1
|
Hicks AJ, Carrington H, Bura L, Yang A, Pesce R, Yew B, Dams-O'Connor K. Blood-Based Protein Biomarkers in the Chronic Phase of Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2025; 42:759-797. [PMID: 40176450 DOI: 10.1089/neu.2024.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
There has been limited exploration of blood-based biomarkers in the chronic period following traumatic brain injury (TBI). Our objective was to conduct a systematic review of studies examining blood-based protein biomarkers with at least one sample collected 12 months post-TBI in adults (≥16 years). Database searches were conducted in Embase, MEDLINE, and Science Citation Index-Expanded on July 24, 2023. Risk of bias was assessed using modified Joanna Briggs Institute critical appraisal tools. Only 30 of 12,523 articles met inclusion criteria, with samples drawn from 12 months to 48 years. Higher quality evidence (low risk of bias; large samples) identified promising inflammatory biomarkers at 12 months post-injury in both moderate-severe TBI (GFAP) and mild TBI (eotaxin-1, IFN-y, IL-8, IL-9, IL-17A, MCP-1, MIP-1β, FGF-basic, and TNF-α). Studies with low risk of bias but smaller samples also suggest NSE, MME, and CRP may be informative, alongside protein variants for α-syn (10H, D5), amyloid-β (A4, C6T), TDP-43 (AD-TDP 1;2;3;9;11), and tau (D11C). Findings for NfL were inconclusive. Longitudinal data were mostly available for acute samples followed until 12 months post-injury, with limited evaluation of changes beyond 12 months. Associations of some blood-based biomarkers with cognitive, sleep, and functional outcomes were reported. The overall strength of the evidence in this review was limited by the risk of bias and small sample sizes. Replication is required within prospective longitudinal studies that move beyond 12 months post-injury. Novel efforts should be guided by promising neurodegenerative-disease markers and use panels to model polypathology.
Collapse
Affiliation(s)
- Amelia J Hicks
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Holly Carrington
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Bura
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alicia Yang
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rico Pesce
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Belinda Yew
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | |
Collapse
|
2
|
Carrol D, Busse WW, Frye CJ, Klaus DR, Bach JC, Floerke H, Bendlin BB, Zetterberg H, Blennow K, Heslegrave A, Hoel R, Rosenkranz MA. Regional brain structural alterations in reward and salience networks in asthma. Brain Behav Immun 2025; 126:80-97. [PMID: 39921150 PMCID: PMC12003077 DOI: 10.1016/j.bbi.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/03/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
INTRODUCTION Chronic systemic inflammation is highly prevalent and has deleterious effects on the brain, impacting both function and structure, and manifesting in elevations in psychological symptoms transdiagnostically. Asthma is a chronic inflammatory disease of the airway that affects more than 300 million people worldwide and is known to be highly comorbid with psychological and cognitive dysfunction. Though a growing corpus of work has identified functional brain abnormalities associated with asthma, limited research has investigated structural differences which may partially underlie functional changes. Identifying and characterizing asthma-related structural brain changes will shed light on the neurobiology through which asthma impacts mental function and has the potential to inform prophylaxis and treatment. METHODS We examined differences in regional brain volume, cortical thickness, and surface area, in 128 individuals with asthma compared to 134 non-asthma healthy controls. Five regions of interest were examined a priori, based on their previous implication in inflammation-related functional consequences (dorsal and ventral striatum, pallidum, and insula), or previous evidence of asthma-related structural impact (hippocampus and thalamus). We supplemented our region of interest approach with a voxel-wise whole-brain analysis. Additionally, we examined the association of brain structure with depression symptoms, asthma severity, degree of inflammation, and plasma biomarkers of neuroinflammation, neurodegeneration, and Alzheimer's disease specific pathology. RESULTS Compared to non-asthma control participants, those with asthma had smaller nucleus accumbens volumes, thicker orbitofrontal cortices, larger middle frontal cortex surface areas, and greater diencephalon volumes. Those with more severe asthma had smaller nucleus accumbens and dorsal striatal volumes, reduced anterior cingulate cortex surface area, and greater amygdala volume compared to those with mild asthma. In untreated asthma patients, greater depressive symptoms were associated with smaller striatal volume, suggesting a potential CNS-protective effect of medications that reduce airway inflammation in asthma. In addition, a plasma marker of astrogliosis was associated with larger diencephalon, cerebellum, brainstem, and thalamus volumes, but reduced insula thickness and surface area. CONCLUSIONS Patterns of structural brain changes in participants with asthma encompass key regions of reward and salience networks, which may in part give rise to the functional alterations in these networks characteristic of chronic systemic inflammation.
Collapse
Affiliation(s)
- Danielle Carrol
- Center for Healthy Minds, University of Wisconsin-Madison Madison WI USA
| | - William W Busse
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health Madison WI USA
| | - Corrina J Frye
- Wasiman Center, University of Wisconsin-Madison Madison WI USA
| | - Danika R Klaus
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health Madison WI USA
| | - Julia C Bach
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health Madison WI USA
| | - Heather Floerke
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health Madison WI USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison Madison WI USA
| | - Henrik Zetterberg
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison Madison WI USA; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square London UK; UK Dementia Research Institute at UCL London UK; Hong Kong Center for Neurodegenerative Diseases Clear Water Bay Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University Paris France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC Hefei China
| | - Amanda Heslegrave
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square London UK
| | - Rachel Hoel
- Center for Healthy Minds, University of Wisconsin-Madison Madison WI USA
| | - Melissa A Rosenkranz
- Center for Healthy Minds, University of Wisconsin-Madison Madison WI USA; Department of Psychiatry, University of Wisconsin-Madison, USA.
| |
Collapse
|
3
|
Ludwig R, Rippee M, D’Silva L, Radel J, Eakman AM, Morris J, Beltramo A, Drerup M, Siengsukon C. The Impact of Cognitive Behavioral Therapy for Insomnia on Neurofilament Light and Phosphorylated Tau in Individuals with a Concussion. Arch Clin Neuropsychol 2025; 40:437-444. [PMID: 39504933 PMCID: PMC12034518 DOI: 10.1093/arclin/acae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Concussions damage neurologic tissue, increasing release of intercellular proteins including phosphorylated Tau (pTau) and neurofilament light (NfL). Disrupted sleep from a concussion negatively impacts the ability of the glymphatic system to remove cellular waste from the brain. OBJECTIVE The purpose of this study was to determine if enhancing sleep using Cognitive Behavioral Therapy for Insomnia (CBT-I) impacts pTau and NFL levels following a concussion. METHODS This is pre/post intervention analysis of a larger wait-list control study. Participants had their blood sampled pre/post the CBT-I intervention which was analyzed using SIMOA analytics. Paired sampling statistics and linear regression models were used to examine how insomnia severity impacts pTau181 and NfL. RESULTS Twenty-eight participants were enrolled in this study. Age and baseline protein level were significantly associated with post-intervention protein levels, but post-intervention insomnia severity was not associated with post-intervention protein levels. About 50% of participants that had clinically meaningful change in insomnia and had a reduction in their NfL and pTau181 values. CONCLUSIONS Post-intervention insomnia was not associated with post-intervention NfL or pTau. Yet, on an individual level, ~50% of participants had a clinically meaningful change in insomnia and reduced level of NfL and pTau 18.1. CLINICAL TRIAL REGISTRATION NCT04885205 https://clinicaltrials.gov.
Collapse
Affiliation(s)
- Rebecca Ludwig
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, 3901 Rainbow Blvd. Mail Stop 2002, Kansas City, KS 66160, USA
| | - Michael Rippee
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mailstop 2012, Kansas City, KS 66160, USA
| | - Linda D’Silva
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, 3901 Rainbow Blvd. Mail Stop 2002, Kansas City, KS 66160, USA
| | - Jeff Radel
- Department of Occupational Therapy and Therapeutic Science, University of Kansas Medical Center, 3901 Rainbow Blvd Mail Stop 2003 Kansas City, KS 66160, USA
| | - Aaron M Eakman
- Department of Occupational Therapy, Colorado State University, 850 Oval Drive Mail Stop 1501, Fort Collins, CO 80523, USA
| | - Jill Morris
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mailstop 2012, Kansas City, KS 66160, USA
| | - Alvin Beltramo
- Department of Biostatistics and Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd, Mailstop 1026, Kansas City, KS 66160, USA
| | - Michelle Drerup
- Sleep Disorders Center, Cleveland Clinic, Neurological Institute, 9500 Euclid Ave Cleveland, OH 44195, USA
| | - Catherine Siengsukon
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, 3901 Rainbow Blvd. Mail Stop 2002, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Lisi I, Moro F, Mazzone E, Marklund N, Pischiutta F, Kobeissy F, Mao X, Corrigan F, Helmy A, Nasrallah F, Pietro VD, Ngwenya LB, Portela LV, Semple BD, Schneider ALC, Arrastia RD, Menon DK, Smith DH, Wellington C, Loane DJ, Wang KKW, Zanier ER. Exploiting blood-based biomarkers to align preclinical models with human traumatic brain injury. Brain 2025; 148:1062-1080. [PMID: 39514789 PMCID: PMC11967814 DOI: 10.1093/brain/awae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/17/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Rodent models are important research tools for studying the pathophysiology of traumatic brain injury (TBI) and developing new therapeutic interventions for this devastating neurological disorder. However, the failure rate for the translation of drugs from animal testing to human treatments for TBI is 100%. While there are several potential explanations for this, previous clinical trials have relied on extrapolation from preclinical studies for critical design considerations, including drug dose optimization, post-injury drug treatment initiation and duration. Incorporating clinically relevant biomarkers in preclinical studies may provide an opportunity to calibrate preclinical models to identical (or similar) measurements in humans, link to human TBI biomechanics and pathophysiology, and guide therapeutic decisions. To support this translational goal, we conducted a systematic literature review of preclinical TBI studies in rodents measuring blood levels of clinically used GFAP, UCH-L1, NfL, total-Tau (t-Tau) or phosphorylated-Tau (p-Tau) published in PubMed/EMBASE up to 10 April 2024. Although many factors influence clinical TBI outcomes, many of those cannot routinely be assessed in rodent studies (e.g. intracranial pressure monitoring). Thus we focused on blood biomarkers' temporal trajectories and discuss our findings in the context of the latest clinical TBI biomarker data. Of 805 original preclinical studies, 74 met the inclusion criteria, with a median quality score of 5 (25th-75th percentiles: 4-7) on the CAMARADES checklist. GFAP was measured in 43 studies, UCH-L1 in 21, NfL in 20, t-Tau in 19 and p-Tau in seven. Data from rodent models indicate that all biomarkers exhibited injury severity-dependent elevations with distinct temporal profiles. GFAP and UCH-L1 peaked within the first day after TBI (30- and 4-fold increases, respectively, in moderate-to-severe TBI versus sham), with the highest levels observed in the contusion TBI model. NfL peaked within days (18-fold increase) and remained elevated up to 6 months post-injury. GFAP and NfL show a pharmacodynamic response in 64.7% and 60%, respectively, of studies evaluating neuroprotective therapies in preclinical models. However, GFAP's rapid decline post-injury may limit its utility for understanding the response to new therapeutics beyond the hyperacute phase after experimental TBI. Furthermore, as in humans, subacute NfL levels inform on chronic white matter loss after TBI. t-Tau and p-Tau levels increased over weeks after TBI (up to 6- and 16-fold, respectively); however, their relationship with underlying neurodegeneration has yet to be addressed. Further investigation into biomarker levels in the subacute and chronic phases after TBI will be needed to fully understand the pathomechanisms underpinning blood biomarkers' trajectories and select the most suitable experimental model to optimally relate preclinical mechanistic studies to clinical observations in humans. This new approach could accelerate the translation of neuroprotective treatments from laboratory experiments to real-world clinical practices.
Collapse
Affiliation(s)
- Ilaria Lisi
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Federico Moro
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Edoardo Mazzone
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University and Skåne University Hospital, Lund 222 42, Sweden
| | - Francesca Pischiutta
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xiang Mao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Frances Corrigan
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Fatima Nasrallah
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Valentina Di Pietro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Laura B Ngwenya
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 670715, USA
| | - Luis V Portela
- Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul—UFRGS, Porto Alegre, RS 90040-060, Brasil
| | - Bridgette D Semple
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3800, Australia
| | - Andrea L C Schneider
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6021, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramon Diaz Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Douglas H Smith
- Center for Brain Injury and Repair and the Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl Wellington
- Department of Pathology, Djavad Mowafaghain Centre for Brain Health, International Collaboration on Repair Discoveries, School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - David J Loane
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 152-160, Ireland
| | - Kevin K W Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Elisa R Zanier
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| |
Collapse
|
5
|
Uzgiris AJ, Ladic LA, Pfister SX. Advances in neurofilament light chain analysis. Adv Clin Chem 2025; 126:31-71. [PMID: 40185536 DOI: 10.1016/bs.acc.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
This chapter provides a comprehensive summary of clinical laboratory testing for neurofilament light chain (NfL) in neurologic disease. A primer on the NfL structure and function is presented with its potential use as a biomarker. The most widely utilized methods for NfL in biologic samples are highlighted and examined. Limitations of current knowledge are considered, as are outstanding questions related to dissemination and standardization of testing. Herein we focus on methods available today and those in development for clinical use. In the final section, a broad vision is presented of how NfL may be utilized in the future to improve diagnosis and treatment of neurologic diseases as well as for maintaining health.
Collapse
Affiliation(s)
- Arejas J Uzgiris
- Siemens Healthcare Diagnostics Inc., Tarrytown, NY, United States.
| | - Lance A Ladic
- Siemens Healthcare Diagnostics Inc., Tarrytown, NY, United States
| | - Sophia X Pfister
- Siemens Healthcare Diagnostics Inc., Tarrytown, NY, United States
| |
Collapse
|
6
|
Saez-Calveras N, Asturias A, Yu J, Stopschinski B, Vaquer-Alicea J, O'Suilleabhain P, McKenzie L, Viera J, Diamond MI, Shah BR. Plasma glial fibrillary acidic protein as a biomarker of acute focal brain injury after high-intensity focused ultrasound thalamotomy. Brain Commun 2025; 7:fcaf054. [PMID: 40236997 PMCID: PMC11997805 DOI: 10.1093/braincomms/fcaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 04/17/2025] Open
Abstract
The validation of brain injury biomarkers has encountered challenges such as the absence of pre-insult measurements, variability in injury timing and location, and inter-individual differences. In this study, we addressed these limitations by using magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) thalamotomy to assess plasma biomarker changes after an acute focal brain injury. This prospective study included 30 essential tremor and tremor-dominant Parkinson's disease patients undergoing MRgHIFU thalamotomy at a single academic institution. Blood samples were collected at three specific time points: pre-procedure, 1-h post-procedure, and 48 h post-procedure. Plasma levels of glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), amyloid beta (Aβ40 and Aβ42) and phosphorylated tau 181 (pTau-181) were measured using the quanterix single molecule arrays assay. GFAP levels were significantly increased at 48 h post-MRgHIFU in all patients with a thalamotomy lesion. GFAP levels at 48 h were highly sensitive (89.7%) and specific (96.6%) in detecting the presence of a lesion with a cut-off value of 216.2 pg/ml. NfL, Aβ40 and Aβ42, also showed statistically significant increases post-procedure but were less robust than GFAP. No changes were observed in pTau-181 levels post-MRgHIFU. Plasma GFAP has shown great promise as a sensitive and reliable biomarker for detecting acute brain injury after MRgHIFU thalamotomy. Its significant elevation following the procedure highlights its potential as a diagnostic tool for acute focal brain injuries, such as stroke. Further studies with additional time points are essential to validate the injury cut-off identified in this study and to assess its broader clinical utility for early detection of focal brain lesions.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Parkland Memorial Hospital, Dallas, TX 75235, USA
| | - Alexander Asturias
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Transcranial Focused Ultrasound Lab and Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James Yu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Transcranial Focused Ultrasound Lab and Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Barbara Stopschinski
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Jaime Vaquer-Alicea
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Padraig O'Suilleabhain
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Lauren McKenzie
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Transcranial Focused Ultrasound Lab and Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeniz Viera
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Transcranial Focused Ultrasound Lab and Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marc I Diamond
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Bhavya R Shah
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Transcranial Focused Ultrasound Lab and Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Dybing KM, Vetter CJ, Dempsey DA, Chaudhuri S, Saykin AJ, Risacher SL. Traumatic Brain Injury and Alzheimer's Disease Biomarkers: A Systematic Review of Findings from Amyloid and Tau Positron Emission Tomography. J Neurotrauma 2025; 42:333-348. [PMID: 39639808 PMCID: PMC11971548 DOI: 10.1089/neu.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Traumatic brain injury (TBI) has been discussed as a risk factor for Alzheimer's disease (AD) due to its association with AD risk and earlier cognitive symptom onset. However, the mechanisms behind this relationship are unclear. Some studies have suggested TBI may increase pathological protein deposition in an AD-like pattern; others have failed to find such associations. This review covers literature that uses positron emission tomography (PET) of β-amyloid (Aβ) and/or tau to examine individuals with a history of TBI who are at increased risk for AD due to age. A comprehensive literature search was conducted on January 9, 2023, and 26 resulting citations met inclusion criteria. Common methodological concerns included small samples, limited clinical detail about participants' TBI, recall bias due to reliance on self-reported TBI, and an inability to establish causation. For both Aβ and tau, results were widespread but inconsistent. The regions that showed the most compelling evidence for increased Aβ deposition were the cingulate gyrus and cuneus/precuneus. Evidence for elevated tau was strongest in the medial temporal lobe, entorhinal cortex, precuneus, and frontal, temporal, parietal, and occipital lobes. However, conflicting findings across most regions in both Aβ- and tau-PET studies indicate the critical need for future work in expanded samples and with greater clinical detail to offer a clearer picture of the relationship between TBI and protein deposition in older individuals at risk for AD.
