1
|
Lerch M, Ramanathan S. The pathogenesis of neurological immune-related adverse events following immune checkpoint inhibitor therapy. Semin Immunol 2025; 78:101956. [PMID: 40294474 DOI: 10.1016/j.smim.2025.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. The development of immune checkpoint inhibitors (ICI) has revolutionised cancer therapy, and patients who were previously incurable can now have excellent responses. These therapies work by blocking inhibitory immune pathways, like cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death-1 (PD-1), its ligand PD-L1, and lymphocyte activation gene 3 (LAG-3); which leads to increased anti-tumour immune responses. However, their use can lead to the development of immune-related adverse events (irAEs), which may result in severe disability, interruption of cancer therapy, and even death. Neurological autoimmune sequelae occur in 1-10 % of patients treated with ICIs and can be fatal. They encompass a broad spectrum of diseases, may affect the central and the peripheral nervous system, and include syndromes like encephalitis, cerebellitis, neuropathy, and myositis. In some cases, neurological irAEs can be associated with autoantibodies recognising neuronal or glial targets. In this review, we first describe the key targets in ICI therapy, followed by a formulation of irAEs and their clinical presentations, where we focus on neurological syndromes. We comprehensively formulate the current literature evaluating cell surface and intracellular autoantibodies, cytokines, chemokines, leukocyte patterns, other blood derived biomarkers, and immunogenetic profiles; and highlight their impact on our understanding of the pathogenesis of neurological irAEs. Finally, we describe therapeutic pathways and patient outcomes, and provide an overview on future aspects of ICI cancer therapy.
Collapse
Affiliation(s)
- Magdalena Lerch
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Sudarshini Ramanathan
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Neurology and Concord Clinical School, Concord Hospital, Sydney, Australia.
| |
Collapse
|
2
|
Zhang L, Fan S, Wang J, Ren H, Guan H. Antibody-positive paraneoplastic neurological syndromes associated with immune checkpoint inhibitors: a systematic review. J Neurol 2025; 272:249. [PMID: 40042691 DOI: 10.1007/s00415-025-12992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND AND OBJECTIVES This study aimed to describe the clinical and prognostic characteristics of antibody-positive paraneoplastic neurological syndrome (PNS) associated with immune checkpoint inhibitors (ICIs). METHODS We conducted a systematic review of relevant publications in PubMed and Embase from inception to December 2023. Patients with positive anti-neuronal antibodies who had a definite, probable, or possible diagnosis of PNS based on the 2021 PNS-Care Score criteria were included. RESULTS A total of 76 records with 108 antibody-positive ICI-PNS patients were included in this systematic review. According to the updated 2021 criteria, 60.2% of patients were classified as definite PNS, 29.6% as probable PNS, and 10.2% as possible PNS. The median age was 66 years (range: 26-82), and 56.5% of patients were male. The most frequently associated tumors included lung cancer, melanoma, and Merkel cell carcinoma, and 72.2% of patients developed neurological symptoms within 6 months after ICIs treatment. The most common clinical phenotypes were limbic encephalitis (35.2%), rapidly progressive cerebellar syndrome (19.4%), and Lambert-Eaton myasthenic syndrome (13.0%), while the most common autoantibodies were anti-Hu (34.3%), anti-Ma2 (16.7%), and anti-P/Q VGCC (14.8%) antibodies. CSF inflammation was observed in 63.0% patients, predominantly lymphocytic. Corticosteroids were the mainstay of immunotherapy (90.9%), followed by intravenous immunoglobulin (IVIG) and plasma exchange. Outcome information was reported for 103 patients. The median follow-up was 4 months (IQR: 2, 10), and 56.3% of patients showed improvement, while 37.0% of patients died at the last follow-up. Patients with anti-Hu or anti-Ma2 antibodies had a higher proportion of deterioration and mortality (P < 0.05). CONCLUSION Limbic encephalitis and anti-Hu antibody are relatively common in antibody-positive ICI-PNS, and most patients present with CSF inflammation. Discontinuation of ICIs and corticosteroids are the main treatments. High-risk antibodies may be a risk factor for an unfavorable prognosis, particularly anti-Hu and anti-Ma2 antibodies.
Collapse
Affiliation(s)
- Le Zhang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Siyuan Fan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Haitao Ren
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hongzhi Guan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Dinoto A, Flanagan EP. Autoimmune dementia. Curr Opin Psychiatry 2025; 38:101-111. [PMID: 39887315 DOI: 10.1097/yco.0000000000000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize clinical, radiological and laboratory findings in autoimmune dementia, to help clinicians in promptly identify this elusive condition. RECENT FINDINGS The rapid advances in the field of autoimmune neurology have led to the discovery of novel antibodies and associated disorders, which are more frequent than previously hypothesized. The correct and prompt identification of cognitive decline of autoimmune origin is vital to ensure early treatment and better outcomes. The diagnosis of autoimmune dementia relies on specific clinical and radiological features and on the detection of specific autoantibodies. Autoantibody specificities predict response to treatment and the occurrence of cancer. In recent years, the differential diagnosis of autoimmune dementia has become more relevant, as the overinterpretation of antibody results, clinical and radiological findings may lead to an erroneous diagnosis of autoimmune dementia, with potential harm to patients due to inappropriate exposure to immunosuppressants. SUMMARY Autoimmune dementia is a potentially treatable condition and should not be missed in clinical practice given the potential for reversibility with immunotherapy. The diagnosis of autoimmune dementia relies on a comprehensive review of clinical, radiological and laboratory data, and exclusion of other causes of dementia.
Collapse
Affiliation(s)
- Alessandro Dinoto
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Eoin P Flanagan
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Sfeir P, Kamar F. Unusual Presentation of a Rare Case of Immunotherapy Combination-Induced Encephalitis: A Case Report. Case Rep Oncol 2025; 18:206-212. [PMID: 39980527 PMCID: PMC11805547 DOI: 10.1159/000543215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/11/2024] [Indexed: 02/22/2025] Open
Abstract
Introduction Immune checkpoint inhibitors have revolutionized cancer treatment owing to their ability to activate cellular immune checkpoint pathways and mediate an antitumor activity. Due to their immunological actions, immune-related adverse events (irAEs) have become a concern. Neurological adverse events are rarely seen whether in the central or peripheral nervous system and can be potentially life-threatening. We present a rare case of occipital encephalitis following dual immunotherapy treatment in a patient with melanoma. Case Presentation A 41-year-old man diagnosed with nodular melanoma of the right torso with axillary lymphadenopathies was treated with dual immunotherapy: nivolumab and ipilimumab. After 24 weeks, patient developed right homolateral hemianopia, and imaging findings correlated with occipital encephalitis. Autoantibodies were not detected. The patient was treated with steroids and exhibited radiological improvement of his encephalitis but maintained his right hemianopia. Conclusion Neurological side effects of immunotherapy are not very common and range from mild to severe life-threatening symptoms. Previous analyses have shown that combination immunotherapy has a higher risk of side effects than monotherapy. Diagnosis of neurological manifestations is usually made by imaging, mainly brain magnetic resonance imaging or detection of autoantibodies in the CSF. The gold standard treatment is usually corticosteroids or rarely other molecules such as IVIg or monoclonal antibodies. The prognosis is usually favorable.
Collapse
Affiliation(s)
- Pamela Sfeir
- Department of Oncology, University of Balamand Medical School, Koura, Lebanon
| | - Francois Kamar
- Department of Oncology, Mount Lebanon Balamand University Hospital Center, Hazmieh, Lebanon
| |
Collapse
|
5
|
McKeon A, Pittock SJ. Overview and Diagnostic Approach in Autoimmune Neurology. Continuum (Minneap Minn) 2024; 30:960-994. [PMID: 39088285 DOI: 10.1212/con.0000000000001447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
OBJECTIVE The field of autoimmune neurology is rapidly evolving. This article reviews the epidemiology and pathophysiology as well as current approaches to clinical and paraclinical assessment, testing paradigms, and general principles of treatment. LATEST DEVELOPMENTS Improved recognition of autoimmune diagnoses among patients who have phenotypically diverse, subacute onset neurologic presentations is facilitated by disease-specific antibody biomarker discovery. These antibodies have varying associations with paraneoplastic causation (from no association to greater than 70% positive predictive value), immunotherapy responses, and outcomes. To simplify assessment in an increasingly complex discipline, neurologic phenotype-specific serum and CSF antibody evaluations are recommended. Clinical trials have led to the approval of monoclonal therapies for neuromyelitis optica spectrum disorder (NMOSD) and are underway for N-methyl-d-aspartate (NMDA) receptor and leucine-rich glioma inactivated protein 1 (LGI1) encephalitides. ESSENTIAL POINTS Autoimmune neurology is now a mainstream subspecialty, consisting of disorders with diverse presentations detectable using antibody testing of serum and CSF. Early and sustained immunotherapy (eg, corticosteroids, intravenous immunoglobulin [IVIg], plasma exchange) is recommended and may be supplemented by immune suppressants (eg, rituximab or cyclophosphamide) to sustain responses and optimize outcomes.
Collapse
|
6
|
Balint B. Autoimmune Movement Disorders. Continuum (Minneap Minn) 2024; 30:1088-1109. [PMID: 39088289 DOI: 10.1212/con.0000000000001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
OBJECTIVE This article reviews the clinical and antibody spectrum of autoimmune cerebellar ataxia and other autoimmune movement disorders. It highlights characteristic phenotypes and red flags to the diagnosis and how these rare, but treatable, disorders are integrated into a differential diagnosis. LATEST DEVELOPMENTS An increasing number of neuronal antibodies have been identified in patients with cerebellar ataxia, for example, against Kelch-like protein 11 (KLHL11), seizure-related 6 homolog-like 2, septin-3 and septin-5, or tripartite motif containing protein 9 (TRIM9), TRIM46, and TRIM67. Ig-like cell adhesion molecule 5 (IgLON5) antibody-associated syndromes have emerged as an important alternative diagnostic consideration to various neurodegenerative diseases such as Huntington disease or atypical parkinsonism. Opsoclonus-myoclonus syndrome emerged as the most relevant parainfectious movement disorder related to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ESSENTIAL POINTS Autoimmune cerebellar ataxia and other autoimmune movement disorders encompass a broad spectrum of different clinical syndromes, antibodies, and immunopathophysiologic mechanisms. Clinical acumen is key to identifying the cases that should undergo testing for neuronal antibodies. Given the overlap between phenotypes and antibodies, panel testing in serum and CSF is recommended.
