimer Center, Departments of Neurology (J.L.E., W.P., I.M.W.V., K.A.v.d.B., M.v.L., P.S., N.D.P., B.N.M.v.B., W.M.V.d.F.) and Radiology & Nuclear Medicine (S.C.J.V., L.E.C., F.B., B.N.M.v.B.), Amsterdam Neuroscience, and Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; and UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK
| | - Lyduine E Collij
- From the Alzheimer Center, Departments of Neurology (J.L.E., W.P., I.M.W.V., K.A.v.d.B., M.v.L., P.S., N.D.P., B.N.M.v.B., W.M.V.d.F.) and Radiology & Nuclear Medicine (S.C.J.V., L.E.C., F.B., B.N.M.v.B.), Amsterdam Neuroscience, and Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; and UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK
| | - Philip Scheltens
- From the Alzheimer Center, Departments of Neurology (J.L.E., W.P., I.M.W.V., K.A.v.d.B., M.v.L., P.S., N.D.P., B.N.M.v.B., W.M.V.d.F.) and Radiology & Nuclear Medicine (S.C.J.V., L.E.C., F.B., B.N.M.v.B.), Amsterdam Neuroscience, and Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; and UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK
| | - Niels D Prins
- From the Alzheimer Center, Departments of Neurology (J.L.E., W.P., I.M.W.V., K.A.v.d.B., M.v.L., P.S., N.D.P., B.N.M.v.B., W.M.V.d.F.) and Radiology & Nuclear Medicine (S.C.J.V., L.E.C., F.B., B.N.M.v.B.), Amsterdam Neuroscience, and Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; and UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK
| | - Frederik Barkhof
- From the Alzheimer Center, Departments of Neurology (J.L.E., W.P., I.M.W.V., K.A.v.d.B., M.v.L., P.S., N.D.P., B.N.M.v.B., W.M.V.d.F.) and Radiology & Nuclear Medicine (S.C.J.V., L.E.C., F.B., B.N.M.v.B.), Amsterdam Neuroscience, and Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; and UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK
| | - Bart N M van Berckel
- From the Alzheimer Center, Departments of Neurology (J.L.E., W.P., I.M.W.V., K.A.v.d.B., M.v.L., P.S., N.D.P., B.N.M.v.B., W.M.V.d.F.) and Radiology & Nuclear Medicine (S.C.J.V., L.E.C., F.B., B.N.M.v.B.), Amsterdam Neuroscience, and Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; and UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK
| | - Charlotte E Teunissen
- From the Alzheimer Center, Departments of Neurology (J.L.E., W.P., I.M.W.V., K.A.v.d.B., M.v.L., P.S., N.D.P., B.N.M.v.B., W.M.V.d.F.) and Radiology & Nuclear Medicine (S.C.J.V., L.E.C., F.B., B.N.M.v.B.), Amsterdam Neuroscience, and Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; and UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK
| | - Wiesje M van der Flier
- From the Alzheimer Center, Departments of Neurology (J.L.E., W.P., I.M.W.V., K.A.v.d.B., M.v.L., P.S., N.D.P., B.N.M.v.B., W.M.V.d.F.) and Radiology & Nuclear Medicine (S.C.J.V., L.E.C., F.B., B.N.M.v.B.), Amsterdam Neuroscience, and Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; and UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK
| |
Collapse
|
38
|
Putcha D, Eckbo R, Katsumi Y, Dickerson BC, Touroutoglou A, Collins JA. Tau and the fractionated default mode network in atypical Alzheimer's disease. Brain Commun 2022; 4:fcac055. [PMID: 35356035 PMCID: PMC8963312 DOI: 10.1093/braincomms/fcac055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease-related atrophy in the posterior cingulate cortex, a key node of the default mode network, is present in the early stages of disease progression across clinical phenotypic variants of the disease. In the typical amnestic variant, posterior cingulate cortex neuropathology has been linked with disrupted connectivity of the posterior default mode network, but it remains unclear if this relationship is observed across atypical variants of Alzheimer's disease. In the present study, we first sought to determine if tau pathology is consistently present in the posterior cingulate cortex and other posterior nodes of the default mode network across the atypical Alzheimer's disease syndromic spectrum. Second, we examined functional connectivity disruptions within the default mode network and sought to determine if tau pathology is related to functional disconnection within this network. We studied a sample of 25 amyloid-positive atypical Alzheimer's disease participants examined with high-resolution MRI, tau (18F-AV-1451) PET, and resting-state functional MRI. In these patients, high levels of tau pathology in the posteromedial cortex and hypoconnectivity between temporal and parietal nodes of the default mode network were observed relative to healthy older controls. Furthermore, higher tau signal and reduced grey matter density in the posterior cingulate cortex and angular gyrus were associated with reduced parietal functional connectivity across individual patients, related to poorer cognitive scores. Our findings converge with what has been reported in amnestic Alzheimer's disease, and together these observations offer a unifying mechanistic feature that relates posterior cingulate cortex tau deposition to aberrant default mode network connectivity across heterogeneous clinical phenotypes of Alzheimer's disease.