Collapse
Affiliation(s)
- Kaitlyn M. Dybing
- Address correspondence to: Kaitlyn M. Dybing, BS, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202, USA,
| | - Cecelia J. Vetter
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, USA
| | | | | | - Andrew J. Saykin
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shannon L. Risacher
- Address correspondence to: Shannon L. Risacher, PhD, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202, USA,
| |
Collapse
|
8
|
Kleven BDC, Chien LC, Cross CL, Labus B, Bernick C. Traumatic Encephalopathy Syndrome: Head Impact Exposure and Blood Biomarkers in Professional Combat Athletes. J Head Trauma Rehabil 2025:00001199-990000000-00244. [PMID: 39998558 DOI: 10.1097/htr.0000000000001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
OBJECTIVE This study aimed to (1) determine whether there was an association between a diagnosis of traumatic encephalopathy syndrome (TES) and changes in three specific serum biomarkers, and (2) determine head impact exposure thresholds among both TES+ and TES- groups. SETTING Data were collected from Cleveland Clinic's Professional Athletes Brain Health Study (PABHS). PARTICIPANTS This study included 192 professional combat athletes, 35 years of age and older. Athletes must be actively fighting or retired with a minimum of 10 professional fights over their careers. DESIGN/INTERVENTION This was a retrospective observational study of the PABHS longitudinal cohort. MAIN MEASURES The generalized linear model with the generalized estimating equation for repeated measurements was used to compare various biomarkers between both active and retired TES- and TES+ groups. RESULTS The odds ratio for TES diagnosis was 5.44 (95% CI = 2.48, 11.94; P < .0001) among active fighters and 10.75 (95% CI = 3.52, 32.85; P < .0001) among retired fighters, indicating the odds for a TES diagnosis were over 5 times greater for active fighters with every fight completed at or beyond 30 professional fights. Retired fighters had 10 times greater odds of TES diagnosis with every fight completed at or beyond 15 professional fights. Likewise, the odds of a TES diagnosis were 2.0% (95% CI = 0.3, 3.1; P = 0.0039) greater with each pg/mL increase of glial fibrillary acidic protein (GFAP). No relationship was observed between a TES diagnosis and neurofilament light chain or P-tau231. CONCLUSION This study provides preliminary evidence that progressively elevated levels of the GFAP blood biomarker increase the odds of a TES diagnosis among retired professional fighters. Further evaluation is required to improve clarity and understanding of the relationship between progressive changes in the GFAP blood biomarker and a TES diagnosis, specifically evaluating the duration of chronicity and exposure thresholds.
Collapse
Affiliation(s)
- Brooke D Conway Kleven
- Author Affiliations: Sports Innovation Institute (Dr Kleven), Department of Brain Health, Kirk Kerkorian School of Medicine (Dr Kleven), Department of Epidemiology and Biostatistics, School of Public Health (Dr Chien, Dr Cross, and Dr Labus), University of Nevada, Las Vegas, Las Vegas, Nevada; and Cleveland Clinic Lou Ruvo Center for Brain Health (Dr Bernick), Las Vegas, Nevada
| | | | | | | | | |
Collapse
|
9
|
Hicks AJ, Plourde J, Selmanovic E, de Souza NL, Blennow K, Zetterberg H, Dams-O'Connor K. Trajectories of blood-based protein biomarkers in chronic traumatic brain injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.16.25322303. [PMID: 40034765 PMCID: PMC11875239 DOI: 10.1101/2025.02.16.25322303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Blood-based protein biomarkers may provide important insights into the long-term neuropathology of traumatic brain injury (TBI). This is urgently required to identify mechanistic processes underlying post-traumatic neurodegeneration (PTND); a progressive post-recovery clinical decline experienced by a portion of TBI survivors. The aim of this study was to examine change over time in protein levels in a chronic TBI cohort. We selected six markers (Aβ 42 /Aβ 40 , GFAP, NfL, BD-tau, p-tau231, and p-tau181) with known importance in acute TBI and/or other neurodegenerative conditions. We used a longitudinal design with two time points approximately 3.5 years apart on average (SD 1.34). Proteins were measured in plasma using the ultrasensitive Single molecule array technology for 63 participants with mild to severe chronic TBI (sustained ≥ 1 year ago; M 28 years; SD 16.3 since their first blow to the head) from the Late Effects of TBI study (48% female; current age M 52 years; SD 13.4). Multivariate linear mixed effect models with adjustments for multiple comparisons were performed to examine trajectories in proteins over time with age and age squared as covariates. A series of sensitivity analyses were conducted to account for outliers and to explore effects of key covariates: sex, APOE ε4 carrier status, medical comorbidities, age at first blow to the head, time since first blow to the head, and injury severity. Over an average of 3.5 years, there were significant reductions in plasma Aβ 42 /Aβ 40 (β = -0.004, SE = 0.001, t = -3.75, q = .001) and significant increases in plasma GFAP (β = 12.96, SE = 4.41, t = 2.94, q = .01). There were no significant changes in NFL, BD-tau, p-tau231, or p-tau181. Both plasma Aβ 42 /Aβ 40 and GFAP have been associated with brain amyloidosis, suggesting a role for Aβ mis-metabolism and aggregation in the long-term neuropathological consequences of TBI. These findings are hypothesis generating for future studies exploring the diverse biological mechanisms of PTND.
Collapse
|
10
|
Migdady I, Gusdon AM, Everett AD, Cho SM. Blood and cerebrospinal fluid biomarkers in disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:165-181. [PMID: 39986720 DOI: 10.1016/b978-0-443-13408-1.00006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
The study of blood and cerebrospinal fluid biomarkers is a promising and rapidly advancing field in the research of disorders of consciousness (DoC). The use of advanced biochemical and analytic techniques in biomarker research has improved our ability to identify new biomarkers that can aid in the diagnosis, prognosis, and treatment of patients with brain injury. However, the use of biomarkers in clinical practice is limited by several challenges, including the lack of standardization in test and research methodologies. Despite this, identifying the most promising biomarkers and supporting their findings with strong evidence can improve their clinical utility. This chapter discusses the most promising biomarkers for DoC, which fall into four categories: neuronal, glial, inflammatory, and metabolic biomarkers. Understanding the role of each category in DoC can provide valuable insights into the mechanisms of brain injury and inform the development of more effective diagnostic and treatment strategies. By integrating biomarker research with clinical practice, we can improve our understanding of DoC and provide better care for these patients.
Collapse
Affiliation(s)
- Ibrahim Migdady
- Departments of Neurology, Medicine and Neurosurgery, Division of Critical Care Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Aaron M Gusdon
- Department of Neurosurgery, McGovern Medical School at UTHealth Houston, Houston, TX, United States
| | - Allen D Everett
- Division of Pediatric Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Sung-Min Cho
- Departments of Neurology, Neurosurgery, Surgery, and Anesthesia/Critical Care, Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
11
|
Andersson E, Öst M, Dalla K, Zetterberg H, Blennow K, Nellgård B. Acute-Phase Neurofilament Light and Glial Fibrillary Acidic Proteins in Cerebrospinal Fluid Predict Long-Term Outcome After Severe Traumatic Brain Injury. Neurocrit Care 2024; 41:813-827. [PMID: 38769253 PMCID: PMC11599393 DOI: 10.1007/s12028-024-01998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND This study investigated trajectory profiles and the association of concentrations of the biomarkers neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) in ventricular cerebrospinal fluid (CSF) with clinical outcome at 1 year and 10-15 years after a severe traumatic brain injury (sTBI). METHODS This study included patients with sTBI at the Neurointensive Care Unit at Sahlgrenska University Hospital, Gothenburg, Sweden. The injury was regarded as severe if patients had a Glasgow Coma Scale ≤ 8 corresponding to Reaction Level Scale ≥ 4. CSF was collected from a ventricular catheter during a 2-week period. Concentrations of NfL and GFAP in CSF were analyzed with enzyme-linked immunosorbent assay. The Glasgow Outcome Scale (GOS) was used to assess the 1-year and 10-15-year outcomes. After adjustment for age and previous neurological diseases, logistic regression was performed for the outcomes GOS 1 (dead) or GOS 2-5 (alive) and GOS 1-3 (poor) or GOS 4-5 (good) versus the independent continuous variables (NfL and GFAP). RESULTS Fifty-three patients with sTBI were investigated; forty-seven adults are presented in the article, and six children (aged 7-18 years) are described in Supplement 1. The CSF concentrations of NfL gradually increased over 2 weeks post trauma, whereas GFAP concentrations peaked on days 3-4. Increasing NfL and GFAP CSF concentrations increased the odds of GOS 1-3 outcome 1 year after trauma (odds ratio [OR] 1.73, 95% confidence interval [CI] 1.07-2.80, p = 0.025; and OR 1.61, 95% CI 1.09-2.37, p = 0.016, respectively). Similarly, increasing CSF concentrations of NfL and GFAP increased the odds for GOS 1-3 outcome 10-15 years after trauma (OR 2.04, 95% CI 1.05-3.96, p = 0.035; and OR 1.60, 95% CI 1.02-2.00, p = 0.040). CONCLUSIONS This study shows that initial high concentrations of NfL and GFAP in CSF are both associated with higher odds for GOS 1-3 outcome 1 year and 10-15 years after an sTBI, implicating its potential usage as a prognostic marker in the future.
Collapse
Affiliation(s)
- Emma Andersson
- Department of Anesthesiology and Intensive Care Medicine, Institution of Clinical Sciences, Gothenburg University, Gothenburg, Sweden.
| | - Martin Öst
- Department of Anesthesiology and Intensive Care Medicine, Institution of Clinical Sciences, Gothenburg University, Gothenburg, Sweden
| | - Keti Dalla
- Department of Anesthesiology and Intensive Care Medicine, Institution of Clinical Sciences, Gothenburg University, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hongkong Center for Neurodegenerative Diseases, Science Park, Hongkong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Bengt Nellgård
- Department of Anesthesiology and Intensive Care Medicine, Institution of Clinical Sciences, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
12
|
Vaibhav K, Gulhane M, Ahluwalia P, Kumar M, Ahluwalia M, Rafiq AM, Amble V, Zabala MG, Miller JB, Goldman L, Mondal AK, Deak F, Kolhe R, Arbab AS, Vale FL. Single episode of moderate to severe traumatic brain injury leads to chronic neurological deficits and Alzheimer's-like pathological dementia. GeroScience 2024; 46:5439-5457. [PMID: 38733547 PMCID: PMC11493938 DOI: 10.1007/s11357-024-01183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the foremost causes of disability and mortality globally. While the scientific and medical emphasis is to save lives and avoid disability during acute period of injury, a severe health problem can manifest years after injury. For instance, TBI increases the risk of cognitive impairment in the elderly. Remote TBI history was reported to be a cause of the accelerated clinical trajectory of Alzheimer's disease-related dementia (ADRD) resulting in earlier onset of cognitive impairment and increased AD-associated pathological markers like greater amyloid deposition and cortical thinning. It is not well understood whether a single TBI event may increase the risk of dementia. Moreover, the cellular signaling pathways remain elusive for the chronic effects of TBI on cognition. We have hypothesized that a single TBI induces sustained neuroinflammation and disrupts cellular communication in a way that results later in ADRD pathology. To test this, we induced TBI in young adult CD1 mice and assessed the behavioral outcomes after 11 months followed by pathological, histological, transcriptomic, and MRI assessment. On MRI scans, these mice showed significant loss of tissue, reduced CBF, and higher white matter injury compared to sham mice. We found these brains showed progressive atrophy, markers of ADRD, sustained astrogliosis, loss of neuronal plasticity, and growth factors even after 1-year post-TBI. Because of progressive neurodegeneration, these mice had motor deficits, showed cognitive impairments, and wandered randomly in open field. We, therefore, conclude that progressive pathology after adulthood TBI leads to neurodegenerative conditions such as ADRD and impairs neuronal functions.
Collapse
Affiliation(s)
- Kumar Vaibhav
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
- Transdisciplinary Research Initiative in Inflammaging and Brain Aging (TRIBA), Augusta University, Augusta, GA, USA.
| | - Mayuri Gulhane
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Manish Kumar
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Meenakshi Ahluwalia
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ashiq M Rafiq
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Vibha Amble
- Center for Undergraduate Research Studies, Augusta University, Augusta, GA, USA
| | - Manuela G Zabala
- Center for Undergraduate Research Studies, Augusta University, Augusta, GA, USA
| | - Jacob B Miller
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Liam Goldman
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ashis K Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ferenc Deak
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ali S Arbab
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
13
|
Cheng YW, Lin YJ, Lin YS, Hong WP, Kuan YC, Wu KY, Hsu JL, Wang PN, Pai MC, Chen CS, Fuh JL, Hu CJ, Chiu MJ. Application of blood-based biomarkers of Alzheimer's disease in clinical practice: Recommendations from Taiwan Dementia Society. J Formos Med Assoc 2024; 123:1210-1217. [PMID: 38296698 DOI: 10.1016/j.jfma.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/29/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Blood-based biomarkers (BBM) are potentially powerful tools that assist in the biological diagnosis of Alzheimer's disease (AD) in vivo with minimal invasiveness, relatively low cost, and good accessibility. This review summarizes current evidence for using BBMs in AD, focusing on amyloid, tau, and biomarkers for neurodegeneration. Blood-based phosphorylated tau and the Aβ42/Aβ40 ratio showed consistent concordance with brain pathology measured by CSF or PET in the research setting. In addition, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are neurodegenerative biomarkers that show the potential to assist in the differential diagnosis of AD. Other pathology-specific biomarkers, such as α-synuclein and TAR DNA-binding protein 43 (TDP-43), can potentially detect AD concurrent pathology. Based on current evidence, the working group from the Taiwan Dementia Society (TDS) achieved consensus recommendations on the appropriate use of BBMs for AD in clinical practice. BBMs may assist clinical diagnosis and prognosis in AD subjects with cognitive symptoms; however, the results should be interpreted by dementia specialists and combining biochemical, neuropsychological, and neuroimaging information. Further studies are needed to evaluate BBMs' real-world performance and potential impact on clinical decision-making.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ju Lin
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yung-Shuan Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Pin Hong
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan; Graduate Institute of Mind, Brain, & Consciousness, Taipei Medical University, Taipei, Taiwan; Brain & Consciousness Research Center, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Alzheimer's Disease Research Center, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Aldrich G, Evans JE, Davis R, Jurin L, Oberlin S, Niedospial D, Nkiliza A, Mullan M, Kenney K, Werner JK, Edwards K, Gill JM, Lindsey HM, Dennis EL, Walker WC, Wilde E, Crawford F, Abdullah L. APOE4 and age affect the brain entorhinal cortex structure and blood arachidonic acid and docosahexaenoic acid levels after mild TBI. Sci Rep 2024; 14:29150. [PMID: 39587176 PMCID: PMC11589616 DOI: 10.1038/s41598-024-80153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
A reduction in the thickness and volume of the brain entorhinal cortex (EC), together with changes in blood arachidonic acid (AA) and docosahexaenoic acid (DHA), are associated with Alzheimer's disease (AD) among apolipoprotein E ε4 carriers. Magnetic Resonance Imaging (n = 631) and plasma lipidomics (n = 181) were performed using the LIMBIC/CENC cohort to examine the influence of ε4 on AA- and DHA-lipids and EC thickness and volume in relation to mild traumatic brain injury (mTBI). Results showed that left EC thickness was higher among ε4 carriers with mTBI. Repeated mTBI (r-mTBI) was associated with reduced right EC thickness after controlling for ε4, age and sex. Age, plus mTBI chronicity were linked to increased EC White Matter Volume (WMV). After controlling for age and sex, the advancing age of ε4 carriers with blast mTBI was associated with reduced right EC Grey Matter Volume (GMV) and thickness. Among ε4 carriers, plasma tau and Aβ40 were associated with mTBI and blast mTBI, respectively. Chronic mTBI, ε4 and AA to DHA ratios in phosphatidylcholine, ethanolamides, and phosphatidylethanolamine were associated with decreased left EC GMV and WMV. Further research is needed to explore these as biomarkers for detecting AD pathology following mTBI.