Collapse
|
7
|
Zekeridou A. Paraneoplastic Neurologic Disorders. Continuum (Minneap Minn) 2024; 30:1021-1051. [PMID: 39088287 DOI: 10.1212/con.0000000000001449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
OBJECTIVE This article reviews the clinical presentations, neural antibody associations, and oncologic accompaniments of paraneoplastic neurologic syndromes and neurologic autoimmunity in the context of immune checkpoint inhibitor (ICI) cancer immunotherapy. LATEST DEVELOPMENTS Neural antibody discovery has improved the diagnosis of paraneoplastic neurologic syndromes. Neural antibodies also delineate the underlying disease pathophysiology and thus inform outcomes and treatments. Neural antibodies specific for extracellular proteins have pathogenic potential, whereas antibodies specific for intracellular targets are biomarkers of a cytotoxic T-cell immune response. A recent update in paraneoplastic neurologic syndrome criteria suggests high- and intermediate-risk phenotypes as well as neural antibodies to improve diagnostic accuracy in patients with paraneoplastic neurologic syndromes; a score was created based on this categorization. The introduction of ICI cancer immunotherapy has led to an increase in cancer-related neurologic autoimmunity with distinct clinical phenotypes. ESSENTIAL POINTS Paraneoplastic neurologic syndromes reflect an ongoing immunologic response to cancer mediated by effector T cells or antibodies. Paraneoplastic neurologic syndromes can present with manifestations at any level of the neuraxis, and neural antibodies aid diagnosis, focus cancer screening, and inform prognosis and therapy. In patients with high clinical suspicion of a paraneoplastic neurologic syndrome, cancer screening and treatment should be undertaken, regardless of the presence of a neural antibody. ICI therapy has led to immune-mediated neurologic complications. Recognition and treatment lead to improved outcomes.
Collapse
|
8
|
Mathias A, Perriot S, Jones S, Canales M, Bernard-Valnet R, Gimenez M, Torcida N, Oberholster L, Hottinger AF, Zekeridou A, Theaudin M, Pot C, Du Pasquier R. Human stem cell-derived neurons and astrocytes to detect novel auto-reactive IgG response in immune-mediated neurological diseases. Front Immunol 2024; 15:1419712. [PMID: 39114659 PMCID: PMC11303155 DOI: 10.3389/fimmu.2024.1419712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Background and objectives Up to 46% of patients with presumed autoimmune limbic encephalitis are seronegative for all currently known central nervous system (CNS) antigens. We developed a cell-based assay (CBA) to screen for novel neural antibodies in serum and cerebrospinal fluid (CSF) using neurons and astrocytes derived from human-induced pluripotent stem cells (hiPSCs). Methods Human iPSC-derived astrocytes or neurons were incubated with serum/CSF from 99 patients [42 with inflammatory neurological diseases (IND) and 57 with non-IND (NIND)]. The IND group included 11 patients with previously established neural antibodies, six with seronegative neuromyelitis optica spectrum disorder (NMOSD), 12 with suspected autoimmune encephalitis/paraneoplastic syndrome (AIE/PNS), and 13 with other IND (OIND). IgG binding to fixed CNS cells was detected using fluorescently-labeled antibodies and analyzed through automated fluorescence measures. IgG neuronal/astrocyte reactivity was further analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMCs) were used as CNS-irrelevant control target cells. Reactivity profile was defined as positive using a Robust regression and Outlier removal test with a false discovery rate at 10% following each individual readout. Results Using our CBA, we detected antibodies recognizing hiPSC-derived neural cells in 19/99 subjects. Antibodies bound specifically to astrocytes in nine cases, to neurons in eight cases, and to both cell types in two cases, as confirmed by microscopy single-cell analyses. Highlighting the significance of our comprehensive 96-well CBA assay, neural-specific antibody binding was more frequent in IND (15 of 42) than in NIND patients (4 of 57) (Fisher's exact test, p = 0.0005). Two of four AQP4+ NMO and four of seven definite AIE/PNS with intracellular-reactive antibodies [1 GFAP astrocytopathy, 2 Hu+, 1 Ri+ AIE/PNS)], as identified in diagnostic laboratories, were also positive with our CBA. Most interestingly, we showed antibody-reactivity in two of six seronegative NMOSD, six of 12 probable AIE/PNS, and one of 13 OIND. Flow cytometry using hiPSC-derived CNS cells or PBMC-detected antibody binding in 13 versus zero patients, respectively, establishing the specificity of the detected antibodies for neural tissue. Conclusion Our unique hiPSC-based CBA allows for the testing of novel neuron-/astrocyte-reactive antibodies in patients with suspected immune-mediated neurological syndromes, and negative testing in established routine laboratories, opening new perspectives in establishing a diagnosis of such complex diseases.
Collapse
Affiliation(s)
- Amandine Mathias
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Sylvain Perriot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Samuel Jones
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Mathieu Canales
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Raphaël Bernard-Valnet
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie Gimenez
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Nathan Torcida
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Larise Oberholster
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Andreas F. Hottinger
- Lundin Family Brain Tumor Research Centre, Department of Clinical Neurosciences and Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Anastasia Zekeridou
- Department of Laboratory Medicine and Pathology and Department of Neurology, Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| | - Marie Theaudin
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Gilligan M, Lesnick CE, Guo Y, Bradshaw MJ, Ladha SS, Nowak M, Shah MP, Wittenborn JR, Basal E, Hinson S, Yang B, Dubey D, Mills JR, Pittock SJ, Zekeridou A, McKeon A. Paraneoplastic Calmodulin Kinase-Like Vesicle-Associated Protein (CAMKV) Autoimmune Encephalitis. Ann Neurol 2024; 96:21-33. [PMID: 38634529 PMCID: PMC11186719 DOI: 10.1002/ana.26943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVES To report an autoimmune paraneoplastic encephalitis characterized by immunoglobulin G (IgG) antibody targeting synaptic protein calmodulin kinase-like vesicle-associated (CAMKV). METHODS Serum and cerebrospinal fluid (CSF) samples harboring unclassified antibodies on murine brain-based indirect immunofluorescence assay (IFA) were screened by human protein microarray. In 5 patients with identical cerebral IFA staining, CAMKV was identified as top-ranking candidate antigen. Western blots, confocal microscopy, immune-absorption, and mass spectrometry were performed to substantiate CAMKV specificity. Recombinant CAMKV-specific assays (cell-based [fixed and live] and Western blot) provided additional confirmation. RESULTS Of 5 CAMKV-IgG positive patients, 3 were women (median symptom-onset age was 59 years; range, 53-74). Encephalitis-onset was subacute (4) or acute (1) and manifested with: altered mental status (all), seizures (4), hyperkinetic movements (4), psychiatric features (3), memory loss (2), and insomnia (2). Paraclinical testing revealed CSF lymphocytic pleocytosis (all 4 tested), electrographic seizures (3 of 4 tested), and striking MRI abnormalities in all (mesial temporal lobe T2 hyperintensities [all patients], caudate head T2 hyperintensities [3], and cortical diffusion weighted hyperintensities [2]). None had post-gadolinium enhancement. Cancers were uterine adenocarcinoma (3 patients: poorly differentiated or neuroendocrine-differentiated in 2, both demonstrated CAMKV immunoreactivity), bladder urothelial carcinoma (1), and non-Hodgkin lymphoma (1). Two patients developed encephalitis following immune checkpoint inhibitor cancer therapy (atezolizumab [1], pembrolizumab [1]). All treated patients (4) demonstrated an initial response to immunotherapy (corticosteroids [4], IVIG [2]), though 3 died from cancer. INTERPRETATION CAMKV-IgG is a biomarker of immunotherapy-responsive paraneoplastic encephalitis with temporal and extratemporal features and uterine cancer as a prominent oncologic association. ANN NEUROL 2024;96:21-33.
Collapse
Affiliation(s)
- Michael Gilligan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, University College Dublin, St Vincent's Hospital Elm Park, Dublin, Ireland
| | - Connie E Lesnick
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Michael J Bradshaw
- Department of Neurology, University of Washington and Billings Clinic, Billings, MT, USA
| | - Shafeeq S Ladha
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mihaela Nowak
- Department of Neurology, Jefferson Hospital, Jefferson Hills, PA, USA
| | - Maulik P Shah
- Department of Neurology, University of California, San Francisco, CA, USA
| | - John R Wittenborn
- Department of Neurology, Robert Wood Johnson University Hospital, New Brunswick, NJ, USA
| | - Eati Basal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Shannon Hinson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Binxia Yang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Divyanshu Dubey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - John R Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Anastasia Zekeridou
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Andrew McKeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Segal Y, Zekeridou A. Interest of rare autoantibodies in autoimmune encephalitis and paraneoplastic neurological syndromes: the utility (or futility) of rare antibody discovery. Curr Opin Neurol 2024; 37:295-304. [PMID: 38533672 DOI: 10.1097/wco.0000000000001261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
PURPOSE OF REVIEW The increasing recognition and diagnosis of autoimmune encephalitis (AE) and paraneoplastic neurological syndromes (PNS) is partly due to neural autoantibody testing and discovery. The past two decades witnessed an exponential growth in the number of identified neural antibodies. This review aims to summarize recent rare antibody discoveries in the context of central nervous system (CNS) autoimmunity and evaluate the ongoing debate about their utility. RECENT FINDINGS In the last 5 years alone 15 novel neural autoantibody specificities were identified. These include rare neural antibody biomarkers of autoimmune encephalitis, cerebellar ataxia or other movement disorders, including multifocal presentations. SUMMARY Although the clinical applications of these rare antibody discoveries may be limited by the low number of positive cases, they still provide important diagnostic, prognostic, and therapeutic insights.
Collapse
Affiliation(s)
- Yahel Segal
- Department of Laboratory Medicine and Pathology
| | - Anastasia Zekeridou
- Department of Laboratory Medicine and Pathology
- Department of Neurology
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Barahman M, Shamsaei G, Kashipazha D, Bahadoram M, Akade E. Paraneoplastic neurological syndromes of small cell lung cancer. POSTEPY PSYCHIATRII NEUROLOGII 2024; 33:80-92. [PMID: 39119541 PMCID: PMC11304241 DOI: 10.5114/ppn.2024.141157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/29/2024] [Indexed: 08/10/2024]
Abstract
Purpose This article reviews the relevant literature on paraneoplastic neurological syndromes of small cell lung cancer and discusses the clinical presentation, pathophysiology, and diagnosis of these syndromes. It also includes a summary of the current treatment options for the management of them. Views Paraneoplastic syndromes are a group of signs and symptoms that develop due to cancer in a remote site, mainly triggered by an autoantibody produced by the tissues involved or lymphocytes during anti-cancer defense. Among the cancers associated with paraneoplastic syndromes, lung cancers are the most common type, with small cell lung cancer being the most common subtype. The most common antibody associated with paraneoplastic syndromes is anti-Hu. Neurological and neuroendocrine syndromes comprise the majority of small cell lung cancer-related paraneoplastic syndromes. Classical paraneoplastic neurological syndromes include inappropriate antidiuretic hormone secretion, Cushing's syndrome, myasthenia gravis, Lambert-Eaton myasthenic syndrome, limbic encephalitis, paraneoplastic cerebellar degeneration, opsoclonus myoclonus ataxia, sensory neuropathy, and chorea. Conclusions Antibodies mediate paraneoplastic syndromes, and antibody detection is a crucial part of diagnosing these entities. Managing the underlying tumor is the best treatment approach for most paraneoplastic syndromes. Therefore, early diagnosis of small cell lung cancer may significantly improve the prognosis of paraneoplastic syndromes associated with it.
