1
|
Liu J, Zhang L, Liu L, Wu T, Wang L, Han Q. The potential capacities of FTY720: Novel therapeutic functions, targets, and mechanisms against diseases. Eur J Med Chem 2025; 290:117508. [PMID: 40120496 DOI: 10.1016/j.ejmech.2025.117508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Fingolimod (FTY720), an antagonist of sphingosine-1-phosphate (S1P), functions by binding to S1P receptors (S1PRs), excluding S1PR2. It received approval from the Food and Drug Administration (FDA) for the treatment of multiple sclerosis (MS) in 2010. As the first non-selective oral agonist for S1PRs, FTY720's diverse and systemic receptor expression often leads to alterations in various signaling pathways and multiple systems, making it a subject of intense research. Recent studies have identified a wide range of novel or potential functions for FTY720 beyond its application in MS. These include effects on the blood-brain barrier (BBB), vascular system, organelles, and cell death, as well as potential applications in organ transplantation, immune disorders, oncological conditions, neurological and psychiatric disorders, viral infections, and hypersensitivity diseases. This paper reviews the novel roles, targets, and mechanisms of FTY720 that hold promise for clinical utility. Additionally, it summarizes FTY720's derivation and development process, the characterization and mechanism of the structure of FTY720-P bound to S1PRs, the clinical safety profile, future challenges, and potential strategies to address them. These insights aim to guide future research and applications of FTY720, maximizing its therapeutic potential.
Collapse
Affiliation(s)
- Juan Liu
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Lu Zhang
- Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, PR China
| | - Le Liu
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Tianfeng Wu
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Lin Wang
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Qingzhen Han
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China.
| |
Collapse
|
2
|
Galota F, Marcheselli S, De Biasi S, Gibellini L, Vitetta F, Fiore A, Smolik K, De Napoli G, Cardi M, Cossarizza A, Ferraro D. Impact of High-Efficacy Therapies for Multiple Sclerosis on B Cells. Cells 2025; 14:606. [PMID: 40277931 PMCID: PMC12025603 DOI: 10.3390/cells14080606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative autoimmune disorder of the central nervous system characterized by demyelination and neurodegeneration. Traditionally considered a T-cell-mediated disease, the crucial role of B lymphocytes in its pathogenesis, through different mechanisms contributing to inflammation and autoreactivity, is increasingly recognized. The risk of long-term disability in MS patients can be reduced by an early treatment initiation, in particular with high-efficacy therapies. The aim of this review is to provide an overview of the mechanisms of action of high-efficacy therapies for MS, with a focus on their impact on B cells and how this contributes to the drugs' efficacy and safety profiles. Anti-CD20 monoclonal antibodies, Alemtuzumab, Cladribine and sequestering therapies encompassing Natalizumab and S1P receptors modulators will be discussed and emerging therapies, including Bruton's Tyrosine Kinase inhibitors, will be presented.
Collapse
Affiliation(s)
- Federica Galota
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Simone Marcheselli
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy; (S.D.B.); (L.G.); (A.C.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy; (S.D.B.); (L.G.); (A.C.)
| | - Francesca Vitetta
- Neurology Unit, Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy; (F.V.); (A.F.)
| | - Alessia Fiore
- Neurology Unit, Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy; (F.V.); (A.F.)
| | - Krzysztof Smolik
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Giulia De Napoli
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Martina Cardi
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy; (S.D.B.); (L.G.); (A.C.)
- National Institute for Cardiovascular Research, 40126 Bologna, Italy
| | - Diana Ferraro
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
- Neurology Unit, Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy; (F.V.); (A.F.)
| |
Collapse
|
3
|
Cohen BA. Choosing initial MS therapy; personal, disease, and medication factors. Neurotherapeutics 2025:e00582. [PMID: 40221354 DOI: 10.1016/j.neurot.2025.e00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Initiating disease modifying therapy in a patient with newly diagnosed relapsing multiple sclerosis currently offers the best opportunity to influence their subsequent disease course. This article reviews personal factors, disease presentation characteristics, and data on current disease modifying therapies from the perspective of choosing initial treatment in this setting. Although metrics for prognostication at the individual level remain unreliable, particularly for those with mild presentations, currently available data on the relative efficacy of disease modifying therapies supports offering high efficacy therapy first line to most patients with newly diagnosed relapsing multiple sclerosis.
Collapse
Affiliation(s)
- Bruce A Cohen
- Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
4
|
Balzano N, Di Napoli R, Fraenza F, Di Giulio Cesare D, Moreggia O, Cardillo M, Scavone C, Maniscalco GT, Capuano A, Sportiello L. Lymphopenia associated with sphingosine 1-phosphate receptor modulators (S1PRMs) in multiple sclerosis: analysis of European pharmacovigilance data. Pharmacol Rep 2025:10.1007/s43440-025-00725-6. [PMID: 40199814 DOI: 10.1007/s43440-025-00725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND The treatment landscape for Multiple Sclerosis (MS) has increased significantly over the past few decades, thanks to the introduction of disease-modifying therapies (DMTs). Fingolimod, siponimod, ozanimod, and ponesimod belong to the newer generation of oral DMTs categorized as sphingosine 1-phosphate receptor modulators (S1PRMs). Because of their mechanism of action, they may increase the risk of lymphopenia, which could influence the therapeutic management of people with MS. The aim of this study was to describe and compare the reporting frequency of lymphopenia related to four S1PRMs. METHODS Individual case safety reports (ICSRs) were retrieved from the European spontaneous reporting system database (EudraVigilance) from January 1st, 2022, to December 31st, 2023. The reporting odds ratios (RORs) were computed to compare the reporting probability of lymphopenia between a S1PRM versus each other. RESULTS We retrieved 4017 ICSRs, of which 521 (13%) reported lymphopenia associated with fingolimod (53.3%), siponimod (38.4%), ozanimod (5.4%), and ponesimod (2.1%). The most common reporting source was the healthcare professional (94.2%), and more than half of the ICSRs (62.6%) reported serious lymphopenia. Fingolimod was associated with a lower reporting frequency of lymphopenia compared to siponimod. Both siponimod and fingolimod were associated with a higher reporting frequency of lymphopenia compared to ozanimod; siponimod also had a higher reporting probability in comparison with ponesimod. CONCLUSIONS The most relevant clinical implication of the disproportionality analysis is to increase the awareness of the risk of lymphopenia related to these drugs, thus supporting proactive monitoring and optimizing treatment strategies for people with MS. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Nunzia Balzano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Raffaella Di Napoli
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Federica Fraenza
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | | | - Ornella Moreggia
- Multiple Sclerosis Regional Center, "A. Cardarelli" Hospital, Naples, 80131, Italy
| | - Mirko Cardillo
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Cristina Scavone
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
- Department of Life Science, Health, and Health Professions, Link Campus University, Roma, Italy
| | - Giorgia Teresa Maniscalco
- Multiple Sclerosis Regional Center, "A. Cardarelli" Hospital, Naples, 80131, Italy
- Neurological Clinic and Stroke Unit, "A. Cardarelli" Hospital, Naples, 80131, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Liberata Sportiello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy.
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy.
| |
Collapse
|
5
|
Croteau D, Kim T, Chan V, Stevens J, Pimentel Maldonado DA, Baldassari LE, Lee PR, Hughes A, Brinker A. Progressive multifocal leukoencephalopathy associated with sphingosine-1-phosphate receptor modulators: A large case series. Mult Scler Relat Disord 2024; 92:106163. [PMID: 39541823 DOI: 10.1016/j.msard.2024.106163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Risk factors for progressive multifocal leukoencephalopathy (PML) associated with sphingosine-1-phosphate receptor (S1PR) modulators are not as well-characterized as for natalizumab. We characterized S1PR modulator-associated PML cases and risk factors for PML using spontaneous adverse event reports. METHODS We reviewed case reports from the FDA Adverse Event Reporting System database and the medical literature. RESULTS We identified 57 PML cases encompassing all marketed S1PR modulators approved for multiple sclerosis, the majority (n = 53) associated with fingolimod. Ten cases reported a fatal outcome. Length of S1PR modulator exposure (≥18 months) appears to be a robust risk factor for PML. Patient age ≥50 years was identified as a potential risk factor, although this may be the result of several biases. We propose that prior immunosuppressant exposure should be considered as a potential risk factor for further validation. No conclusions could be drawn regarding JC virus serology and lymphopenia severity. CONCLUSIONS Spontaneous adverse event reports support the observation that extended S1PR modulator exposure appears to be a robust PML risk factor. As a result, the U.S. Prescribing Information for each product in the S1PR modulator class was updated. Validation of other potential risk factors would support efforts to stratify and mitigate the risk of S1PR modulator-associated PML.
Collapse
Affiliation(s)
- David Croteau
- Division of Pharmacovigilance I, Office of Surveillance and Epidemiology (DC, TK, VC, AB), Center for Drug Evaluation and Research, U.S. Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Tiffany Kim
- Division of Pharmacovigilance I, Office of Surveillance and Epidemiology (DC, TK, VC, AB), Center for Drug Evaluation and Research, U.S. Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Vicky Chan
- Division of Pharmacovigilance I, Office of Surveillance and Epidemiology (DC, TK, VC, AB), Center for Drug Evaluation and Research, U.S. Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Jessica Stevens
- Division of Neurology 2, Office of Neuroscience, Office of New Drugs (JS, DPM, LEB, PRL, AH), Center for Drug Evaluation and Research, U.S. Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Daniela A Pimentel Maldonado
- Division of Neurology 2, Office of Neuroscience, Office of New Drugs (JS, DPM, LEB, PRL, AH), Center for Drug Evaluation and Research, U.S. Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Laura E Baldassari
- Division of Neurology 2, Office of Neuroscience, Office of New Drugs (JS, DPM, LEB, PRL, AH), Center for Drug Evaluation and Research, U.S. Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Paul R Lee
- Division of Neurology 2, Office of Neuroscience, Office of New Drugs (JS, DPM, LEB, PRL, AH), Center for Drug Evaluation and Research, U.S. Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Alice Hughes
- Division of Neurology 2, Office of Neuroscience, Office of New Drugs (JS, DPM, LEB, PRL, AH), Center for Drug Evaluation and Research, U.S. Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Allen Brinker
- Division of Pharmacovigilance I, Office of Surveillance and Epidemiology (DC, TK, VC, AB), Center for Drug Evaluation and Research, U.S. Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
6
|
Iseki C, Nakamichi K, Ishizawa K, Ohta Y, Toubai T. A Case of Progressive Multifocal Leukoencephalopathy Caused by Epcoritamab. Cureus 2024; 16:e71655. [PMID: 39552980 PMCID: PMC11567728 DOI: 10.7759/cureus.71655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
A female patient aged in her 50s had presented with the onset of follicular lymphoma (FL) with left mandibular swelling, with a pathological grade of 1 and clinical stage of Ⅳ (Ann Arbor staging). Cyclophosphamide, doxorubicin, vincristine, prednisolone, and rituximab (R-CHOP) resulted in complete molecular remission (CMR). The patient experienced two recurrences, and treatments were successful; however, the side effect of continuous lymphocytopenia existed eight years after the onset. For the third recurrence of FL, weekly epcoritamab therapy was administered with a white blood cell count of 2,010 /μL with neutrophils of 1,240/μL, lymphocytes of 430/μL, red blood cells of 390 × 104/μL, and platelets of 17.8 × 104/μL. 18Fludeoxyglucose positron emission tomography (FDG-PET) confirmed CMR after six cycles of epcoritamab. After the 11th epcoritamab, the patient was diagnosed with progressive multifocal leukoencephalopathy (PML), presenting significant left hemispatial neglect and visuospatial problems. Brain magnetic resonance imaging of fluid-attenuated inversion recovery and diffusion-weighted imaging showed high intensity in the right parietotemporal subcortex and frontal subcortical lesion with high or iso intensity on the apparent diffusion coefficient. FDG-PET did not show lymphoma recurrence. The patient had white blood cells of 2,310 /μL with lymphocytes of 480/μL, CD4-positive lymphocytes of 124/μL, and CD8-positive lymphocytes of 153/μL. The JC virus (JCV) deoxyribonucleic acid (DNA) level in cerebrospinal fluid (CSF) as examined by polymerase chain reaction (PCR) increased to 1.466 × 108 copies/mL. The patient became unconscious and died three months after diagnosis of PML. We report the first case of PML as a complication of epcoritamab, a bispecific antibody targeting CD3 and CD20 that redirects and activates T cells, which is expected to be used for treating FL. PML is a fatal infection of the central nervous system without effective treatment caused by the reactivation of the JCV in immunodeficient hosts. The antibody test for JCV is recommended for patients with multiple sclerosis for an earlier diagnosis, which is not common in other diseases. We should be aware of PML through innovative therapy.