Collapse
Grants
- I01 RX002172 RRD VA
- I01 RX002174 RRD VA
- I01 CX002097, I01 CX002096, I01 HX003155, I01 RX003444, I01 RX003443, I01 RX003442, I01 CX001135, I01 CX001246, I01 RX001774, I01 RX 001135, I01 RX 002076, I01 RX 001880, I01 RX 002172, I01 RX 002173, I01 RX 002171, I01 RX 002174, and I01 RX 002170, I01 CX001820 U.S. Department of Veterans Affairs
- I01 CX001135 CSRD VA
- UL1 TR002538 NCATS NIH HHS
- I01 RX003443 RRD VA
- I01 RX001880 RRD VA
- I01 RX002171 RRD VA
- I01 HX003155 HSRD VA
- I01 RX002076 RRD VA
- I01 CX001246 CSRD VA
- I01 RX002170 RRD VA
- UL1 TR000105 NCATS NIH HHS
- I01 RX002173 RRD VA
- AZ160065 Congressionally Directed Medical Research Programs
- UL1 TR001067 NCATS NIH HHS
- W81XWH-18-PH/TBIRP-LIMBIC under Awards No. W81XWH1920067 and W81XWH-13-2-0095 U.S. Department of Defense
- I01 RX003444 RRD VA
- UL1 RR025764 NCRR NIH HHS
- I01 RX003442 RRD VA
- I01 RX001774 RRD VA
- I01 CX002097 CSRD VA
- I01 CX002096 CSRD VA
- I01 CX001820 CSRD VA
- I01 RX002767 RRD VA
- I01 RX001135 RRD VA
Collapse
Affiliation(s)
- Gregory Aldrich
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
- James A. Haley Veterans' Administration Hospital, Tampa, FL, USA
| | - James E Evans
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Roderick Davis
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Lucia Jurin
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Sarah Oberlin
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | | | - Aurore Nkiliza
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - J Kent Werner
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | - Hannah M Lindsey
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Emily L Dennis
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - William C Walker
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Elisabeth Wilde
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
- James A. Haley Veterans' Administration Hospital, Tampa, FL, USA
| | - Laila Abdullah
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.
- James A. Haley Veterans' Administration Hospital, Tampa, FL, USA.
| |
Collapse
|
15
|
Spitz G, Hicks AJ, McDonald SJ, Dore V, Krishnadas N, O’Brien TJ, O’Brien WT, Vivash L, Law M, Ponsford JL, Rowe C, Shultz SR. Plasma biomarkers in chronic single moderate-severe traumatic brain injury. Brain 2024; 147:3690-3701. [PMID: 39315931 PMCID: PMC11531850 DOI: 10.1093/brain/awae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 06/06/2024] [Accepted: 07/04/2024] [Indexed: 09/25/2024] Open
Abstract
Blood biomarkers are an emerging diagnostic and prognostic tool that reflect a range of neuropathological processes following traumatic brain injury (TBI). Their effectiveness in identifying long-term neuropathological processes after TBI is unclear. Studying biomarkers in the chronic phase is vital because elevated levels in TBI might result from distinct neuropathological mechanisms during acute and chronic phases. Here, we examine plasma biomarkers in the chronic period following TBI and their association with amyloid and tau PET, white matter microarchitecture, brain age and cognition. We recruited participants ≥40 years of age who had suffered a single moderate-severe TBI ≥10 years previously between January 2018 and March 2021. We measured plasma biomarkers using single molecule array technology [ubiquitin C-terminal hydrolase L1 (UCH-L1), neurofilament light (NfL), tau, glial fibrillary acidic protein (GFAP) and phosphorylated tau (P-tau181)]; PET tracers to measure amyloid-β (18F-NAV4694) and tau neurofibrillary tangles (18F-MK6240); MRI to assess white matter microstructure and brain age; and the Rey Auditory Verbal Learning Test to measure verbal-episodic memory. A total of 90 post-TBI participants (73% male; mean = 58.2 years) were recruited on average 22 years (range = 10-33 years) post-injury, and 32 non-TBI control participants (66% male; mean = 57.9 years) were recruited. Plasma UCH-L1 levels were 67% higher {exp(b) = 1.67, P = 0.018, adjusted P = 0.044, 95% confidence interval (CI) [10% to 155%], area under the curve = 0.616} and P-tau181 were 27% higher {exp(b) = 1.24, P = 0.011, adjusted P = 0.044, 95% CI [5% to 46%], area under the curve = 0.632} in TBI participants compared with controls. Amyloid and tau PET were not elevated in TBI participants. Higher concentrations of plasma P-tau181, UCH-L1, GFAP and NfL were significantly associated with worse white matter microstructure but not brain age in TBI participants. For TBI participants, poorer verbal-episodic memory was associated with higher concentration of P-tau181 {short delay: b = -2.17, SE = 1.06, P = 0.043, 95% CI [-4.28, -0.07]; long delay: bP-tau = -2.56, SE = 1.08, P = 0.020, 95% CI [-4.71, -0.41]}, tau {immediate memory: bTau = -6.22, SE = 2.47, P = 0.014, 95% CI [-11.14, -1.30]} and UCH-L1 {immediate memory: bUCH-L1 = -2.14, SE = 1.07, P = 0.048, 95% CI [-4.26, -0.01]}, but was not associated with functional outcome. Elevated plasma markers related to neuronal damage and accumulation of phosphorylated tau suggest the presence of ongoing neuropathology in the chronic phase following a single moderate-severe TBI. Plasma biomarkers were associated with measures of microstructural brain disruption on MRI and disordered cognition, further highlighting their utility as potential objective tools to monitor evolving neuropathology post-TBI.
Collapse
Affiliation(s)
- Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Stuart J McDonald
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
| | - Vincent Dore
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Natasha Krishnadas
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Terence J O’Brien
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - William T O’Brien
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
| | - Lucy Vivash
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Meng Law
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Radiology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Christopher Rowe
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Sandy R Shultz
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- The Centre for Trauma and Mental Health Research, Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| |
Collapse
|
16
|
Friberg S, Lindblad C, Zeiler FA, Zetterberg H, Granberg T, Svenningsson P, Piehl F, Thelin EP. Fluid biomarkers of chronic traumatic brain injury. Nat Rev Neurol 2024; 20:671-684. [PMID: 39363129 DOI: 10.1038/s41582-024-01024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability across the world. Evidence for the usefulness of imaging and fluid biomarkers to predict outcomes and screen for the need to monitor complications in the acute stage is steadily increasing. Still, many people experience symptoms such as fatigue and cognitive and motor dysfunction in the chronic phase of TBI, where objective assessments for brain injury are lacking. Consensus criteria for traumatic encephalopathy syndrome, a clinical syndrome possibly associated with the neurodegenerative disease chronic traumatic encephalopathy, which is commonly associated with sports concussion, have been defined only recently. However, these criteria do not fit all individuals living with chronic consequences of TBI. The pathophysiology of chronic TBI shares many similarities with other neurodegenerative and neuroinflammatory conditions, such as Alzheimer disease. As with Alzheimer disease, advancements in fluid biomarkers represent one of the most promising paths for unravelling the chain of pathophysiological events to enable discrimination between these conditions and, with time, provide prediction modelling and therapeutic end points. This Review summarizes fluid biomarker findings in the chronic phase of TBI (≥6 months after injury) that demonstrate the involvement of inflammation, glial biology and neurodegeneration in the long-term complications of TBI. We explore how the biomarkers associate with outcome and imaging findings and aim to establish mechanistic differences in biomarker patterns between types of chronic TBI and other neurodegenerative conditions. Finally, current limitations and areas of priority for future fluid biomarker research are highlighted.
Collapse
Affiliation(s)
- Susanna Friberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | - Frederick A Zeiler
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Rady Faculty of Health Sciences, Winnipeg, Manitoba, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Clinic Foundation, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
17
|
Trifilio E, Bottari S, McQuillan LE, Barton DJ, Lamb DG, Robertson C, Rubenstein R, Wang KK, Wagner AK, Williamson JB. Temporal Profile of Serum Neurofilament Light (NF-L) and Heavy (pNF-H) Level Associations With 6-Month Cognitive Performance in Patients With Moderate-Severe Traumatic Brain Injury. J Head Trauma Rehabil 2024; 39:E470-E480. [PMID: 38758056 PMCID: PMC11534502 DOI: 10.1097/htr.0000000000000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
OBJECTIVE Identification of biomarkers of cognitive recovery after traumatic brain injury (TBI) will inform care and improve outcomes. This study assessed the utility of neurofilament (NF-L and pNF-H), a marker of neuronal injury, informing cognitive performance following moderate-to-severe TBI (msTBI). SETTING Level 1 trauma center and outpatient via postdischarge follow-up. PARTICIPANTS N = 94. Inclusion criteria : Glasgow Coma Scale score less than 13 or 13-15 with clinical evidence of moderate-to-severe injury traumatic brain injury on clinical imaging. Exclusion criteria : neurodegenerative condition, brain death within 3 days after injury. DESIGN Prospective observational study. Blood samples were collected at several time points post-injury. Cognitive testing was completed at 6 months post-injury. MAIN MEASURES Serum NF-L (Human Neurology 4-Plex B) pNF-H (SR-X) as measured by SIMOA Quanterix assay. Divided into 3 categorical time points at days post-injury (DPI): 0-15 DPI, 16-90 DPI, and >90 DPI. Cognitive composite comprised executive functioning measures derived from 3 standardized neuropsychological tests (eg, Delis-Kaplan Executive Function System: Verbal Fluency, California Verbal Learning Test, Second Edition, Wechsler Adult Intelligence Scale, Third Edition). RESULTS pNF-H at 16-90 DPI was associated with cognitive outcomes including a cognitive-executive composite score at 6 months ( β = -.430, t34 = -3.190, P = .003). CONCLUSIONS Results suggest that "subacute" elevation of serum pNF-H levels may be associated with protracted/poor cognitive recovery from msTBI and may be a target for intervention. Interpretation is limited by small sample size and including only those who were able to complete cognitive testing.
Collapse
Affiliation(s)
- Erin Trifilio
- Author Affiliations: Brain Rehabilitation Research Center (BRRC), Malcom Randall VAMC, Gainesville, Florida (Drs Trifilio, Lamb, Wang, and Williamson and Ms Bottari); Department of Clinical and Health Psychology (Drs Trifilio and Williamson and Ms Bottari), College of Public Health and Health Professions, and Departments of Emergency Medicine (Dr Wang) and Psychiatry (Drs Lamb and Williamson), College of Medicine, University of Florida, Gainesville; Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (Dr Robertson); Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York (Dr Rubenstein); Department of Physical Medicine and Rehabilitation (Ms McQuillan and Dr Wagner), Department of Emergency Medicine (Dr Barton), Department of Neuroscience (Dr Wagner), Clinical and Translational Science Institute (Dr Wagner), and Safar Center for Resuscitation Research (Dr Wagner); University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia (Dr Wang)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Miner AE, Groh JR, Tripodis Y, Adler CH, Balcer LJ, Bernick C, Zetterberg H, Blennow K, Peskind E, Ashton NJ, Gaudet CE, Martin B, Palmisano JN, Banks SJ, Barr WB, Wethe JV, Cantu RC, Dodick DW, Katz DI, Mez J, van Amerongen S, Cummings JL, Shenton ME, Reiman EM, Stern RA, Alosco ML. Examination of plasma biomarkers of amyloid, tau, neurodegeneration, and neuroinflammation in former elite American football players. Alzheimers Dement 2024; 20:7529-7546. [PMID: 39351900 PMCID: PMC11567811 DOI: 10.1002/alz.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Blood-based biomarkers offer a promising approach for the detection of neuropathologies from repetitive head impacts (RHI). We evaluated plasma biomarkers of amyloid, tau, neurodegeneration, and inflammation in former football players. METHODS The sample included 180 former football players and 60 asymptomatic, unexposed male participants (aged 45-74). Plasma assays were conducted for beta-amyloid (Aβ) 40, Aβ42, hyper-phosphorylated tau (p-tau) 181+231, total tau (t-tau), neurofilament light (NfL), glial fibrillary acidic protein (GFAP), interleukin-6 (IL-6), Aβ42/p-tau181 and Aβ42/Aβ40 ratios. We evaluated their ability to differentiate the groups and associations with RHI proxies and traumatic encephalopathy syndrome (TES). RESULTS P-tau181 and p-tau231(padj = 0.016) were higher and Aβ42/p-tau181 was lower(padj = 0.004) in football players compared to controls. Discrimination accuracy for p-tau was modest (area under the curve [AUC] = 0.742). Effects were not attributable to AD-related pathology. Younger age of first exposure (AFE) correlated with higher NfL (padj = 0.03) and GFAP (padj = 0.033). Plasma GFAP was higher in TES-chronic traumatic encephalopathy (TES-CTE) Possible/Probable (padj = 0.008). DISCUSSION Plasma p-tau181 and p-tau231, GFAP, and NfL may offer some usefulness for the characterization of RHI-related neuropathologies. HIGHLIGHTS Former football players had higher plasma p-tau181 and p-tau231 and lower Aβ42/ptau-181 compared to asymptomatic, unexposed men. Younger age of first exposure was associated with increased plasma NfL and GFAP in older but not younger participants. Plasma GFAP was higher in participants with TES-CTE possible/probable compared to TES-CTE no/suggestive.
Collapse
Grants
- ZEN-21-848495 Alzheimer's Association 2021 Zenith Award
- ALZ2022-0006 Hjärnfonden, Sweden
- U01 NS093334 NINDS NIH HHS
- ALFGBG-965240 Hjärnfonden, Sweden
- JPND2021-00694 European Union Joint Programme-Neurodegenerative Disease Research
- UKDRI-1003 UK Dementia Research Institute at UCL
- 2022-00732 UK Dementia Research Institute at UCL
- SG-23-1038904 QC Alzheimer's Association 2022-2025 Grant
- AF-939721 Swedish Alzheimer Foundation
- AF-930351 Swedish Alzheimer Foundation
- RF1 NS132290 NINDS NIH HHS
- AF-994551 Swedish Alzheimer Foundation
- ADSF-21-831381-C AD Strategic Fund and the Alzheimer's Association
- Bluefield Project, Cure Alzheimer's Fund
- JPND2019-466-236 European Union Joint Program for Neurodegenerative Disorders
- 2017-00915 UK Dementia Research Institute at UCL
- Olav Thon Foundation, the Erling-Persson Family Foundation
- FO2017-0243 Hjärnfonden, Sweden
- ADSF-21-831376-C AD Strategic Fund and the Alzheimer's Association
- European Union's Horizon 2020
- ADSF-24-1284328-C AD Strategic Fund and the Alzheimer's Association
- RF1NS132290 National Institute of Neurological Disorders and Stroke/National Institute on Aging
- Kirsten and Freddy Johansen Foundation, Copenhagen, Denmark
- ALFGBG-715986 Hjärnfonden, Sweden
- #ALFGBG-71320 Swedish State Support for Clinical Research
- AF-968270 Swedish Alzheimer Foundation
- ADSF-21-831377-C AD Strategic Fund and the Alzheimer's Association
- FO2022-0270 Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden
- 101053962 European Union's Horizon Europe
- 201809-2016862 Alzheimer Drug Discovery Foundation
- La Fondation Recherche Alzheimer
- U01NS093334 National Institute of Neurological Disorders and Stroke (NINDS)
- National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
Collapse
|
19
|
Hacioglu A, Urhan E, Karaca Z, Selcuklu A, Ulutabanca H, Gokcek OC, Yekeler B, Unluhizarci K, Blennow K, Zetterberg H, Kelestimur F. Predictive value of neuronal markers for pituitary dysfunction following traumatic brain injury: A preliminary study. ANNALES D'ENDOCRINOLOGIE 2024; 86:101674. [PMID: 39447637 DOI: 10.1016/j.ando.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE Traumatic brain injury (TBI), a well-known risk factor for pituitary dysfunction, is associated with increased serum neurofilament light chain (NFL), glial fibrillary acidic protein (GFAP), and total tau (t-tau) levels. We aimed to assess the predictive value of these markers and pituitary dysfunction following TBI in a prospective manner. METHODS Adult patients following TBI were included. Serum levels of NFL, GFAP, t-tau and pituitary and target hormones were analyzed prospectively during first week and one year after TBI. RESULTS Twenty-two patients (17 males, 5 females; mean age 40±15 years) were included in the study. Basal NFL levels correlated positively with length of hospital stay and basal cortisol (r=0.643, P=0.001 and r=0.558, P=0.007, respectively) and negatively with Glasgow Coma Scale (GCS) score and basal IGF-1 levels (r=-0.429, P=0.046 and r=-0.481, P=0.023, respectively), while there was no significant correlation between GFAP, t-tau and hormone levels. NFL, GFAP, and t-tau levels significantly decreased, and none of the patients developed hormone deficiencies one year after TBI. No correlations were detected between basal markers and first year pituitary hormone levels. CONCLUSION Serum NFL levels were correlated with hormonal changes during acute phase of TBI reflecting the physiological response to trauma. Larger studies are needed to analyze the associations during chronic phase.