Collapse
Affiliation(s)
- Maedeh Barahman
- Department of Radiation Oncology, Firoozgar Hospital, Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Gholamreza Shamsaei
- Department of Neurology, School of Medicine, Musculoskeletal Rehabilitation Research Center, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Davood Kashipazha
- Department of Neurology, School of Medicine, Musculoskeletal Rehabilitation Research Center, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Bahadoram
- Department of Neurology, School of Medicine, Musculoskeletal Rehabilitation Research Center, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esma’il Akade
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Sanvito F, Pichiecchio A, Paoletti M, Rebella G, Resaz M, Benedetti L, Massa F, Morbelli S, Caverzasi E, Asteggiano C, Businaro P, Masciocchi S, Castellan L, Franciotta D, Gastaldi M, Roccatagliata L. Autoimmune encephalitis: what the radiologist needs to know. Neuroradiology 2024; 66:653-675. [PMID: 38507081 PMCID: PMC11031487 DOI: 10.1007/s00234-024-03318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Autoimmune encephalitis is a relatively novel nosological entity characterized by an immune-mediated damage of the central nervous system. While originally described as a paraneoplastic inflammatory phenomenon affecting limbic structures, numerous instances of non-paraneoplastic pathogenesis, as well as extra-limbic involvement, have been characterized. Given the wide spectrum of insidious clinical presentations ranging from cognitive impairment to psychiatric symptoms or seizures, it is crucial to raise awareness about this disease category. In fact, an early diagnosis can be dramatically beneficial for the prognosis both to achieve an early therapeutic intervention and to detect a potential underlying malignancy. In this scenario, the radiologist can be the first to pose the hypothesis of autoimmune encephalitis and refer the patient to a comprehensive diagnostic work-up - including clinical, serological, and neurophysiological assessments.In this article, we illustrate the main radiological characteristics of autoimmune encephalitis and its subtypes, including the typical limbic presentation, the features of extra-limbic involvement, and also peculiar imaging findings. In addition, we review the most relevant alternative diagnoses that should be considered, ranging from other encephalitides to neoplasms, vascular conditions, and post-seizure alterations. Finally, we discuss the most appropriate imaging diagnostic work-up, also proposing a suggested MRI protocol.
Collapse
Affiliation(s)
- Francesco Sanvito
- Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Paediatric Sciences, University of Pavia, Viale Camillo Golgi, 19, 27100, Pavia, Italy.
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Advanced Imaging and Artificial Intelligence Center, Department of Neuroradiology, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Matteo Paoletti
- Advanced Imaging and Artificial Intelligence Center, Department of Neuroradiology, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Giacomo Rebella
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Martina Resaz
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Luana Benedetti
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Federico Massa
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Daneo 3, 16132, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Via Antonio Pastore 1, 16132, Genoa, Italy
| | - Eduardo Caverzasi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Advanced Imaging and Artificial Intelligence Center, Department of Neuroradiology, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Carlo Asteggiano
- Advanced Imaging and Artificial Intelligence Center, Department of Neuroradiology, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Pietro Businaro
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Neuroimmunology Laboratory and Neuroimmunology Research Section, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Stefano Masciocchi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Neuroimmunology Laboratory and Neuroimmunology Research Section, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Lucio Castellan
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Diego Franciotta
- Neuroimmunology Laboratory and Neuroimmunology Research Section, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Matteo Gastaldi
- Neuroimmunology Laboratory and Neuroimmunology Research Section, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Luca Roccatagliata
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Via Antonio Pastore 1, 16132, Genoa, Italy
| |
Collapse
|
13
|
Nuechterlein N, Shelbourn A, Szulzewsky F, Arora S, Casad M, Pattwell S, Merino-Galan L, Sulman E, Arowa S, Alvinez N, Jung M, Brown D, Tang K, Jackson S, Stoica S, Chittaboina P, Banasavadi-Siddegowda YK, Wirsching HG, Stella N, Shapiro L, Paddison P, Patel AP, Gilbert MR, Abdullaev Z, Aldape K, Pratt D, Holland EC, Cimino PJ. Haploinsufficiency of phosphodiesterase 10A activates PI3K/AKT signaling independent of PTEN to induce an aggressive glioma phenotype. Genes Dev 2024; 38:273-288. [PMID: 38589034 PMCID: PMC11065166 DOI: 10.1101/gad.351350.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Glioblastoma is universally fatal and characterized by frequent chromosomal copy number alterations harboring oncogenes and tumor suppressors. In this study, we analyzed exome-wide human glioblastoma copy number data and found that cytoband 6q27 is an independent poor prognostic marker in multiple data sets. We then combined CRISPR-Cas9 data, human spatial transcriptomic data, and human and mouse RNA sequencing data to nominate PDE10A as a potential haploinsufficient tumor suppressor in the 6q27 region. Mouse glioblastoma modeling using the RCAS/tv-a system confirmed that Pde10a suppression induced an aggressive glioma phenotype in vivo and resistance to temozolomide and radiation therapy in vitro. Cell culture analysis showed that decreased Pde10a expression led to increased PI3K/AKT signaling in a Pten-independent manner, a response blocked by selective PI3K inhibitors. Single-nucleus RNA sequencing from our mouse gliomas in vivo, in combination with cell culture validation, further showed that Pde10a suppression was associated with a proneural-to-mesenchymal transition that exhibited increased cell adhesion and decreased cell migration. Our results indicate that glioblastoma patients harboring PDE10A loss have worse outcomes and potentially increased sensitivity to PI3K inhibition.
Collapse
Affiliation(s)
- Nicholas Nuechterlein
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Allison Shelbourn
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Michelle Casad
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Siobhan Pattwell
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington 98145, USA
| | - Leyre Merino-Galan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington 98145, USA
| | - Erik Sulman
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York 11220, USA
| | - Sumaita Arowa
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Neriah Alvinez
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Miyeon Jung
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Desmond Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Kayen Tang
- Developmental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Sadhana Jackson
- Developmental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Stefan Stoica
- Neurosurgery Unit for Pituitary and Inheritable Diseases, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Prashant Chittaboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Yeshavanth K Banasavadi-Siddegowda
- Molecular and Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Hans-Georg Wirsching
- Department of Neurology, University Hospital, University of Zurich, Zurich 8091, Switzerland
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - Linda Shapiro
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Patrick Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Anoop P Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina 27710, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Patrick J Cimino
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA;
| |
Collapse
|
14
|
Hahn C, Budhram A, Alikhani K, AlOhaly N, Beecher G, Blevins G, Brooks J, Carruthers R, Comtois J, Cowan J, de Robles P, Hébert J, Kapadia RK, Lapointe S, Mackie A, Mason W, McLane B, Muccilli A, Poliakov I, Smyth P, Williams KG, Uy C, McCombe JA. Canadian Consensus Guidelines for the Diagnosis and Treatment of Autoimmune Encephalitis in Adults. Can J Neurol Sci 2024:1-21. [PMID: 38312020 DOI: 10.1017/cjn.2024.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Autoimmune encephalitis is increasingly recognized as a neurologic cause of acute mental status changes with similar prevalence to infectious encephalitis. Despite rising awareness, approaches to diagnosis remain inconsistent and evidence for optimal treatment is limited. The following Canadian guidelines represent a consensus and evidence (where available) based approach to both the diagnosis and treatment of adult patients with autoimmune encephalitis. The guidelines were developed using a modified RAND process and included input from specialists in autoimmune neurology, neuropsychiatry and infectious diseases. These guidelines are targeted at front line clinicians and were created to provide a pragmatic and practical approach to managing such patients in the acute setting.
Collapse
Affiliation(s)
- Christopher Hahn
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Adrian Budhram
- Clinical Neurological Sciences, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London Health Sciences Centre, London, ON, Canada
| | - Katayoun Alikhani
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Nasser AlOhaly
- Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Grayson Beecher
- Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Gregg Blevins
- Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - John Brooks
- Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Robert Carruthers
- Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| | - Jacynthe Comtois
- Neurosciences, Universite de Montreal Faculte de Medecine, Montreal, QC, Canada
| | - Juthaporn Cowan
- Division of Infectious Diseases, Department of Medicine Ottawa Hospital, Ottawa, ON, Canada
| | - Paula de Robles
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Julien Hébert
- Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Ronak K Kapadia
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Sarah Lapointe
- Neurosciences, Universite de Montreal Faculte de Medecine, Montreal, QC, Canada
| | - Aaron Mackie
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Warren Mason
- Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Brienne McLane
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | | | - Ilia Poliakov
- Division of Neurology, University of Saskatchewan College of Medicine, Saskatoon, SK, Canada
| | - Penelope Smyth
- Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | | | - Christopher Uy
- Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
15
|
Bhatia K, Balint B. Autoimmunity Panels: Needs and Implementation in the Underdeveloped Regions and how to Approach the Disparities. Mov Disord Clin Pract 2024; 11:119-122. [PMID: 38386486 PMCID: PMC10883400 DOI: 10.1002/mdc3.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 02/24/2024] Open
Affiliation(s)
- Kailash Bhatia
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology University College LondonLondonUnited Kingdom
| | - Bettina Balint
- Department of NeurologyUniversity Hospital Zurich, University of ZurichSwitzerland
| |
Collapse
|
16
|
Guo L, Ren H, Fan S, Chao X, Liu M, Guan H, Wang J. Autoantibodies against eukaryotic translation elongation factor 1 delta in two patients with autoimmune cerebellar ataxia. Front Immunol 2024; 14:1289175. [PMID: 38332912 PMCID: PMC10850295 DOI: 10.3389/fimmu.2023.1289175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024] Open
Abstract
Background Autoantibodies are useful biomarkers for the early detection and diagnosis of autoimmune cerebellar ataxia (ACA). Objective To identify novel autoantibody candidates in ACA patients. Methods Patients with cerebellar ataxia of unknown cause were recruited from July 2018 to February 2023. Anti-neural autoantibodies in patient samples were detected by tissue-based indirect immunofluorescence assay (TBA) on rat cerebellum sections. TBA-positive samples were further screened for well-established anti-neural autoantibodies using commercial kits. Tissue-immunoprecipitation (TIP) and subsequent mass spectrometric (MS) analysis were used to explore the target antigens of autoantibodies in samples that were TBA-positive but negative for known autoantibodies. The specific binding between autoantibodies and the identified target antigen was confirmed by neutralization experiments, recombinant cell-based indirect immunofluorescence assay (CBA), and western blotting experiments. Results The eukaryotic translation elongation factor 1 delta (EEF1D) protein was identified as a target antigen of autoantibodies in samples from a 43-year-old female ACA patient, while the specific binding of autoantibodies and EEF1D was confirmed by subsequent experiments. A second anti-EEF1D autoantibody-positive ACA patient, a 59-year-old female, was detected in simultaneous screening. The main clinical manifestations in each of the two patients were cerebellar syndrome, such as unsteady walking and limb ataxia. Both patients received immunotherapy, including corticosteroids, intravenous immunoglobulin, and mycophenolate mofetil. Their outcomes provided evidence to support the effectiveness of immunotherapy, but the cerebellar atrophy that occurred before treatment may be irreversible. Conclusion In the current study, we identified anti-EEF1D autoantibody as a novel autoantibody candidate in ACA. Its pathological roles and diagnostic value need to be further verified in larger-scale studies.