Collapse
Affiliation(s)
- Chifumi Iseki
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine Ⅲ, Yamagata University, Yamagata, JPN
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, JPN
| | - Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, JPN
| | - Kenichi Ishizawa
- Department of Nursing, Faculty of Health Sciences, Tohoku Fukushi University, Sendai, JPN
| | - Yasuyuki Ohta
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine Ⅲ, Yamagata University, Yamagata, JPN
| | - Tomomi Toubai
- Division of Hematology and Cell Therapy, Department of Internal Medicine Ⅲ, Yamagata University, Yamagata, JPN
| |
Collapse
|
7
|
Blant JC, De Rossi NN, Gold R, Maurousset A, Kraemer M, Romero-Pinel L, Misu T, Ouallet JC, Pallix Guyot M, Gerevini S, Bakirtzis C, Piñar Morales R, Vlad B, Karypidis P, Moisset X, Derfuss TJ, Jelcic I, Martin-Blondel G, Ayzenberg I, McGraw C, Laplaud DA, Du Pasquier RA, Bernard-Valnet R. Presentation and Outcome in S1P-RM and Natalizumab-Associated Progressive Multifocal Leukoencephalopathy: A Multicenter Cohort Study. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200281. [PMID: 38991170 PMCID: PMC11256981 DOI: 10.1212/nxi.0000000000200281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND AND OBJECTIVES Progressive multifocal leukoencephalopathy (PML) is a severe neurologic disease resulting from JC virus reactivation in immunocompromised patients. Certain multiple sclerosis (MS) disease-modifying therapies (DMTs) are associated with PML risk, such as natalizumab and, more rarely, sphingosine-1-phosphate receptor modulators (S1P-RMs). Although natalizumab-associated PML is well documented, information on S1P-RM-associated PML is limited. The aim of this study is to compare clinical presentations and outcomes between the 2 groups. METHODS A retrospective multicenter cohort study included patients with PML from 2009 to 2022 treated with S1P-RMs or natalizumab. Data on clinical and radiologic presentation, outcomes, immune reconstitution inflammatory syndrome (IRIS), survival, disability (using the modified Ranking scale-mRS), and MS relapses post-PML were analyzed. RESULTS Of 88 patients, 84 were analyzed (20 S1P-RM, 64 natalizumab). S1P-RM-associated PML was diagnosed in older patients (median age 52 vs 44 years, p < 0.001) and after longer treatment duration (median 63.9 vs 40 months, p < 0.001). Similarly, S1P-RM patients were more prone to show symptoms at diagnosis (100 vs 80.6%, p = 0.035), had more disseminated lesions (80% vs 34.9%, p = 0.002), and had higher gadolinium enhancement (65% vs 39.1%, p = 0.042). Natalizumab patients had a higher IRIS development rate (OR: 8.3 [1.92-33.3]). Overall, the outcome (mRS) at 12 months was similar in the 2 groups (OR: 0.81 [0.32-2.0]). Yet, post-treatment MS activity was higher in S1P-RM cases (OR: 5.7 [1.4-22.2]). DISCUSSION S1P-RM-associated PML shows reduced IRIS risk but higher post-treatment MS activity. Clinicians should tailor post-PML treatment based on pre-PML medication.
Collapse
Affiliation(s)
- Julie C Blant
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Nicola N De Rossi
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Ralf Gold
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Aude Maurousset
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Markus Kraemer
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Lucía Romero-Pinel
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Tatsuro Misu
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Jean-Christophe Ouallet
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Maud Pallix Guyot
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Simonetta Gerevini
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Christos Bakirtzis
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Raquel Piñar Morales
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Benjamin Vlad
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Panajotis Karypidis
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Xavier Moisset
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Tobias J Derfuss
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Ilijas Jelcic
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Guillaume Martin-Blondel
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Ilya Ayzenberg
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Corey McGraw
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - David A Laplaud
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Renaud A Du Pasquier
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| | - Raphael Bernard-Valnet
- From the Service of Neurology (J.C.B., R.A.D.P., R.B.-V.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Switzerland; Regional Multiple Sclerosis Center (N.N.D.R.), ASST-Spedali Civili di Brescia, Montichiari, Italy; Department of Neurology St. Josef-Hospital (R.G., I.A.), Ruhr University Bochum, Germany; Centre Hospitalier Régional Universitaire de Tours (A.M.), Hôpital Bretonneau, Service de neurologie, Tours, France; Department of Neurology (M.K.), Alfried Krupp von Bohlen und Halbach Hospital, Essen; Department of Neurology (M.K.), Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Neurology Department (L.R.-P.), Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain; Department of Neurology (T.M.), Tohoku University Hospital, Japan; Service de Neurologie (J.-C.O.), Pôle des Neurosciences Cliniques, CHU de Bordeaux Pellegrin Tripode; Service de Neurologie et Unité Neurovasculaire (M.P.G.), Centre Hospitalier Régional d'Orléans, France; Unit of Neuroradiology (S.G.), Papa Giovanni XXIII Hospital, Bergamo, Italy; Multiple Sclerosis Center (C.B.), Second Department of Neurology, Aristotle University of Thessaloniki, Greece; Servicio de Neurología (R.P.M.), Hospital Universitario Clínico San Cecilio, Granada, Spain; Department of Neurology (B.V., I.J.), University Hospital Zurich and University of Zurich, ; Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience (P.K., T.J.D.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Service de Neurologie (X.M.), Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol; Infectious and Tropical Diseases Unit (G.M.-B.), University Hospital of Toulouse, France; Department of Neurology (C.M.), State University of New York Upstate Medical University, Syracuse; and CHU Nantes (D.A.L.), Service de Neurologie, CRC-SEP, Nantes Université, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, France
| |
Collapse
|
8
|
DiMauro KA, Swetlik C, Cohen JA. Management of multiple sclerosis in older adults: review of current evidence and future perspectives. J Neurol 2024; 271:3794-3805. [PMID: 38689068 PMCID: PMC11233312 DOI: 10.1007/s00415-024-12384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
IMPORTANCE The prevalence of multiple sclerosis (MS) and aging MS patients is increasing worldwide. There is a need to better understand this MS sub-population, which historically is underrepresented in the literature. This narrative review examines the evolving demographics, disease course, and treatments for older adults with MS (OAMS) to address current knowledge gaps and highlight areas critical for future research. OBSERVATIONS OAMS populations require special consideration by clinicians. Older individuals have different care needs than individuals with adult onset MS who are mid-life or younger. Comorbidities, an aging immune system, increasing neurodegeneration, decreasing neurologic reserve, changing benefit/risk relationship for disease modifying therapies (DMTs), and wellness require special attention to provide holistic comprehensive care. Active areas of research include potential cessation of DMTs and novel disease targets. CONCLUSIONS AND RELEVANCE This review highlights both the current knowledge and information gaps in the literature that are critical to understanding and properly managing OAMS. The aims are to inform MS clinicians in their current practice, as well as inspire future studies which are critical to providing quality and evidence-based care for OAMS.
Collapse
Affiliation(s)
- Kimberly A DiMauro
- Mellen Center for MS Treatment and Research, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA
| | - Carol Swetlik
- Mellen Center for MS Treatment and Research, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA
| | - Jeffrey A Cohen
- Mellen Center for MS Treatment and Research, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA.
| |
Collapse
|
9
|
Yang X, Yan Y, Liu S, Wang Z, Feng X. Potential adverse events associated with sphingosine-1-phosphate (S1P) receptor modulators in patients with multiple sclerosis: an analysis of the FDA adverse event reporting system (FAERS) database. Front Pharmacol 2024; 15:1376494. [PMID: 38846098 PMCID: PMC11153721 DOI: 10.3389/fphar.2024.1376494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Objective Sphingosine-1-phosphate receptor (S1PR) modulators have recently attracted increasing attention for the treatment of multiple sclerosis (MS). Despite their preference in the clinic, multiple adverse events (AEs) continue to be reported every year. This study aimed to investigate the potential AEs as well as related important medical events (IMEs) signal associated with S1PR modulators, including fingolimod, siponimod and ozanimod in a real-world study using the FDA Adverse Event Reporting System (FAERS) database. Methods All data were collected from the FAERS database, spanning from the fourth quarter of 2010(2010Q4) to the second quarter of 2023 (2023Q2). Potential AE and IME signals of S1PR modulators were identified based on a disproportionality analysis using the reporting odds ratio (ROR), proportional reporting ratio (PRR), and the bayesian confidence propagation neural network of information components (IC). Results Overall, 276,436 reports of fingolimod, 20,972 reports of siponimod and 10,742 reports of ozanimod were analyzed from the FAERS database. Among reports, females were more prone to develop AEs (73.71% for females vs. 23.21% for males), and more than 50% of patients suffered from AEs were between 18 and 64 years. Subsequently, we investigated the top 20 AEs associated with the signal strength of S1PR modulators at the preferred term (PT) level, and identified 31 (8 vs. 11 vs. 12, respectively) unlabeled risk signals such as thrombosis, uterine disorder and reproductive system and breast disorders. Furthermore, we discovered that the S1PR modulator reported variations in the possible IMEs, and that the IMEs associated with ocular events were reported frequently. It's interesting to note that infection and malignancy are prominent signals with both fingolimod and siponimod in the top 20 PTs related to mortality reports. Conclusion The present investigation highlights the possible safety risks associated with S1PR modulators. The majority of AEs are generally consistent with previous studies and are mentioned in the prescribing instructions, however, several unexpected AE signals have also been observed. Ozanimod showed the lowest signal intensity and a better safety profile than the other S1PR modulators. Due to the short marketing time of drugs and the limitations of spontaneous reporting database, further research is required to identify potential AEs related to S1PR modulators.
Collapse
Affiliation(s)
| | | | | | - Zhiqing Wang
- Department of Pharmacy, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xia Feng
- Department of Pharmacy, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Mouliou DS. John Cunningham Virus and Progressive Multifocal Leukoencephalopathy: A Falsely Played Diagnosis. Diseases 2024; 12:100. [PMID: 38785755 PMCID: PMC11120163 DOI: 10.3390/diseases12050100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Progressive Multifocal Leukoencephalopathy (PML) is a possibly fatal demyelinating disease and John Cunningham Polyomavirus (JCPyV) is believed to cause this condition. The so-called JCPyV was initially reported in lymphoma and Human Immunodeficiency Virus (HIV) cases, whereas nowadays, its incidence is increasing in Multiple Sclerosis (MS) cases treated with natalizumab (Tysabri). However, there are conflicting literature data on its pathology and diagnosis, whereas some misdiagnosed reports exist, giving rise to further questions towards the topic. In reality, the so-called PML and the supposed JCPyV are not what they seem to be. In addition, novel and more frequent PML-like conditions may be reported, especially after the Coronavirus Disease 2019 (COVID-19) pandemic.
Collapse
|
11
|
Fernández Ó, Sörensen PS, Comi G, Vermersch P, Hartung HP, Leocani L, Berger T, Van Wijmeersch B, Oreja-Guevara C. Managing multiple sclerosis in individuals aged 55 and above: a comprehensive review. Front Immunol 2024; 15:1379538. [PMID: 38646534 PMCID: PMC11032020 DOI: 10.3389/fimmu.2024.1379538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Multiple Sclerosis (MS) management in individuals aged 55 and above presents unique challenges due to the complex interaction between aging, comorbidities, immunosenescence, and MS pathophysiology. This comprehensive review explores the evolving landscape of MS in older adults, including the increased incidence and prevalence of MS in this age group, the shift in disease phenotypes from relapsing-remitting to progressive forms, and the presence of multimorbidity and polypharmacy. We aim to provide an updated review of the available evidence of disease-modifying treatments (DMTs) in older patients, including the efficacy and safety of existing therapies, emerging treatments such as Bruton tyrosine kinase (BTKs) inhibitors and those targeting remyelination and neuroprotection, and the critical decisions surrounding the initiation, de-escalation, and discontinuation of DMTs. Non-pharmacologic approaches, including physical therapy, neuromodulation therapies, cognitive rehabilitation, and psychotherapy, are also examined for their role in holistic care. The importance of MS Care Units and advance care planning are explored as a cornerstone in providing patient-centric care, ensuring alignment with patient preferences in the disease trajectory. Finally, the review emphasizes the need for personalized management and continuous monitoring of MS patients, alongside advocating for inclusive study designs in clinical research to improve the management of this growing patient demographic.
Collapse
Affiliation(s)
- Óscar Fernández
- Departament of Pharmacology, Faculty of Medicine; Institute of Biomedical Research of Malaga (IBIMA), Regional University Hospital of Malaga, Malaga, Spain
- Department of Pharmacology and Pediatry, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Per Soelberg Sörensen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Copenhagen and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giancarlo Comi
- Department of Neurorehabilitation Sciences, Multiple Sclerosis Centre Casa di Cura Igea, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Patrick Vermersch
- Univ. Lille, Inserm U1172 LilNCog, CHU Lille, FHU Precise, Lille, France
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czechia
| | - Letizia Leocani
- Department of Neurorehabilitation Sciences, Multiple Sclerosis Centre Casa di Cura Igea, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Bart Van Wijmeersch
- University MS Centre, Hasselt-Pelt, Belgium
- Rehabilitation and Multiple Sclerosis (MS), Noorderhart Hospitals, Pelt, Belgium
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico Universitario San Carlos, IdISSC, Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
12
|
Rindi LV, Zaçe D, Braccialarghe N, Massa B, Barchi V, Iannazzo R, Fato I, De Maria F, Kontogiannis D, Malagnino V, Sarmati L, Iannetta M. Drug-Induced Progressive Multifocal Leukoencephalopathy (PML): A Systematic Review and Meta-Analysis. Drug Saf 2024; 47:333-354. [PMID: 38321317 DOI: 10.1007/s40264-023-01383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Progressive multifocal leukoencephalopathy (PML) was first described among patients affected by hematological or solid tumors. Following the human immunodeficiency virus (HIV) epidemic, people living with HIV have represented most cases for more than a decade. With the diffusion of highly active antiretroviral therapy, this group progressively decreased in favor of patients undergoing treatment with targeted therapy/immunomodulators. In this systematic review and meta-analysis, the objective was to assess which drugs are most frequently related to PML development, and report the incidence of drug-induced PML through a meta-analytic approach. METHODS The electronic databases MEDLINE, EMBASE, ClinicalTrials.gov, Web of Science and the Canadian Agency for Drugs and Technologies in Health Database (CADTH) were searched up to May 10, 2022. Articles that reported the risk of PML development after treatment with immunomodulatory drugs, including patients of both sexes under the age of 80 years, affected by any pathology except HIV, primary immunodeficiencies or malignancies, were included in the review. The incidence of drug-induced PML was calculated based on PML cases and total number of patients observed per 100 persons and the observation time. Random-effect metanalyses were conducted for each drug reporting pooled incidence with 95% confidence intervals (CI) and median (interquartile range [IQR]) of the observation time. Heterogeneity was measured by I2 statistics. Publication bias was examined through funnel plots and Egger's test. RESULTS A total of 103 studies were included in the systematic review. In our analysis, we found no includible study reporting cases of PML during the course of treatment with ocrelizumab, vedolizumab, abrilumab, ontamalimab, teriflunomide, daclizumab, inebilizumab, basiliximab, tacrolimus, belimumab, infliximab, firategrast, disulone, azathioprine or danazole. Dalfampridine, glatiramer acetate, dimethyl fumarate and fingolimod show a relatively safe profile, although some cases of PML have been reported. The meta-analysis showed an incidence of PML cases among patients undergoing rituximab treatment for multiple sclerosis (MS) of 0.01 cases/100 persons (95% CI - 0.08 to 0.09; I2 = 20.4%; p = 0.25) for a median observation period of 23.5 months (IQR 22.1-42.1). Treatment of MS with natalizumab carried a PML risk of 0.33 cases/100 persons (95% CI 0.29-0.37; I2 = 50%; p = 0.003) for a median observation period of 44.1 months (IQR 28.4-60) and a mean number of doses of 36.3 (standard deviation [SD] ± 20.7). When comparing data about patients treated with standard interval dosing (SID) and extended interval dosing (EID), the latter appears to carry a smaller risk of PML, that is, 0.08 cases/100 persons (95% CI 0.0-0.15) for EID versus 0.3 cases/100 persons (95% CI 0.25-0.34) for SID. CONCLUSIONS A higher risk of drug-related PML in patients whose immune system is not additionally depressed by means of neoplasms, HIV or concomitant medications is found in the neurological field. This risk is higher in MS treatment, and specifically during long-term natalizumab therapy. While this drug is still routinely prescribed in this field, considering the efficacy in reducing MS relapses, in other areas it could play a smaller role, and be gradually replaced by other safer and more recently approved agents.