Collapse
Affiliation(s)
- Deepti Putcha
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ryan Eckbo
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuta Katsumi
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bradford C. Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Alzheimer’s Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica A. Collins
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Hong J, Kang SK, Alberts I, Lu J, Sznitman R, Lee JS, Rominger A, Choi H, Shi K. Image-level trajectory inference of tau pathology using variational autoencoder for Flortaucipir PET. Eur J Nucl Med Mol Imaging 2022; 49:3061-3072. [PMID: 35226120 PMCID: PMC9250490 DOI: 10.1007/s00259-021-05662-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
Purpose Alzheimer’s disease (AD) studies revealed that abnormal deposition of tau spreads in a specific spatial pattern, namely Braak stage. However, Braak staging is based on post mortem brains, each of which represents the cross section of the tau trajectory in disease progression, and numerous studies were reported that do not conform to that model. This study thus aimed to identify the tau trajectory and quantify the tau progression in a data-driven approach with the continuous latent space learned by variational autoencoder (VAE). Methods A total of 1080 [18F]Flortaucipir brain positron emission tomography (PET) images were collected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. VAE was built to compress the hidden features from tau images in latent space. Hierarchical agglomerative clustering and minimum spanning tree (MST) were applied to organize the features and calibrate them to the tau progression, thus deriving pseudo-time. The image-level tau trajectory was inferred by continuously sampling across the calibrated latent features. We assessed the pseudo-time with regard to tau standardized uptake value ratio (SUVr) in AD-vulnerable regions, amyloid deposit, glucose metabolism, cognitive scores, and clinical diagnosis. Results We identified four clusters that plausibly capture certain stages of AD and organized the clusters in the latent space. The inferred tau trajectory agreed with the Braak staging. According to the derived pseudo-time, tau first deposits in the parahippocampal and amygdala, and then spreads to the fusiform, inferior temporal lobe, and posterior cingulate. Prior to the regional tau deposition, amyloid accumulates first. Conclusion The spatiotemporal trajectory of tau progression inferred in this study was consistent with Braak staging. The profile of other biomarkers in disease progression agreed well with previous findings. We addressed that this approach additionally has the potential to quantify tau progression as a continuous variable by taking a whole-brain tau image into account. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05662-z.