Collapse
Affiliation(s)
- Liyuan Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Ren
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siyuan Fan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingchen Chao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mange Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongzhi Guan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
McCombe JA, Sechi E, Zekeridou A. Neurologic manifestations of autoimmunity with immune checkpoint inhibitors. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:449-465. [PMID: 38494296 DOI: 10.1016/b978-0-12-823912-4.00024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Immune checkpoint inhibitors (ICIs) are cancer immunotherapies that enhance the body's own immune system to treat cancer. ICI treatment, however, can cause immune-related adverse events (irAEs) that can affect any organ, resulting in significant morbidity and mortality. Neurologic irAEs (nirAEs) are rare and can affect the peripheral nervous system more commonly than the central nervous system. Treatment is dependent on the severity of the neurologic manifestations and often includs discontinuation of the ICI and initiation of steroid therapy as the first line; other treatments have also been used. NirAEs and cardiac irAEs have higher fatality rates underlying the importance of early recognition and appropriate management. This chapter reviews the clinical manifestations of neurologic immune-related adverse events associated with ICI treatment as well as diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Jennifer A McCombe
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Elia Sechi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Anastasia Zekeridou
- Department of Neurology, Mayo Clinic, Rochester, MN, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States; Center of MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
18
|
McKeon A, Tracy J. Paraneoplastic movement disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:211-227. [PMID: 38494279 DOI: 10.1016/b978-0-12-823912-4.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Paraneoplastic movement disorders are diverse autoimmune neurological illnesses occurring in the context of systemic cancer, either in isolation or as part of a multifocal neurological disease. Movement phenomena may be ataxic, hypokinetic (parkinsonian), or hyperkinetic (myoclonus, chorea, or other dyskinetic disorders). Some disorders mimic neurodegenerative or hereditary illnesses. The subacute onset and coexisting nonclassic features of paraneoplastic disorders aid distinction. Paraneoplastic autoantibodies provide further information regarding differentiating cancer association, disease course, and treatment responses. A woman with cerebellar ataxia could have metabotropic glutamate receptor 1 autoimmunity, in the setting of Hodgkin lymphoma, a mild neurological phenotype and response to immunotherapy. A different woman, also with cerebellar ataxia, could have Purkinje cytoplasmic antibody type 1 (anti-Yo), accompanying ovarian adenocarcinoma, a rapidly progressive phenotype and persistent disabling deficits despite immune therapy. The list of antibody biomarkers is growing year-on-year, each with its own ideal specimen type for detection (serum or CSF), accompanying neurological manifestations, cancer association, treatment response, and prognosis. Therefore, a profile-based approach to screening both serum and CSF is recommended. Immune therapy trials are generally undertaken, and include one or more of corticosteroids, IVIg, plasma exchange, rituximab, or cyclophosphamide. Symptomatic therapies can also be employed for hyperkinetic disorders.
Collapse
Affiliation(s)
- Andrew McKeon
- Department of Neurology, Mayo Clinic, Rochester, MN, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.
| | - Jennifer Tracy
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
19
|
Budhram A, Flanagan EP. Optimizing the diagnostic performance of neural antibody testing for paraneoplastic and autoimmune encephalitis in clinical practice. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:365-382. [PMID: 38494290 DOI: 10.1016/b978-0-12-823912-4.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The detection of neural antibodies in patients with paraneoplastic and autoimmune encephalitis has majorly advanced the diagnosis and management of neural antibody-associated diseases. Although testing for these antibodies has historically been restricted to specialized centers, assay commercialization has made this testing available to clinical chemistry laboratories worldwide. This improved test accessibility has led to reduced turnaround time and expedited diagnosis, which are beneficial to patient care. However, as the utilization of these assays has increased, so too has the need to evaluate how they perform in the clinical setting. In this chapter, we discuss assays for neural antibody detection that are in routine use, draw attention to their limitations and provide strategies to help clinicians and laboratorians overcome them, all with the aim of optimizing neural antibody testing for paraneoplastic and autoimmune encephalitis in clinical practice.
Collapse
Affiliation(s)
- Adrian Budhram
- Department of Clinical Neurological Sciences, Western University, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London Health Sciences Centre, London, ON, Canada.
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
20
|
Kadish R, Clardy SL. Epidemiology of paraneoplastic neurologic syndromes. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:57-77. [PMID: 38494297 DOI: 10.1016/b978-0-12-823912-4.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Paraneoplastic neurologic syndromes (PNS), initially depicted as seemingly cryptic remote manifestations of malignancy, were first described clinically in the early 20th century, with pathophysiologic correlates becoming better elucidated in the latter half of the century. There remain many questions not only about the pathophysiology but also regarding the epidemiology of these conditions. The continuous discovery of novel autoantigens and related neurologic disease has broadened the association in classical PNS to include conditions such as paraneoplastic cerebellar degeneration. It has also brought into focus several other neurologic syndromes with a putative neoplastic association. These conditions are overall rare, making it difficult to capture large numbers of patients to study, and raising the question of whether incidence is increasing over time or improved identification is driving the increased numbers of cases. With the rise and increasing use of immunotherapy for cancer treatment, the incidence of these conditions is additionally expected to rise and may present with various clinical symptoms. As we enter an era of clinical trial intervention in these conditions, much work is needed to capture more granular data on population groups defined by socioeconomic characteristics such as age, ethnicity, economic resources, and gender to optimize care and clinical trial planning.
Collapse
Affiliation(s)
- Robert Kadish
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Stacey L Clardy
- Department of Neurology, University of Utah, Salt Lake City, UT, United States; George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, United States.
| |
Collapse
|
21
|
Jean MJ, Samkoff L, Mohile N. Management of Paraneoplastic Syndromes in the Era of Immune Checkpoint Inhibitors. Curr Treat Options Oncol 2024; 25:42-65. [PMID: 38198120 DOI: 10.1007/s11864-023-01157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 01/11/2024]
Abstract
OPINION STATEMENT Our understanding of paraneoplastic neurologic syndromes (PNS) has blossomed over the past few decades. Clinicians have access to more robust diagnostic criteria and have a heightened index of suspicion for these disorders. Nonetheless, treatment, which typically includes immunosuppression, and response to treatment, varies. Due to persistent difficulty in making a definitive diagnosis, we favor empiric treatment when a possible diagnosis of PNS is suspected, and other alternative causes have substantially been excluded (e.g., infections, toxic-metabolic derangements, metastasis, or leptomeningeal disease). Treatment of the underlying cancer, if identified, is the first therapeutic step and can prevent disease worsening and in rare cases, can reverse neurologic symptoms. In addition to anti-cancer treatment, first line immunotherapies, which include corticosteroids, intravenous immunoglobulins (IVIG), or plasma exchange (PLEX) are typically used. If partial or no benefit is seen, second line immunotherapeutic agents such as rituximab are considered. Additionally, the severity of the initial presentation and possible risk for relapse influences the use of the latter agents. Symptomatic management is also an important component in our practice and will depend on the syndrome being treated. One of the more novel entities we are facing currently is the management of immune checkpoint (ICI)-induced PNS. In those cases, current American Society of Clinical Oncology (ASCO) guidelines are followed.
Collapse
Affiliation(s)
- Maxime Junior Jean
- University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Lawrence Samkoff
- University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Nimish Mohile
- University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
22
|
Linnoila JJ. Paraneoplastic antibodies targeting intracellular antigens. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:335-346. [PMID: 38494288 DOI: 10.1016/b978-0-12-823912-4.00021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Although they are relatively rare, the diagnosis of paraneoplastic neurologic syndromes (PNS) can be aided by the identification of neural autoantibodies in patients' serum and cerebrospinal fluid (CSF). They often clinically manifest as characteristic syndromes, including limbic encephalitis, opsoclonus-myoclonus syndrome, paraneoplastic cerebellar degeneration, and paraneoplastic encephalomyelitis. The antibodies are directed either toward intracellular targets, or epitopes on the cell surface. As compared to cell surface antibodies, intracellular paraneoplastic autoantibodies are more classically associated with cancer, most often lung, breast, thymoma, gynecologic, testicular, and/or neuroendocrine cancers. The malignancies themselves tend to be small and regionally contained, attesting to the strength of the immune system in cancer immunosurveillance. Typically, the intracellular antibodies are not directly pathogenic and tend to be associated with PNS that are poorly responsive to treatment. With some notable exceptions, including patients with PNS associated with testicular cancer, patients with intracellular antibodies are typically older individuals, in their 7th decade of life and beyond. Many of them are current or former smokers. Treatment strategies include tumor removal as well as immunotherapy to treat the concomitant PNS. Newer technologies and the ever-broadening use of cancer immunotherapies are contributing to the continued identification of novel intracellularly targeted autoantibodies.
Collapse
Affiliation(s)
- Jenny J Linnoila
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
23
|
Masciocchi S, Businaro P, Scaranzin S, Morandi C, Franciotta D, Gastaldi M. General features, pathogenesis, and laboratory diagnostics of autoimmune encephalitis. Crit Rev Clin Lab Sci 2024; 61:45-69. [PMID: 37777038 DOI: 10.1080/10408363.2023.2247482] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/09/2023] [Indexed: 10/02/2023]
Abstract
Autoimmune encephalitis (AE) is a group of inflammatory conditions that can associate with the presence of antibodies directed to neuronal intracellular, or cell surface antigens. These disorders are increasingly recognized as an important differential diagnosis of infectious encephalitis and of other common neuropsychiatric conditions. Autoantibody diagnostics plays a pivotal role for accurate diagnosis of AE, which is of utmost importance for the prompt recognition and early treatment. Several AE subgroups can be identified, either according to the prominent clinical phenotype, presence of a concomitant tumor, or type of neuronal autoantibody, and recent diagnostic criteria have provided important insights into AE classification. Antibodies to neuronal intracellular antigens typically associate with paraneoplastic neurological syndromes and poor prognosis, whereas antibodies to synaptic/neuronal cell surface antigens characterize many AE subtypes that associate with tumors less frequently, and that are often immunotherapy-responsive. In addition to the general features of AE, we review current knowledge on the pathogenic mechanisms underlying these disorders, focusing mainly on the potential role of neuronal antibodies in the most frequent conditions, and highlight current theories and controversies. Then, we dissect the crucial aspects of the laboratory diagnostics of neuronal antibodies, which represents an actual challenge for both pathologists and neurologists. Indeed, this diagnostics entails technical difficulties, along with particularly interesting novel features and pitfalls. The novelties especially apply to the wide range of assays used, including specific tissue-based and cell-based assays. These assays can be developed in-house, usually in specialized laboratories, or are commercially available. They are widely used in clinical immunology and in clinical chemistry laboratories, with relevant differences in analytic performance. Indeed, several data indicate that in-house assays could perform better than commercial kits, notwithstanding that the former are based on non-standardized protocols. Moreover, they need expertise and laboratory facilities usually unavailable in clinical chemistry laboratories. Together with the data of the literature, we critically evaluate the analytical performance of the in-house vs commercial kit-based approach. Finally, we propose an algorithm aimed at integrating the present strategies of the laboratory diagnostics in AE for the best clinical management of patients with these disorders.