Collapse
Affiliation(s)
- Aysa Hacioglu
- Erciyes University Medical School, Department of Endocrinology, Kayseri, Turkey
| | - Emre Urhan
- Erciyes University Medical School, Department of Endocrinology, Kayseri, Turkey
| | - Zuleyha Karaca
- Erciyes University Medical School, Department of Endocrinology, Kayseri, Turkey
| | - Ahmet Selcuklu
- Erciyes University Medical School, Department of Neurosurgery, Kayseri, Turkey
| | - Halil Ulutabanca
- Erciyes University Medical School, Department of Neurosurgery, Kayseri, Turkey
| | - Okkes Celil Gokcek
- Erciyes University Medical School, Department of Neurosurgery, Kayseri, Turkey
| | - Bilal Yekeler
- Erciyes University Medical School, Department of Neurosurgery, Kayseri, Turkey
| | - Kursad Unluhizarci
- Erciyes University Medical School, Department of Endocrinology, Kayseri, Turkey
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Fahrettin Kelestimur
- Yeditepe University, Faculty of Medicine, Department of Endocrinology, Istanbul, Turkey.
| |
Collapse
|
20
|
Butkova TV, Malsagova KA, Nakhod VI, Petrovskiy DV, Izotov AA, Balakin EI, Yurku KA, Umnikov AS, Pustovoyt VI, Kaysheva AL. Candidate Molecular Biomarkers of Traumatic Brain Injury: A Systematic Review. Biomolecules 2024; 14:1283. [PMID: 39456216 PMCID: PMC11506336 DOI: 10.3390/biom14101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of mortality and disability among young and middle-aged individuals. Adequate and timely diagnosis of primary brain injuries, as well as the prompt prevention and treatment of secondary injury mechanisms, significantly determine the potential for reducing mortality and severe disabling consequences. Therefore, it is crucial to have objective markers that indicate the severity of the injury. A number of molecular factors-proteins and metabolites-detected in the blood immediately after trauma and associated with the development and severity of TBI can serve in this role. TBI is a heterogeneous condition with respect to its etiology, clinical form, and genesis, being accompanied by brain cell damage and disruption of blood-brain barrier permeability. Two oppositely directed flows of substances and signals are observed: one is the flow of metabolites, proteins, and nucleic acids from damaged brain cells into the bloodstream through the damaged blood-brain barrier; the other is the infiltration of immune cells (neutrophils and macrophages) and serological proteins. Both flows aggravate brain tissue damage after TBI. Therefore, it is extremely important to study the key signaling events that regulate these flows and repair the damaged tissues, as well as to enhance the effectiveness of treatments for patients after TBI.
Collapse
Affiliation(s)
- Tatiana V. Butkova
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| | - Kristina A. Malsagova
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| | - Valeriya I. Nakhod
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| | - Denis V. Petrovskiy
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| | - Alexander A. Izotov
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| | - Evgenii I. Balakin
- State Research Center—Burnasyan Federal Medical Biophysical Center, 123098 Moscow, Russia (K.A.Y.); (A.S.U.); (V.I.P.)
| | - Ksenia A. Yurku
- State Research Center—Burnasyan Federal Medical Biophysical Center, 123098 Moscow, Russia (K.A.Y.); (A.S.U.); (V.I.P.)
| | - Alexey S. Umnikov
- State Research Center—Burnasyan Federal Medical Biophysical Center, 123098 Moscow, Russia (K.A.Y.); (A.S.U.); (V.I.P.)
| | - Vasiliy I. Pustovoyt
- State Research Center—Burnasyan Federal Medical Biophysical Center, 123098 Moscow, Russia (K.A.Y.); (A.S.U.); (V.I.P.)
| | - Anna L. Kaysheva
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| |
Collapse
|
21
|
Dargvainiene J, Sahaf S, Franzenburg J, Matthies I, Leypoldt F, Wandinger KP, Baysal L, Markewitz R, Kuhlenbäumer G, Margraf NG. Neurofilament light (NfL) concentrations in patients with epilepsy with recurrent isolated seizures: Insights from a clinical cohort study. Seizure 2024; 121:91-94. [PMID: 39137477 DOI: 10.1016/j.seizure.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE To detect possible neuronal damage due to recurrent isolated seizures in patients with epilepsy in a clinical routine setting. METHODS We measured the serum concentrations of neurofilament light chain (sNfL) in 46 outpatients with an at least monthly occurrence (self-reported) of generalized tonic-clonic seizures in the six months prior to the study and in 49 patients who had been seizure free (self-reported) for at least one year. We assigned the patients with seizure activity into groups with moderate and high seizure frequency. We measured sNfL with a highly sensitive single molecule array (Simoa). RESULTS The majority (94 %) of all patients with epilepsy had sNfL values within the age adjusted reference ranges of our laboratory. Three patients with and three patients without seizure activity (each 3 %) showed elevated sNfL concentrations. Age adjusted sNfL concentrations did not differ significantly between patients with and without seizure activity in the total sample or in the female subgroup. In contrast, NfL concentrations were significantly higher in male patients with seizure activity and highest in the subgroup of those with high seizure activity, but were only above the reference range in two patients. sNfL concentrations did not differ between focal and generalized epilepsies and between genetic and structural etiologies. CONCLUSIONS The sNfL concentrations in patients with epilepsy and healthy patients did not differ significantly. The finding of higher sNfL concentrations in males with self-reported seizure activity should be viewed with utmost caution because the difference was small and only two male patients showed sNfL concentrations above the reference range.
Collapse
Affiliation(s)
- Justina Dargvainiene
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Safa Sahaf
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Jeanette Franzenburg
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Inga Matthies
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Frank Leypoldt
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany; Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Leyla Baysal
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Robert Markewitz
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Nils G Margraf
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| |
Collapse
|
22
|
Tabor JB, Penner LC, Galarneau JM, Josafatow N, Cooper J, Ghodsi M, Huang J, Fraser DD, Smirl J, Esser MJ, Yeates KO, Wellington CL, Debert CT, Emery CA. Plasma Biomarkers of Traumatic Brain Injury in Adolescents With Sport-Related Concussion. JAMA Netw Open 2024; 7:e2431959. [PMID: 39235809 PMCID: PMC11378000 DOI: 10.1001/jamanetworkopen.2024.31959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Importance Blood-based biomarkers may clarify underlying neuropathology and potentially assist in clinical management of adolescents with sport-related concussion (SRC). Objective To investigate the association between SRC and plasma biomarkers in adolescents. Design, Setting, and Participants Prospective cohort study in Canadian sport and clinic settings (Surveillance in High Schools and Community Sport to Reduce Concussions and Their Consequences study; September 2019 to November 2022). Participants were a convenience sample of 849 adolescent (ages 10-18 years) sport participants with blood samples. Data were analyzed from February to September 2023. Exposures Blood collection and clinical testing preseason (uninjured) and post-SRC follow-ups (ie, ≤72 hours, 1 week, and biweekly until medical clearance to return to play [RTP]). Main Outcomes and Measures Plasma glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase-L1 (UCH-L1), neurofilament light (NfL), and total tau (t-tau) were assayed. Group-level comparisons of biomarker levels were conducted between uninjured and post-SRC intervals (postinjury day [PID] 0-3, 4-10, 11-28, and >28) considering age and sex as modifiers. Secondary analyses explored associations between biomarker concentrations and clinical outcomes (Sport Concussion Assessment Tool, Fifth Edition [SCAT5] symptom scores and time to RTP). Results This study included 1023 plasma specimens from 695 uninjured participants (467 male participants [67.2%]; median [IQR] age, 15.90 [15.13-16.84] years) and 154 participants with concussion (78 male participants [51.0%]; median [IQR] age, 16.12 [15.31-17.11] years). Acute (PID 0-3) differences relative to uninjured levels were found for GFAP (female participants: 17.8% increase; β = 0.164; 95% CI, 0.064 to 0.263; P = .001; male participants: 17.1% increase; β = 0.157; 95% CI, 0.086 to 0.229; P < .001), UCH-L1 (female participants: 43.4% increase; β = 0.361; 95% CI, 0.125 to 0.596; P = .003), NfL (male participants: 19.0% increase; β = 0.174; 95% CI, 0.087 to 0.261; P < .001), and t-tau (female participants: -22.9%; β = -0.260; 95% CI, -0.391 to -0.130; P < .001; male participants: -18.4%; β = -0.203; 95% CI, -0.300 to -0.106; P < .001). Differences were observed for all biomarkers at PID 4 to 10, 11 to 28, and greater than 28 compared with uninjured groups. GFAP, NfL, and t-tau were associated with SCAT5 symptom scores across several PID intervals. Higher GFAP after 28 days post-SRC was associated with earlier clearance to RTP (hazard ratio, 4.78; 95% CI, 1.59 to 14.31; P = .01). Male participants exhibited lower GFAP (-9.7%), but higher UCH-L1 (21.3%) compared with female participants. Age was associated with lower GFAP (-5.4% per year) and t-tau (-5.3% per year). Conclusions and Relevance In this cohort study of 849 adolescents, plasma biomarkers differed between uninjured participants and those with concussions, supporting their continued use to understand concussion neuropathology. Age and sex are critical considerations as these biomarkers progress toward clinical validation.
Collapse
Affiliation(s)
- Jason B Tabor
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Linden C Penner
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Michel Galarneau
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Nik Josafatow
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Cooper
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammad Ghodsi
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Johnny Huang
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Douglas D Fraser
- Department of Pediatrics and Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Jonathan Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael J Esser
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chantel T Debert
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carolyn A Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Collazos KSG, Alvarez G, Alamian A, Behar-Zusman V, Downs CA. Neuroinflammatory Biomarkers and Their Associations With Cognitive, Affective, and Functional Outcomes 3 to 12 Months After a Traumatic Brain Injury: A Pilot Study. J Head Trauma Rehabil 2024:00001199-990000000-00197. [PMID: 39293076 DOI: 10.1097/htr.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
BACKGROUND Neuroinflammation is an important feature of traumatic brain injury (TBI) that remains poorly understood in the 3- to 12-month period post-TBI. OBJECTIVE The purpose of our pilot study was to examine the relationships between biomarkers of neuroinflammation and functional outcomes in TBI patients 3 to 12 months postinjury. METHODS TBI patients (n = 36) 3 to 12 months post-TBI were recruited from a South Florida TBI clinic from May 2022 to June 2023. The Disability Rating Scale, Satisfaction with Life Scale, NIH Toolbox Sorting Working Memory, Neuro-Quality of Life Cognitive Function, Anxiety, Depression, and Sleep assessments were performed. Multiple plasma biomarkers were assayed. Analysis of variance was used to compare between-group results. Linear regression was performed to analyze relationships between biomarkers and outcomes. RESULTS Brain-derived neurotrophic factor concentrations were higher as postinjury time interval increased and were associated with cognitive battery outcomes. S-100β and glial fibrillary acidic protein were associated with anxiety score and hospital length of stay; S-100β was also associated with depression. Interleukin 6 was associated with cognitive function score and time since injury. CONCLUSIONS We found S-100β, glial fibrillary acidic protein, Interleukin 6, and brain-derived neurotrophic factor to play a larger role in the TBI recovery period than other biomarkers examined. Clinicians should continue to monitor for symptoms post-TBI, as the neuroinflammatory process continues to persist even into the later rehabilitation stage.
Collapse
Affiliation(s)
- Kathryn S G Collazos
- Author Affiliations: Department of Nursing, School of Nursing and Health Studies, University of Miami, Coral Gables, Florida (Dr Collazos, Dr Alamian, Dr Victoria, and Dr Downs); and Department of Physical Medicine & Rehabilitation, Miller School of Medicine, University of Miami, Miami, Florida (Dr Alvarez)
| | | | | | | | | |
Collapse
|
24
|
Majeed A, Naz N, Namal F, Tahir S, Karmani VK. Chronic Traumatic Encephalopathy: A Comprehensive Narrative Review of Its Biomarkers. Cureus 2024; 16:e69510. [PMID: 39421082 PMCID: PMC11485022 DOI: 10.7759/cureus.69510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive and fatal neurological disorder linked to repeated traumatic brain injuries (TBIs), including concussions and blows to the head. This condition is characterized by the accumulation of abnormally structured hyperphosphorylated tau proteins (p-tau), forming neurofibrillary tangles, astrocytic tangles, and neurites in the brain. CTE is often diagnosed post-mortem, making it challenging to diagnose and predict its progression in living individuals. Despite recent advancements, no definitive pathological, radiological, or neurobiological marker consistently shows promise in diagnosing and predicting the disease. This review aims to summarize the available techniques and advancements in imaging-based, genetic, neuropsychological, and fluid biomarkers for CTE, evaluating their specificity and sensitivity. It will also highlight the limitations of each marker in diagnosing CTE and provide future research directions to enhance the accuracy of CTE diagnosis in living individuals.
Collapse
Affiliation(s)
- Aleena Majeed
- Internal Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | - Nageen Naz
- Internal Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | - Fnu Namal
- Internal Medicine, Social Security Hospital, Faisalabad, PAK
| | - Sohaira Tahir
- Internal Medicine, Avicenna Medical College, Lahore, PAK
| | | |
Collapse
|
25
|
Chen W, Wang Z, Ye G, Zhu G, Li S, Chen P, Wang H, Zou S, Chen M. Changes of NLRP3 in serum and cerebrospinal fluid of patients after moderate to severe traumatic brain injury and their predictive values for prognosis. CNS Neurosci Ther 2024; 30:e70009. [PMID: 39302033 PMCID: PMC11413909 DOI: 10.1111/cns.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/25/2024] [Accepted: 08/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) remains a major concern for global health. Recent studies have suggested the role of NOD-like receptor pyrin domain-containing protein 3 (NLRP3), an inflammatory marker, in the cerebrospinal fluid (CSF) and serum as potential indicators of TBI prognosis. The objective of the study was to characterize NLRP3 as a clinically applicable tool for predicting the outcomes of TBI patients. METHODS A total of 270 patients with moderate to severe TBI were included in this retrospective analysis. Serum and CSF samples were collected at 1-, 3-, 7-, and 21-day post-injury to measure NLRP3 levels. The prognosis of patients was evaluated after 3 months using the Glasgow Outcome Scale (GOS). Patients were categorized into good prognosis (GOS score >3) and poor prognosis (GOS score ≤3) groups. The relationship between NLRP3 levels and prognosis was analyzed. RESULTS Patients with poor prognosis had significantly elevated NLRP3 levels in their serum on days 1 and 3 post-injury compared with those with a good prognosis. The difference was more pronounced during these early days compared with days 7 and 21. However, NLRP3 levels in CSF consistently showed a large difference between the two groups throughout the observation period. Receiver operating characteristic analysis revealed that the level of NLRP3 in the CSF on day 3 post-injury had the highest predictive value for prognosis, with an area under the curve of 0.83, followed by the level of NLRP3 in the serum on day 3 post-injury. CONCLUSIONS The levels of NLRP3, especially in the CSF on day 3 post-injury, can serve as a potential biomarker for predicting prognosis in moderate to severe TBI patients. Early measurement of NLRP3 levels can provide valuable insights into patient outcomes and guide therapeutic strategies.