Collapse
Affiliation(s)
- Jimin Hong
- Department of Nuclear Medicine, Inselspital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
- ARTORG Center, University of Bern, Bern, Switzerland
| | - Seung Kwan Kang
- Department of Nuclear Medicine, Seoul National University Hospital, 28 Yeon Gun, Jong Ro, Seoul, Republic of Korea
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Jiaying Lu
- Department of Nuclear Medicine, Inselspital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University Hospital, 28 Yeon Gun, Jong Ro, Seoul, Republic of Korea
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, 28 Yeon Gun, Jong Ro, Seoul, Republic of Korea
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
- Department of Informatics, Technical University of Munich, Munich, Germany
| | | |
Collapse
|
40
|
Tau proteins in blood as biomarkers of Alzheimer's disease and other proteinopathies. J Neural Transm (Vienna) 2022; 129:239-259. [PMID: 35175385 DOI: 10.1007/s00702-022-02471-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, is characterized neuropathologically by extracellular Aβ plaques and intracellular tau neurofibrillary tangles. While in AD tau pathology probably follows early alterations in Aβ metabolism, it develops independently in the so-called primary tauopathies, the main form being frontotemporal lobar degeneration with tau pathology. Tau pathology in AD brain is reflected in the cerebrospinal fluid (CSF) by elevated levels of the two AD tau biomarkers total and phosphorylated tau, which are now used for routine diagnostic purposes. On the contrary, no established neurochemical biomarkers exist for tau pathology in primary tauopathies. Thanks to recent technological advances, total and phosphorylated tau can now be quantified also on peripheral blood, and accumulating evidence shows that measurement of plasma phosphorylated tau species (P-tau181, P-tau217, and P-tau231) has high performances in discriminating AD patients from cognitively unimpaired subjects but also from patients with other dementias. Moreover, plasma P-tau levels are associated with tracer uptake on tau- and amyloid-PET as well as with brain atrophy, cognitive measures and longitudinal changes of these parameters. These features, together with the low invasiveness, scalability, and ease of longitudinal sampling, which differentiate plasma P-tau species from their CSF counterparts, make these proteins promising peripheral biomarkers for AD in both research and clinical setting. This review discusses the recent developments in the field of plasma tau proteins as diagnostic, pathophysiological and prognostic biomarkers of Alzheimer's disease; additional findings from the fields of genetic forms of AD and of non-AD proteinopathies are also summarized.
Collapse
|
41
|
Kreisl WC, Lao PJ, Johnson A, Tomljanovic Z, Klein J, Polly K, Maas B, Laing KK, Chesebro AG, Igwe K, Razlighi QR, Honig LS, Yan X, Lee S, Mintz A, Luchsinger JA, Stern Y, Devanand DP, Brickman AM. Patterns of tau pathology identified with 18 F-MK-6240 PET imaging. Alzheimers Dement 2022; 18:272-282. [PMID: 34057284 PMCID: PMC8630090 DOI: 10.1002/alz.12384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Positron emission tomography (PET) imaging for neurofibrillary tau allows investigation of the in vivo spatiotemporal progression of Alzheimer's disease (AD) pathology. We evaluated the suitability of 18 F-MK-6240 in a clinical sample and determined the relationships among 18 F-MK-6240 binding, age, cognition, and cerebrospinal fluid (CSF)-based AD biomarkers. METHODS Participants (n = 101, 72 ± 9 years, 52% women) underwent amyloid PET, tau PET, structural T1-weighted magnetic resonance imaging, and neuropsychological evaluation. Twenty-one participants had lumbar puncture for CSF measurement of amyloid beta (Aβ)42 , tau, and phosphorylated tau (p-tau). RESULTS 18 F-MK-6240 recapitulated Braak staging and correlated with CSF tau and p-tau, normalized to Aβ42 . 18 F-MK-6240 negatively correlated with age across Braak regions in amyloid-positive participants, consistent with greater tau pathology in earlier onset AD. Domain-specific, regional patterns of 18 F-MK-6240 binding were associated with reduced memory, executive, and language performance, but only in amyloid-positive participants. DISCUSSION 18 F-MK-6240 can approximate Braak staging across the AD continuum and provide region-dependent insights into biomarker-based AD models.