Collapse
Affiliation(s)
- Stefano Masciocchi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Pietro Businaro
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Silvia Scaranzin
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Morandi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Diego Franciotta
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Gastaldi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
24
|
Bartley CM, Ngo TT, Duy Do L, Zekeridou A, Dandekar R, Muñiz-Castrillo S, Alvarenga BD, Zorn KC, Tubati A, Pinto AL, Browne WD, Hullett PW, Terrelonge M, Schubert RD, Piquet AL, Yang B, Montalvo Perero MJ, Kung AF, Mann SA, Shah MP, Geschwind MD, Gelfand JM, DeRisi JL, Pittock SJ, Honnorat J, Pleasure SJ, Wilson MR. Detection of High-Risk Paraneoplastic Antibodies against TRIM9 and TRIM67 Proteins. Ann Neurol 2023; 94:1086-1101. [PMID: 37632288 PMCID: PMC10842626 DOI: 10.1002/ana.26776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
OBJECTIVE Co-occurring anti-tripartite motif-containing protein 9 and 67 autoantibodies (TRIM9/67-IgG) have been reported in only a very few cases of paraneoplastic cerebellar syndrome. The value of these biomarkers and the most sensitive methods of TRIM9/67-IgG detection are not known. METHODS We performed a retrospective, multicenter study to evaluate the cerebrospinal fluid and serum of candidate TRIM9/67-IgG cases by tissue-based immunofluorescence, peptide phage display immunoprecipitation sequencing, overexpression cell-based assay (CBA), and immunoblot. Cases in which TRIM9/67-IgG was detected by at least 2 assays were considered TRIM9/67-IgG positive. RESULTS Among these cases (n = 13), CBA was the most sensitive (100%) and revealed that all cases had TRIM9 and TRIM67 autoantibodies. Of TRIM9/67-IgG cases with available clinical history, a subacute cerebellar syndrome was the most common presentation (n = 7/10), followed by encephalitis (n = 3/10). Of these 10 patients, 70% had comorbid cancer (7/10), 85% of whom (n = 6/7) had confirmed metastatic disease. All evaluable cancer biopsies expressed TRIM9 protein (n = 5/5), whose expression was elevated in the cancerous regions of the tissue in 4 of 5 cases. INTERPRETATION TRIM9/67-IgG is a rare but likely high-risk paraneoplastic biomarker for which CBA appears to be the most sensitive diagnostic assay. ANN NEUROL 2023;94:1086-1101.
Collapse
Affiliation(s)
- Christopher M. Bartley
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, California
| | - Thomas T. Ngo
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Le Duy Do
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon and SynatAc Team, Institut MELiS, INSERM U1314/CNRS UMR 5284, Universités de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anastasia Zekeridou
- Department of Neurology, Center MS and Autoimmune Neurology, Mayo Clinic
- Department of Laboratory Medicine and Pathology, Mayo Clinic
| | - Ravi Dandekar
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Sergio Muñiz-Castrillo
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon and SynatAc Team, Institut MELiS, INSERM U1314/CNRS UMR 5284, Universités de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bonny D. Alvarenga
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Kelsey C. Zorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, California
| | - Asritha Tubati
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Anne-Laurie Pinto
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon and SynatAc Team, Institut MELiS, INSERM U1314/CNRS UMR 5284, Universités de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Weston D. Browne
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Patrick W. Hullett
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Mark Terrelonge
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Ryan D. Schubert
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Amanda L. Piquet
- Department of Neurology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado
| | - Binxia Yang
- Department of Laboratory Medicine and Pathology, Mayo Clinic
| | | | - Andrew F. Kung
- University of California San Francisco, School of Medicine, San Francisco, California
| | - Sabrina A. Mann
- Chan Zuckerberg Biohub, San Francisco, California
- Department of Biochemistry and Biophysics, University of California, San Francisco, California
| | - Maulik P. Shah
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Michael D. Geschwind
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Jeffrey M. Gelfand
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Joseph L. DeRisi
- Chan Zuckerberg Biohub, San Francisco, California
- Department of Biochemistry and Biophysics, University of California, San Francisco, California
| | - Sean J. Pittock
- Department of Neurology, Center MS and Autoimmune Neurology, Mayo Clinic
- Department of Laboratory Medicine and Pathology, Mayo Clinic
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon and SynatAc Team, Institut MELiS, INSERM U1314/CNRS UMR 5284, Universités de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Samuel J. Pleasure
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Michael R. Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| |
Collapse
|
25
|
Kern HM, Waugh JL. Expanding Knowledge of the Causes of Childhood Chorea. Semin Pediatr Neurol 2023; 47:101088. [PMID: 37919039 DOI: 10.1016/j.spen.2023.101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023]
Abstract
INHERITED AND ACQUIRED CHOREAS Paolo Claudio M. de Gusmao, Jeff L. Waugh Seminars in Pediatric Neurology Volume 25, April 2018, Pages 42-53 Chorea is a symptom of a broad array of genetic, structural, and metabolic disorders. While chorea can result from systemic illness and damage to diverse brain structures, injury to the basal ganglia, especially the putamen or globus pallidus, appears to be a uniting features of these diverse neuropathologies. The timing of onset, rate of progression, and the associated neurological or systemic symptoms can often narrow the differential diagnosis to a few disorders. Recognizing the correct etiology for childhood chorea is critical, as numerous disorders in this category are potentially curable, or are remediable, with early treatment.
Collapse
Affiliation(s)
- H M Kern
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX
| | - J L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX.
| |
Collapse
|
26
|
Rezk M, Pittock SJ, Kapadia RK, Knight AM, Guo Y, Gupta P, LaFrance-Corey RG, Zekeridou A, McKeon A, Dasari S, Mills JR, Dubey D. Identification of SKOR2 IgG as a novel biomarker of paraneoplastic neurologic syndrome. Front Immunol 2023; 14:1243946. [PMID: 37795104 PMCID: PMC10546397 DOI: 10.3389/fimmu.2023.1243946] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction The development of new autoantigen discovery techniques, like programmable phage immunoprecipitation sequencing (PhIP-Seq), has accelerated the discovery of neural-specific autoantibodies. Herein, we report the identification of a novel biomarker for paraneoplastic neurologic syndrome (PNS), Sloan-Kettering-Virus-Family-Transcriptional-Corepressor-2 (SKOR2)-IgG, utilizing PhIP-Seq. We have also performed a thorough clinical validation using normal, healthy, and disease/cancer control samples. Methods Stored samples with unclassified staining at the junction of the Purkinje cell and the granule cell layers were analyzed by PhIP-Seq for putative autoantigen identification. The autoantigen was confirmed by recombinant antigen-expressing cell-based assay (CBA), Western blotting, and tissue immunofluorescence assay colocalization. Results PhIP-Seq data revealed SKOR2 as the candidate autoantigen. The target antigen was confirmed by a recombinant SKOR-2-expressing, and cell lysate Western blot. Furthermore, IgG from both patient samples colocalized with a commercial SKOR2-specific IgG on cryosections of the mouse brain. Both SKOR2 IgG-positive patients had central nervous system involvement, one presenting with encephalitis and seizures (Patient 1) and the other with cognitive dysfunction, spastic ataxia, dysarthria, dysphagia, and pseudobulbar affect (Patient 2). They had a refractory progressive course and were diagnosed with adenocarcinoma (Patient 1: lung, Patient 2: gallbladder). Sera from adenocarcinoma patients without PNS (n=30) tested for SKOR2-IgG were negative. Discussion SKOR2 IgG represents a novel biomarker for PNS associated with adenocarcinoma. Identification of additional SKOR2 IgG-positive cases will help categorize the associated neurological phenotype and the risk of underlying malignancy.
Collapse
Affiliation(s)
- Mohamed Rezk
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Sean J. Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| | - Ronak K. Kapadia
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew M. Knight
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Pranjal Gupta
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | | | - Anastasia Zekeridou
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| | - Andrew McKeon
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| | - Surendra Dasari
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - John R. Mills
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Divyanshu Dubey
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
27
|
Yang B, Brown A, McKeon A, Ahlskog JE, Tipton P, Guo Y, Lucchinetti C, Pittock SJ, Zekeridou A. Tenascin-R Autoimmunity: Isolated Tremor Reversed with Immunotherapy. Ann Neurol 2023; 94:502-507. [PMID: 37370243 PMCID: PMC10527205 DOI: 10.1002/ana.26730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/10/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Autoimmune movement disorders are increasingly recognized, but isolated tremor is extremely rare. We describe a 70-year-old male with rapidly progressive, severe postural and intention tremor and weight loss. His cerebrospinal fluid was inflammatory and harbored a neural tissue-restricted antibody. The autoantigen was identified by immunoprecipitation and mass spectrometry and confirmed by antigen-specific assays to be specific for tenascin-R. He was investigated for cancer and diagnosed with follicular lymphoma that expressed tenascin-R suggesting a paraneoplastic origin; cancer treatment and immunotherapy led to complete recovery. With this individualized patient approach and antibody discovery, we expand the spectrum of antibodies accompanying autoimmune hyperkinetic movement disorders. ANN NEUROL 2023;94:502-507.
Collapse
Affiliation(s)
- Binxia Yang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andrew Brown
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Andrew McKeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - J Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Philip Tipton
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Claudia Lucchinetti
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Anastasia Zekeridou
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
28
|
McKeon A, Lesnick C, Vorasoot N, Buckley MW, Dasari S, Flanagan EP, Gilligan M, Lafrance-Corey R, Miske R, Pittock SJ, Scharf M, Yang B, Zekeridou A, Dubey D, Mills J. Utility of Protein Microarrays for Detection of Classified and Novel Antibodies in Autoimmune Neurologic Disease. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200145. [PMID: 37550073 PMCID: PMC10406426 DOI: 10.1212/nxi.0000000000200145] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/01/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Neural antibodies are detected by tissue-based indirect immunofluorescence assay (IFA) in Mayo Clinic's Neuroimmunology Laboratory practice, but the process of characterizing and validating novel antibodies is lengthy. We report our assessment of human protein arrays. METHODS Assessment of arrays (81% human proteome coverage) was undertaken using diverse known positive samples (17 serum and 14 CSF). Samples from patients with novel neural antibodies were reflexed from IFA to arrays. Confirmatory assays were cell-based (CBA) or line blot. Epitope mapping was undertaken using phage display immunoprecipitation sequencing (PhiPSeq). RESULTS Control positive samples known to be reactive with linear epitopes of intracellular antigens (e.g., ANNA-1 [anti-Hu]) were readily identified by arrays in 20 of 21 samples. By contrast, 10 positive controls known to be enriched with antibodies against cell surface protein conformational epitopes (e.g., GluN1 subunit of NMDA-R) were indistinguishable from background signal. Three antibodies, previously characterized by other investigators (but unclassified in our laboratory), were unmasked in 4 patients using arrays (July-December 2022): Neurexin-3α, 1 patient; regulator of gene protein signaling (RGS)8, 1 patient; and seizure-related homolog like 2 (SEZ6L2), 2 patients. All were accompanied by previously reported phenotypes (encephalitis, 1; cerebellar ataxia, 3). Patient 1 had subacute onset of seizures and encephalopathy. Neurexin-3α ranked high in CSF (second ranked neural protein) but low in serum (660th overall). Neurexin-3α CBA was positive in both samples. Patient 2 presented with rapidly progressive cerebellar ataxia. RGS8 ranked the highest neural protein in available CSF sample by array (third overall). RGS8-specific line blot was positive. Patients 3 and 4 had rapidly progressive cerebellar ataxia. SEZ6L2 was the highest ranked neural antigen by arrays in all samples (CSF, 1, serum, 2; Patient 3, ranked 9th overall in CSF, 11th in serum; Patient 4, 6th overall in serum]). By PhIPSeq, diverse neurexin-3α epitopes (including cell surface) were detected in CSF from patient 1, but no SEZ6L2 peptides were detected for serum or CSF samples from Patient 3. DISCUSSION Individualized autoimmune neurologic diagnoses may be accelerated using protein arrays. They are optimal for detection of intracellular antigen-reactive antibodies, though certain cell surface-directed antibodies (neurexin-3α and SEZ6L2) may also be detected.