Collapse
Affiliation(s)
- Wei Chen
- Department of NeurosurgeryThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
- Department of Neurosurgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of NeurosurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Zhigang Wang
- Department of Neurosurgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Gengfan Ye
- Department of NeurosurgeryThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Guangyao Zhu
- Department of NeurosurgeryThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Shiwei Li
- Department of NeurosurgeryThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Pandi Chen
- Department of NeurosurgeryThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Hongcai Wang
- Department of NeurosurgeryThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Shufeng Zou
- Department of NeurosurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Maosong Chen
- Department of NeurosurgeryThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| |
Collapse
|
26
|
Dennis EL, Vervoordt S, Adamson MM, Houshang A, Bigler ED, Caeyenberghs K, Cole JH, Dams-O'Connor K, Deutscher EM, Dobryakova E, Genova HM, Grafman JH, Håberg AK, Hellstrøm T, Irimia A, Koliatsos VE, Lindsey HM, Livny A, Menon DK, Merkley TL, Mohamed AZ, Mondello S, Monti MM, Newcombe VF, Newsome MR, Ponsford J, Rabinowitz A, Smevik H, Spitz G, Venkatesan UM, Westlye LT, Zafonte R, Thompson PM, Wilde EA, Olsen A, Hillary FG. Accelerated Aging after Traumatic Brain Injury: An ENIGMA Multi-Cohort Mega-Analysis. Ann Neurol 2024; 96:365-377. [PMID: 38845484 DOI: 10.1002/ana.26952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE The long-term consequences of traumatic brain injury (TBI) on brain structure remain uncertain. Given evidence that a single significant brain injury event increases the risk of dementia, brain-age estimation could provide a novel and efficient indexing of the long-term consequences of TBI. Brain-age procedures use predictive modeling to calculate brain-age scores for an individual using structural magnetic resonance imaging (MRI) data. Complicated mild, moderate, and severe TBI (cmsTBI) is associated with a higher predicted age difference (PAD), but the progression of PAD over time remains unclear. We sought to examine whether PAD increases as a function of time since injury (TSI) and if injury severity and sex interacted to influence this progression. METHODS Through the ENIGMA Adult Moderate and Severe (AMS)-TBI working group, we examine the largest TBI sample to date (n = 343), along with controls, for a total sample size of n = 540, to replicate and extend prior findings in the study of TBI brain age. Cross-sectional T1w-MRI data were aggregated across 7 cohorts, and brain age was established using a similar brain age algorithm to prior work in TBI. RESULTS Findings show that PAD widens with longer TSI, and there was evidence for differences between sexes in PAD, with men showing more advanced brain age. We did not find strong evidence supporting a link between PAD and cognitive performance. INTERPRETATION This work provides evidence that changes in brain structure after cmsTBI are dynamic, with an initial period of change, followed by relative stability in brain morphometry, eventually leading to further changes in the decades after a single cmsTBI. ANN NEUROL 2024;96:365-377.
Collapse
Affiliation(s)
- Emily L Dennis
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | | | - Maheen M Adamson
- Women's Operational Military Exposure Network (WOMEN) & Rehabilitation, VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Amiri Houshang
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erin D Bigler
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - James H Cole
- Centre for Medical Image Computing, Computer Science, University College London, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evelyn M Deutscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Helen M Genova
- Rutgers New Jersey Medical School, Newark, NJ, USA
- Center for Neuropsychology and Neuroscience Research, Kessler Foundation, East Hanover, NJ, USA
| | | | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Torgeir Hellstrøm
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Vassilis E Koliatsos
- Departments of Pathology (Neuropathology), Neurology, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neuropsychiatry Program, Sheppard and Enoch Pratt Hospital, Baltimore, MD, USA
| | - Hannah M Lindsey
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Abigail Livny
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol Neuroscience School, Tel-Aviv University, Tel-Aviv, Israel
| | - David K Menon
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tricia L Merkley
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Abdalla Z Mohamed
- Thompson Institute, University of the Sunshine Coast, Birtinya, Australia
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Martin M Monti
- Department of Psychology, UCLA, Los Angeles, CA, USA
- Brain Injury Research Center (BIRC), Department of Neurosurgery, UCLA, Los Angeles, CA, USA
| | | | - Mary R Newsome
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Australia
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Amanda Rabinowitz
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
- Department of Rehabilitation Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hanne Smevik
- Department of Psychology, NTNU, Trondheim, Norway
- NorHEAD - Norwegian Centre for Headache Research, NTNU, Trondheim, Norway
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Australia
- School of Psychological Sciences, Monash University, Melbourne, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Umesh M Venkatesan
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
- Department of Rehabilitation Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital/Brigham & Women's Hospital, Boston, MA, USA
- Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Alexander Olsen
- Department of Psychology, NTNU, Trondheim, Norway
- NorHEAD - Norwegian Centre for Headache Research, NTNU, Trondheim, Norway
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Frank G Hillary
- Department of Psychology, Penn State University, State College, PA, USA
| |
Collapse
|
27
|
Shahim P, Pham DL, van der Merwe AJ, Moore B, Chou Y, Lippa SM, Kenney K, Diaz‐Arrastia R, Chan L. Serum NfL and GFAP as biomarkers of progressive neurodegeneration in TBI. Alzheimers Dement 2024; 20:4663-4676. [PMID: 38805359 PMCID: PMC11247683 DOI: 10.1002/alz.13898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND We examined spatial patterns of brain atrophy after mild, moderate, and severe traumatic brain injury (TBI), the relationship between progression of brain atrophy with initial traumatic axonal injury (TAI), cognitive outcome, and with serum biomarkers of brain injury. METHODS A total of 143 patients with TBI and 43 controls were studied cross-sectionally and longitudinally up to 5 years with multiple assessments, which included brain magnetic resonance imaging, cognitive testing, and serum biomarkers. RESULTS TBI patients showed progressive volume loss regardless of injury severity over several years, and TAI was independently associated with accelerated brain atrophy. Cognitive performance improved over time. Higher baseline serum neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) were associated with greater rate of brain atrophy over 5 years. DISCUSSSION Spatial patterns of atrophy differ by injury severity and TAI is associated with the progression of brain atrophy. Serum NfL and GFAP show promise as non-invasive prognostic biomarkers of progressive neurodegeneration in TBI. HIGHLIGHTS In this longitudinal study of patient with mild, moderate, and severe traumatic brain injury (TBI) who were assessed with paired magnetic resonance imaging (MRI), blood biomarkers, and cognitive assessments, we found that brain atrophy after TBI is progressive and continues for many years even after a mild head trauma without signs of brain injury on conventional MRI. We found that spatial pattern of brain atrophy differs between mild, moderate, and severe TBI, where in patients with mild TBI , atrophy is mainly seen in the gray matter, while in those with moderate to severe brain injury atrophy is predominantly seen in the subcortical gray matter and whiter matter. Cognitive performance improves over time after a TBI. Serum measures of neurofilament light or glial fibrillary acidic protein are associated with progression of brain atrophy after TBI.
Collapse
Affiliation(s)
- Pashtun Shahim
- Rehabilitation Medicine DepartmentNational Institutes of Health (NIH) Clinical CenterBethesdaMarylandUSA
- National Institutes of Neurological Disorders and Stroke, NIHBethesdaMarylandUSA
- Department of NeurologyMedStar Georgetown University Hospital, Pasquerilla Healthcare CenterWashingtonDistrict of ColumbiaUSA
- The Military Traumatic Brain Injury Initiative (MTBI2)BethesdaMarylandUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Dzung L. Pham
- The Military Traumatic Brain Injury Initiative (MTBI2)BethesdaMarylandUSA
- Uniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Andre J. van der Merwe
- Rehabilitation Medicine DepartmentNational Institutes of Health (NIH) Clinical CenterBethesdaMarylandUSA
- The Military Traumatic Brain Injury Initiative (MTBI2)BethesdaMarylandUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Brian Moore
- Rehabilitation Medicine DepartmentNational Institutes of Health (NIH) Clinical CenterBethesdaMarylandUSA
- The Military Traumatic Brain Injury Initiative (MTBI2)BethesdaMarylandUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Yi‐Yu Chou
- The Military Traumatic Brain Injury Initiative (MTBI2)BethesdaMarylandUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Sara M. Lippa
- Uniformed Services University of the Health SciencesBethesdaMarylandUSA
- National Intrepid Center of Excellence, Walter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Kimbra Kenney
- Uniformed Services University of the Health SciencesBethesdaMarylandUSA
- National Intrepid Center of Excellence, Walter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Ramon Diaz‐Arrastia
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Leighton Chan
- Rehabilitation Medicine DepartmentNational Institutes of Health (NIH) Clinical CenterBethesdaMarylandUSA
| |
Collapse
|
28
|
Gard A, Kornaropoulos EN, Portonova Wernersson M, Rorsman I, Blennow K, Zetterberg H, Tegner Y, De Maio A, Markenroth Bloch K, Björkman-Burtscher I, Pessah-Rasmussen H, Nilsson M, Marklund N. Widespread White Matter Abnormalities in Concussed Athletes Detected by 7T Diffusion Magnetic Resonance Imaging. J Neurotrauma 2024; 41:1533-1549. [PMID: 38481124 PMCID: PMC11564857 DOI: 10.1089/neu.2023.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
Sports-related concussions may cause white matter injuries and persistent post-concussive symptoms (PPCS). We hypothesized that athletes with PPCS would have neurocognitive impairments and white matter abnormalities that could be revealed by advanced neuroimaging using ultra-high field strength diffusion tensor (DTI) and diffusion kurtosis (DKI) imaging metrics and cerebrospinal fluid (CSF) biomarkers. A cohort of athletes with PPCS severity limiting the ability to work/study and participate in sport school and/or social activities for ≥6 months completed 7T magnetic resonance imaging (MRI) (morphological T1-weighed volumetry, DTI and DKI), extensive neuropsychological testing, symptom rating, and CSF biomarker sampling. Twenty-two athletes with PPCS and 22 controls were included. Concussed athletes performed below norms and significantly lower than controls on all but one of the psychometric neuropsychology tests. Supratentorial white and gray matter, as well as hippocampal volumes did not differ between concussed athletes and controls. However, of the 72 examined white matter tracts, 16% of DTI and 35% of DKI metrics (in total 28%) were significantly different between concussed athletes and controls. DKI fractional anisotropy and axial kurtosis were increased, and DKI radial diffusivity and radial kurtosis decreased in concussed athletes when compared with controls. CSF neurofilament light (NfL; an axonal injury marker), although not glial fibrillary acidic protein, correlated with several diffusion metrics. In this first 7T DTI and DKI study investigating PPCS, widespread microstructural alterations were observed in the white matter, correlating with CSF markers of axonal injury. More white matter changes were observed using DKI than using DTI. These white matter alterations may indicate persistent pathophysiological processes following concussion in sport.
Collapse
Affiliation(s)
- Anna Gard
- Department of Clinical Sciences Lund, Neurosurgery, Neurology, Lund University, Lund, Sweden
| | - Evgenios N. Kornaropoulos
- Department of Clinical Sciences Lund, Diagnostic Radiology, Neurology, Lund University, Lund, Sweden
| | - Maria Portonova Wernersson
- Department of Neurology, Rehabilitation Medicine, Memory Disorders and Geriatrics, Skåne University Hospital, Neurology, Lund University, Lund, Sweden
| | - Ia Rorsman
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Yelverton Tegner
- Department of Health, Education and Technology, Division of Health and Rehabilitation, Luleå University of Technology, Luleå, Sweden
| | - Alessandro De Maio
- Department of Radiological, Oncological and Pathological Sciences. Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Karin Markenroth Bloch
- Department of Clinical Sciences Lund, Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - Isabella Björkman-Burtscher
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hélène Pessah-Rasmussen
- Department of Neurology, Rehabilitation Medicine, Memory Disorders and Geriatrics, Skåne University Hospital, Neurology, Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - Markus Nilsson
- Department of Clinical Sciences Lund, Diagnostic Radiology, Neurology, Lund University, Lund, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
29
|
Wang KK, Barton DJ, McQuillan LE, Kobeissy F, Cai G, Xu H, Yang Z, Trifilio E, Williamson JB, Rubenstein R, Robertson CS, Wagner AK. Parallel Cerebrospinal Fluid and Serum Temporal Profile Assessment of Axonal Injury Biomarkers Neurofilament-Light Chain and Phosphorylated Neurofilament-Heavy Chain: Associations With Patient Outcome in Moderate-Severe Traumatic Brain Injury. J Neurotrauma 2024; 41:1609-1627. [PMID: 38588256 PMCID: PMC11564845 DOI: 10.1089/neu.2023.0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Neurofilament-light chain (NF-L) and phosphorylated neurofilament-heavy chain (pNF-H) are axonal proteins that have been reported as potential diagnostic and prognostic biomarkers in traumatic brain injury (TBI). However, detailed temporal profiles for these proteins in blood, and interrelationships in the acute and chronic time periods post-TBI have not been established. Our objectives were: 1) to characterize acute-to-chronic serum NF-L and pNF-H profiles after moderate-severe TBI, as well as acute cerebrospinal fluid (CSF) levels; 2) to evaluate CSF and serum NF-L and pNF-H associations with each other; and 3) to assess biomarker associations with global patient outcome using both the Glasgow Outcome Scale-Extended (GOS-E) and Disability Rating Scale (DRS). In this multi-cohort study, we measured serum and CSF NF-L and pNF-H levels in samples collected from two clinical cohorts (University of Pittsburgh [UPITT] and Baylor College of Medicine [BCM]) of individuals with moderate-severe TBI. The UPITT cohort includes 279 subjects from an observational cohort study; we obtained serum (n = 277 unique subjects) and CSF (n = 95 unique subjects) daily for 1 week, and serum every 2 weeks for 6 months. The BCM cohort included 103 subjects from a previous randomized clinical trial of erythropoietin and blood transfusion threshold after severe TBI, which showed no effect on neurological outcome between treatment arms; serum (n = 99 unique subjects) and CSF (n = 54 unique subjects) NF-L and pNF-H levels were measured at least daily during Days (D) 0-10 post-injury. GOS-E and DRS were assessed at 6 months (both cohorts) and 12 months (UPITT cohort only). Results show serum NF-L and pNF-H gradually rise during the first 10 days and peak at D20-30 post-injury. In the UPITT cohort, acute (D0-6) NF-L and pNF-H levels correlate within CSF and serum (Spearman r = 0.44-0.48; p < 0.05). In the UPITT cohort, acute NF-L CSF and serum levels, as well as chronic (Months [M]2-6) serum NF-L levels, were higher among individuals with unfavorable GOS-E and worse DRS at 12 months (p < 0.05, all comparisons). In the BCM cohort, higher acute serum NF-L levels were also associated with unfavorable GOS-E. Higher pNF-H serum concentrations (D0-6 and M2-6), but not CSF pNF-H, were associated with unfavorable GOS-E and worse DRS (p < 0.05, all comparisons) in the UPITT cohort. Relationships between biomarker levels and favorable outcome persisted after controlling for age, sex, and Glasgow Coma Scale. This study shows for the first time that serum levels of NF-L and pNF-H peak at D20-30 post-TBI. Serum NF-L levels, and to a lesser extent pNF-H levels, are robustly associated with global patient outcomes and disability after moderate-severe TBI. Further studies on clinical utility as prognosis and treatment-response indicators are needed.
Collapse
Affiliation(s)
- Kevin K.W. Wang
- Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
- Department of Psychiatry, University of Florida, Gainesville, Florida, USA
- Center for Neurotrauma, Multiomics and Biomarkers, Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
- Brain Rehabilitation Research Center, North Florida/South Georgia Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - David J. Barton
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leah E. McQuillan
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Firas Kobeissy
- Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
- Department of Psychiatry, University of Florida, Gainesville, Florida, USA
- Center for Neurotrauma, Multiomics and Biomarkers, Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Guangzheng Cai
- Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
- Center for Neurotrauma, Multiomics and Biomarkers, Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Haiyan Xu
- Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Zhihui Yang
- Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Erin Trifilio
- Department of Psychiatry, University of Florida, Gainesville, Florida, USA
- Brain Rehabilitation Research Center, North Florida/South Georgia Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - John B. Williamson
- Department of Psychiatry, University of Florida, Gainesville, Florida, USA
- Brain Rehabilitation Research Center, North Florida/South Georgia Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Richard Rubenstein
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | | | - Amy K. Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Yu S, Pan Y, Tang L, Wu S, Liang C, Zhang GJ, Li YT. Integrated Microfluidic-Transistor Sensing System for Multiplexed Detection of Traumatic Brain Injury Biomarkers. ACS Sens 2024; 9:3017-3026. [PMID: 38889364 DOI: 10.1021/acssensors.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Traumatic brain injury (TBI) is widely recognized as a global public health crisis, affecting millions of people each year, leading to permanent neurologic, emotional, and occupational disability, and highlighting the urgent need for rapid, sensitive, and early assessment. Here, we design a novel and simple lithography-free method for preparing dual-channel graphene-based field-effect transistors (G-FETs) and integrating them with microfluidic channels for simultaneously multiplexed detection of key blood TBI biomarkers: neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP). The G-FET utilizes an ingenious dual-channel electrode array design, where the source is shared between channels and the drains are independent of each other, which is the key to achieving simultaneous output of dual detection signals. At the same time, the microfluidic chip realizes microscale fluidic control and fast sample response time. This integrated detection system shows excellent sensitivity in biological fluids for the TBI biomarkers with detection limits as low as 55.63 fg/mL for NFL and 144.45 fg/mL for GFAP in phosphate-buffered saline (PBS) buffer, respectively. Finally, the clinical sample analysis shows promising performance for TBI detection, with an area under the curve (AUC) of 0.98 for the two biomarkers. And the combined dual-protein assay is also a good predictor of intracranial injury findings on computed tomography (CT) scans (AUC = 0.907). The integrated microfluidic G-FET device with a dual-signal output strategy has important potential for application in clinical practice, providing more comprehensive information for brain injury assessment.