Collapse
Affiliation(s)
- Lorenzo Vittorio Rindi
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Drieda Zaçe
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Neva Braccialarghe
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Barbara Massa
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Virginia Barchi
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Roberta Iannazzo
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Ilenia Fato
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Francesco De Maria
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Dimitra Kontogiannis
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Vincenzo Malagnino
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
- Infectious Disease Clinic, Policlinico Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Loredana Sarmati
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
- Infectious Disease Clinic, Policlinico Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Marco Iannetta
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy.
- Infectious Disease Clinic, Policlinico Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy.
| |
Collapse
|
13
|
Jeantin L, Shor N, Pallix-Guyot M, Roos-Weil D, Bellanger A, Le Garff-Tavernier M, Papeix C, Weiss N, Pourcher V. Halting progressive multifocal leukoencephalopathy with pembrolizumab: the case of a patient with multiple sclerosis under fingolimod. J Neurol 2024; 271:729-732. [PMID: 37910249 DOI: 10.1007/s00415-023-12055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Lina Jeantin
- Département de neurologie, unité de Médecine Intensive Réanimation à orientation neurologique, Sorbonne Université, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Natalia Shor
- Department of Neuroradiology, Sorbonne Université, AP-HP, Hôpital de la Pitié-Salpêtrière, 47-83 Bd de l'Hôpital, Paris, France
| | - Maud Pallix-Guyot
- Department of Neurology, Orléans Hospital, 14 avenue de l'Hôpital, Orléans, France
| | - Damien Roos-Weil
- Department of Clinical Hematology, Pitié-Salpétrière University Hospital, 47-83 Bd de l'Hôpital, Paris, France
| | - Agnès Bellanger
- Département de Santé Publique, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, IPLESP, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Magali Le Garff-Tavernier
- Department of Biological Hematology, Sorbonne Université, AP-HP, Hôpital de la Pitié-Salpêtrière, 47-83 Bd de l'Hôpital, 75013, Paris, France
| | - Caroline Papeix
- Department of Neurology, Hospital Foundation Adolphe de Rothschild, 25-29 rue Manin, Paris, France
| | - Nicolas Weiss
- Département de neurologie, unité de Médecine Intensive Réanimation à orientation neurologique, Sorbonne Université, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de recherche Saint-Antoine, Maladies métaboliques, biliaires et fibro-inflammatoire du foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France & Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Paris, France
| | - Valérie Pourcher
- Service des Maladies infectieuses et tropicales, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP UMRS 1136), AP-HP, Hôpital Pitié Salpêtrière, Paris, France.
| |
Collapse
|
14
|
Sakurai S, Maezawa M, Nakao S, Hirofuji S, Miyasaka K, Yamashita M, Matsui K, Nishida S, Kobayashi R, Iguchi K, Hayashi Y, Suzuki A, Nakamura M. Progressive multifocal leukoencephalopathy analyzed using the Japanese Adverse Drug Event Report database. J Neurol Sci 2023; 455:122789. [PMID: 37984106 DOI: 10.1016/j.jns.2023.122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Progressive multifocal leukoencephalopathy (PML) has been reported as the development of drugs with immunomodulatory properties, such as anticancer, immunosuppressive, and biological agents, has accelerated. To clarify an incidence profile of drug-associated PML in real-world clinical practice, we analyzed reported patients with PML using the Japanese Adverse Drug Event Report (JADER) database. METHODS We analyzed PML reports extracted from the JADER database based on the preferred term of "progressive multifocal leukoencephalopathy" from between 2004 and 2021. This was a retrospective, observational study. We evaluated the effects of causative drugs, underlying diseases, and the age of the patients on the annual number of PML reports. RESULTS The JADER database contained 773,966 reports published between April 2004 and March 2022, from which we identified 361 PML events. These PML events may include multiple counts of the same case reported by different pathways and patients diagnosed with probable or possible PML. The number of PML reports and reporting ratios have gradually increased over the past decade. The annual number of PML reports associated with biologics, immunosuppressants, and antineoplastic drugs showed an increasing trend. Females aged ≥30 years showed an increase in PML reports; in contrast, there the number of reports for males aged ≥50 years increased. CONCLUSIONS The number of PML reports and reporting ratios have gradually increased in the past decade in Japan, and it considered that it was related to change in the treatment of malignancies and autoimmune diseases, and the increasing use of biologics, immunosuppressive agents, and antineoplastic agents.
Collapse
Affiliation(s)
- Shuji Sakurai
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Mika Maezawa
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoshi Nakao
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Sakiko Hirofuji
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Koumi Miyasaka
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Moe Yamashita
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Kensuke Matsui
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Shohei Nishida
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Ryo Kobayashi
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan; Laboratory of Advanced Medical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuichi Hayashi
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan; Faculty of Nursing Science, Tsuruga Nursing University, Fukui, Japan
| | - Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan; Laboratory of Advanced Medical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Mitsuhiro Nakamura
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
15
|
Nasir M, Galea I, Neligan A, Chung K. Cryptococcal meningoencephalitis in multiple sclerosis treated with fingolimod. Pract Neurol 2023; 23:512-515. [PMID: 37802650 DOI: 10.1136/pn-2023-003691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
A 21-year-old woman with multiple sclerosis (taking regular fingolimod) developed sudden-onset severe headache with nausea and malaise. Neurological examination was normal and she was afebrile. Blood results showed lymphocytes 0.53 x 109/L and C reactive protein 19 mg/L. CT scan of head and venogram were normal. CSF showed an opening pressure of 33 cm H2O and an incidental light growth of Cryptococcus neoformans, confirmed with positive India Ink stain and a positive cryptococcal antigen (1:100). She was treated for cryptococcal meningoencephalitis with amphotericin and flucytosine. Her presenting symptoms had closely mimicked subarachnoid haemorrhage. This atypical presentation of cryptococcal CNS infection highlights the need for vigilance in immunosuppressed patients.
Collapse
Affiliation(s)
- Moneeb Nasir
- The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Ian Galea
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Aidan Neligan
- Neurology department, Homerton University Hospital NHS Foundation Trust, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Karen Chung
- Neurology department, Homerton University Hospital NHS Foundation Trust, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Kim E, Fortoul MC, Weimer D, Meggyesy M, Demory Beckler M. Co-occurrence of glioma and multiple sclerosis: Prevailing theories and emerging therapies. Mult Scler Relat Disord 2023; 79:105027. [PMID: 37801959 DOI: 10.1016/j.msard.2023.105027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/01/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023]
Abstract
Though the concurrence of primary brain tumors and multiple sclerosis (MS) is exceedingly rare, instances have been noted in the literature as early as 1949. Given these observations, researchers have proposed various ideas as to how these malignancies may be linked to MS. Due to insufficient data, none have gained traction or been widely accepted amongst neurologists or neuro-oncologists. What is abundantly clear, however, is the mounting uncertainty faced by clinicians when caring for these individuals. Concerns persist about the potential for disease modifying therapies (DMTs) to initiate or promote tumor growth and progression, and to date, there are no approved treatments capable of mitigating both MS disease activity and tumor growth, let alone established guidelines that clinicians may refer to. Collectively, these gaps in the literature impose limitations to optimizing the care and management of this population. As such, our hope is to stimulate further discussion of this topic and prompt future investigations to explore novel treatment options and advance our understanding of these concurrent disease processes. To this end, the chief objective of this article is to evaluate proposed ideas of how the diseases may be linked, outline emerging therapies for both MS and brain tumors, and describe evidence-based approaches to diagnosing and treating this patient population.
Collapse
Affiliation(s)
- Enoch Kim
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States
| | - Marla C Fortoul
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States
| | - Derek Weimer
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States
| | - Michael Meggyesy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michelle Demory Beckler
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States.
| |
Collapse
|
17
|
Lombardo-Del Toro P, Bragado-Trigo I, Arroyo P, Tena-Cucala R, Bau L, Matas E, Muñoz-Vendrell A, Simó M, Pons-Escoda A, Martínez-Yélamos A, Martínez-Yélamos S, Romero-Pinel L. Fingolimod-associated progressive multifocal leukoencephalopathy in a multiple sclerosis patient with a good response to filgrastim. J Neurol 2023; 270:5196-5200. [PMID: 37460853 DOI: 10.1007/s00415-023-11865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/15/2023]
Affiliation(s)
- Paula Lombardo-Del Toro
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Irene Bragado-Trigo
- Department of Neurology, Hospital Residència Sant Camil - Consorci Sanitari Alt Penedès-Garraf, Sant Pere de Ribes, Barcelona, Spain
| | - Pablo Arroyo
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Raquel Tena-Cucala
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Bau
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabet Matas
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Albert Muñoz-Vendrell
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marta Simó
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge-Institut Català d'Oncologia L'Hospitalet, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Albert Pons-Escoda
- Department of Neuroradiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Antonio Martínez-Yélamos
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Clíniques, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Sergio Martínez-Yélamos
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Clíniques, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Lucía Romero-Pinel
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
18
|
Puig-Casadevall M, Álvarez-Bravo G, Varela AQ, Robles-Cedeño R, Sànchez Cirera L, Miguela A, Laguillo G, Montalban X, Hauser SL, Ramió-Torrentà L. Progressive multifocal leukoencephalopathy in a patient with relapsing multiple sclerosis treated with ocrelizumab: A case report. Eur J Neurol 2023; 30:3357-3361. [PMID: 37485841 DOI: 10.1111/ene.15988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Progressive multifocal leukoencephalopathy is a rare but often fatal complication of some multiple sclerosis treatments. Although it has mainly been associated with natalizumab treatment, its appearance with other immunosuppressive therapies has also been reported. AIMS The aim of this case report is to describe the development of progressive multifocal encephalopathy in a patient with relapsing-remitting multiple sclerosis treated with ocrelizumab without previous use of natalizumab. CONCLUSIONS A summary of the presentation and disease course is provided, presented in the context of the current literature and likely pathophysiology.
Collapse
Affiliation(s)
- Marc Puig-Casadevall
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Salt, Spain
| | - Gary Álvarez-Bravo
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Salt, Spain
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Salt, Spain
| | - Ana Quiroga Varela
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Salt, Spain
- Instituto de Salud Carlos III, Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Enfermedades inflamatorias (RD21/0002/0063), Madrid, Spain
| | - René Robles-Cedeño
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Salt, Spain
- Instituto de Salud Carlos III, Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Enfermedades inflamatorias (RD21/0002/0063), Madrid, Spain
- Medical Sciences Department, University of Girona, Girona, Spain
| | | | - Albert Miguela
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Salt, Spain
- Instituto de Salud Carlos III, Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Enfermedades inflamatorias (RD21/0002/0063), Madrid, Spain
| | - Gemma Laguillo
- Radiology Department, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stephen L Hauser
- Department of Neurology, University of California, San Francisco, California, USA
| | - Lluis Ramió-Torrentà
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Salt, Spain
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Salt, Spain
- Instituto de Salud Carlos III, Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Enfermedades inflamatorias (RD21/0002/0063), Madrid, Spain
- Medical Sciences Department, University of Girona, Girona, Spain
- Neurology Department, Dr. Josep Trueta University Hospital, Girona, Spain
| |
Collapse
|
19
|
Domínguez-Mozo MI, González-Suárez I, Villar LM, Costa-Frossard L, Villarrubia N, Aladro Y, Pilo B, Montalbán X, Comabella M, Casanova-Peño I, Martínez-Ginés ML, García-Domínguez JM, García-Martínez MÁ, Arroyo R, Álvarez-Lafuente R. Teriflunomide and Epstein-Barr virus in a Spanish multiple sclerosis cohort: in vivo antiviral activity and clinical response. Front Immunol 2023; 14:1248182. [PMID: 37841253 PMCID: PMC10570817 DOI: 10.3389/fimmu.2023.1248182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV-6) have been associated with multiple sclerosis (MS). Teriflunomide is an oral disease-modifying therapy approved for treatment of relapsing forms of MS. In the preclinical Theiler's murine encephalitis virus model of MS, the drug demonstrated an increased rate of viral clearance versus the vehicle placebo. Furthermore, teriflunomide inhibits lytic EBV infection in vitro. Objective 1. To evaluate the humoral response against EBV and HHV-6 prior to teriflunomide treatment and 6 months later. 2. To correlate the variation in the humoral response against EBV and HHV-6 with the clinical and radiological response after 24 months of treatment with teriflunomide. 3. To analyze the utility of different demographic, clinical, radiological, and environmental data to identify early biomarkers of response to teriflunomide. Methods A total of 101 MS patients (62 women; mean age: 43.4 years) with one serum prior to teriflunomide onset and another serum sample 6 months later were recruited. A total of 80 had been treated for at least 24 months, 13 had stopped teriflunomide before 24 months, and 8 were currently under teriflunomide therapy but with less than 24 months of follow-up. We analyzed the levels of the viral antibodies titers abovementioned in serum samples with ELISA commercial kits, and the levels of serum neurofilament light chain (Nf-L). Results Antiviral antibody titers decreased for EBNA-1 IgG (74.3%), VCA IgG (69%), HHV-6 IgG (60.4%), and HHV-6 IgM (73.3%) after 6 months of teriflunomide. VCA IgG titers at baseline correlated with Nf-L levels measured at the same time (r = 0.221; p = 0.028) and 6 months later (r = 0.240; p = 0.017). We found that higher EBNA-1 titers (p = 0.001) and a higher age (p = 0.04) at baseline were associated with NEDA-3 conditions. Thus, 77.8% of patients with EBNA-1 >23.0 AU and >42.8 years (P50 values) were NEDA-3. Conclusion Treatment with teriflunomide was associated with a reduction of the levels of IgG antibody titers against EBV and HHV-6. Furthermore, higher EBNA-1 IgG titers prior to teriflunomide initiation were associated with a better clinical response.