Collapse
Affiliation(s)
- Andrew McKeon
- From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany.
| | - Connie Lesnick
- From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany
| | - Nisa Vorasoot
- From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany
| | - Monica W Buckley
- From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany
| | - Surendra Dasari
- From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany
| | - Eoin P Flanagan
- From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany
| | - Michael Gilligan
- From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany
| | - Reghann Lafrance-Corey
- From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany
| | - Ramona Miske
- From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany
| | - Sean J Pittock
- From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany
| | - Madeleine Scharf
- From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany
| | - Binxia Yang
- From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany
| | - Anastasia Zekeridou
- From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany
| | - Divyanshu Dubey
- From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany
| | - John Mills
- From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany
| |
Collapse
|
29
|
Marsili L, Marcucci S, LaPorta J, Chirra M, Espay AJ, Colosimo C. Paraneoplastic Neurological Syndromes of the Central Nervous System: Pathophysiology, Diagnosis, and Treatment. Biomedicines 2023; 11:biomedicines11051406. [PMID: 37239077 DOI: 10.3390/biomedicines11051406] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Paraneoplastic neurological syndromes (PNS) include any symptomatic and non-metastatic neurological manifestations associated with a neoplasm. PNS associated with antibodies against intracellular antigens, known as "high-risk" antibodies, show frequent association with underlying cancer. PNS associated with antibodies against neural surface antigens, known as "intermediate- or low-risk" antibodies, are less frequently associated with cancer. In this narrative review, we will focus on PNS of the central nervous system (CNS). Clinicians should have a high index of suspicion with acute/subacute encephalopathies to achieve a prompt diagnosis and treatment. PNS of the CNS exhibit a range of overlapping "high-risk" clinical syndromes, including but not limited to latent and overt rapidly progressive cerebellar syndrome, opsoclonus-myoclonus-ataxia syndrome, paraneoplastic (and limbic) encephalitis/encephalomyelitis, and stiff-person spectrum disorders. Some of these phenotypes may also arise from recent anti-cancer treatments, namely immune-checkpoint inhibitors and CAR T-cell therapies, as a consequence of boosting of the immune system against cancer cells. Here, we highlight the clinical features of PNS of the CNS, their associated tumors and antibodies, and the diagnostic and therapeutic strategies. The potential and the advance of this review consists on a broad description on how the field of PNS of the CNS is constantly expanding with newly discovered antibodies and syndromes. Standardized diagnostic criteria and disease biomarkers are fundamental to quickly recognize PNS to allow prompt treatment initiation, thus improving the long-term outcome of these conditions.
Collapse
Affiliation(s)
- Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Samuel Marcucci
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Joseph LaPorta
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Martina Chirra
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Alberto J Espay
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, 05100 Terni, Italy
| |
Collapse
|
30
|
Tierney P, Zekeridou A, Adam O. Phosphodiesterase 10A autoimmunity presenting as cerebellar ataxia responsive to plasma exchange: a case report. J Neurol 2023; 270:2325-2328. [PMID: 36571632 DOI: 10.1007/s00415-022-11542-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/27/2022]
Affiliation(s)
- Patrick Tierney
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Anastasia Zekeridou
- Department of Neurology and Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Octavian Adam
- The Parkinson Disease and Movement Disorders Center, Albany Medical College, 47 New Scotland Ave, Albany, NY, USA.
| |
Collapse
|
31
|
Cincotta MC, Walker RH. Diagnostic Uncertainties: Chorea. Semin Neurol 2023; 43:65-80. [PMID: 36882120 DOI: 10.1055/s-0043-1763506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Chorea is a hyperkinetic movement disorder with a multitude of potential etiologies, both acquired and inherited. Although the differential diagnosis for new-onset chorea is extensive, there are often clues in the history, exam, and basic testing that can help to narrow the options. Evaluation for treatable or reversible causes should take priority, as rapid diagnosis can lead to more favorable outcomes. While Huntington's disease is most common genetic cause of chorea, multiple phenocopies also exist and should be considered if Huntington gene testing is negative. The decision of what additional genetic testing to pursue should be based on both clinical and epidemiological factors. The following review provides an overview of the many possible etiologies as well as a practical approach for a patient presenting with new-onset chorea.
Collapse
Affiliation(s)
- Molly C Cincotta
- Department of Neurology, Temple University, Philadelphia, Pennsylvania
| | - Ruth H Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center and Mount Sinai School of Medicine, Bronx, New York
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW To provide an overview and highlight recent updates in the field of paraneoplastic neurologic disorders. RECENT FINDINGS The prevalence of paraneoplastic neurologic disorders is greater than previously reported and the incidence has been rising over time, due to improved recognition in the era of antibody biomarkers. Updated diagnostic criteria that are broadly inclusive and also contain diagnostic risk for clinical presentations (high and intermediate) and diagnostic antibodies (high, intermediate, and low) have replaced the original 2004 criteria. Antibody biomarkers continue to be characterized (e.g., KLHL-11 associated with seminoma in men with brainstem encephalitis). Some paraneoplastic antibodies also provide insight into likely immunotherapy response and prognosis. The rise of immune checkpoint inhibitors as cancer therapeutics has been associated with newly observed immune-mediated adverse effects including paraneoplastic neurological disorders. The therapeutic approach to paraneoplastic neurologic disorders is centered around cancer care and trials of immune therapy. The field of paraneoplastic neurologic disorders continues to be advanced by the identification of novel antibody biomarkers which have diagnostic utility, and give insight into likely treatment responses and outcomes.
Collapse
Affiliation(s)
- Michael Gilligan
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, St Vincent's University Hospital, Dublin, Ireland
| | | | - Andrew McKeon
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Neurology, College of Medicine, Mayo Clinic, 200 1st ST SW, Rochester, MN, 55905, USA.
| |
Collapse
|
33
|
Adenylate kinase 5 (AK5) autoimmune encephalitis: Clinical presentations and outcomes in three new patients. J Neuroimmunol 2022; 367:577861. [DOI: 10.1016/j.jneuroim.2022.577861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/15/2022]
|
34
|
Gallagher A, Murphy M, McDermott R, Alexander M, O'Dowd S. Pembrolizumab‐Induced Steroid‐Responsive Myoclonus. Mov Disord Clin Pract 2022; 9:546-550. [PMID: 35586533 PMCID: PMC9092743 DOI: 10.1002/mdc3.13453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 12/16/2022] Open
Affiliation(s)
- Amy Gallagher
- Department of Neurology Tallaght University Hospital Dublin Ireland
| | - Michael Murphy
- Department of Neurology Tallaght University Hospital Dublin Ireland
| | - Ray McDermott
- Department of Medical Oncology Tallaght University Hospital Dublin Ireland
| | - Michael Alexander
- Department of Neurophysiology Tallaght University Hospital Dublin Ireland
| | - Sean O'Dowd
- Department of Neurology Tallaght University Hospital Dublin Ireland
- Academic Unit of Neurology Trinity College Dublin Ireland
| |
Collapse
|
35
|
Dinoto A, McKeon A, Vattemi G, Carta S, Ferrari S, Mariotto S. Neuronal intermediate filament paraneoplastic autoimmunity complicating avelumab therapy of Merkel cell carcinoma. J Neuroimmunol 2022; 368:577882. [DOI: 10.1016/j.jneuroim.2022.577882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
|
36
|
Zekeridou A, Yang B, Lennon VA, Guo Y, Wu L, Lucchinetti CF, McKeon A, Pittock SJ, Flanagan EP. Anti-Neuronal Nuclear Antibody 3 Autoimmunity Targets Dachshund Homolog 1. Ann Neurol 2022; 91:670-675. [PMID: 35150165 PMCID: PMC9150768 DOI: 10.1002/ana.26320] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
The antigen specificity of Anti-Neuronal Nuclear Antibody-type 3 (ANNA3)-IgG is unknown. We identified Dachshund-homolog 1 (DACH1) as the ANNA3 autoantigen and confirmed it by antigen-specific assays, immunohistochemical colocalization and immune absorption experiments. Patients' median age was 63.5 years (range, 49-88); 67% were female. Neurological manifestations (information available for 30 patients) included one or more of neuropathy, 12; cognitive difficulties, 11; ataxia, 8; dysautonomia, 7. Evidence of a neoplasm was present in 27 of 30 (90%), most of neuroendocrine lineage. DACH1-IgG is rare and represents a novel proposed biomarker of neurological autoimmunity and cancer. ANN NEUROL 2022;91:670-675.
Collapse
Affiliation(s)
- Anastasia Zekeridou
- Department of Neurology, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
- Center of Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN
| | - Binxia Yang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Vanda A. Lennon
- Department of Neurology, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
- Center of Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester
| | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN
- Center of Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN
| | - Liang Wu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Claudia F. Lucchinetti
- Department of Neurology, Mayo Clinic, Rochester, MN
- Center of Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN
| | - Andrew McKeon
- Department of Neurology, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
- Center of Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN
| | - Sean J. Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
- Center of Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN
| | - Eoin P. Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN
- Center of Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
37
|
Gastaldi M, Scaranzin S, Pietro B, Lechiara A, Pesce G, Franciotta D, Lorusso L. Paraneoplastic Neurological Syndromes: Transitioning Between the Old and the New. Curr Oncol Rep 2022; 24:1237-1249. [PMID: 35476177 DOI: 10.1007/s11912-022-01279-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW Paraneoplastic neurological syndromes (PNS) are caused by nervous system-targeting aberrant anti-tumoral immune responses. We review the updated criteria for PNS diagnosis, incorporating novel information on clinical phenotypes, neuronal autoantibodies (Nabs), and tumors. The impact of the oncologic use of immune checkpoint inhibitors (ICI) on PNS occurrence is also addressed. RECENT FINDINGS Clinical phenotypes and Nabs are redefined as "high/intermediate/low" risk, following the frequency of cancer association. Nabs, the diagnostic hallmark of PNS, can target intracellular or surface neuronal proteins, with important prognostic and pathogenic implications. Many novel assays have been incorporated into laboratory diagnostics, that is becoming increasingly complex. ICI fight tumors, but favor autoimmunity, thus increasing the incidence of PNS-like disorders. Overcoming the old PNS criteria, the new ones are centered around the presence of tumor. Clinical presentation, Nabs, and tumor findings are translated in diagnostic scores, providing a useful tool for PNS diagnosis and management.
Collapse
Affiliation(s)
- Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy.
| | - Silvia Scaranzin
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | | | - Anastasia Lechiara
- Autoimmunology Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giampaola Pesce
- Autoimmunology Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine (Dimi), University of Genova, Genova, Italy
| | - Diego Franciotta
- Autoimmunology Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Lorenzo Lorusso
- Neurology and Stroke Unit, Neuroscience Department, A.S.S.T.-Lecco, Merate (LC), Italy
| |
Collapse
|
38
|
Duong SL, Prüss H. Paraneoplastic Autoimmune Neurological Syndromes and the Role of Immune Checkpoint Inhibitors. Neurotherapeutics 2022; 19:848-863. [PMID: 35043373 PMCID: PMC9294109 DOI: 10.1007/s13311-022-01184-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) in oncologic therapies has led to a paradigm shift in cancer treatment. ICIs have increased the overall survival in patients with malignant melanoma, small-cell lung cancer, and many other tumor entities. Despite their clinical benefits, these novel cancer immunotherapies can induce neurological immune-related adverse events (irAEs). Such immune-mediated complications can manifest within the spectrum of paraneoplastic neurological syndromes (PNSs). PNSs are rare immune-mediated complications of systemic cancers that can involve every aspect of the nervous system. The emergence of PNSs with ICI treatment opens further pathways to study the complex immunopathological interplay of cancer immunity, cross-reactive neurological autoimmune phenomena, and effects of ICIs on the immune system. ICI-induced PNSs comprise a diverse antibody repertoire and phenotypic spectrum with severe and life-threatening disease progression in some cases. Timely diagnosis and urgent interventions are pivotal for a favorable neurologic and oncologic outcome. This review focuses on the pathogenesis of cancer immunotherapy and the disruption of immune tolerance in PNSs and provides an overview of the most pertinent clinical manifestations and principles of diagnostic and therapeutic managements in light of the expected increase in PNSs due to the widespread use of ICIs in clinical practice. This review further discusses potential and evolving concepts of therapeutic monoclonal antibodies for the treatment of PNSs.