Collapse
Affiliation(s)
- Shanshan Yu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Yuling Pan
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Lina Tang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Shimin Wu
- Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Huiji Road, Wuhan 430030, China
| | - Chunzi Liang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Yu-Tao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| |
Collapse
|
31
|
Bailey C, Soden D, Maroon J, Selman W, Tangen C, Gunstad J, Briskin S, Miskovsky S, Miller E, Pieper AA. Elevated Autoantibodies to the GluA1 Subunit of the AMPA Receptor in Blood Indicate Risk of Cognitive Impairment in Contact Sports Athletes, Irrespective of Concussion. Neurotrauma Rep 2024; 5:552-562. [PMID: 39071979 PMCID: PMC11271151 DOI: 10.1089/neur.2023.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
To address the need for objective tests of concussion in athletes, we conducted a prospective clinical study in National Collegiate Athletic Association athletes of the relationship between neurocognitive performance and blood levels of the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor peptides and autoantibodies to GluA1. Specifically, we compared 44 contact sport athletes to 16 noncontact sport athletes, with Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT), as well as blood sample collection, before the start of the season and at the end of the season. Contact sport athletes exhibited significantly elevated serum GluA1 autoantibodies at the end of season, compared with preseason levels, irrespective of whether they sustained a concussion. Noncontact sport athletes showed no change in serum GluA1 autoantibodies, and neither group showed differences in GluA1 peptides. Amongst contact-sport athletes, the 'high GluA1 autoantibody group' (≥4 ng/mL) displayed impaired reaction time, a measure of cognitive impairment, while the 'low GluA1 autoantibody group' (<4 ng/mL) displayed normal reaction time. Our results reveal that contact sport athletes are at risk for developing cognitive impairment even without sustaining a diagnosed concussion and that serum GluA1 autoantibodies provide a blood-based biomarker of this risk. This could guide future studies on the differing susceptibility to cognitive impairment in contact sport athletes and facilitate efficient allocation of resources to contact sport athletes identified as having increased risk of developing cognitive impairment.
Collapse
Affiliation(s)
- Christopher Bailey
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Daniel Soden
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Joseph Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Warren Selman
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Christopher Tangen
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - John Gunstad
- Department of Psychological Sciences, Kent State University, Kent, Ohio, USA
| | - Susannah Briskin
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Shana Miskovsky
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, Ohio, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Andrew A. Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, Ohio, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
32
|
Ye Z, Li Z, Zhong S, Xing Q, Li K, Sheng W, Shi X, Bao Y. The recent two decades of traumatic brain injury: a bibliometric analysis and systematic review. Int J Surg 2024; 110:3745-3759. [PMID: 38608040 PMCID: PMC11175772 DOI: 10.1097/js9.0000000000001367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/10/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a serious public health burden worldwide, with a mortality rate of 20-30%; however, reducing the incidence and mortality rates of TBI remains a major challenge. This study provides a multidimensional analysis to explore the potential breakthroughs in TBI over the past two decades. MATERIALS AND METHODS The authors used bibliometric and Latent Dirichlet Allocation (LDA) analyses to analyze publications focusing on TBI published between 2003 and 2022 from the Web of Science Core Collection (WOSCC) database to identify core journals and collaborations among countries/regions, institutions, authors, and research trends. RESULTS Over the past 20 years, 41 545 articles on TBI from 3043 journals were included, with 12 916 authors from 20 449 institutions across 145 countries/regions. The annual number of publications has increased 10-fold compared to previous publications. This study revealed that high-income countries, especially the United States, have a significant influence. Collaboration was limited to several countries/regions. The LDA results indicated that the hotspots included four main areas: 'Clinical finding', 'Molecular mechanism', 'Epidemiology', and 'Prognosis'. Epidemiological research has consistently increased in recent years. Through epidemiological topic analysis, the main etiology of TBI has shifted from traffic accidents to falls in a demographically aging society. CONCLUSION Over the past two decades, TBI research has developed rapidly, and its epidemiology has received increasing attention. Reducing the incidence of TBI from a preventive perspective is emerging as a trend to alleviate the future social burden; therefore, epidemiological research might bring breakthroughs in TBI.
Collapse
Affiliation(s)
- Ziyin Ye
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| | - Zhi Li
- Department of Oncology, The First Hospital of China Medical University, Heping
| | - Shiyu Zhong
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| | - Qichen Xing
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| | - Kunhang Li
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| | - Weichen Sheng
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| | - Xin Shi
- School of Health Management, China Medical University, Shenyang, People’s Republic of China
| | - Yijun Bao
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| |
Collapse
|
33
|
Hardaker N, King D, Hume PA, Stewart T, Sims S, Basu I, Shilton B, Selfe J. Female RNA concussion (FeRNAC) study: assessing hormone profiles and salivary RNA in females with concussion by emergency departments in New Zealand: a study protocol. BMC Neurol 2024; 24:149. [PMID: 38698312 PMCID: PMC11064333 DOI: 10.1186/s12883-024-03653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Females of reproductive age with concussion report a greater number of symptoms that can be more severe and continue for longer than age matched males. Underlying mechanisms for sex differences are not well understood. Short non-coding Ribonucleic Acids (sncRNAs) are candidate salivary biomarkers for concussion and have been studied primarily in male athletes. Female sex hormones influence expression of these biomarkers, and it remains unclear whether a similar pattern of sncRNA expression would be observed in females following concussion. This study aims to evaluate recovery time, the ratio of salivary sncRNAs and symptom severity across different hormone profiles in females presenting to emergency departments (ED) with concussion and, to investigate the presence of low energy availability (LEA) as a potential modifier of concussion symptoms. METHODS This prospective cohort study recruits participants from New Zealand EDs who are biologically female, of reproductive age (16-50 years) and with a confirmed diagnosis of concussion from an ED healthcare professional. Participants are excluded by ED healthcare professionals from study recruitment as part of initial routine assessment if they have a pre-diagnosed psychiatric condition, neurological condition (i.e., epilepsy, cerebral palsy) or more than three previously diagnosed concussions. Participants provide a saliva sample for measurement of sncRNA's, and online survey responses relating to hormone profile and symptom recovery at 7-day intervals after injury until they report a full return to work/study. The study is being performed in accordance with ethical standards of the Declaration of Helsinki with ethics approval obtained from the Health and Disability Ethics Committee (HDEC #2021 EXP 11655), Auckland University of Technology Ethics Committee (AUTEC #22/110) and locality consent through Wellington hospital research office. DISCUSSION If saliva samples confirm presence of sncRNAs in females with concussion, it will provide evidence of the potential of saliva sampling as an objective tool to aid in diagnosis of, and confirmation of recovery from, concussion. Findings will determine whether expression of sncRNAs is influenced by steroid hormones in females and may outline the need for sex specific application and interpretation of sncRNAs as a clinical and/or research tool. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (ANZCTR) registration number ACTRN12623001129673.
Collapse
Affiliation(s)
- Natalie Hardaker
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, New Zealand Wellington, New Zealand.
- Accident Compensation Corporation, Wellington, New Zealand.
- Traumatic Brain Injury Network (TBIN), Auckland University of Technology, Auckland, New Zealand.
| | - Doug King
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, New Zealand Wellington, New Zealand
- Traumatic Brain Injury Network (TBIN), Auckland University of Technology, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Sport and Exercise Sciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham, UK
| | - Patria A Hume
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, New Zealand Wellington, New Zealand
- Traumatic Brain Injury Network (TBIN), Auckland University of Technology, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Technology and Policy Lab - Law School, The University of Western Australia, Perth, Australia
| | - Tom Stewart
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, New Zealand Wellington, New Zealand
| | - Stacy Sims
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, New Zealand Wellington, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Stanford Lifestyle Medicine, Stanford University, Palo Alto, CA, USA
| | | | | | - James Selfe
- Department of Health Professions, Faculty of Health and Education, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
34
|
Lange RT, Gill JM, Lippa SM, Hungerford L, Walker T, Kennedy J, Brickell TA, French LM. Elevated Serum Tau and UCHL-1 Concentrations Within 12 Months of Injury Predict Neurobehavioral Functioning 2 or More Years Following Traumatic Brain Injury: A Longitudinal Study. J Head Trauma Rehabil 2024; 39:196-206. [PMID: 37335195 DOI: 10.1097/htr.0000000000000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Blood-based biomarkers have received considerable attention for their diagnostic and prognostic value in the acute and postacute period following traumatic brain injury (TBI). The purpose of this study was to examine whether blood-based biomarker concentrations within the first 12 months of TBI can predict neurobehavioral outcome in the chronic phase of the recovery trajectory. SETTING Inpatient and outpatient wards from 3 military medical treatment facilities. PARTICIPANTS A total of 161 service members and veterans classified into 3 groups: ( a ) uncomplicated mild TBI (MTBI; n = 37), ( b ) complicated mild, moderate, severe, penetrating TBI combined (STBI; n = 46), and ( c ) controls (CTRL; n = 78). DESIGN Prospective longitudinal. MAIN MEASURES Participants completed 6 scales from the Traumatic Brain Injury Quality of Life (ie, Anger, Anxiety, Depression, Fatigue, Headaches, and Cognitive Concerns) within 12 months (baseline) and at 2 or more years (follow-up) post-injury. Serum concentrations of tau, neurofilament light, glial fibrillary acidic protein, and UCHL-1 at baseline were measured using SIMOA. RESULTS Baseline tau was associated with worse anger, anxiety, and depression in the STBI group at follow-up ( R2 = 0.101-0.127), and worse anxiety in the MTBI group ( R2 = 0.210). Baseline ubiquitin carboxyl-terminal hydrolase L1 (UCHL-1) was associated with worse anxiety and depression at follow-up in both the MTBI and STBI groups ( R2 Δ = 0.143-0.207), and worse cognitive concerns in the MTBI group ( R2 Δ = 0.223). CONCLUSIONS A blood-based panel including these biomarkers could be a useful tool for identifying individuals at risk of poor outcome following TBI.
Collapse
Affiliation(s)
- Rael T Lange
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland (Drs Lange, Hungerford, Kennedy, Brickell, and French and Mr Walker); Walter Reed National Military Medical Center, Bethesda, Maryland (Drs Lange, Lippa, Brickell, and French); National Intrepid Center of Excellence, Bethesda, Maryland (Drs Lange, Lippa, Brickell, and French); General Dynamics Information Technology, Falls Church, Virginia (Drs Lange, Hungerford, Kennedy, and Brickell); Department of Psychiatry, University of British Columbia, Vancouver, Canada (Dr Lange); Department of Physical Medicine and Rehabilitation, University of the Health Sciences, Bethesda, Maryland (Drs Lange, Brickell, and French); Department of Neuroscience, University of the Health Sciences, Bethesda, Maryland (Dr Lippa); San Antonio Military Medical Center, San Antonio, Texas (Dr Kennedy); Naval Medical Center San Diego, San Diego, California (Dr Hungerford and Mr Walker); and Johns Hopkins University, Baltimore, Maryland (Dr Gill)
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kolanko MA, Huber H, David MCB, Montoliu-Gaya L, Simrén J, Blennow K, Zetterberg H, Nilforooshan R, Malhotra P, Sharp DJ, Ashton NJ, Graham NSN. Quantification of neurofilament light and glial fibrillary acidic protein in finger-prick blood. Brain Commun 2024; 6:fcae151. [PMID: 38903933 PMCID: PMC11189302 DOI: 10.1093/braincomms/fcae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 04/25/2024] [Indexed: 06/22/2024] Open
Abstract
An accurate diagnosis of neurodegenerative disease and traumatic brain injury is important for prognostication and treatment. Neurofilament light and glial fibrillary acidic protein (GFAP) are leading biomarkers for neurodegeneration and glial activation that are detectable in blood. Yet, current recommendations require rapid centrifugation and ultra-low temperature storage post-venepuncture. Here, we investigated if these markers can be accurately measured in finger-prick blood using dried plasma spot cards. Fifty patients (46 with dementia; 4 with traumatic brain injury) and 19 healthy volunteers underwent finger-prick and venous sampling using dried plasma spot cards and aligned plasma sampling. Neurofilament light and GFAP were quantified using a Single molecule array assay and correlations between plasma and dried plasma spot cards assessed. Biomarker concentrations in plasma and finger-prick dried plasma spot samples were significantly positively correlated (neurofilament light ρ = 0.57; GFAP ρ = 0.58, P < 0.001). Finger-prick neurofilament light and GFAP were significantly elevated after acute traumatic brain injury with non-significant group-level increases in dementia (91% having Alzheimer's disease dementia). In conclusion, we present preliminary evidence that quantifying GFAP and neurofilament light using finger-prick blood collection is viable, with samples stored at room temperature using dried plasma spot cards. This has potential to expand and promote equitable testing access, including in settings where trained personnel are unavailable to perform venepuncture.
Collapse
Affiliation(s)
- Magdalena A Kolanko
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, 9SMUB, White City Campus, W12 0BZ London, UK
- Department of Brain Sciences, Imperial College London, W12 0BZ London, UK
| | - Hanna Huber
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, 43141 Mölndal, Sweden
| | - Michael C B David
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, 9SMUB, White City Campus, W12 0BZ London, UK
- Department of Brain Sciences, Imperial College London, W12 0BZ London, UK
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, 43141 Mölndal, Sweden
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, 43141 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 43180, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, 43141 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 43180, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, 43141 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 43180, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- UK Dementia Research Institute at UCL, WC1N 3BG London,UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, 53792 WI, USA
| | - Ramin Nilforooshan
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, 9SMUB, White City Campus, W12 0BZ London, UK
- Surrey and Borders Partnership NHS Foundation Trust, Leatherhead, KT22 7AD Surrey, UK
- University of Surrey, GU2 7XH Guildford, UK
| | - Paresh Malhotra
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, 9SMUB, White City Campus, W12 0BZ London, UK
- Department of Brain Sciences, Imperial College London, W12 0BZ London, UK
| | - David J Sharp
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, 9SMUB, White City Campus, W12 0BZ London, UK
- Department of Brain Sciences, Imperial College London, W12 0BZ London, UK
- Centre for Injury Studies, Imperial College London, W12 0BZ London, UK
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, 43141 Mölndal, Sweden
- Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute, King's College London, SE5 9RT London,UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, SE5 8AF London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Neil S N Graham
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, 9SMUB, White City Campus, W12 0BZ London, UK
- Department of Brain Sciences, Imperial College London, W12 0BZ London, UK
- Centre for Injury Studies, Imperial College London, W12 0BZ London, UK
| |
Collapse
|
36
|
Clarke GJB, Follestad T, Skandsen T, Zetterberg H, Vik A, Blennow K, Olsen A, Håberg AK. Chronic immunosuppression across 12 months and high ability of acute and subacute CNS-injury biomarker concentrations to identify individuals with complicated mTBI on acute CT and MRI. J Neuroinflammation 2024; 21:109. [PMID: 38678300 PMCID: PMC11056044 DOI: 10.1186/s12974-024-03094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Identifying individuals with intracranial injuries following mild traumatic brain injury (mTBI), i.e. complicated mTBI cases, is important for follow-up and prognostication. The main aims of our study were (1) to assess the temporal evolution of blood biomarkers of CNS injury and inflammation in individuals with complicated mTBI determined on computer tomography (CT) and magnetic resonance imaging (MRI); (2) to assess the corresponding discriminability of both single- and multi-biomarker panels, from acute to chronic phases after injury. METHODS Patients with mTBI (n = 207), defined as Glasgow Coma Scale score between 13 and 15, loss of consciousness < 30 min and post-traumatic amnesia < 24 h, were included. Complicated mTBI - i.e., presence of any traumatic intracranial injury on neuroimaging - was present in 8% (n = 16) on CT (CT+) and 12% (n = 25) on MRI (MRI+). Blood biomarkers were sampled at four timepoints following injury: admission (within 72 h), 2 weeks (± 3 days), 3 months (± 2 weeks) and 12 months (± 1 month). CNS biomarkers included were glial fibrillary acidic protein (GFAP), neurofilament light (NFL) and tau, along with 12 inflammation markers. RESULTS The most discriminative single biomarkers of traumatic intracranial injury were GFAP at admission (CT+: AUC = 0.78; MRI+: AUC = 0.82), and NFL at 2 weeks (CT+: AUC = 0.81; MRI+: AUC = 0.89) and 3 months (MRI+: AUC = 0.86). MIP-1β and IP-10 concentrations were significantly lower across follow-up period in individuals who were CT+ and MRI+. Eotaxin and IL-9 were significantly lower in individuals who were MRI+ only. FGF-basic concentrations increased over time in MRI- individuals and were significantly higher than MRI+ individuals at 3 and 12 months. Multi-biomarker panels improved discriminability over single biomarkers at all timepoints (AUCs > 0.85 for admission and 2-week models classifying CT+ and AUC ≈ 0.90 for admission, 2-week and 3-month models classifying MRI+). CONCLUSIONS The CNS biomarkers GFAP and NFL were useful single diagnostic biomarkers of complicated mTBI, especially in acute and subacute phases after mTBI. Several inflammation markers were suppressed in patients with complicated versus uncomplicated mTBI and remained so even after 12 months. Multi-biomarker panels improved diagnostic accuracy at all timepoints, though at acute and 2-week timepoints, the single biomarkers GFAP and NFL, respectively, displayed similar accuracy compared to multi-biomarker panels.