Collapse
Affiliation(s)
- María Inmaculada Domínguez-Mozo
- Grupo de Investigación de Factores ambientales en enfermedades degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Inés González-Suárez
- Unidad de Enfermedades Desmielinizantes, Hospital Álvaro Cunqueiro, Red de Enfermedades Inflamatorias (REI), Vigo, Spain
| | - Luisa María Villar
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Lucienne Costa-Frossard
- Servicio de Neurología, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Noelia Villarrubia
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Yolanda Aladro
- Servicio de Neurología, Hospital Universitario de Getafe, Getafe, Spain
| | - Belén Pilo
- Servicio de Neurología, Hospital Universitario de Getafe, Getafe, Spain
| | - Xavier Montalbán
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Casanova-Peño
- Servicio de Neurología, Hospital Universitario de Torrejón, Torrejón de Ardoz, Spain
| | - María Luisa Martínez-Ginés
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón/Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Jose Manuel García-Domínguez
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón/Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - María Ángel García-Martínez
- Grupo de Investigación de Factores ambientales en enfermedades degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Rafael Arroyo
- Departamento de Neurología, Hospital Universitario Quironsalud Madrid, Madrid, Spain
| | - Roberto Álvarez-Lafuente
- Grupo de Investigación de Factores ambientales en enfermedades degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| |
Collapse
|
20
|
Soni N, Ora M, Mangla R, Singh R, Ellika S, Agarwal A, Meyers SP, Bathla G. Radiological abnormalities in progressive multifocal leukoencephalopathy: Identifying typical and atypical imaging patterns for early diagnosis and differential considerations. Mult Scler Relat Disord 2023; 77:104830. [PMID: 37418930 DOI: 10.1016/j.msard.2023.104830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 07/09/2023]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare viral central nervous system (CNS) demyelinating disease primarily associated with a compromised immune system. PML is seen mainly in individuals with human immunodeficiency virus, lymphoproliferative disease, and multiple sclerosis. Patients on immunomodulators, chemotherapy, and solid organ or bone marrow transplants are predisposed to PML. Recognition of various PML-associated typical and atypical imaging abnormalities is critical for early diagnosis and differentiating it from other conditions, especially in high-risk populations. Early PML recognition should expedite efforts at immune-system restoration, allowing for a favorable outcome. This review aims to provide a practical overview of radiological abnormalities in PML patients and address differential considerations.
Collapse
Affiliation(s)
- Neetu Soni
- Radiodiagnosis (Neuroradiology and Nuclear Medicine), University of Rochester Medical Center, Rochester, NY 14618, USA.
| | - Manish Ora
- Department of Nuclear Medicine, SGPGIMS, Lucknow, Uttar Pradesh, India
| | | | - Rohit Singh
- Division of Hematology-Oncology at the University of Vermont Medical Center, Burlington, VT, USA
| | - Shehanaz Ellika
- Radiodiagnosis (Neuroradiology and Nuclear Medicine), University of Rochester Medical Center, Rochester, NY 14618, USA
| | - Amit Agarwal
- Radiology, Mayo Clinic in Florida, San Pablo Dr, Jacksonville, FL 32224-1865, USA
| | - Steven P Meyers
- Radiodiagnosis (Neuroradiology and Nuclear Medicine), University of Rochester Medical Center, Rochester, NY 14618, USA
| | | |
Collapse
|
21
|
Silva BA, Carnero Contentti E, Becker J, Carranza JI, Correa-Díaz PE, Galleguillos Goiry L, Garcea O, Gracia F, Hamuy F, Macías MA, Navas C, Nuñez S, Rojas JI, Farez MF, Alonso R, López P. Latin American consensus recommendations on the risk of infections in people with multiple sclerosis treated with disease modifying drugs. Mult Scler Relat Disord 2023; 77:104840. [PMID: 37399673 DOI: 10.1016/j.msard.2023.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/14/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
INTRODUCTION The emergence of several therapeutic options in multiple sclerosis (MS), which significantly modify the immune system functioning, has led to the need for the consideration of additional factors, such as risk of infections, in the decision-making process. The aim of these consensus recommendations was to discuss and perform a practical guide to Latin American neurologists on the risk of infections at diagnosis, follow-up and prior to initiation of DMDs. METHODS A panel of Latin American neurologists, experts in demyelinating diseases and dedicated to management and care of MS patients, gathered during 2021 and 2022 to make consensus recommendations on the risk of infections in PwMS treated with DMDs in Latin America. The RAND/UCLA methodology was developed to synthesize the scientific evidence and expert opinions on health care topics and was used for reaching a formal agreement. RESULTS Recommendations were established based on relevant published evidence and expert opinion, focusing on: 1- baseline infection disease and vaccination status; 2- opportunistic infections; 3- progressive multifocal leukoencephalopathy; 4- genitourinary system infections; 5- respiratory tract infections; 6- digestive system infections, 7-others local infections and 8- COVID-19. CONCLUSION The recommendations of this consensus seek to optimize the care, management and treatment of PwMS in Latin America. The standardized evidence-based care of pwMS infections will allow better outcomes.
Collapse
Affiliation(s)
- Berenice A Silva
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital JM Ramos Mejía, Buenos Aires, Argentina; Sección Enfermedades Desmielinizantes, Hospital Italiano de Buenos Aires, Argentina.
| | - Edgar Carnero Contentti
- Unidad de Neuroinmunología, Departamento de Neurociencias, Hospital Alemán de Buenos Aires, Argentina
| | - Jefferson Becker
- Hospital São Lucas - Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | - José I Carranza
- Sección Zoopatología y Parasitología Médica, Hospital Muñiz, Buenos Aires, Argentina
| | | | | | - Orlando Garcea
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital JM Ramos Mejía, Buenos Aires, Argentina
| | | | - Fernando Hamuy
- Departamento de Neurología, Hospital IMT, Paraguay; Departamento de Neurología de Diagnostico, Codas Thompson, Paraguay
| | | | - Carlos Navas
- Clínica Enfermedad Desmielinizantes, Clinica Universitaria Colombia, Colombia
| | - Sebastián Nuñez
- Servicio de Infectología, Sanatorio Güemes, Buenos Aires, Argentina
| | - Juan I Rojas
- Service of Neurology, Hospital Universitario CEMIC, Buenos Aires, Argentina; Centro de Esclerosis Múltiple de Buenos Aires (CEMBA), Buenos Aires, Argentina
| | | | - Ricardo Alonso
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital JM Ramos Mejía, Buenos Aires, Argentina; Servicio de Neurología, Sanatorio Güemes, Buenos Aires, Argentina
| | - Pablo López
- Unidad de Neuroinmunología, Departamento de Neurociencias, Hospital Alemán de Buenos Aires, Argentina
| |
Collapse
|
22
|
Kaiserman J, O’Hara BA, Haley SA, Atwood WJ. An Elusive Target: Inhibitors of JC Polyomavirus Infection and Their Development as Therapeutics for the Treatment of Progressive Multifocal Leukoencephalopathy. Int J Mol Sci 2023; 24:8580. [PMID: 37239927 PMCID: PMC10218015 DOI: 10.3390/ijms24108580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating disease caused by infection with JC Polyomavirus (JCPyV). Despite the identification of the disease and isolation of the causative pathogen over fifty years ago, no antiviral treatments or prophylactic vaccines exist. Disease onset is usually associated with immunosuppression, and current treatment guidelines are limited to restoring immune function. This review summarizes the drugs and small molecules that have been shown to inhibit JCPyV infection and spread. Paying attention to historical developments in the field, we discuss key steps of the virus lifecycle and antivirals known to inhibit each event. We review current obstacles in PML drug discovery, including the difficulties associated with compound penetrance into the central nervous system. We also summarize recent findings in our laboratory regarding the potent anti-JCPyV activity of a novel compound that antagonizes the virus-induced signaling events necessary to establish a productive infection. Understanding the current panel of antiviral compounds will help center the field for future drug discovery efforts.
Collapse
Affiliation(s)
| | | | | | - Walter J. Atwood
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
23
|
Nakamichi K, Miura Y, Shimokawa T, Takahashi K, Suzuki T, Funata N, Harada M, Mori K, Sanjo N, Yukitake M, Takahashi K, Hamaguchi T, Izaki S, Oji S, Nakahara J, Ae R, Kosami K, Nukuzuma S, Nakamura Y, Nomura K, Kishida S, Mizusawa H, Yamada M, Takao M, Ebihara H, Saijo M. Nationwide Laboratory Surveillance of Progressive Multifocal Leukoencephalopathy in Japan: Fiscal Years 2011-2020. Viruses 2023; 15:v15040968. [PMID: 37112948 PMCID: PMC10144269 DOI: 10.3390/v15040968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a devastating demyelinating disease caused by JC virus (JCV), predominantly affecting patients with impaired cellular immunity. PML is a non-reportable disease with a few exceptions, making national surveillance difficult. In Japan, polymerase chain reaction (PCR) testing for JCV in the cerebrospinal fluid (CSF) is performed at the National Institute of Infectious Diseases to support PML diagnosis. To clarify the overall profile of PML in Japan, patient data provided at the time of CSF-JCV testing over 10 years (FY2011-2020) were analyzed. PCR testing for 1537 new suspected PML cases was conducted, and 288 (18.7%) patients tested positive for CSF-JCV. An analysis of the clinical information on all individuals tested revealed characteristics of PML cases, including the geographic distribution, age and sex patterns, and CSF-JCV-positivity rates among the study subjects for each type of underlying condition. During the last five years of the study period, a surveillance system utilizing ultrasensitive PCR testing and widespread clinical attention to PML led to the detection of CSF-JCV in the earlier stages of the disease. The results of this study will provide valuable information not only for PML diagnosis, but also for the treatment of PML-predisposing conditions.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshiharu Miura
- Department of Neurology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Toshio Shimokawa
- Department of Medical Data Science, Graduate School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Nobuaki Funata
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Masafumi Harada
- Department of Radiology, Tokushima University School of Medicine, Tokushima 770-8503, Japan
| | - Koichiro Mori
- Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Nobuo Sanjo
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Motohiro Yukitake
- Department of Neurology, Kouhoukai Takagi Hospital, Okawa-shi 831-0016, Fukuoka, Japan
| | - Kazuya Takahashi
- Department of Neurology, Hokuriku Brain and Neuromuscular Disease Center, National Hospital Organization Iou National Hospital, Kanazawa-shi 920-0192, Ishikawa, Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology, Kanazawa Medical University, Kahoku-gun 920-0293, Ishikawa, Japan
| | - Shoko Izaki
- Department of Neurology, National Hospital Organization Saitama Hospital, Wako-shi 351-0102, Saitama, Japan
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe-shi 350-8550, Saitama, Japan
| | - Satoru Oji
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe-shi 350-8550, Saitama, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ryusuke Ae
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Shimotsuke-shi 329-0498, Tochigi, Japan
| | - Koki Kosami
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Shimotsuke-shi 329-0498, Tochigi, Japan
| | - Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, Kobe-shi 650-0046, Hyogo, Japan
| | - Yosikazu Nakamura
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Shimotsuke-shi 329-0498, Tochigi, Japan
| | - Kyoichi Nomura
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe-shi 350-8550, Saitama, Japan
- Higashimatsuyama Municipal Hospital, Higashimatsuyama-shi 355-0005, Saitama, Japan
| | - Shuji Kishida
- Department of Neurology, Narita Tomisato Tokushukai Hospital, Tomisato-shi 286-0201, Chiba, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira-shi, Tokyo 187-8551, Japan
| | - Masahito Yamada
- Division of Neurology, Department of Internal Medicine, Kudanzaka Hospital, Chiyoda-ku, Tokyo 102-0074, Japan
| | - Masaki Takao
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira-shi, Tokyo 187-8551, Japan
- Department of General Internal Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira-shi, Tokyo 187-8551, Japan
| | - Hideki Ebihara
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
- Medical Affairs Department, Health and Welfare Bureau, Sapporo-shi 060-0042, Hokkaido, Japan
| |
Collapse
|
24
|
Dumitrescu L, Papathanasiou A, Coclitu C, Garjani A, Evangelou N, Constantinescu CS, Popescu BO, Tanasescu R. An update on the use of sphingosine 1-phosphate receptor modulators for the treatment of relapsing multiple sclerosis. Expert Opin Pharmacother 2023; 24:495-509. [PMID: 36946625 PMCID: PMC10069376 DOI: 10.1080/14656566.2023.2178898] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is an immune-mediated disorder of the CNS manifested by recurrent attacks of neurological symptoms (related to focal inflammation) and gradual disability accrual (related to progressive neurodegeneration and neuroinflammation). Sphingosine-1-phosphate-receptor (S1PR) modulators are a class of oral disease-modifying therapies (DMTs) for relapsing MS. The first S1PR modulator developed and approved for MS was fingolimod, followed by siponimod, ozanimod, and ponesimod. All are S1P analogues with different S1PR-subtype selectivity. They restrain the S1P-dependent lymphocyte egress from lymph nodes by binding the lymphocytic S1P-subtype-1-receptor. Depending on their pharmacodynamics and pharmacokinetics, they can also interfere with other biological functions. AREAS COVERED Our narrative review covers the PubMed English literature on S1PR modulators in MS until August 2022. We discuss their pharmacology, efficacy, safety profile, and risk management recommendations based on the results of phase II and III clinical trials. We briefly address their impact on the risk of infections and vaccines efficacy. EXPERT OPINION S1PR modulators decrease relapse rate and may modestly delay disease progression in people with relapsing MS. Aside their established benefit, their place and timing within the long-term DMT strategy in MS, as well as their immunological effects in the new and evolving context of the post-COVID-19 pandemic and vaccination campaigns warrant further study.