Collapse
Affiliation(s)
- Sophie L Duong
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany.
| |
Collapse
|
39
|
Movement Disorders in Oncology: From Clinical Features to Biomarkers. Biomedicines 2021; 10:biomedicines10010026. [PMID: 35052708 PMCID: PMC8772745 DOI: 10.3390/biomedicines10010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022] Open
Abstract
Background: the study of movement disorders associated with oncological diseases and anticancer treatments highlights the wide range of differential diagnoses that need to be considered. In this context, the role of immune-mediated conditions is increasingly recognized and relevant, as they represent treatable disorders. Methods: we reappraise the phenomenology, pathophysiology, diagnostic testing, and treatment of movement disorders observed in the context of brain tumors, paraneoplastic conditions, and cancer immunotherapy, such as immune-checkpoint inhibitors (ICIs). Results: movement disorders secondary to brain tumors are rare and may manifest with both hyper-/hypokinetic conditions. Paraneoplastic movement disorders are caused by antineuronal antibodies targeting intracellular or neuronal surface antigens, with variable prognosis and response to treatment. ICIs promote antitumor response by the inhibition of the immune checkpoints. They are effective treatments for several malignancies, but they may cause movement disorders through an unchecked immune response. Conclusions: movement disorders due to focal neoplastic brain lesions are rare but should not be missed. Paraneoplastic movement disorders are even rarer, and their clinical-laboratory findings require focused expertise. In addition to their desired effects in cancer treatment, ICIs can induce specific neurological adverse events, sometimes manifesting with movement disorders, which often require a case-by-case, multidisciplinary, approach.
Collapse
|
40
|
Abstract
The realization that autoantibodies can contribute to dysfunction of the brain has brought about a paradigm shift in neurological diseases over the past decade, offering up important novel diagnostic and therapeutic opportunities. Detection of specific autoantibodies to neuronal or glial targets has resulted in a better understanding of central nervous system autoimmunity and in the reclassification of some diseases previously thought to result from infectious, 'idiopathic' or psychogenic causes. The most prominent examples, such as aquaporin 4 autoantibodies in neuromyelitis optica or NMDAR autoantibodies in encephalitis, have stimulated an entire field of clinical and experimental studies on disease mechanisms and immunological abnormalities. Also, these findings inspired the search for additional autoantibodies, which has been very successful to date and has not yet reached its peak. This Review summarizes this rapid development at a point in time where preclinical studies have started delivering fundamental new data for mechanistic understanding, where new technologies are being introduced into this field, and - most importantly - where the first specifically tailored immunotherapeutic approaches are emerging.
Collapse
Affiliation(s)
- Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
41
|
Lee SJ, Eun JS, Kim MJ, Song YW, Kang YM. Association of retroperitoneal fibrosis with malignancy and its outcomes. Arthritis Res Ther 2021; 23:249. [PMID: 34565447 PMCID: PMC8474894 DOI: 10.1186/s13075-021-02627-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/12/2021] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Retroperitoneal fibrosis (RPF) is characterized by a highly fibrotic retroperitoneal mass and encompasses the idiopathic form and secondary to malignancies. Because we have limited knowledge whether RPF is associated with malignancy, we aimed to investigate the relationship between RPF and malignancy and to compare the characteristics and prognosis of cancers among patients with RPF. METHODS Medical records of 111 patients diagnosed as having RPF were reviewed and 38 cases of cancer, confirmed by biopsy, were identified. Standardized incidence ratios (SIRs) were calculated for cancers and stratified according to cancer type and RPF-cancer diagnosis interval. Cancer characteristics and outcomes were compared between RPF-cancer diagnosis intervals. RESULTS The average age at RPF diagnosis was 59.2 ± 15.0 years, and 69.4% of the patients were male. The cancer SIRs in patients with RPF relative to age- and sex-matched individuals in the general population was 2.2 (1.6-3.1). SIRs of renal pelvis cancer and multiple myeloma were significantly higher than in the general population. When stratified by RPF-cancer intervals, the SIR for cancer was 9.9 within 1 year of RPF diagnosis, while no significant increase in the SIR was found after 1 year from RPF diagnosis. Cancer stage was more advanced at the time of diagnosis in patients within a 1-year interval for RPF than those with cancer within a >5-year interval, with a correspondingly increased mortality in the former patients. CONCLUSIONS RPF was significantly associated with malignancy, particularly those diagnosed within 1 year of RPF diagnosis. Cancer stages at diagnosis were more advanced and the mortality rate was higher in patients within a 1-year interval between RPF and cancer diagnosis than in those with a >5-year interval between diagnoses.
Collapse
Affiliation(s)
- Sang Jin Lee
- Division of Rheumatology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Medical Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jung Su Eun
- Division of Rheumatology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Min Jung Kim
- Division of Rheumatology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yeong Wook Song
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Medical Research Institute, Seoul National University, Seoul, Republic of Korea.,Division of Rheumatology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Young Mo Kang
- Division of Rheumatology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944, Republic of Korea.
| |
Collapse
|
42
|
Ma J, Wang A, Jiang W, Ma L, Lin Y. Clinical characteristics of paraneoplastic neurological syndrome related to different pathological lung cancers. Thorac Cancer 2021; 12:2265-2270. [PMID: 34242487 PMCID: PMC8364989 DOI: 10.1111/1759-7714.14070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
Background Paraneoplastic syndrome is a distant effect caused by malignant tumors, which is related to the production of cellular immune response. The nervous system is the most common involved system of paraneoplastic syndrome. It is easy to be misdiagnosed. Lung cancer is the most common cancer relating to paraneoplastic neurological syndrome (PNS). Method This study retrospectively analyzed clinical data of patients with the combination of PNS and lung cancer between January 2005 and March 2021 at Qilu Hospital of Shandong University, China. Results A total of 111 patients were diagnosed with lung cancer complicated with PNS. A total of 95 (85.6%) cases had neurological symptoms as the first symptom. Sixty‐three cases had the pathological results. A total of 43 (68.3%) of small cell lung cancer (SCLC) were diagnosed. PNS patients diagnosed with SCLC included peripheral neuropathy (15 cases, 34.9%). PNS patients diagnosed with non‐small cell lung cancer (NSCLC) included peripheral neuropathy (6 cases, 30%) and limbic encephalitis (6 cases, 30%). Anti‐Hu is popular in patients with SCLC (12 cases, 42.9%) and NSCLC (6 cases, 40%). Conclusions Most patients with PNS had neurological symptoms as the first symptom. It was more common in males. It had a higher incidence in SCLC. Peripheral neuropathy was the most common PNS associated with SCLC, followed by Lambert‐Eaton syndrome. Peripheral neuropathy and limbic encephalitis were the most common PNS associated with NSCLC. Anti‐Hu is the most common antibodies both in SCLC and NSCLC. Tumor markers do not have significant difference between different pathological types.
Collapse
Affiliation(s)
- Jun Ma
- Department of Geriatric Neurology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Aijun Wang
- Department of Oncology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Wenjing Jiang
- Department of Geriatric Neurology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Lin Ma
- Department of Geriatric Neurology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yan Lin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
43
|
Sechi E, Flanagan EP. Antibody-Mediated Autoimmune Diseases of the CNS: Challenges and Approaches to Diagnosis and Management. Front Neurol 2021; 12:673339. [PMID: 34305787 PMCID: PMC8292678 DOI: 10.3389/fneur.2021.673339] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Antibody-mediated disorders of the central nervous system (CNS) are increasingly recognized as neurologic disorders that can be severe and even life-threatening but with the potential for reversibility with appropriate treatment. The expanding spectrum of newly identified autoantibodies targeting glial or neuronal (neural) antigens and associated clinical syndromes (ranging from autoimmune encephalitis to CNS demyelination) has increased diagnostic precision, and allowed critical reinterpretation of non-specific neurological syndromes historically associated with systemic disorders (e.g., Hashimoto encephalopathy). The intracellular vs. cell-surface or synaptic location of the different neural autoantibody targets often helps to predict the clinical characteristics, potential cancer association, and treatment response of the associated syndromes. In particular, autoantibodies targeting intracellular antigens (traditionally termed onconeural autoantibodies) are often associated with cancers, rarely respond well to immunosuppression and have a poor outcome, although exceptions exist. Detection of neural autoantibodies with accurate laboratory assays in patients with compatible clinical-MRI phenotypes allows a definite diagnosis of antibody-mediated CNS disorders, with important therapeutic and prognostic implications. Antibody-mediated CNS disorders are rare, and reliable autoantibody identification is highly dependent on the technique used for detection and pre-test probability. As a consequence, indiscriminate neural autoantibody testing among patients with more common neurologic disorders (e.g., epilepsy, dementia) will necessarily increase the risk of false positivity, so that recognition of high-risk clinical-MRI phenotypes is crucial. A number of emerging clinical settings have recently been recognized to favor development of CNS autoimmunity. These include antibody-mediated CNS disorders following herpes simplex virus encephalitis or occurring in a post-transplant setting, and neurological autoimmunity triggered by TNFα inhibitors or immune checkpoint inhibitors for cancer treatment. Awareness of the range of clinical and radiological manifestations associated with different neural autoantibodies, and the specific settings where autoimmune CNS disorders may occur is crucial to allow rapid diagnosis and early initiation of treatment.
Collapse
Affiliation(s)
- Elia Sechi
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW The rapid developments in neuroimmunology reflect also on the field of movement disorders, where there is an ever expanding spectrum of new antibodies. This review focuses on the new neuronal antibodies, their clinical spectrum and recent pathophysiological insights. It gives an update on previous work about neuronal antibody-related movement disorders. RECENT FINDINGS Phosphodiesterase 10A antibodies are a new marker of paraneoplastic chorea. Seizure-related 6 homolog like 2 antibodies are a differential diagnosis in atypical parkinsonism with cerebellar ataxia and cognitive impairment. mGluR5-antibodies cause various hyperkinetic movement disorders with Ophelia syndrome. Most new antibodies were described in the context of cerebellar ataxia: Kelch-like protein 11 antibodies are a comparatively frequent marker of paraneoplastic cerebellar ataxia with germ cell tumours. Nonparaneoplastic cerebellar ataxia occurs with Septin-5 and neurochondrin antibodies. Studies into the mechanisms of neuronal surface antibodies have shown that there is much pathophysiological heterogeneity, ranging from immediate antagonistic effect to induction of neurodegeneration after weeks. SUMMARY The new markers of autoimmune movement disorders are key to identify those patients that may benefit from immunotherapy, and tumour therapy, where appropriate. Insights into the underlying pathophysiology might guide treatment decisions and help tailoring more targeted approaches in the future.