Collapse
Affiliation(s)
- William Charles Kreisl
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Patrick J Lao
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Aubrey Johnson
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Zeljko Tomljanovic
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Julia Klein
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Krista Polly
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Benjamin Maas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Krystal K Laing
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Anthony G Chesebro
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Kay Igwe
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | | | - Lawrence S Honig
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Xinyu Yan
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Seonjoo Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
- Division of Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - José A Luchsinger
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - Yaakov Stern
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - D P Devanand
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Adam M Brickman
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| |
Collapse
|
42
|
Ashton NJ, Benedet AL, Pascoal TA, Karikari TK, Lantero-Rodriguez J, Brum WS, Mathotaarachchi S, Therriault J, Savard M, Chamoun M, Stoops E, Francois C, Vanmechelen E, Gauthier S, Zimmer ER, Zetterberg H, Blennow K, Rosa-Neto P. Cerebrospinal fluid p-tau231 as an early indicator of emerging pathology in Alzheimer's disease. EBioMedicine 2022; 76:103836. [PMID: 35158308 PMCID: PMC8850760 DOI: 10.1016/j.ebiom.2022.103836] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Phosphorylated tau (p-tau) epitopes in cerebrospinal fluid (CSF) are accurate biomarkers for a pathological and clinical diagnosis of Alzheimer's disease (AD) and are seen to be increased in preclinical stage of the disease. However, it is unknown if these increases transpire earlier, prior to amyloid-beta (Aβ) positivity as determined by position emission tomography (PET), and if an ordinal sequence of p-tau epitopes occurs at this incipient phase METHODS: We measured CSF concentrations of p-tau181, p-tau217 and p-tau231 in 171 participants across the AD continuum who had undergone Aβ ([18F]AZD4694) and tau ([18F]MK6240) position emission tomography (PET) and clinical assessment FINDINGS: All CSF p-tau biomarkers were accurate predictors of cognitive impairment but CSF p-tau217 demonstrated the largest fold-changes in AD patients in comparison to non-AD dementias and cognitively unimpaired individuals. CSF p-tau231 and p-tau217 predicted Aβ and tau to a similar degree but p-tau231 attained abnormal levels first. P-tau231 was sensitive to the earliest changes of Aβ in the medial orbitofrontal, precuneus and posterior cingulate before global Aβ PET positivity was reached INTERPRETATION: We demonstrate that CSF p-tau231 increases early in development of AD pathology and is a principal candidate for detecting incipient Aβ pathology for therapeutic trial application FUNDING: Canadian Institutes of Health Research (CIHR), Canadian Consortium of Neurodegeneration and Aging, Weston Brain Institute, Brain Canada Foundation, the Fonds de Recherche du Québec.
Collapse
Affiliation(s)
- Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada; Department of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Erik Stoops
- ADx NeuroSciences, Technologiepark 94, Ghent 9052, Belgium
| | - Cindy Francois
- ADx NeuroSciences, Technologiepark 94, Ghent 9052, Belgium
| | | | - Serge Gauthier
- McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada; Department of Neurology and Neurosurgery, Director of the McGill University Research Centre for Studies in Aging, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Pharmacology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Director of the McGill University Research Centre for Studies in Aging, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Montreal Neurological Institute, Montreal, QC, Canada.
| |
Collapse
|
43
|
Leuzy A, Mattsson‐Carlgren N, Palmqvist S, Janelidze S, Dage JL, Hansson O. Blood-based biomarkers for Alzheimer's disease. EMBO Mol Med 2022; 14:e14408. [PMID: 34859598 PMCID: PMC8749476 DOI: 10.15252/emmm.202114408] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/01/2022] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) represent a mounting public health challenge. As these diseases are difficult to diagnose clinically, biomarkers of underlying pathophysiology are playing an ever-increasing role in research, clinical trials, and in the clinical work-up of patients. Though cerebrospinal fluid (CSF) and positron emission tomography (PET)-based measures are available, their use is not widespread due to limitations, including high costs and perceived invasiveness. As a result of rapid advances in the development of ultra-sensitive assays, the levels of pathological brain- and AD-related proteins can now be measured in blood, with recent work showing promising results. Plasma P-tau appears to be the best candidate marker during symptomatic AD (i.e., prodromal AD and AD dementia) and preclinical AD when combined with Aβ42/Aβ40. Though not AD-specific, blood NfL appears promising for the detection of neurodegeneration and could potentially be used to detect the effects of disease-modifying therapies. This review provides an overview of the progress achieved thus far using AD blood-based biomarkers, highlighting key areas of application and unmet challenges.