Collapse
Affiliation(s)
- Laura Dumitrescu
- Department of Clinical Neurosciences, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
- Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania
| | - Athanasios Papathanasiou
- Department of Neurology, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK
| | - Catalina Coclitu
- Department of Multiple Sclerosis and Neuroimmunology, CHU Grenoble, Grenoble, France
| | - Afagh Garjani
- Academic Clinical Neurology, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nikos Evangelou
- Department of Neurology, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK
- Academic Clinical Neurology, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Cris S Constantinescu
- Academic Clinical Neurology, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Neurology, Cooper Neurological Institute, Camden, NJ, USA
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
- Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania
| | - Radu Tanasescu
- Department of Neurology, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK
- Academic Clinical Neurology, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
25
|
Kwiatkowski AJ, Helm EY, Stewart J, Leon J, Drashansky T, Avram D, Keselowsky B. Design principles of microparticle size and immunomodulatory factor formulation dictate antigen-specific amelioration of multiple sclerosis in a mouse model. Biomaterials 2023; 294:122001. [PMID: 36716589 DOI: 10.1016/j.biomaterials.2023.122001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
Antigen-specific therapies allow for modulation of the immune system in a disease relevant context without systemic immune suppression. These therapies are especially valuable in autoimmune diseases such as multiple sclerosis (MS), where autoreactive T cells destroy myelin sheath. This work shows that an antigen-specific dual-sized microparticle (dMP) system can effectively halt and reverse disease progression in a mouse model of MS. Current MS treatments leave patients immunocompromised, but the dMP formulation spares the immune system as mice can successfully clear a Listeria Monocytogenes infection. Furthermore, we highlight design principles for particle based immunotherapies including the importance of delivering factors specific for immune cell recruitment (GM-CSF or SDF-1), differentiation (GM-CSF or FLT3L) and suppression (TGF-β or VD3) in conjunction with disease relevant antigen, as the entire formulation is required for maximum efficacy. Lastly, the dMP scheme relies on formulating phagocytosable and non-phagocytosable MP sizes to direct payload to target either cell surface receptors or intracellular targets, as the reverse sized dMP formulation failed to reverse paralysis. We also challenge the design principles of the dMP system showing that the size of the MPs impact efficacy and that GM-CSF plays two distinct roles and that both of these must be replaced to match the primary effect of the dMP system. Overall, this work shows the versatile nature of the dMP system and expands the knowledge in particle science by emphasizing design tenets to guide the next generation of particle based immunotherapies.
Collapse
Affiliation(s)
- Alexander J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joshua Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Juan Leon
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Theodore Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Dorina Avram
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| | - Benjamin Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA; Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville FL, 32610, USA.
| |
Collapse
|
26
|
The Oxindole GW-5074 Inhibits JC Polyomavirus Infection and Spread by Antagonizing the MAPK-ERK Signaling Pathway. mBio 2023; 14:e0358322. [PMID: 36786589 PMCID: PMC10127638 DOI: 10.1128/mbio.03583-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
JC polyomavirus (JCPyV) is a ubiquitous, double-stranded DNA virus that causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML) in immunocompromised patients. Current treatments for PML are limited to immune reconstitution, and no effective antivirals exist. In this report, we show that the oxindole GW-5074 (3-(3,5-dibromo-4-hydroxybenzylidene)-5-iodoindolin-2-one) reduces JCPyV infection in primary and immortalized cells. This compound potently inhibits virus spread, which suggests that it could control infection in PML patients. We demonstrate that GW-5074 inhibits endogenous ERK phosphorylation, and that JCPyV infection in GW-5074-treated cells cannot be rescued with ERK agonists, which indicates that the antiviral mechanism may involve its antagonistic effects on MAPK-ERK signaling. Importantly, GW-5074 exceeds thresholds of common pharmacological parameters that identify promising compounds for further development. This MAPK-ERK antagonist warrants further investigation as a potential treatment for PML. IMPORTANCE Human polyomaviruses, such as JCPyV and BKPyV, cause significant morbidity and mortality in immunocompromised or immunomodulated patients. There are no treatments for polyomavirus-induced diseases other than restoration of immune function. We discovered that the oxindole GW-5074 potently inhibits infection by both JCPyV and BKPyV. Further optimization of this compound could result in the development of antiviral therapies for polyomavirus-induced diseases.
Collapse
|
27
|
Barritt AW, Das E, Morley N, Seymour M, Saha R, Vera J, Vundavalli S, Dizdarevic S, Nicholas R, Berger JR, Fisniku LK. Management approach including pembrolizumab for fingolimod-associated progressive multifocal leukoencephalopathy in a patient with relapsing-remitting multiple sclerosis. Mult Scler 2023; 29:301-306. [PMID: 36451581 DOI: 10.1177/13524585221137279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A 62-year-old man with relapsing-remitting multiple sclerosis developed progressive multifocal leukencephalopathy (PML) after 6 years on fingolimod. The fingolimod was immediately discontinued and preexisting mirtazepine increased. Three weeks later, with brain magnetic resonance imaging (MRI) appearances worsening and cerebrospinal fluid (CSF) JC virus (JCV) titres increasing, maraviroc was introduced. At 6 weeks, subtle punctate contrast enhancement raised the possibility of immune reconstitution inflammatory syndrome (IRIS), followed by a single focal-to-generalised tonic clonic seizure and a further deterioration in clinical disability. Mefloquine was commenced alongside three doses of pembrolizumab administered a month apart. Serial CSF examinations and several imaging modalities including spectroscopy and fused FDG-PET-MRI (18F-fluoro-deoxy-glucose-positron emission tomography-magnetic resonance imaging) were used to help distinguish between PML, PML-IRIS and rebound MS activity and guide optimal management at each stage. A handful of small, enhancing ovoid lesions developed between the first two doses of pembrolizumab, probably representative of a mild rebound phenomenon. A sustained improvement became obvious thereafter with CSF JCV-DNA undetectable 16 weeks following fingolimod withdrawal. To our knowledge, this is the first case of combined therapy and use of pembrolizumab in a fingolimod-associated PML.
Collapse
Affiliation(s)
- Andrew W Barritt
- Hurstwood Park Neurological Centre, Haywards Heath, UK/Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, UK
| | - Esther Das
- Hurstwood Park Neurological Centre, Haywards Heath, UK
| | | | | | - Romi Saha
- Hurstwood Park Neurological Centre, Haywards Heath, UK
| | - Jaime Vera
- Hurstwood Park Neurological Centre, Haywards Heath, UK/Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK
| | | | - Sabina Dizdarevic
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, UK/Department of Nuclear Medicine, Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | - Richard Nicholas
- Department of Brain Sciences, Imperial College London, London, UK
| | - Joseph R Berger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonora K Fisniku
- Hurstwood Park Neurological Centre, Haywards Heath, UK/Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
28
|
Tourkochristou E, Mouzaki A, Triantos C. Unveiling the biological role of sphingosine-1-phosphate receptor modulators in inflammatory bowel diseases. World J Gastroenterol 2023; 29:110-125. [PMID: 36683721 PMCID: PMC9850947 DOI: 10.3748/wjg.v29.i1.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is chronic inflammation of the gastrointestinal tract that has a high epidemiological prevalence worldwide. The increasing disease burden worldwide, lack of response to current biologic therapeutics, and treatment-related immunogenicity have led to major concerns regarding the clinical management of IBD patients and treatment efficacy. Understanding disease pathogenesis and disease-related molecular mechanisms is the most important goal in developing new and effective therapeutics. Sphingosine-1-phosphate (S1P) receptor (S1PR) modulators form a class of oral small molecule drugs currently in clinical development for IBD have shown promising effects on disease improvement. S1P is a sphingosine-derived phospholipid that acts by binding to its receptor S1PR and is involved in the regulation of several biological processes including cell survival, differentiation, migration, proliferation, immune response, and lymphocyte trafficking. T lymphocytes play an important role in regulating inflammatory responses. In inflamed IBD tissue, an imbalance between T helper (Th) and regulatory T lymphocytes and Th cytokine levels was found. The S1P/S1PR signaling axis and metabolism have been linked to inflammatory responses in IBD. S1P modulators targeting S1PRs and S1P metabolism have been developed and shown to regulate inflammatory responses by affecting lymphocyte trafficking, lymphocyte number, lymphocyte activity, cytokine production, and contributing to gut barrier function.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| |
Collapse
|
29
|
Jalusic KO, Ellenberger D, Stahmann A, Berger K. Adverse events in MS patients fulfilling or not inclusion criteria of the respective clinical trial - The problem of generalizability. Mult Scler Relat Disord 2023; 69:104422. [PMID: 36455503 DOI: 10.1016/j.msard.2022.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND The aim of this study was to evaluate how many MS patients treated with an approved DMD in routine care would have fulfilled the inclusion and exclusion criteria of phase III clinical trial and would therefore be eligible for the respective drug trial. Further, adverse events and disease progression for these patients were compared. METHODS A comparison of patients fulfilling phase III clinical trial inclusion and exclusion criteria and those who do not with regard to sociodemographic and clinical characteristics, adverse events and disease progression. Database was the REGIMS register, a national, prospective, observational, clinical multicentre registry. 1248 MS Patients were included. RESULTS 27.2% patients would have been eligible for inclusion into a phase III clinical trial of their indication. Patients who did not meet the criterion age are more likely to have a serious adverse event (SAE), whereas patients who did not fulfil the criterion relapse had a significant lower occurrence of an adverse event (AE). Non-fulfilment of other inclusion criteria (EDSS Score; medication history and MS type) did not show any significant differences in drug safety variables, AE and SAE. CONCLUSION Our results suggest that a low transferability of phase III clinical trial criteria, to patients in routine care with the exception of age, does not imply a higher risk with regard to adverse and serious adverse events.
Collapse
Affiliation(s)
- K O Jalusic
- University of Muenster, Institute of Epidemiology and Social Medicine, Muenster, Germany.
| | - D Ellenberger
- MS Forschungs- und Projektentwicklungs-gGmbH, German MS Register, Hannover, Germany
| | - A Stahmann
- MS Forschungs- und Projektentwicklungs-gGmbH, German MS Register, Hannover, Germany
| | - K Berger
- University of Muenster, Institute of Epidemiology and Social Medicine, Muenster, Germany
| | | |
Collapse
|
30
|
Piri Cinar B, Konuskan B, Anlar B, Ozakbas S. Narrative review based on fingolimod therapy in pediatric MS. SAGE Open Med 2023; 11:20503121231171996. [PMID: 37181277 PMCID: PMC10170592 DOI: 10.1177/20503121231171996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
The course of pediatric-onset multiple sclerosis and adult multiple sclerosis shows some clinical differences. The rate of having a second attack after the first clinical event is 80% in children and around 45% in adults but the time to the second event is similar in all age groups. The pediatric group usually has a more aggressive onset than adults. On the other hand, a higher rate of complete recovery is observed in pediatric-onset multiple sclerosis after the first clinical event compared to the adult group. Despite a highly active initial disease course, pediatric-onset multiple sclerosis patients show a slower increase in disability than patients with adult-onset disease. This is thought to be due to greater remyelination capacity and plasticity of the developing brain. The management of pediatric-onset multiple sclerosis includes safety issues as well as effective disease control. In the pediatric-onset multiple sclerosis group, similar to adult multiple sclerosis, injectable treatments have been used for many years with reasonable efficacy and safety. Since 2011, oral treatments and then infusion treatments have been approved and used effectively in adult multiple sclerosis and have gradually entered clinical use in the pediatric-onset multiple sclerosis group. However, clinical trials are fewer, smaller, and include shorter follow-up due to the much lower prevalence of pediatric-onset multiple sclerosis than adult multiple sclerosis. This is particularly important in the era of recent disease-modifying treatments. This review of the literature presents existing data on the safety and efficacy of fingolimod, pointing to a relatively favorable profile.
Collapse
Affiliation(s)
- Bilge Piri Cinar
- Samsun University, Samsun, Turkey
- Bilge Piri Cinar, Neurology Department, School of Medicine, Samsun University, Samsun, Turkey.
| | - Bahadır Konuskan
- University of Health Sciences Turkey, Etlik City Hospital, Ankara, Turkey
| | | | | |
Collapse
|
31
|
Sharma K, Tolaymat S, Yu H, Elkhooly M, Jaiswal S, Jena A, Kakara M, Sriwastava S. Progressive multifocal leukoencephalopathy in anti-CD20 and other monoclonal antibody (mAb) therapies used in multiple sclerosis: A review. J Neurol Sci 2022; 443:120459. [PMID: 36283150 DOI: 10.1016/j.jns.2022.120459] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a subacute CNS inflammatory disease seen primarily among immunocompromised patients. It is caused by the JC virus (JCV), a polyomavirus that otherwise induces an insidious, latent infection in the general population. This reactivated disease is characterized by cognitive and behavioral changes, language disturbances, motor weakness, or visual deficits. Median survival in patients with AIDS is approximately 2-4 months, and mortality is high (around 4% in untreated AIDS). Recent scientific developments indicate that PML can also be associated with the increased utilization of monoclonal antibody (mAb) immunotherapy. In fact, PML has been witnessed with several mAbs, including natalizumab in multiple sclerosis, rituximab for lymphoma or lupus, efalizumab for psoriasis, and ofatumumab in leukemia; this leads us to the risk reassessment of PML due to treatment-induced immunosuppression. The range of clinical presentations of JCV-related disease has transformed over time and can pose significant challenges to the current diagnostic criteria. Most cases with PML suffer from persistent and irreversible neurological conditions, and some with chronic, low-level viral replication in the CNS. With the expanded use of mAbs for various autoimmune and lymphoproliferative disorders, we are now seeing this infection in non-HIV patients on drugs such as natalizumab, rituximab, and other recently approved therapies. This article aims to review the relationship between the incidence of PML and all four mAbs used in the treatment of MS. Currently, at least 18 FDA-approved medications carry label warnings for PML;to this date, no treatment has been convincingly effective.