Collapse
|
45
|
Balint B, Bhatia KP, Dalmau J. "Antibody of Unknown Significance" (AUS): The Issue of Interpreting Antibody Test Results. Mov Disord 2021; 36:1543-1547. [PMID: 33955060 DOI: 10.1002/mds.28597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Bettina Balint
- Department of Neurology, University Hospital, Heidelberg, Germany.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Josep Dalmau
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Service of Neurology, Hospital Clinic de Barcelona, Barcelona, Spain.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
46
|
Flanagan EP. Paraneoplastic disorders of the nervous system. J Neurol 2021; 268:4899-4907. [PMID: 33904967 DOI: 10.1007/s00415-021-10570-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
This article on paraneoplastic neurologic disorders provides an update on the diagnostic approach, utility and pitfalls of autoantibody testing and emerging settings in which these disorders are encountered. Recognition of the clinical and neuroimaging features accompanying paraneoplastic neurologic disorders is crucial to select those at highest risk who need neural antibody testing and screening for cancer. Cursory knowledge of the antibody assay methodology being ordered is important as the false positive rate varies by the technique utilized for detection. Antibodies can generally be stratified by the location of the target antigen (intraceullar versus cell-surface/synaptic) which informs frequency of cancer association, treatment response and prognosis. The therapeutic approach generally involves detection of the underlying cancer and combinations of oncologic treatments and immunosuppressant medications. The occurrence of paraneoplastic autoimmune neurologic disorders in novel settings, such as with immune checkpoint inhibitor use, has improved understanding of their pathogenesis and increased the likelihood neurologists will encounter such patients in their practice.
Collapse
Affiliation(s)
- Eoin P Flanagan
- Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
47
|
Valencia-Sanchez C, Zekeridou A. Paraneoplastic Neurological Syndromes and Beyond Emerging With the Introduction of Immune Checkpoint Inhibitor Cancer Immunotherapy. Front Neurol 2021; 12:642800. [PMID: 33897597 PMCID: PMC8062756 DOI: 10.3389/fneur.2021.642800] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Paraneoplastic neurological syndromes are more commonly seen with malignancies such as small cell lung cancer, thymoma, gynecological malignancies, and breast cancer as well as seminoma. With the introduction of immune checkpoint inhibitor (ICI) cancer immunotherapy we see an increase of autoimmune neurological complications in patients with malignancies not traditionally associated with paraneoplastic neurological syndromes, such as melanoma and renal cell carcinoma. Immune checkpoint inhibitors enhance antitumor immune responses resulting often in immune-related adverse effects that can affect any organ, including the central and peripheral nervous system, neuromuscular junction and muscle. Neurological complications are rare; neuromuscular complications are more common than central nervous system ones but multifocal neurological presentations are often encountered. The vast majority of neurological complications appear within 3 months of ICI initiation, but have been described even after ICI cessation. Neural autoantibody testing reveals autoantibodies in approximately half of the patients with CNS complications. Early suspicion and diagnosis is critical to avoid worsening and improve outcomes. Therapeutic strategies depend on the severity of the symptoms and initially typically involve discontinuation of ICI and high dose steroids. Further immunosuppression might be necessary. Outcomes are dependent on patient's characteristics and clinical presentations.
Collapse
Affiliation(s)
- Cristina Valencia-Sanchez
- Departments of Neurology and Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Anastasia Zekeridou
- Departments of Neurology and Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States
| |
Collapse
|
48
|
Neurological complications of immune checkpoint inhibitor cancer immunotherapy. J Neurol Sci 2021; 424:117424. [PMID: 33812689 DOI: 10.1016/j.jns.2021.117424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/26/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023]
Abstract
Neurological autoimmunity is increasingly recognized as a complication of immune checkpoint inhibitor (ICI) cancer immunotherapy. ICIs act by enhancing endogenous anti-tumor immune responses and can also lead to autoimmunity affecting all organs. ICI-related neurological autoimmunity is rare, most often manifests with neuromuscular involvement and more rarely affects the central nervous system. Neurological complications often often present in the first three months of ICI treatment but can also appear after ICI discontinuation. These can occur in patients with tumors not traditionally associated with paraneoplastic neurological autoimmunity, such as melanoma and renal-cell carcinoma and should be suspected when a new neurological symptoms present while on ICI and cannot be explained by disease progression or as a consequence of metabolic dysfunction. Treatment consists of ICI discontinuation or withdrawal depending on the severity with or without immunosuppression. Generally, improvement is observed depending on the patient's baseline characteristics and neurological presentation.
Collapse
|
49
|
Marini A, Bernardini A, Gigli GL, Valente M, Muñiz-Castrillo S, Honnorat J, Vogrig A. Neurologic Adverse Events of Immune Checkpoint Inhibitors: A Systematic Review. Neurology 2021; 96:754-766. [PMID: 33653902 DOI: 10.1212/wnl.0000000000011795] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/28/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To define the clinical characteristics, management, and outcome of neurologic immune-related adverse events (n-irAEs) of immune checkpoint inhibitors (ICIs). METHODS Systematic review of the literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS A total of 694 articles were identified. Two hundred fifty-six articles, with 428 individual patients, met the inclusion criteria. Reports regarding neuromuscular disorders (319/428, 75%) were more frequent than those on CNS disorders (109/428, 25%). The most common n-irAEs reports were myositis (136/428, 32%), Guillain-Barré syndrome and other peripheral neuropathies (94/428, 22%), myasthenic syndromes (58/428, 14%), encephalitis (56/428, 13%), cranial neuropathies (31/428, 7%), meningitis (13/428, 3%), CNS demyelinating diseases (8/428, 2%), and myelitis (7/428, 2%). Other CNS disorders were detected in 25/428 (6%) patients. Compared with the whole sample, myasthenic syndromes were significantly more Ab positive (33/56, 59%; p < 0.001). Anti-programmed cell death protein 1/programmed cell death ligand 1 was more frequent in myasthenic syndromes (50/58, 86%; p = 0.005) and less common in meningitis (2/13, 15%; p < 0.001) and cranial neuropathies (13/31, 42%; p = 0.005). Anti-cytotoxic T-lymphocyte antigen-4 ICIs were more frequent in meningitis (8/13, 62%; p < 0.001) and less common in encephalitis (2/56, 4%; p = 0.009) and myositis (12/136, 9%; p = 0.01). Combination of different ICIs was more frequent in cranial neuropathies (12/31, 39%; p = 0.005). Melanoma was more frequent in patients with peripheral neuropathies (64/94, 68%; p = 0.003) and less common in encephalitis (19/56, 34%; p = 0.001). The highest mortality rate was reached in myasthenic syndromes (28%). CONCLUSION Considering the increasing use of ICI therapy in the forthcoming future, this information can be valuable in assisting neurologists and oncologists in early n-irAEs diagnosis and treatment.
Collapse
Affiliation(s)
- Alessandro Marini
- From the Clinical Neurology Unit (A.M., A.B., G.L.G., M.V., A.V.), Santa Maria Della Misericordia University Hospital; Department of Medicine (DAME) (A.M., G.L.G., M.V.), University of Udine Medical School, Italy; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., J.H., A.V.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., J.H., A.V.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310; and University Claude Bernard Lyon 1 (S.M.-C., J.H., A.V.), Université de Lyon, France
| | - Andrea Bernardini
- From the Clinical Neurology Unit (A.M., A.B., G.L.G., M.V., A.V.), Santa Maria Della Misericordia University Hospital; Department of Medicine (DAME) (A.M., G.L.G., M.V.), University of Udine Medical School, Italy; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., J.H., A.V.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., J.H., A.V.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310; and University Claude Bernard Lyon 1 (S.M.-C., J.H., A.V.), Université de Lyon, France
| | - Gian Luigi Gigli
- From the Clinical Neurology Unit (A.M., A.B., G.L.G., M.V., A.V.), Santa Maria Della Misericordia University Hospital; Department of Medicine (DAME) (A.M., G.L.G., M.V.), University of Udine Medical School, Italy; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., J.H., A.V.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., J.H., A.V.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310; and University Claude Bernard Lyon 1 (S.M.-C., J.H., A.V.), Université de Lyon, France
| | - Mariarosaria Valente
- From the Clinical Neurology Unit (A.M., A.B., G.L.G., M.V., A.V.), Santa Maria Della Misericordia University Hospital; Department of Medicine (DAME) (A.M., G.L.G., M.V.), University of Udine Medical School, Italy; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., J.H., A.V.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., J.H., A.V.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310; and University Claude Bernard Lyon 1 (S.M.-C., J.H., A.V.), Université de Lyon, France
| | - Sergio Muñiz-Castrillo
- From the Clinical Neurology Unit (A.M., A.B., G.L.G., M.V., A.V.), Santa Maria Della Misericordia University Hospital; Department of Medicine (DAME) (A.M., G.L.G., M.V.), University of Udine Medical School, Italy; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., J.H., A.V.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., J.H., A.V.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310; and University Claude Bernard Lyon 1 (S.M.-C., J.H., A.V.), Université de Lyon, France
| | - Jérôme Honnorat
- From the Clinical Neurology Unit (A.M., A.B., G.L.G., M.V., A.V.), Santa Maria Della Misericordia University Hospital; Department of Medicine (DAME) (A.M., G.L.G., M.V.), University of Udine Medical School, Italy; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., J.H., A.V.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., J.H., A.V.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310; and University Claude Bernard Lyon 1 (S.M.-C., J.H., A.V.), Université de Lyon, France
| | - Alberto Vogrig
- From the Clinical Neurology Unit (A.M., A.B., G.L.G., M.V., A.V.), Santa Maria Della Misericordia University Hospital; Department of Medicine (DAME) (A.M., G.L.G., M.V.), University of Udine Medical School, Italy; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., J.H., A.V.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., J.H., A.V.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310; and University Claude Bernard Lyon 1 (S.M.-C., J.H., A.V.), Université de Lyon, France.
| |
Collapse
|
50
|
Devine MF, Kothapalli N, Elkhooly M, Dubey D. Paraneoplastic neurological syndromes: clinical presentations and management. Ther Adv Neurol Disord 2021; 14:1756286420985323. [PMID: 33796141 PMCID: PMC7970694 DOI: 10.1177/1756286420985323] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
We provide an overview of the varied presentations of paraneoplastic neurological syndromes. We also review the onconeural antibodies and their particular oncological and neurological associations. Recognition of these syndromes and their oncological associations is crucial, as early diagnosis and management has been associated with better patient outcomes. Specific management strategies and prognosis vary widely depending on the underlying etiology. An understanding of the relevant clinical details, imaging findings, and other diagnostic information can help tailor treatment approaches. We provide an outline of the diagnostic evaluation and treatment of various paraneoplastic neurological disorders, presenting with central and/or peripheral nervous system involvement. We briefly discuss neurologic immune checkpoint inhibitor-related adverse events, which can occasionally present with paraneoplastic neurological syndrome phenotypes.
Collapse
Affiliation(s)
- Michelle F Devine
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Naga Kothapalli
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburg, PA, USA
| | | | - Divyanshu Dubey
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905-0002, USA
| |
Collapse
|