Collapse
Affiliation(s)
- Antoine Leuzy
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
| | - Niklas Mattsson‐Carlgren
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Department of NeurologySkåne University HospitalLundSweden
- Wallenberg Centre for Molecular MedicineLund UniversityLundSweden
| | - Sebastian Palmqvist
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Shorena Janelidze
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
| | - Jeffrey L Dage
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisINUSA
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Memory ClinicSkåne University HospitalLundSweden
| |
Collapse
|
44
|
Vogt NM, Hunt JFV, Adluru N, Ma Y, Van Hulle CA, Dean DC, Kecskemeti SR, Chin NA, Carlsson CM, Asthana S, Johnson SC, Kollmorgen G, Batrla R, Wild N, Buck K, Zetterberg H, Alexander AL, Blennow K, Bendlin BB. Interaction of amyloid and tau on cortical microstructure in cognitively unimpaired adults. Alzheimers Dement 2022; 18:65-76. [PMID: 33984184 PMCID: PMC8589921 DOI: 10.1002/alz.12364] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Neurite orientation dispersion and density imaging (NODDI), a multi-compartment diffusion-weighted imaging (DWI) model, may be useful for detecting early cortical microstructural alterations in Alzheimer's disease prior to cognitive impairment. METHODS Using neuroimaging (NODDI and T1-weighted magnetic resonance imaging [MRI]) and cerebrospinal fluid (CSF) biomarker data (measured using Elecsys® CSF immunoassays) from 219 cognitively unimpaired participants, we tested the main and interactive effects of CSF amyloid beta (Aβ)42 /Aβ40 and phosphorylated tau (p-tau) on cortical NODDI metrics and cortical thickness, controlling for age, sex, and apolipoprotein E ε4. RESULTS We observed a significant CSF Aβ42 /Aβ40 × p-tau interaction on cortical neurite density index (NDI), but not orientation dispersion index or cortical thickness. The directionality of these interactive effects indicated: (1) among individuals with lower CSF p-tau, greater amyloid burden was associated with higher cortical NDI; and (2) individuals with greater amyloid and p-tau burden had lower cortical NDI, consistent with cortical neurodegenerative changes. DISCUSSION NDI is a particularly sensitive marker for early cortical changes that occur prior to gross atrophy or development of cognitive impairment.
Collapse
Affiliation(s)
- Nicholas M. Vogt
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jack F. V. Hunt
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nagesh Adluru
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Yue Ma
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Carol A. Van Hulle
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Douglas C. Dean
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Steven R. Kecskemeti
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathaniel A. Chin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Cynthia M. Carlsson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | | | - Richard Batrla
- Roche Diagnostics International AG, Rotkreuz, Switzerland
| | | | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at University College London, London, UK
| | - Andrew L. Alexander
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Barbara B. Bendlin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
45
|
Nuño MM, Grill JD, Gillen DL. On the design of early-phase Alzheimer's disease clinical trials with cerebrospinal fluid tau outcomes. Clin Trials 2021; 18:714-723. [PMID: 34325548 PMCID: PMC8595611 DOI: 10.1177/17407745211034497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND/AIMS The focus of Alzheimer's disease studies has shifted to earlier disease stages, including mild cognitive impairment. Biomarker inclusion criteria are often incorporated into mild cognitive impairment clinical trials to identify individuals with "prodromal Alzheimer's disease" to ensure appropriate drug targets and enrich for participants likely to develop Alzheimer's disease dementia. The use of these eligibility criteria may affect study power. METHODS We investigated outcome variability and study power in the setting of proof-of-concept prodromal Alzheimer's disease trials that incorporate cerebrospinal fluid levels of total tau (t-tau) and phosphorylated (p-tau) as primary outcomes and how differing biomarker inclusion criteria affect power. We used data from the Alzheimer's Disease Neuroimaging Initiative to model trial scenarios and to estimate the variance and within-subject correlation of total and phosphorylated tau. These estimates were then used to investigate the differences in study power for trials considering these two surrogate outcomes. RESULTS Patient characteristics were similar for all eligibility criteria. The lowest outcome variance and highest within-subject correlation were obtained when phosphorylated tau was used as an eligibility criterion, compared to amyloid beta or total tau, regardless of whether total tau or phosphorylated tau were used as primary outcomes. Power increased when eligibility criteria were broadened to allow for enrollment of subjects with either low amyloid beta or high phosphorylated tau. CONCLUSION Specific biomarker inclusion criteria may impact statistical power in trials using total tau or phosphorylated tau as the primary outcome. In concert with other important considerations such as treatment target and population of clinical interest, these results may have implications to the integrity and efficiency of prodromal Alzheimer's disease trial designs.