Collapse
Affiliation(s)
- Kanika Sharma
- Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States of America
| | - Sarah Tolaymat
- Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States of America
| | - Hongxuyang Yu
- Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States of America
| | | | - Shruti Jaiswal
- West Virginia Clinical and Translational Science Institute, Morgantown, WV, United States of America
| | - Anek Jena
- Calcutta Medical College, Calcutta, India
| | - Mihir Kakara
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, PA, United States of America
| | - Shitiz Sriwastava
- Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States of America; West Virginia Clinical and Translational Science Institute, Morgantown, WV, United States of America; School of Medicine, West Virginia University, Morgantown, WV, United States of America; Division of Multiple Sclerosis and Neuroimmunology Department of Neurology, McGovern Medical School (UT Health), University of Texas Health Science Center at Houston, Houston, TX, United States of America.
| |
Collapse
|
32
|
Vieujean S, D’Amico F, Netter P, Danese S, Peyrin‐Biroulet L. Landscape of new drugs and targets in inflammatory bowel disease. United European Gastroenterol J 2022; 10:1129-1166. [PMID: 36112543 PMCID: PMC9752289 DOI: 10.1002/ueg2.12305] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/22/2022] [Indexed: 01/13/2023] Open
Abstract
Although the therapeutic armamentarium of Inflammatory bowel diseases (IBD) physicians has expanded rapidly in recent years, a proportion of patients remain with a suboptimal response to medical treatment due to primary no response, loss of response or intolerance to currently available drugs. Our growing knowledges of IBD pathophysiology has led to the development of a multitude of new therapies over time, which may, 1 day, be able to address this unmet medical need. This review aims to provide physicians an update of emerging therapies in IBD by focusing on drugs currently in phase 3 clinical trials. Among the most promising molecules are anti-IL-23, JAK-inhibitors, anti-integrins and S1P modulators. While the results in terms of efficacy and safety are fairly clear for some classes, the question of safety remains more uncertain for other classes. Molecules at a more preliminary stage of development (phase 1 and 2), one of which may 1 day offer an optimal benefit-risk ratio, will also be presented as well as their respective mechanisms of action.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato‐Gastroenterology and Digestive OncologyUniversity Hospital CHU of LiègeLiègeBelgium
| | - Ferdinando D’Amico
- Department of Gastroenterology and EndoscopyIRCCS San Raffaele Hospital and Vita‐Salute San Raffaele UniversityMilanItaly
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleMilanItaly
| | | | - Silvio Danese
- Department of Gastroenterology and EndoscopyIRCCS San Raffaele Hospital and Vita‐Salute San Raffaele UniversityMilanItaly
| | - Laurent Peyrin‐Biroulet
- Department of GastroenterologyUniversity of LorraineCHRU‐NancyNancyFrance
- University of LorraineInserm, NGERENancyFrance
| |
Collapse
|
33
|
Sahraian MA, Salehi AM, Jenabi E, Esfahani ME, Ataei S. Post marketing new adverse effects of oral therapies in multiple sclerosis: A systematic review. Mult Scler Relat Disord 2022; 68:104157. [PMID: 36122472 DOI: 10.1016/j.msard.2022.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/06/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND There is a lack of safety information about the post-marketing adverse effects of several disease-modifying drugs (DMDs) used to control multiple sclerosis (MS). Investigating the post-marketing side effects is required to manifest the safety of the appropriate therapy. Therefore, the present systematic review aimed to identify disease-modifying drugs used to control multiple sclerosis attacks and progress. METHODS The Web of Science, PubMed, and Scopus databases were searched for studies published until November 2020 based on the research strategy terms. Inclusion criteria involved all full texts exploring disease-modifying drugs used to control multiple sclerosis based on case reports and case series studies. The Joanna Briggs Institute (JBI) critical appraisal checklist was used to assess the quality of case report studies. RESULTS In total, 25 articles that met the criteria for inclusion were retrieved in the present systematic review. The most side effects were observed with fingolimod and teriflunomide, respectively, while dimethyl fumarate had minor side effects. CONCLUSION The oral therapies have some significant post-marketing adverse effects that have been diagnosed in numerous case reports. Some of them are serious and must be noticed by neurologists. Accordingly, in this review, we assessed the post-marketing adverse effects of oral therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Salehi
- Student of medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ensiyeh Jenabi
- Autism Spectrum Disorders Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Etminani Esfahani
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Ataei
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
34
|
Lyons J, Hughes R, McCarthy K, Everage N, Kapadia S, Miller C, Singhal P, Smirnakis K. Progressive multifocal leukoencephalopathy outcomes in patients with multiple sclerosis treated with dimethyl fumarate. Mult Scler J Exp Transl Clin 2022; 8:20552173221132469. [PMID: 36387034 PMCID: PMC9661630 DOI: 10.1177/20552173221132469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objectives Dimethyl fumarate (DMF), an oral disease-modifying therapy with an established benefit and well-described safety profile, is among the most commonly used therapies for relapsing forms of multiple sclerosis. As of 31 December 2021, >560,000 patients have been treated with DMF, representing >1,190,000 person-years of exposure. Of these, 6413 patients (14,292 person-years) were from clinical trials. Methods and results Progressive multifocal leukoencephalopathy (PML) has occurred in the setting of lymphopenia (<0.91 × 109/L) in patients treated with DMF. We present detailed clinical characteristics and outcomes of the 12 confirmed PML cases occurring in MS patients on DMF as of 21 July 2021. The PML incidence in DMF-treated patients is 1.07 per 100,000 person-years of DMF exposure. Lymphopenia is the common risk for PML in DMF treatment. Discussion DMF-related PML is rare but has occurred in the setting of lymphopenia, supporting the current recommendations for absolute lymphocyte count monitoring in all patients, regardless of age and time on therapy.
Collapse
Affiliation(s)
- Jennifer Lyons
- Jennifer Lyons, Biogen, 225 Binney Street, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Constantinescu V, Akgün K, Ziemssen T. Current status and new developments in sphingosine-1-phosphate receptor antagonism: fingolimod and more. Expert Opin Drug Metab Toxicol 2022; 18:675-693. [PMID: 36260948 DOI: 10.1080/17425255.2022.2138330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fingolimod was the first oral disease-modifying treatment approved for relapsing-remitting multiple sclerosis (MS) that serves as a sphingosine-1-phosphate receptor (S1PR) agonist. The efficacy is primarily mediated by S1PR subtype 1 activation, leading to agonist-induced down-modulation of receptor expression and further functional antagonism, blocking the egression of auto-aggressive lymphocytes from the lymph nodes in the peripheral compartment. The role of S1P signaling in the regulation of other pathways in human organisms through different S1PR subtypes has received much attention due to its immune-modulatory function and its significance for the regeneration of the central nervous system (CNS). The more selective second-generation S1PR modulators have improved safety and tolerability profiles. AREAS COVERED This review has been carried out based on current data on S1PR modulators, emphasizing the benefits of recent advances in this emergent class of immunomodulatory treatment for MS. EXPERT OPINION Ongoing clinical research suggests that S1PR modulators represent an alternative to first-line therapies in selected cases of MS. A better understanding of the relevance of selective S1PR pathways and the ambition to optimize selective modulation has improved the safety and tolerability of S1PR modulators in MS therapy and opened new perspectives for the treatment of other diseases.
Collapse
Affiliation(s)
- Victor Constantinescu
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| |
Collapse
|
36
|
Mickeviciene D, Baltusiene A, Afanasjeva B, Afanasjevas D, Gleizniene R, Rastenyte D, Berger JR. Progressive multifocal leukoencephalopathy or immune reconstitution inflammatory syndrome after fingolimod cessation? A case report. BMC Neurol 2022; 22:306. [PMID: 35986243 PMCID: PMC9392231 DOI: 10.1186/s12883-022-02839-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/14/2022] [Indexed: 12/04/2022] Open
Abstract
Background Fingolimod is associated with an increased risk of developing progressive multifocal leukoencephalopathy (PML); however, its discontinuation may cause severe immune reconstitution inflammatory syndrome (IRIS). As both of these conditions (especially fingolimod induced PML) are rarely described in medical case reports distinguishing between PML-IRIS and MS-IRIS may be diagnostically challenging. Case presentation We report a patient with severe clinical decline (Expanded Disability Status Scale (EDSS) increasing from 3.5 to 7.5) and multiple, large, contrast-enhancing lesions on brain magnetic resonance imaging (MRI) a few months after fingolimod withdrawal. The diagnostic possibilities included IRIS due to fingolimod withdrawal versus PML-IRIS. The JC virus (JCV) antibody index was positive (2.56); however, cerebrospinal fluid (CSF) JCV real-time polymerase chain reaction (JCV-PCR) was negative and brain biopsy was not performed. After a long course of aggressive treatment (several pulsed methylprednisolone infusions, plasmapheresis, intravenous dexamethasone, oral mirtazapine) the patient gradually recovered (EDSS 2.5) and MRI lesions decreased. Conclusions This case report demonstrates the importance of monitoring patients carefully after the discontinuation of fingolimod for PML-IRIS and rebound MS with IRIS as these conditions may manifest similarly.
Collapse
|
37
|
Cauchi M, Willis M, Andrews A, Backx M, Brownlee W, Ford HL, Gran B, Jolles S, Price S, Rashid W, Schmierer K, Tallantyre EC. Multiple sclerosis and the risk of infection: Association of British Neurologists consensus guideline. Pract Neurol 2022; 22:practneurol-2022-003370. [PMID: 35863879 DOI: 10.1136/practneurol-2022-003370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Infection in people with multiple sclerosis (MS) is of major concern, particularly for those receiving disease-modifying therapies. This article explores the risk of infection in people with MS and provides guidance-developed by Delphi consensus by specialists involved in their management-on how to screen for, prevent and manage infection in this population.
Collapse
Affiliation(s)
- Marija Cauchi
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, University Hospital of Wales, Cardiff, UK
| | - Mark Willis
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, University Hospital of Wales, Cardiff, UK
| | - Angela Andrews
- Pharmacy Neurosciences Directorate, University Hospital of Wales, Cardiff, UK
| | - Matthijs Backx
- Infectious Diseases, University Hospital of Wales and Department of Microbiology, Public Health Wales, Cardiff, UK
| | - Wallace Brownlee
- Queen Square MS Centre, University College London Institute of Neurology, Queen Square Multiple Sclerosis Centre, London, UK
| | - Helen L Ford
- Centre for Neurosciences, Leeds Teaching Hospitals NHS Trust, Leeds, UK, Leeds, UK
| | - Bruno Gran
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Mental Health and Clinical Neuroscience Academic Unit, University of Nottingham School of Medicine, Nottingham, UK
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Sian Price
- Department of Neuroscience, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Waqar Rashid
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Klaus Schmierer
- The Blizard Institute (Neuroscience, Surgery & Trauma), Queen Mary University of London Faculty of Medicine and Dentistry, London, UK
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Emma C Tallantyre
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
38
|
Yang JH, Rempe T, Whitmire N, Dunn-Pirio A, Graves JS. Therapeutic Advances in Multiple Sclerosis. Front Neurol 2022; 13:824926. [PMID: 35720070 PMCID: PMC9205455 DOI: 10.3389/fneur.2022.824926] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system that causes significant disability and healthcare burden. The treatment of MS has evolved over the past three decades with development of new, high efficacy disease modifying therapies targeting various mechanisms including immune modulation, immune cell suppression or depletion and enhanced immune cell sequestration. Emerging therapies include CNS-penetrant Bruton's tyrosine kinase inhibitors and autologous hematopoietic stem cell transplantation as well as therapies aimed at remyelination or neuroprotection. Therapy development for progressive MS has been more challenging with limited efficacy of current approved agents for inactive disease and older patients with MS. The aim of this review is to provide a broad overview of the current therapeutic landscape for MS.
Collapse
Affiliation(s)
- Jennifer H. Yang
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
- *Correspondence: Jennifer H. Yang
| | - Torge Rempe
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Natalie Whitmire
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Anastasie Dunn-Pirio
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Jennifer S. Graves
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
39
|
Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2022; 19:351-366. [PMID: 35165437 DOI: 10.1038/s41575-021-00574-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
Immune cell trafficking is a critical element of the intestinal immune response, both in homeostasis and in pathological conditions associated with inflammatory bowel disease (IBD). This process involves adhesion molecules, chemoattractants and receptors expressed on immune cell surfaces, blood vessels and stromal intestinal tissue as well as signalling pathways, including those modulated by sphingosine 1-phosphate (S1P). The complex biological processes of leukocyte recruitment, activation, adhesion and migration have been targeted by various monoclonal antibodies (vedolizumab, etrolizumab, ontamalimab). Promising preclinical and clinical data with several oral S1P modulators suggest that inhibition of lymphocyte egress from the lymph nodes to the bloodstream might be a safe and efficacious alternative mechanism for reducing inflammation in immune-mediated disorders, including Crohn's disease and ulcerative colitis. Although various questions remain, including the potential positioning of S1P modulators in treatment algorithms and their long-term safety, this novel class of compounds holds great promise. This Review summarizes the critical mediators and mechanisms involved in immune cell trafficking in IBD and the available evidence for efficacy, safety and pharmacokinetics of S1P receptor modulators in IBD and other immune-mediated disorders. Further, it discusses potential future approaches to incorporate S1P modulators into the treatment of IBD.