Collapse
Affiliation(s)
- Gerard Janez Brett Clarke
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway
| | - Turid Follestad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, N-7491, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Sha Tin, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne Vik
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway
- Department of Neurosurgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Alexander Olsen
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- NorHEAD - Norwegian Centre for Headache Research, Trondheim, Norway
| | - Asta Kristine Håberg
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway.
| |
Collapse
|
37
|
Zimmerman KA, Hain JA, Graham NSN, Rooney EJ, Lee Y, Del-Giovane M, Parker TD, Friedland D, Cross MJ, Kemp S, Wilson MG, Sylvester RJ, Sharp DJ. Prospective cohort study of long-term neurological outcomes in retired elite athletes: the Advanced BiomaRker, Advanced Imaging and Neurocognitive (BRAIN) Health Study protocol. BMJ Open 2024; 14:e082902. [PMID: 38663922 PMCID: PMC11043776 DOI: 10.1136/bmjopen-2023-082902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Although limited, recent research suggests that contact sport participation might have an adverse long-term effect on brain health. Further work is required to determine whether this includes an increased risk of neurodegenerative disease and/or subsequent changes in cognition and behaviour. The Advanced BiomaRker, Advanced Imaging and Neurocognitive Health Study will prospectively examine the neurological, psychiatric, psychological and general health of retired elite-level rugby union and association football/soccer players. METHODS AND ANALYSIS 400 retired athletes will be recruited (200 rugby union and 200 association football players, male and female). Athletes will undergo a detailed clinical assessment, advanced neuroimaging, blood testing for a range of brain health outcomes and neuropsychological assessment longitudinally. Follow-up assessments will be completed at 2 and 4 years after baseline visit. 60 healthy volunteers will be recruited and undergo an aligned assessment protocol including advanced neuroimaging, blood testing and neuropsychological assessment. We will describe the previous exposure to head injuries across the cohort and investigate relationships between biomarkers of brain injury and clinical outcomes including cognitive performance, clinical diagnoses and psychiatric symptom burden. ETHICS AND DISSEMINATION Relevant ethical approvals have been granted by the Camberwell St Giles Research Ethics Committee (Ref: 17/LO/2066). The study findings will be disseminated through manuscripts in clinical/academic journals, presentations at professional conferences and through participant and stakeholder communications.
Collapse
Affiliation(s)
- Karl A Zimmerman
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Injury Studies, Imperial College London, London, UK
| | - Jessica A Hain
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Neil S N Graham
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Injury Studies, Imperial College London, London, UK
| | - Erin Jane Rooney
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Institute of Sport, Exercise and Health (ISEH), University College London, London, UK
| | - Ying Lee
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Institute of Sport, Exercise and Health (ISEH), University College London, London, UK
| | - Martina Del-Giovane
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Thomas D Parker
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Neurodegenerative Disease, The Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Daniel Friedland
- Department of Brain Sciences, Imperial College London, London, UK
- Institute of Sport, Exercise and Health (ISEH), University College London, London, UK
| | - Matthew J Cross
- Carnegie Applied Rugby Research Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Premiership Rugby, London, UK
| | - Simon Kemp
- Rugby Football Union, Twickenham, UK
- London School of Hygiene & Tropical Medicine, London, UK
| | - Mathew G Wilson
- Institute of Sport, Exercise and Health (ISEH), University College London, London, UK
- HCA Healthcare Research Institute, London, UK
| | - Richard J Sylvester
- Institute of Sport, Exercise and Health (ISEH), University College London, London, UK
- Acute Stroke and Brain Injury Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - David J Sharp
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Injury Studies, Imperial College London, London, UK
| |
Collapse
|
38
|
Shahim P, Norato G, Sinaii N, Zetterberg H, Blennow K, Chan L, Grunseich C. Neurofilaments in Sporadic and Familial Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Genes (Basel) 2024; 15:496. [PMID: 38674431 PMCID: PMC11050235 DOI: 10.3390/genes15040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Neurofilament proteins have been implicated to be altered in amyotrophic lateral sclerosis (ALS). The objectives of this study were to assess the diagnostic and prognostic utility of neurofilaments in ALS. METHODS Studies were conducted in electronic databases (PubMed/MEDLINE, Embase, Web of Science, and Cochrane CENTRAL) from inception to 17 August 2023, and investigated neurofilament light (NfL) or phosphorylated neurofilament heavy chain (pNfH) in ALS. The study design, enrolment criteria, neurofilament concentrations, test accuracy, relationship between neurofilaments in cerebrospinal fluid (CSF) and blood, and clinical outcome were recorded. The protocol was registered with PROSPERO, CRD42022376939. RESULTS Sixty studies with 8801 participants were included. Both NfL and pNfH measured in CSF showed high sensitivity and specificity in distinguishing ALS from disease mimics. Both NfL and pNfH measured in CSF correlated with their corresponding levels in blood (plasma or serum); however, there were stronger correlations between CSF NfL and blood NfL. NfL measured in blood exhibited high sensitivity and specificity in distinguishing ALS from controls. Both higher levels of NfL and pNfH either measured in blood or CSF were correlated with more severe symptoms as assessed by the ALS Functional Rating Scale Revised score and with a faster disease progression rate; however, only blood NfL levels were associated with shorter survival. DISCUSSION Both NfL and pNfH measured in CSF or blood show high diagnostic utility and association with ALS functional scores and disease progression, while CSF NfL correlates strongly with blood (either plasma or serum) and is also associated with survival, supporting its use in clinical diagnostics and prognosis. Future work must be conducted in a prospective manner with standardized bio-specimen collection methods and analytical platforms, further improvement in immunoassays for quantification of pNfH in blood, and the identification of cut-offs across the ALS spectrum and controls.
Collapse
Affiliation(s)
- Pashtun Shahim
- Rehabilitation Medicine Department, National Institutes of Health (NIH) Clinical Center, Bethesda, MD 20892, USA;
- National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA; (G.N.); (C.G.)
- Department of Neurology, MedStar Georgetown University Hospital, Washington, DC 20007, USA
- The Military Traumatic Brain Injury Initiative (MTBI2), Bethesda, MD 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Gina Norato
- National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA; (G.N.); (C.G.)
| | - Ninet Sinaii
- Biostatistics and Clinical Epidemiology Service, NIH, Bethesda, MD 20892, USA;
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Molndal, Sweden; (H.Z.); (K.B.)
- Clinical Neurochemistry Laboratory, Sahglrenska University Hospital, 431 41 Molndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong 518172, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Molndal, Sweden; (H.Z.); (K.B.)
- Clinical Neurochemistry Laboratory, Sahglrenska University Hospital, 431 41 Molndal, Sweden
| | - Leighton Chan
- Rehabilitation Medicine Department, National Institutes of Health (NIH) Clinical Center, Bethesda, MD 20892, USA;
| | - Christopher Grunseich
- National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA; (G.N.); (C.G.)
| |
Collapse
|
39
|
Visser K, de Koning ME, Ciubotariu D, Kok MGJ, Sibeijn-Kuiper AJ, Bourgonje AR, van Goor H, van der Naalt J, van der Horn HJ. An exploratory study on the association between blood-based biomarkers and subacute neurometabolic changes following mild traumatic brain injury. J Neurol 2024; 271:1985-1998. [PMID: 38157029 DOI: 10.1007/s00415-023-12146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND OBJECTIVES Blood-based biomarkers and advanced neuroimaging modalities such as magnetic resonance spectroscopy (MRS) or diffusion tensor imaging (DTI) have enhanced our understanding of the pathophysiology of mild traumatic brain injury (mTBI). However, there is limited published data on how blood biomarkers relate to neuroimaging biomarkers post-mTBI. METHODS To investigate this, 30 patients with mTBI and 21 healthy controls were enrolled. Data was collected at two timepoints postinjury: acute, < 24 h, (blood) and subacute, four-to-six weeks, (blood and imaging). Interleukin (IL) 6 and 10 (inflammation), free thiols (systemic oxidative stress) and neurofilament light (NF-L) (axonal injury) were quantified in plasma. The neurometabolites total N-acetyl aspartate (tNAA) (neuronal energetics), Myo-Inositol (Ins) and total Choline (tCh) (inflammation) and, Glutathione (GSH, oxidative stress) were quantified using MRS. RESULTS Concentrations of IL-6 and IL-10 were significantly elevated in the acute phase post-mTBI, while NF-L was elevated only in the subacute phase. Total NAA was lowered in patients with mTBI, although this difference was only nominally significant (uncorrected P < 0.05). Within the patient group, acute IL-6 and subacute tNAA levels were negatively associated (r = - 0.46, uncorrected-P = 0.01), albeit not at a threshold corrected for multiple testing (corrected-P = 0.17). When age was added as a covariate a significant increase in correlation magnitude was observed (ρ = - 0.54, corrected-P = 0.03). CONCLUSION This study demonstrates potential associations between the intensity of the inflammatory response in the acute phase post-mTBI and neurometabolic perturbations in the subacute phase. Future studies should assess the longitudinal dynamics of blood-based and imaging biomarkers after injury.
Collapse
Affiliation(s)
- Koen Visser
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Myrthe E de Koning
- Department of Neurology, Medisch Spectrum Twente, Koningstraat 1, 7512 KZ, Enschede, The Netherlands
| | - Diana Ciubotariu
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Marius G J Kok
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Anita J Sibeijn-Kuiper
- Department of Neuroscience, BCN Neuroimaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Harm Jan van der Horn
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
40
|
Baucom MR, Price AD, England L, Schuster RM, Pritts TA, Goodman MD. Murine Traumatic Brain Injury Model Comparison: Closed Head Injury Versus Controlled Cortical Impact. J Surg Res 2024; 296:230-238. [PMID: 38295710 DOI: 10.1016/j.jss.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION Various murine models have been utilized to study TBI, including closed head injury (CHI) and controlled cortical impact (CCI), without direct comparison. The aim of our study was to evaluate these models to determine differences in neurological and behavioral outcomes postinjury. METHODS Male C57B/6 mice (9-10 wk) were separated into six groups including: untouched, sham craniotomy (4 mm), CCI 0.9 mm depth of impact, CCI 1.6 mm, CCI 2.2 mm, and CHI. CCI was performed using a 3 mm impact tip at a velocity of 5 m/s, dwell time of 250 ms, and depth as noted above. CHI was completed with a centered 400 g weight drop from 1 cm height. Mice were survived to 14-d (n = 5 per group) and 30-d (n = 5 per group) respectively for histological analysis of p-tau within the hippocampus. These mice underwent Morris Water Maze memory testing and Rotarod motor testing. Serum was collected from a separate cohort of mice (n = 5 per group) including untouched, isoflurane only, CCI 1.6 mm, CHI at 1, 4, 6, and 24 h for analysis of neuron specific enolase and glial fibrillary acidic protein (GFAP) via ELISA. Laser speckle contrast imaging was analyzed prior to and after impact in the CHI and CCI 1.6 mm groups. RESULTS There were no significant differences in Morris Water Maze or Rotarod testing times between groups at 14- or 30-d. P-tau was significantly elevated in all groups except CCI 1.6 mm contralateral and CCI 2.2 mm ipsilateral compared to untouched mice at 30-d. P-tau was also significantly elevated in the CHI group at 30 d compared to CCI 1.6 mm contralateral and CCI 2.2 mm on both sides. GFAP was significantly increased in mice undergoing CHI (9959 ± 91 pg/mL) compared to CCI (2299 ± 1288 pg/mL), isoflurane only (133 ± 75 pg/mL), and sham (86 ± 58 pg/mL) at 1-h post TBI (P < 0.0001). There were no differences in serum neuron specific enolase levels between groups. Laser doppler imaging demonstrated similar decreases in cerebral blood flow between CHI and CCI; however, CCI mice had a reduction in blood flow with craniotomy only that did not significantly decrease further with impact. CONCLUSIONS Based on our findings, CHI leads to increased serum GFAP levels and increased p-tau within the hippocampus at 30-d postinjury. While CCI allows the comparison of one cerebral hemisphere to the other, CHI may be a better model of TBI as it requires less technical expertise and has similar neurological outcomes in these murine models.
Collapse
Affiliation(s)
- Matthew R Baucom
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Adam D Price
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Lisa England
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | - Timothy A Pritts
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
41
|
He L, Zhang R, Yang M, Lu M. The role of astrocyte in neuroinflammation in traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166992. [PMID: 38128844 DOI: 10.1016/j.bbadis.2023.166992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Traumatic brain injury (TBI), a significant contributor to mortality and morbidity worldwide, is a devastating condition characterized by initial mechanical damage followed by subsequent biochemical processes, including neuroinflammation. Astrocytes, the predominant glial cells in the central nervous system, play a vital role in maintaining brain homeostasis and supporting neuronal function. Nevertheless, in response to TBI, astrocytes undergo substantial phenotypic alternations and actively contribute to the neuroinflammatory response. This article explores the multifaceted involvement of astrocytes in neuroinflammation subsequent to TBI, with a particular emphasis on their activation, release of inflammatory mediators, modulation of the blood-brain barrier, and interactions with other immune cells. A comprehensive understanding the dynamic interplay between astrocytes and neuroinflammation in the condition of TBI can provide valuable insights into the development of innovative therapeutic approaches aimed at mitigating secondary damage and fostering neuroregeneration.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Maiqiao Yang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
42
|
Tuure J, Mohammadian M, Tenovuo O, Blennow K, Hossain I, Hutchinson P, Maanpää HR, Menon DK, Newcombe VF, Takala RS, Tallus J, van Gils M, Zetterberg H, Posti JP. Late Blood Levels of Neurofilament Light Correlate With Outcome in Patients With Traumatic Brain Injury. J Neurotrauma 2024; 41:359-368. [PMID: 37698882 PMCID: PMC11071082 DOI: 10.1089/neu.2023.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Neurofilament light (NF-L) is an axonal protein that has shown promise as a traumatic brain injury (TBI) biomarker. Serum NF-L shows a rather slow rise after injury, peaking after 1-2 weeks, although some studies suggest that it may remain elevated for months after TBI. The aim of this study was to examine if plasma NF-L levels several months after the injury correlate with functional outcome in patients who have sustained TBIs of variable initial severity. In this prospective study of 178 patients with TBI and 40 orthopedic injury controls, we measured plasma NF-L levels in blood samples taken at the follow-up appointment on average 9 months after injury. Patients with TBI were divided into two groups (mild [mTBI] vs. moderate-to-severe [mo/sTBI]) according to the severity of injury assessed with the Glasgow Coma Scale upon admission. Recovery and functional outcome were assessed using the Extended Glasgow Outcome Scale (GOSE). Higher levels of NF-L at the follow-up correlated with worse outcome in patients with moderate-to-severe TBI (Spearman's rho = -0.18; p < 0.001). In addition, in computed tomography-positive mTBI group, the levels of NF-L were significantly lower in patients with GOSE 7-8 (median 18.14; interquartile range [IQR] 9.82, 32.15) when compared with patients with GOSE <7 (median 73.87; IQR 32.17, 110.54; p = 0.002). In patients with mTBI, late NF-L levels do not seem to provide clinical benefit for late-stage assessment, but in patients with initially mo/sTBI, persistently elevated NF-L levels are associated with worse outcome after TBI and may reflect ongoing brain injury.