Collapse
Affiliation(s)
- Michelle M. Nuño
- Children’s Oncology Group, Monrovia, CA, USA
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua D. Grill
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Daniel L. Gillen
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Department of Statistics, University of California, Irvine, Irvine, CA, USA
| | | |
Collapse
|
46
|
Pejčić A, Janković SM, Đešević M, Gojak R, Lukić S, Marković N, Milosavljević M. Novel and emerging therapeutics for genetic epilepsies. Expert Rev Neurother 2021; 21:1283-1301. [PMID: 34633254 DOI: 10.1080/14737175.2021.1992275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Disease-specific treatments are available only for a minority of patients with genetic epilepsies, while the rest are treated with anticonvulsants, which are ineffective in almost one-third of patients. AREAS COVERED Recently approved and the most effective emerging therapeutics under development for the treatment of genetic epilepsies are overviewed after systematic search and analysis of relevant literature. EXPERT OPINION New and emerging drugs for genetic epilepsies exploit one of the two approaches: inhibiting hyperactive brain foci through blocking excitatory or augmenting inhibitory neurotransmission, or correcting the underlying genetic defect. The first is limited by insufficient selectivity of available compounds, and the second by imperfection of currently used vectors of genetic material, unselective and transient transgene expression. Besides, the treatment may come too late, after structural abnormalities and epilepsy deterioration takes place. However, with recent improvements, we can expect to see soon gradual decline in the number of patients with therapy-resistant genetic epilepsies.
Collapse
Affiliation(s)
- Ana Pejčić
- University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | | | - Miralem Đešević
- Private Policlinic Center Eurofar Sarajevo, Cardiology Department, Sarajevo, Bosnia and Herzegovina
| | - Refet Gojak
- Infectious diseases Clinic, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Snežana Lukić
- University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | - Nenad Marković
- University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | | |
Collapse
|
47
|
Therriault J, Benedet AL, Pascoal TA, Mathotaarachchi S, Savard M, Chamoun M, Thomas E, Kang MS, Lussier F, Tissot C, Soucy JP, Massarweh G, Rej S, Saha-Chaudhuri P, Poirier J, Gauthier S, Rosa-Neto P. APOEε4 potentiates the relationship between amyloid-β and tau pathologies. Mol Psychiatry 2021; 26:5977-5988. [PMID: 32161362 PMCID: PMC8758492 DOI: 10.1038/s41380-020-0688-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 01/06/2020] [Accepted: 02/12/2020] [Indexed: 11/08/2022]
Abstract
APOEε4 is the most well-established genetic risk factor for sporadic Alzheimer's disease and is associated with cerebral amyloid-β. However, the association between APOEε4 and tau pathology, the other major proteinopathy of Alzheimer's disease, has been controversial. Here, we sought to determine whether the relationship between APOEε4 and tau pathology is determined by local interactions with amyloid-β. We examined three independent samples of cognitively unimpaired, mild cognitive impairment and Alzheimer's disease subjects: (1) 211 participants who underwent tau-PET with [18F]MK6240 and amyloid-PET with [18F]AZD4694, (2) 