Collapse
|
40
|
Rowan C, Ungaro R, Mehandru S, Colombel JF. An overview of ozanimod as a therapeutic option for adults with moderate-to-severe active ulcerative colitis. Expert Opin Pharmacother 2022; 23:893-904. [PMID: 35503955 DOI: 10.1080/14656566.2022.2071605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic inflammatory condition of the gastrointestinal tract involving a dysregulated immune response. Sphingosine-1-phosphate (S1P) is involved in immune cell regulation. S1P-receptor modulators, such as ozanimod, inhibit lymphocyte migration and have therapeutic potential in UC. AREAS COVERED Ozanimod is the first S1P-receptor modulator approved for the treatment of UC. It acts as a functional antagonist, causing internalization of S1P receptors on T-cells. Lymphocyte egress from lymph nodes is inhibited, and migration to sites of active inflammation is curtailed. There are several S1P-receptor subtypes, present in various organs, which inform understanding of ozanimod's side-effect profile including bradycardia and macular edema. In this review, the authors discuss the mechanism of action, pharmacokinetics, clinical efficacy, and safety profile of ozanimod in the treatment of patients with moderate-to-severe UC. EXPERT OPINION The S1P-receptor modulator ozanimod is an oral small molecule with a rapid onset of action and a novel therapeutic mechanism in the treatment of UC. It is an effective treatment both in bio-naïve and bio-exposed patients. Although the safety profile of ozanimod looks favorable, more long-term data are needed. Further studies are required to compare ozanimod to currently available therapies to best define its positioning in UC treatment algorithms.
Collapse
Affiliation(s)
- Catherine Rowan
- Henry D. Janowitz Division of Gastroenterology, Susan and Leonard Feinstein Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ryan Ungaro
- Henry D. Janowitz Division of Gastroenterology, Susan and Leonard Feinstein Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Saurabh Mehandru
- Henry D. Janowitz Division of Gastroenterology, Susan and Leonard Feinstein Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jean-Frederic Colombel
- Henry D. Janowitz Division of Gastroenterology, Susan and Leonard Feinstein Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
41
|
Del Poeta M, Ward BJ, Greenberg B, Hemmer B, Cree BA, Komatireddy S, Mishra J, Sullivan R, Kilaru A, Moore A, Hach T, Berger JR. Cryptococcal Meningitis Reported With Fingolimod Treatment: Case Series. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:e1156. [PMID: 35318259 PMCID: PMC8941596 DOI: 10.1212/nxi.0000000000001156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/19/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES To describe the characteristics of patients with MS reporting cryptococcal meningitis (CM) while treated with fingolimod. METHODS The Novartis safety database was searched for cases with CM between January 26, 2006, and February 28, 2020. The reporting rate of CM was estimated based on the case reports received and exposure to fingolimod in the postmarketing setting during the relevant period. RESULTS A total of 60 case reports of CM were identified, mostly from the United States. The median age was 48 years, and 51.8% were women. Most of the patients had recovered or were recovering at the time of final report. A fatal outcome occurred in 13 cases. During the study period, the rate of CM in patients with MS receiving fingolimod was estimated to be 8 per 100,000 patient-years (95% CI: 6.0; 10.0). The incidence of CM seemed to increase with duration of treatment; however, this relationship remains uncertain due to wide CIs and missing data. DISCUSSION The causal relationship between fingolimod treatment and CM is not yet fully understood. The CM mortality rate in fingolimod-treated patients is similar to that reported in HIV-negative patients. Vigilance for signs and symptoms of CM in patients receiving fingolimod, particularly the new onset of headaches and altered mental status, is essential. Early diagnosis and treatment are critical to reducing CM-associated mortality.
Collapse
Affiliation(s)
- Maurizio Del Poeta
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Brian J. Ward
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Benjamin Greenberg
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Bernhard Hemmer
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Bruce A.C. Cree
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Sreelatha Komatireddy
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Jitendriya Mishra
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Roseanne Sullivan
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Ajay Kilaru
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Alan Moore
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Thomas Hach
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Joseph R. Berger
- From the Department of Microbiology and Immunology (M.D.P.), Stony Brook University; Division of Infectious Diseases (M.D.P.), School of Medicine, Stony Brook University; Veterans Affairs Medical Center (M.D.P.), Northport, NY; Infectious Diseases Division (B.J.W.), Research Institute of the McGill University Health Centre, Montreal, QC, Canada; University of Texas Southwestern Medical Center (B.G.), Department of Neurology, Dallas, TX; Department of Neurology (B.H.), Klinikum Rechts der Isar, Technical University of Munich; Munich Cluster for Systems Neurology (SyNergy) (B.H.), Germany; UCSF Weill Institute for Neurosciences (B.A.C.C.), Department of Neurology, University of California San Francisco; Novartis Healthcare Pvt. Ltd. (S.K., J.M.), Hyderabad, India; Novartis Pharmaceuticals Corporation (R.S.), East Hanover, NJ; Novartis Pharma AG (A.K., A.M., T.H.), Basel, Switzerland; and Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
42
|
Lo Buono V, D’Aleo G, Cammaroto S, De Cola MC, Palmese F, Smorto C, Marino S, Venuti G, Sessa E, Rifici C, Corallo F. Neuropsychological Disability in the Case of Natalizumab-Related Progressive Multifocal Leukoencephalopathy. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040551. [PMID: 35454389 PMCID: PMC9025511 DOI: 10.3390/medicina58040551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Progressive multifocal leukoencephalopathy (PML) is a viral disease characterized by progressive damage or inflammation of the cerebral white matter that can be encountered in patients with multiple sclerosis (MS). There are cases of PML caused by pharmacological agents including natalizumab. Therefore, in patients treated with this drug, early identification of PML allows changes in the treatment plan, reducing the risks of morbidity and mortality. CASE PRESENTATION We reported the case of a 57-year-old female diagnosed with relapsing-remitting MS, who presented with PML related to natalizumab. The patient presented with change in behavioral, radiological abnormalities in the left parieto-temporal lobes. We described the longitudinal course of PML, from the diagnosis until the patient's death, documenting the progressive deterioration of her cognitive functioning, supported by changes on sequential brain scans and neurophysiological data. CONCLUSION The neuropsychological impairment documented in this case study expands the range of treatment-related complications associated with natalizumab, and provides evidence that occurrence of "atypical" cognitive deficits in MS may support the early diagnosis of PML.
Collapse
Affiliation(s)
- Viviana Lo Buono
- IRCCS Centro Neurolesi Bonino Pulejo, 98100 Messina, Italy; (V.L.B.); (G.D.); (S.C.); (C.S.); (S.M.); (G.V.); (E.S.); (C.R.); (F.C.)
| | - Giangaetano D’Aleo
- IRCCS Centro Neurolesi Bonino Pulejo, 98100 Messina, Italy; (V.L.B.); (G.D.); (S.C.); (C.S.); (S.M.); (G.V.); (E.S.); (C.R.); (F.C.)
| | - Simona Cammaroto
- IRCCS Centro Neurolesi Bonino Pulejo, 98100 Messina, Italy; (V.L.B.); (G.D.); (S.C.); (C.S.); (S.M.); (G.V.); (E.S.); (C.R.); (F.C.)
| | - Maria Cristina De Cola
- IRCCS Centro Neurolesi Bonino Pulejo, 98100 Messina, Italy; (V.L.B.); (G.D.); (S.C.); (C.S.); (S.M.); (G.V.); (E.S.); (C.R.); (F.C.)
- Correspondence:
| | - Francesca Palmese
- Azienda ULSS Marca Trevigiana, Ospedale Cà Foncello, 31100 Treviso, Italy;
| | - Chiara Smorto
- IRCCS Centro Neurolesi Bonino Pulejo, 98100 Messina, Italy; (V.L.B.); (G.D.); (S.C.); (C.S.); (S.M.); (G.V.); (E.S.); (C.R.); (F.C.)
| | - Silvia Marino
- IRCCS Centro Neurolesi Bonino Pulejo, 98100 Messina, Italy; (V.L.B.); (G.D.); (S.C.); (C.S.); (S.M.); (G.V.); (E.S.); (C.R.); (F.C.)
| | - Giuseppe Venuti
- IRCCS Centro Neurolesi Bonino Pulejo, 98100 Messina, Italy; (V.L.B.); (G.D.); (S.C.); (C.S.); (S.M.); (G.V.); (E.S.); (C.R.); (F.C.)
| | - Edoardo Sessa
- IRCCS Centro Neurolesi Bonino Pulejo, 98100 Messina, Italy; (V.L.B.); (G.D.); (S.C.); (C.S.); (S.M.); (G.V.); (E.S.); (C.R.); (F.C.)
| | - Carmela Rifici
- IRCCS Centro Neurolesi Bonino Pulejo, 98100 Messina, Italy; (V.L.B.); (G.D.); (S.C.); (C.S.); (S.M.); (G.V.); (E.S.); (C.R.); (F.C.)
| | - Francesco Corallo
- IRCCS Centro Neurolesi Bonino Pulejo, 98100 Messina, Italy; (V.L.B.); (G.D.); (S.C.); (C.S.); (S.M.); (G.V.); (E.S.); (C.R.); (F.C.)
| |
Collapse
|
43
|
Mirabella M, Annovazzi P, Brownlee W, Cohen JA, Kleinschnitz C, Wolf C. Treatment Challenges in Multiple Sclerosis – A Continued Role for Glatiramer Acetate? Front Neurol 2022; 13:844873. [PMID: 35493825 PMCID: PMC9051342 DOI: 10.3389/fneur.2022.844873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Earlier diagnosis, access to disease-modifying therapies (DMTs), and improved supportive care have favorably altered the disease course of multiple sclerosis (MS), leading to an improvement in long-term outcomes for people with MS (PwMS). This success has changed the medical characteristics of the population seen in MS clinics. Comorbidities and the accompanying polypharmacy, immune senescence, and the growing number of approved DMTs make selecting the optimal agent for an individual patient more challenging. Glatiramer acetate (GA), a moderately effective DMT, interacts only minimally with comorbidities, other medications, or immune senescence. We describe here several populations in which GA may represent a useful treatment option to overcome challenges due to advanced age or comorbidities (e.g., hepatic or renal disease, cancer). Further, we weigh GA's potential merits in other settings where PwMS and their neurologists must base treatment decisions on factors other than selecting the most effective DMT, e.g., family planning, conception and pregnancy, or the need for vaccination.
Collapse
Affiliation(s)
- Massimiliano Mirabella
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica, Rome, Italy
- *Correspondence: Massimiliano Mirabella ; orcid.org/0000-0002-7783-114X
| | - Pietro Annovazzi
- MS Center, ASST Valle Olona, Gallarate Hospital, Gallarate, Italy
| | - Wallace Brownlee
- Queen Square MS Centre, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Jeffrey A. Cohen
- Department of Neurology, Mellen Center, Neurologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | | | | |
Collapse
|
44
|
Buscarinu MC, Reniè R, Morena E, Romano C, Bellucci G, Marrone A, Bigi R, Salvetti M, Ristori G. Late-Onset MS: Disease Course and Safety-Efficacy of DMTS. Front Neurol 2022; 13:829331. [PMID: 35356454 PMCID: PMC8960027 DOI: 10.3389/fneur.2022.829331] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS), an inflammatory demyelinating and neurodegenerative disease of the central nervous system, usually begins between the ages of 20 and 49 years, though in rare cases it is diagnosed in childhood and adolescence before the age of 18 years, or at the age of 50 years and later. When the onset of the disease occurs at 50 years or older it is conventionally defined as late onset MS (LOMS). Compared to classical MS, the LOMS is characterized by progressive course, a greater delay in diagnosis and a higher prevalence of motor disability. The older the patients, the greater is the risk of comorbidities that can negatively influence the course of the disease and can limit therapeutic strategies. To date, there is no study focused on the efficacy of Disease Modifying Therapies (DMT) in older patients with MS. The only data available are retrievable from subgroup analysis from phase-3 trials of DMT efficacy. In this work, we discuss how the aging process influences the onset, the clinical course and the therapeutic approach in LOMS.
Collapse
Affiliation(s)
- Maria Chiara Buscarinu
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Roberta Reniè
- Department of Clinical-Experimental Neuroscience and Psychiatry, Sapienza University, Rome, Italy
| | - Emanuele Morena
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
| | - Carmela Romano
- Department of Clinical-Experimental Neuroscience and Psychiatry, Sapienza University, Rome, Italy
| | - Gianmarco Bellucci
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
| | - Antonio Marrone
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
| | - Rachele Bigi
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
- *Correspondence: Marco Salvetti
| | - Giovanni Ristori
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Giovanni Ristori
| |
Collapse
|
45
|
Schneider S, Do D, Fuller R, Berger JR. Molluscum contagiosum in the setting of Fingolimod: The experience at one institution. Mult Scler Relat Disord 2022; 58:103419. [PMID: 35216791 DOI: 10.1016/j.msard.2021.103419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/20/2021] [Indexed: 11/24/2022]
Abstract
Fingolimod treatment has been associated with opportunistic infections, most notably PML and cryptococcal meningitis. There are rare reports of other infections like molluscum contagiosum which are typically associated with impaired cellular immunity as seen in AIDS. Upon review of our multiple sclerosis patient database, we identified eight patients undergoing fingolimod treatment who developed molluscum contagiosum infections. We suspect that this association is a class effect and may also be observed with other S1P receptor modulators. While molluscum contagiosum infection is not life-threatening, it can be extremely distressing for patients, and resolution may require discontinuation of fingolimod.
Collapse
Affiliation(s)
- Sabine Schneider
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David Do
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Fuller
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph R Berger
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Tur C, Dubessy AL, Otero-Romero S, Amato MP, Derfuss T, Di Pauli F, Iacobaeus E, Mycko M, Abboud H, Achiron A, Bellinvia A, Boyko A, Casanova JL, Clifford D, Dobson R, Farez MF, Filippi M, Fitzgerald KC, Fonderico M, Gouider R, Hacohen Y, Hellwig K, Hemmer B, Kappos L, Ladeira F, Lebrun-Frénay C, Louapre C, Magyari M, Mehling M, Oreja-Guevara C, Pandit L, Papeix C, Piehl F, Portaccio E, Ruiz-Camps I, Selmaj K, Simpson-Yap S, Siva A, Sorensen PS, Sormani MP, Trojano M, Vaknin-Dembinsky A, Vukusic S, Weinshenker B, Wiendl H, Winkelmann A, Zuluaga Rodas MI, Tintoré M, Stankoff B. The risk of infections for multiple sclerosis and neuromyelitis optica spectrum disorder disease-modifying treatments: Eighth European Committee for Treatment and Research in Multiple Sclerosis Focused Workshop Review. April 2021. Mult Scler 2022; 28:1424-1456. [PMID: 35196927 DOI: 10.1177/13524585211069068] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the recent years, the treatment of multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) has evolved very rapidly and a large number of disease-modifying treatments (DMTs) are now available. However, most DMTs are associated with adverse events, the most frequent of which being infections. Consideration of all DMT-associated risks facilitates development of risk mitigation strategies. An international focused workshop with expert-led discussions was sponsored by the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) and was held in April 2021 to review our current knowledge about the risk of infections associated with the use of DMTs for people with MS and NMOSD and corresponding risk mitigation strategies. The workshop addressed DMT-associated infections in specific populations, such as children and pregnant women with MS, or people with MS who have other comorbidities or live in regions with an exceptionally high infection burden. Finally, we reviewed the topic of DMT-associated infectious risks in the context of the current SARS-CoV-2 pandemic. Herein, we summarize available evidence and identify gaps in knowledge which justify further research.