264 individuals who underwent tau-PET with [18F]Flortaucipir and amyloid-PET with [18F]Florbetapir and (3) 487 individuals who underwent lumbar puncture and amyloid-PET with [18F]Florbetapir. Using a novel analytical framework, we applied voxel-wise regression models to assess the interactive effect of APOEε4 and amyloid-β on tau load, independently of age and clinical diagnosis. We found that the interaction effect between APOEε4 and amyloid-β, rather than the sum of their independent effects, was related to increased tau load in Alzheimer's disease-vulnerable regions. The interaction between one APOEε4 allele and amyloid-β was related to increased tau load, while the interaction between amyloid-β and two APOEε4 alleles was related to a more widespread pattern of tau aggregation. Our results contribute to an emerging framework in which the elevated risk of developing dementia conferred by APOEε4 genotype involves mechanisms associated with both amyloid-β and tau aggregation. These results may have implications for future disease-modifying therapeutic trials targeting amyloid or tau pathologies.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Andrea L Benedet
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Emilie Thomas
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Firoza Lussier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Cecile Tissot
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Gassan Massarweh
- Montreal Neurological Institute, Montreal, QC, Canada
- Department of Radiochemistry, McGill University, Montreal, QC, Canada
| | - Soham Rej
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Judes Poirier
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Montreal Neurological Institute, Montreal, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
48
|
Gao P, Ye L, Cheng H, Li H. The Mechanistic Role of Bridging Integrator 1 (BIN1) in Alzheimer's Disease. Cell Mol Neurobiol 2021; 41:1431-1440. [PMID: 32719966 PMCID: PMC11448648 DOI: 10.1007/s10571-020-00926-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/17/2020] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. The majority of AD cases are late-onset, multifactorial cases. Genome-wide association studies have identified more than 30 loci associated with sporadic AD (SAD), one of which is Bridging integrator 1 (BIN1). For the past few years, there has been a consensus that BIN1 is second only to APOE as the strongest genetic risk factor for SAD. Therefore, many researchers have put great effort into studying the mechanism by which BIN1 might be involved in the pathogenetic process of AD. To date, plenty of evidence has shown that BIN1 may participate in several pathways in AD, including tau and amyloid pathology. In addition, BIN1 has been indicated to take part in other relevant pathways such as inflammation, apoptosis, and calcium homeostasis. In this review, we systemically summarize the research progress on how BIN1 participates in the development of AD, with the expectation of providing promising perspectives for future research.
Collapse
Affiliation(s)
- Peirong Gao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China
| | - Lingqi Ye
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China
| | - Hongrong Cheng
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China
| | - Honglei Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China.
| |
Collapse
|
49
|
Kang SH, Cho H, Shin J, Kim HR, Noh Y, Kim EJ, Lyoo CH, Jang H, Kim HJ, Koh SB, Na DL, Suh MK, Seo SW. Clinical Characteristic in Primary Progressive Aphasia in Relation to Alzheimer's Disease Biomarkers. J Alzheimers Dis 2021; 84:633-645. [PMID: 34569949 DOI: 10.3233/jad-210392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Primary progressive aphasia (PPA) is associated with amyloid-β (Aβ) pathology. However, clinical feature of PPA based on Aβ positivity remains unclear. OBJECTIVE We aimed to assess the prevalence of Aβ positivity in patients with PPA and compare the clinical characteristics of patients with Aβ-positive (A+) and Aβ-negative (A-) PPA. Further, we applied Aβ and tau classification system (AT system) in patients with PPA for whom additional information of in vivo tau biomarker was available. METHODS We recruited 110 patients with PPA (41 semantic [svPPA], 27 non-fluent [nfvPPA], 32 logopenic [lvPPA], and 10 unclassified [ucPPA]) who underwent Aβ-PET imaging at multi centers. The extent of language impairment and cortical atrophy were compared between the A+ and A-PPA subgroups using general linear models. RESULTS The prevalence of Aβ positivity was highest in patients with lvPPA (81.3%), followed by ucPPA (60.0%), nfvPPA (18.5%), and svPPA (9.8%). The A+ PPA subgroup manifested cortical atrophy mainly in the left superior temporal/inferior parietal regions and had lower repetition scores compared to the A-PPA subgroup. Further, we observed that more than 90% (13/14) of the patients with A+ PPA had tau deposition. CONCLUSION Our findings will help clinicians understand the patterns of language impairment and cortical atrophy in patients with PPA based on Aβ deposition. Considering that most of the A+ PPA patents are tau positive, understanding the influence of Alzheimer's disease biomarkers on PPA might provide an opportunity for these patients to participate in clinical trials aimed for treating atypical Alzheimer's disease.
Collapse
Affiliation(s)
- Sung Hoon Kang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jiho Shin
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Hang-Rai Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Young Noh
- Department of Neurology, Gachon University Gil Medical Center, Incheon, Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Mee Kyung Suh
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Samsung Alzheimer Research Center and Center for Clinical Epidemiology Medical Center, Seoul, Korea.,Department of Intelligent Precision Healthcare Convergence, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
50
|
Winer JR, Morehouse A, Fenton L, Harrison TM, Ayangma L, Reed M, Kumar S, Baker SL, Jagust WJ, Walker MP. Tau and β-Amyloid Burden Predict Actigraphy-Measured and Self-Reported Impairment and Misperception of Human Sleep. J Neurosci 2021; 41:7687-7696. [PMID: 34290080 PMCID: PMC8425979 DOI: 10.1523/jneurosci.0353-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/23/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease is associated with poor sleep, but the impact of tau and β-amyloid (Aβ) pathology on sleep remains largely unknown. Here, we test the hypothesis that tau and Aβ predict unique impairments in objective and self-perceived human sleep under real-life, free-living conditions. Eighty-nine male and female cognitively healthy older adults received 18F-FTP-tau and 11C-PIB-Aβ PET imaging, 7 nights of sleep actigraphy and questionnaire measures, and neurocognitive assessment. Tau burden, but not Aβ, was associated with markedly worse objective sleep. In contrast, Aβ and tau were associated with worse self-reported sleep quality. Of clinical relevance, Aβ burden predicted a unique perceptual mismatch between objective and subject sleep evaluation, with individuals underestimating their sleep. The magnitude of this mismatch was further predicted by worse executive function. Thus, early-stage tau and Aβ deposition are linked with distinct phenotypes of real-world sleep impairment, one that includes a cognitive misperception of their own sleep health.SIGNIFICANCE STATEMENT Alzheimer's disease is associated with sleep disruption, often before significant memory decline. Thus, real-life patterns of sleep behavior have the potential to serve as a window into early disease progression. In 89 cognitive healthy older adults, we found that tau burden was associated with worse wristwatch actigraphy-measured sleep quality, and that both tau and β-amyloid were independently predictive of self-reported sleep quality. Furthermore, individuals with greater β-amyloid deposition were more likely to underestimate their sleep quality, and sleep quality underestimation was associated with worse executive function. These data support the role of sleep impairment as a key marker of early Alzheimer's disease, and offer the possibility that actigraphy may be an affordable and scalable tool in quantifying Alzheimer's disease-related behavioral changes.
Collapse
Affiliation(s)
- Joseph R Winer
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, California 94720
| | - Allison Morehouse
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, California 94720
| | - Laura Fenton
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Lylian Ayangma
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, California 94720
| | - Mark Reed
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, California 94720
| | - Samika Kumar
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, California 94720
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Matthew P Walker
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, California 94720
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|