Collapse
Affiliation(s)
- Carmen Tur
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Anne-Laure Dubessy
- Sorbonne Université, Inserm, CNRS, UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France/ Department of Neurology, Saint Antoine Hospital, AP-HP, Paris, France
| | - Susana Otero-Romero
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Pia Amato
- Department of NEUROFARBA, University of Florence, Florence, Italy/IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Tobias Derfuss
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Franziska Di Pauli
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ellen Iacobaeus
- Division of Neurology, Department of Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marcin Mycko
- Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Hesham Abboud
- Multiple Sclerosis and Neuroimmunology Program, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland Medical Center, Cleveland, OH, USA
| | - Anat Achiron
- Sheba Medical Center at Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Angelo Bellinvia
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Alexey Boyko
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia/Institute of Clinical Neurology and Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - David Clifford
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ruth Dobson
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK/Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Mauricio F Farez
- Center for Research on Neuroimmunological Diseases, FLENI, Buenos Aires, Argentina
| | - Massimo Filippi
- Neurology Unit, Neurorehabilitation Unit and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Kathryn C Fitzgerald
- Department of Neurology and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Mattia Fonderico
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Riadh Gouider
- Department of Neurology, Razi Hospital, Tunis, Tunisia
| | - Yael Hacohen
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Kerstin Hellwig
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital, University of Basel, Basel, Switzerland
| | - Filipa Ladeira
- Neurology Department, Hospital Santo António dos Capuchos, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Christine Lebrun-Frénay
- CRCSEP Côte d'Azur, CHU de Nice Pasteur 2, UR2CA-URRIS, Université Nice Côte d'Azur, Nice, France
| | - Céline Louapre
- Sorbonne Université, Inserm, CNRS, UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France/Sorbonne University, Paris Brain Institute-ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, CIC Neurosciences, Paris, France
| | - Melinda Magyari
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Matthias Mehling
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, Idissc, Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Lekha Pandit
- Center for Advanced Neurological Research, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
| | - Caroline Papeix
- Sorbonne Université, Inserm, CNRS, UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France/Sorbonne University, Paris Brain Institute-ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, CIC Neurosciences, Paris, France
| | - Fredrik Piehl
- Division of Neurology, Department of Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Emilio Portaccio
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Isabel Ruiz-Camps
- Servicio de Enfermedades Infecciosas, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Krzysztof Selmaj
- Collegium Medicum, Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland/Center of Neurology, Lodz, Poland
| | - Steve Simpson-Yap
- Clinical Outcomes Research Unit, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Aksel Siva
- Department of Neurology, Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Per Soelberg Sorensen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| | - Adi Vaknin-Dembinsky
- Hadassah-Hebrew University Medical Center, Department of Neurology, The Agnes-Ginges Center for Neurogenetics Jerusalem, Jerusalem, Israel
| | - Sandra Vukusic
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France/Centre des Neurosciences de Lyon, Observatoire Français de la Sclérose en Plaques, INSERM 1028 et CNRS UMR5292, Lyon, France/Université Claude Bernard Lyon 1, Faculté de médecine Lyon Est, Lyon, France
| | | | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Muenster, Münster, Germany
| | | | | | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Bruno Stankoff
- Sorbonne Université, Inserm, CNRS, UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France/ Department of Neurology, Saint Antoine Hospital, AP-HP, Paris, France
| |
Collapse
|
47
|
Vollmer BL, Wolf AB, Sillau S, Corboy JR, Alvarez E. Evolution of Disease Modifying Therapy Benefits and Risks: An Argument for De-escalation as a Treatment Paradigm for Patients With Multiple Sclerosis. Front Neurol 2022; 12:799138. [PMID: 35145470 PMCID: PMC8821102 DOI: 10.3389/fneur.2021.799138] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
BackgroundStrategies for sequencing disease modifying therapies (DMTs) in multiple sclerosis (MS) patients include escalation, high efficacy early, induction, and de-escalation.ObjectiveTo provide a perspective on de-escalation, which aims to match the ratio of DMT benefit/risk in aging patients.MethodsWe reanalyzed data from a retrospective, real-world cohort of MS patients to model disease activity for oral (dimethyl fumarate and fingolimod) and higher efficacy infusible (natalizumab and rituximab) DMTs by age. For patients with relapsing MS, we conducted a controlled, stratified analysis examining odds of disease activity for oral vs. infusible DMTs in patients <45 or ≥45 years. We reviewed the literature to identify DMT risks and predictors of safe discontinuation.ResultsYounger patients had lower probability of disease activity on infusible vs. oral DMTs. There was no statistical difference after age 54.2 years. When dichotomized, patients <45 years on oral DMTs had greater odds of disease activity compared to patients on infusible DMTs, while among those ≥45 years, there was no difference. Literature review noted that adverse events increase with aging, notably infections in patients with higher disability and longer DMT duration. Additionally, we identified factors predictive of disease reactivation including age, clinical stability, and MRI activity.ConclusionIn a real-world cohort of relapsing MS patients, high efficacy DMTs had less benefit with aging but were associated with increased risks. This cohort helps overcome some limitations of trials where older patients were excluded. To better balance benefits/risks, we propose a DMT de-escalation approach for aging MS patients.
Collapse
|
48
|
Quirant-Sánchez B, Mansilla MJ, Navarro-Barriuso J, Presas-Rodríguez S, Teniente-Serra A, Fondelli F, Ramo-Tello C, Martínez-Cáceres E. Combined Therapy of Vitamin D3-Tolerogenic Dendritic Cells and Interferon-β in a Preclinical Model of Multiple Sclerosis. Biomedicines 2021; 9:biomedicines9121758. [PMID: 34944573 PMCID: PMC8698295 DOI: 10.3390/biomedicines9121758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022] Open
Abstract
Autologous antigen-specific therapies based on tolerogenic dendritic cells (tolDC) offer the possibility to treat autoimmune diseases by restoring homeostasis and targeting specifically autoreactive responses. Here, we explore the hypothesis that systemic inflammation occurring in autoimmune diseases, such as multiple sclerosis (MS), can generate a disease-specific environment able to alter the functionality of tolDC. In this context in fact, a combined therapy of tolDC with an immunomodulatory treatment could potentiate the beneficial effect of this antigen-specific cell therapy. For this purpose, we analyzed the efficacy of a combined therapy based on the use of vitamin D3 (VitD3)-tolDC plus interferon beta (IFN-beta) in MS. VitD3-tolDC were generated from healthy donors and MS patients and co-cultured with allogeneic peripheral blood mononuclear cells, in the presence or absence of IFN-beta. In vitro, VitD3-tolDC treatment reduced the percentage of activated T cells and allogeneic proliferation, whereas VitD3-tolDC+IFN-beta treatment enhanced the suppressive ability of VitD3-tolDC and, additionally, induced a shift towards a Th2 profile. To determine the clinical benefit of the combined therapy, C57BL/6-experimental autoimmune encephalomyelitis (EAE)-induced mice were treated with antigen-specific VitD3-tolDC and/or IFN-beta. Treatment of EAE mice with combined therapy ameliorated the disease course compared to each monotherapy. These results suggest that a combined therapy based on antigen-specific VitD3-tolDC and IFN-beta may represent a promising strategy for MS patients.
Collapse
Affiliation(s)
- Bibiana Quirant-Sánchez
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, 08916 Badalona, Spain; (B.Q.-S.); (M.J.M.); (J.N.-B.); (A.T.-S.); (F.F.)
- Department of Cellular Biology, Physiology and Immunology, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - María José Mansilla
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, 08916 Badalona, Spain; (B.Q.-S.); (M.J.M.); (J.N.-B.); (A.T.-S.); (F.F.)
- Department of Cellular Biology, Physiology and Immunology, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Juan Navarro-Barriuso
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, 08916 Badalona, Spain; (B.Q.-S.); (M.J.M.); (J.N.-B.); (A.T.-S.); (F.F.)
- Department of Cellular Biology, Physiology and Immunology, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Silvia Presas-Rodríguez
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain;
- Department of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Aina Teniente-Serra
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, 08916 Badalona, Spain; (B.Q.-S.); (M.J.M.); (J.N.-B.); (A.T.-S.); (F.F.)
- Department of Cellular Biology, Physiology and Immunology, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Federico Fondelli
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, 08916 Badalona, Spain; (B.Q.-S.); (M.J.M.); (J.N.-B.); (A.T.-S.); (F.F.)
- Department of Cellular Biology, Physiology and Immunology, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Cristina Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain;
- Department of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Correspondence: or (C.R.-T.); (E.M.-C.); Tel.: +34-93-497-8433 (C.R.-T.); +34-93-497-8666 (E.M.-C.)
| | - Eva Martínez-Cáceres
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, 08916 Badalona, Spain; (B.Q.-S.); (M.J.M.); (J.N.-B.); (A.T.-S.); (F.F.)
- Department of Cellular Biology, Physiology and Immunology, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Correspondence: or (C.R.-T.); (E.M.-C.); Tel.: +34-93-497-8433 (C.R.-T.); +34-93-497-8666 (E.M.-C.)
| |
Collapse
|
49
|
Sriwastava S, Chaudhary D, Srivastava S, Beard K, Bai X, Wen S, Khalid SH, Lisak RP. Progressive multifocal leukoencephalopathy and sphingosine 1-phosphate receptor modulators used in multiple sclerosis: an updated review of literature. J Neurol 2021; 269:1678-1687. [PMID: 34800168 DOI: 10.1007/s00415-021-10910-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Progressive multifocal leukoencephalopathy (PML) is a serious viral infection associated with disease-modifying therapies (DMT) for multiple sclerosis (MS) including sphingosine 1-phosphate receptor (S1PR) modulators. The objective of this review was to investigate the characteristics of PML in MS patients associated with drugs of the S1PR modulator. METHODS We conducted a literature review and analysis of 24 patients from 12 publications in PubMed, SCOPUS and EMBASE. This is a descriptive analysis and study of characteristics of PML associated fingolimod and related S1PR modulator group of DMT. RESULTS A total of 24 cases of PML in MS patients treated with fingolimod were identified. Of these, 21 cases contained data regarding changes in the expanded disability status scale (EDSS). One case of PML in association with ozanimod treatment in a clinical trial was also identified. In PML cases associated with fingolimod, the mean age at the time of PML diagnosis was 50.91 ± 11.5 years. All patients were treated with fingolimod for more than 24 months. Compared to patients who improved or were stable, in terms of EDSS, after symptomatic management of PML, the non-improved groups were significantly older. There were no fatalities in either group during the reported follow-up period. CONCLUSION The incidence of PML appears to be extremely low in MS patients treated with S1PR modulators. Risk of PML increases with increase in duration of treatment with S1PR modulators like fingolimod, and increased age at the time of PML diagnosis is associated with worse prognosis.
Collapse
Affiliation(s)
- Shitiz Sriwastava
- Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
- West Virginia Clinical and Translational Science Institute, Morgantown, WV, USA.
- Department of Neurology, Wayne State University, Detroit, MI, USA.
- School of Medicine, West Virginia University, Morgantown, WV, USA.
| | | | | | - Katherine Beard
- School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Xue Bai
- Department of Biostatistics, West Virginia University, Morgantown, WV, USA
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, WV, USA
| | - Syed Hassan Khalid
- Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Robert P Lisak
- Department of Neurology, Wayne State University, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
50
|
Disease-modifying therapies and progressive multifocal leukoencephalopathy in multiple sclerosis: A systematic review and meta-analysis. J Neuroimmunol 2021; 360:577721. [PMID: 34547511 PMCID: PMC9810068 DOI: 10.1016/j.jneuroim.2021.577721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/20/2021] [Accepted: 09/12/2021] [Indexed: 01/05/2023]
Abstract
Background High efficacy disease modifying therapies (DMT) in the management of Multiple Sclerosis (MS) have a favorable effect on relapse rate and disability progression; however, they can expose patients to significant risks, such as progressive multifocal leukoencephalopathy (PML). Objective The study aims to investigate prognostic factors that can determine outcome in MS-related PML patients. Methods We conducted a literature review and meta-analysis of 194 patients from 62 articles in PubMed, SCOPUS and EMBASE. Results Out of 194 patients (66.5% women, 33.5% men), 81% had progression in their EDSS score by at least 1 point from the time of PML diagnosis (EDSS-P group). The remaining patients had either stable or improved EDSS (EDSS-S group). In univariate analysis, older age at the time of PML diagnosis was associated with higher probability of disability accumulation and worsening of EDSS by at least 1 point (mean age = 44.8, p = 0.046). After adjusting for other variables, age at time of PML diagnosis remained a significant predictive variable in the multivariable logistic model (OR = 0.93, 95% CI: 0.88-0.99, p = 0.037). Natalizumab is the most commonly associated DMT linked to PML, followed by fingolimod and others including dimethyl fumarate, ocrelizumab, alemtuzumab. Among the different treatments used, no therapeutic agent was found to be superior in improving post-PML EDSS. Conclusions Younger age and lower JCV viral load at the time of PML diagnosis were associated with better outcome in MS-associate PML, while none of the PML therapies was superior over the others or associated with favorable outcome.
Collapse
|