Collapse
Affiliation(s)
- Juho Tuure
- Department of Clinical Neurosciences, University of Turku, Finland
| | - Mehrbod Mohammadian
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
| | - Olli Tenovuo
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
| | - Kaj Blennow
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Iftakher Hossain
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Henna-Riikka Maanpää
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Finland
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Virginia F. Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Riikka S.K. Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Finland
| | - Jussi Tallus
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Department of Radiology, Turku University Hospital and University of Turku, Finland
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jussi P. Posti
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Finland
| |
Collapse
|
43
|
Rubenstein R, McQuillan L, Wang KKW, Robertson C, Chang B, Yang Z, Xu H, Williamson J, Wagner AK. Temporal Profiles of P-Tau, T-Tau, and P-Tau:Tau Ratios in Cerebrospinal Fluid and Blood from Moderate-Severe Traumatic Brain Injury Patients and Relationship to 6-12 Month Global Outcomes. J Neurotrauma 2024; 41:369-392. [PMID: 37725589 DOI: 10.1089/neu.2022.0479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Traumatic brain injury (TBI) can initiate progressive injury responses, which are linked to increased risk of neurodegenerative diseases known as "tauopathies." Increased post-TBI tau hyperphosphorylation has been reported in brain tissue and biofluids. Acute-to-chronic TBI total (T)-tau and phosphorylated (P)-tau temporal profiles in the cerebrospinal fluid (CSF) and serum and their relationship to global outcome is unknown. Our multi-site longitudinal study examines these concurrent profiles acutely (CSF and serum) and also characterizes the acute- to-chronic serum patterns. Serial serum and CSF samples from individuals with moderate-to-severe TBI were obtained from two cohorts (acute, subacute, and chronic samples from University of Pittsburgh [UPitt] [n = 286 unique subjects] and acute samples from Baylor College of Medicine [BCM] [n = 114 unique subjects]) and assayed for T-tau and P-tau using the Rolling Circle Amplification-Surround Optical Fiber ImmunoAssay platform. Biokinetic analyses described serum T-tau and P-tau temporal patterns. T-tau and P-tau levels are compared with those in healthy controls (n = 89 for both CSF and serum), and univariate/multivariable associations are made with global outcome, including the Disability Rating Scale (DRS) and the Glasgow Outcome Scale-Extended (GOS-E) scores at 3 and 6 months post-TBI (BCM cohort) and at 6 and 12 months post-TBI (UPitt cohort). For both the UPitt and BCM cohorts, temporal increases in median serum and CSF T-tau and P-tau levels occurred over the first 5 days post-injury, while the initial increases of P-tau:T-tau ratio plateaued by day 4 post-injury (UPitt: n = 99, BCM: n = 48). Biokinetic analyses with UPitt data showed novel findings that T-tau (n = 74) and P-tau (n = 87) reached delayed maximum levels at 4.5 and 5.1 days, while exhibiting long serum half-lives (152 and 123 days), respectively. The post-TBI rise in acute (days 2-6) serum P-tau (up to 276-fold) far outpaced that of T-tau (7.3-fold), leading to a P-tau:T-tau increase of up to 267-fold, suggesting a shift toward tau hyperphosphorylation. BCM analyses showed that days 0-6 mean CSF T-tau and P-tau levels and P-tau:T-tau ratios were associated with greater disability (DRS) (n = 48) and worse global outcome (GOS-E) (n = 48) 6 months post-injury. Days 0-6 mean serum T-tau, P-tau, and P-tau:T-tau ratio were not associated with outcome in either cohort (UPitt: n = 145 [DRS], n = 154 [GOS-E], BCM: n = 99 [DRS and GOS-E]). UPitt multivariate models showed that higher chronic (months 1-6) mean P-tau levels and P-tau:T-tau ratio, but not T-tau levels, are associated with greater disability (DRS: n = 119) and worse global outcomes (GOS-E: n = 117) 12 months post-injury. This work shows the potential importance of monitoring post-TBI T-tau and P-tau levels over time. This multi-site longitudinal study features concurrent acute TBI T-tau and P-tau profiles in CSF and serum, and also characterizes acute-to-chronic serum profiles. Longitudinal profiles, along with no temporal concordance between trajectory groups over time, imply a sustained post-TBI shift in tau phosphorylation dynamics that may favor tauopathy development chronically.
Collapse
Affiliation(s)
- Richard Rubenstein
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Leah McQuillan
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin K W Wang
- Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Claudia Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Binggong Chang
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Zhihui Yang
- Department of Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Haiyan Xu
- Department of Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - John Williamson
- Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- Department of Psychiatry, Malcolm Randall VA Medical Center, Gainesville, Florida, USA
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
44
|
Edwards KA, Lange RT, Lippa SM, Brickell TA, Gill JM, French LM. Serum GFAP, NfL, and tau concentrations are associated with worse neurobehavioral functioning following mild, moderate, and severe TBI: a cross-sectional multiple-cohort study. Front Neurol 2024; 14:1223960. [PMID: 38292036 PMCID: PMC10826119 DOI: 10.3389/fneur.2023.1223960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/05/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction The purpose of this study was to examine whether blood-based biomarkers associate with neurobehavioral functioning at three time points following traumatic brain injury (TBI). Materials and methods Participants were 328 United States service members and veterans (SMVs) prospectively enrolled in the Defense and Veterans Brain Injury Center-Traumatic Brain Injury Center of Excellence (DVBIC-TBICoE) 15-Year Longitudinal TBI Study, recruited into three groups: uncomplicated mild TBI (MTBI, n = 155); complicated mild, moderate, severe TBI combined (STBI, n = 97); non-injured controls (NIC, n = 76). Participants were further divided into three cohorts based on time since injury (≤12 months, 3-5 years, and 8-10 years). Participants completed the Minnesota Multiphasic Personality Inventory-2-Restructured Format (MMPI-2-RF) and underwent blood draw to measure serum concentrations of glial fibrillary acidic protein (GFAP), neurofilament light (NfL), and tau. A total of 11 MMPI-2-RF scales were examined (e.g., depression, anxiety, anger, somatic, cognitive symptoms). Stepwise hierarchical regression models were conducted within each group. Results Significant associations were found between biomarkers and MMPI-2-RF scales (all p < 0.05; R2Δ > 0.10). GFAP was inversely related to (a) neurological complaints in the MTBI group at ≤12 months, (b) demoralization, anger proneness in the STBI group at ≤12 months, and (c) head pain complaints in the STBI group at 8-10 years. NfL was (a) related to low positive emotions in the NIC group; and inversely related to (b) demoralization, somatic complaints, neurological complaints, cognitive complaints in the MTBI group at ≤12 months, (c) demoralization in the STBI group at ≤12 months, and (d) demoralization, head pain complaints, stress/worry in the STBI group at 3-5 years. In the STBI group, there were meaningful findings (R2Δ > 0.10) for tau, NFL, and GFAP that did not reach statistical significance. Discussion Results indicate worse scores on some MMPI-2-RF scales (e.g., depression, stress/worry, neurological and head pain complaints) were associated with lower concentrations of serum GFAP, NfL, and tau in the sub-acute and chronic phase of the recovery trajectory up to 5 years post-injury, with a reverse trend observed at 8-10 years. Longitudinal studies are needed to help elucidate any patterns of association between blood-based biomarkers and neurobehavioral outcome over the recovery trajectory following TBI.
Collapse
Affiliation(s)
- Katie A. Edwards
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
| | - Rael T. Lange
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, United States
- Walter Reed National Military Medical Center, Bethesda, MD, United States
- National Intrepid Center of Excellence, Bethesda, MD, United States
- General Dynamics Information Technology, Silver Spring, MD, United States
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Sara M. Lippa
- Walter Reed National Military Medical Center, Bethesda, MD, United States
- National Intrepid Center of Excellence, Bethesda, MD, United States
- Department of Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Tracey A. Brickell
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, United States
- Walter Reed National Military Medical Center, Bethesda, MD, United States
- National Intrepid Center of Excellence, Bethesda, MD, United States
- General Dynamics Information Technology, Silver Spring, MD, United States
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jessica M. Gill
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
| | - Louis M. French
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, United States
- Walter Reed National Military Medical Center, Bethesda, MD, United States
- National Intrepid Center of Excellence, Bethesda, MD, United States
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
45
|
Jia X, Li X, Ji Q, Yin B, Pan Y, Zhao W, Bai G, Zhang J, Bai L. Serum biomarkers and disease progression in CT-negative mild traumatic brain injury. Cereb Cortex 2024; 34:bhad405. [PMID: 37997466 DOI: 10.1093/cercor/bhad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 11/25/2023] Open
Abstract
Blood proteins are emerging as potential biomarkers for mild traumatic brain injury (mTBI). Molecular pathology of mTBI underscores the critical roles of neuronal injury, neuroinflammation, and vascular health in disease progression. However, the temporal profile of blood biomarkers associated with the aforementioned molecular pathology after CT-negative mTBI, their diagnostic and prognostic potential, and their utility in monitoring white matter integrity and progressive brain atrophy remain unclear. Thus, we investigated serum biomarkers and neuroimaging in a longitudinal cohort, including 103 CT-negative mTBI patients and 66 matched healthy controls (HCs). Angiogenic biomarker vascular endothelial growth factor (VEGF) exhibited the highest area under the curve of 0.88 in identifying patients from HCs. Inflammatory biomarker interleukin-1β and neuronal cell body injury biomarker ubiquitin carboxyl-terminal hydrolase L1 were elevated in acute-stage patients and associated with deterioration of cognitive function from acute-stage to 6-12 mo post-injury period. Notably, axonal injury biomarker neurofilament light (NfL) was elevated in acute-stage patients, with higher levels associated with impaired white matter integrity in acute-stage and progressive gray and white matter atrophy from 3- to 6-12 mo post-injury period. Collectively, our findings emphasized the potential clinical value of serum biomarkers, particularly NfL and VEGF, in diagnosing mTBI and monitoring disease progression.
Collapse
Affiliation(s)
- Xiaoyan Jia
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuan Li
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiuyu Ji
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizhen Pan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenpu Zhao
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Zhang
- Department of Radiation Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an 710032, China
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
46
|
Cheng WH, Anwer M, Fan J, Cheung H, Zhang K, Wellington C. Age at Injury as a Modifier of Preclinical TBI Behavioral, Neuropathological, and Inflammatory Outcomes. ADVANCES IN NEUROBIOLOGY 2024; 42:263-283. [PMID: 39432047 DOI: 10.1007/978-3-031-69832-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of injury-related death and disability. In high-income countries, TBI is most prevalent among the older population (≥65 years), commonly caused by falls. Though age at injury is associated with increased risk of mortality and poor outcome, the underlying mechanisms are unclear. Studies in animal models may yield insights into the intersection of TBI with age. Here we review recent studies in animal models where TBI induced in aged animals is associated with exacerbated behavioral deficits (e.g., mortality, thigmotaxis, and cognitive deficits), neuropathology (microgliosis and astrogliosis), neuroinflammation (e.g., cytokines and iNOS), microglial alterations (e.g., more cellular vesicles and adopting a damage-associated microglia gene signature), and cell signaling and pathway changes (e.g., complement, phagocytosis, autophagy, trophic factor signaling). As relatively few preclinical studies focus on aged animals, more research is needed to fully understand the pathophysiology of TBI in the aged population. Particularly, we recommend that (1) more aged animals should be used, (2) closed-head TBI models should be considered, and (3) animal models of comorbidity or polytrauma should be considered.
Collapse
Affiliation(s)
| | - Mehwish Anwer
- University of British Columbia, Vancouver, BC, Canada
| | - Jianjia Fan
- University of British Columbia, Vancouver, BC, Canada
| | - Honor Cheung
- University of British Columbia, Vancouver, BC, Canada
| | - Kevin Zhang
- University of British Columbia, Vancouver, BC, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, International Collaboration on Repair Discoveries, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
47
|
LoBue C, Stopschinski BE, Calveras NS, Douglas PM, Huebinger R, Cullum CM, Hart J, Gonzales MM. Blood Markers in Relation to a History of Traumatic Brain Injury Across Stages of Cognitive Impairment in a Diverse Cohort. J Alzheimers Dis 2024; 97:345-358. [PMID: 38143366 PMCID: PMC10947497 DOI: 10.3233/jad-231027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) has been linked to multiple pathophysiological processes that could increase risk for Alzheimer's disease and related dementias (ADRD). However, the impact of prior TBI on blood biomarkers for ADRD remains unknown. OBJECTIVE Using cross-sectional data, we assessed whether a history of TBI influences serum biomarkers in a diverse cohort (approximately 50% Hispanic) with normal cognition, mild cognitive impairment, or dementia. METHODS Levels of glial fibrillary acidic protein (GFAP), neurofilament light (NFL), total tau (T-tau), and ubiquitin carboxy-terminal hydrolase-L1 (UCHL1) were measured for participants across the cognitive spectrum. Participants were categorized based on presence and absence of a history of TBI with loss of consciousness, and study samples were derived through case-control matching. Multivariable general linear models compared concentrations of biomarkers in relation to a history of TBI and smoothing splines modelled biomarkers non-linearly in the cognitively impaired groups as a function of time since symptom onset. RESULTS Each biomarker was higher across stages of cognitive impairment, characterized by clinical diagnosis and Mini-Mental State Examination performance, but these associations were not influenced by a history of TBI. However, modelling biomarkers in relation to duration of cognitive symptoms for ADRD showed differences by history of TBI, with only GFAP and UCHL1 being elevated. CONCLUSIONS Serum GFAP, NFL, T-tau, and UCHL1 were higher across stages of cognitive impairment in this diverse clinical cohort, regardless of TBI history, though longitudinal investigation of the timing, order, and trajectory of the biomarkers in relation to prior TBI is warranted.
Collapse
Affiliation(s)
- Christian LoBue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Barbara E. Stopschinski
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nil Saez Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX
| | - Peter M. Douglas
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ryan Huebinger
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - C. Munro Cullum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - John Hart
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mitzi M. Gonzales
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
| |
Collapse
|
48
|
Robertson CS, Martinez FS, McQuillan LE, Williamson J, Lamb DG, Wang KKW, Rubenstein R, Wagner AK. Serial Measurements of Serum Glial Fibrillary Acidic Protein in Moderate-Severe Traumatic Brain Injury: Potential Utility in Providing Insights into Secondary Insults and Long-Term Outcome. J Neurotrauma 2024; 41:73-90. [PMID: 37489296 DOI: 10.1089/neu.2023.0111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
In patients with traumatic brain injury (TBI), serum biomarkers may have utility in assessing the evolution of secondary brain injury. A panel of nine brain-injury- associated biomarkers was measured in archived serum samples over 10 days post-injury from 100 patients with moderate-severe TBI. Among the biomarkers evaluated, serum glial fibrillary acidic protein (GFAP) had the strongest associations with summary measures of acute pathophysiology, including intracranial pressure (ICP), cerebral perfusion pressure (CPP), and brain tissue pO2 (PbtO2). Group based trajectory (TRAJ) analysis was used to identify three distinct GFAP subgroups. The low TRAJ group (n = 23) had peak levels of 9.4 + 1.2 ng/mL that declined rapidly. The middle TRAJ group (n = 48) had higher peak values (31.5 + 5.0 ng/mL) and a slower decline over time. The high TRAJ group (n = 26) had very high, sustained peak values (59.6 + 12.5 ng/mL) that even rose among some patients over 10 days. Patients in the high TRAJ group had significantly higher mortality rate than patients in low and middle TRAJ groups (26.9% vs. 7.0%, p = 0.028). The frequency of poor neurological outcome (Glasgow Outcome Score Extended [GOS-E] 1-4) was 88.5% in the high TRAJ group, 54.2% in the middle TRAJ group, and 30.4% in the low TRAJ group (p < 0.001). ICP was highest in the high TRAJ group (median 17.6 mm Hg), compared with 14.4 mmHg in the low and 15.9 mm Hg in middle TRAJ groups (p = 0.002). High TRAJ patients spent the longest time with ICP >25 mm Hg, median 23 h, compared with 2 and 6 h in the low and middle TRAJ groups (p = 0.006), and the longest time with ICP >30 mm Hg, median 5 h, compared with 0 and 1 h in the low and middle TRAJ groups, respectively (p = 0.013). High TRAJ group patients more commonly required tier 2 or 3 treatment to control ICP. The high TRAJ group had the longest duration when CPP was <50 mm Hg (p = 0.007), and PbtO2 was <10 mm Hg (p = 0.002). Logistical regression was used to study the relationship between temporal serum GFAP patterns and 6-month GOS-E. Here, the low and middle TRAJ groups were combined to form a low-risk group, and the high TRAJ group was designated the high-risk group. High TRAJ group patients had a greater chance of a poor 6-month GOS-E (p < 0.0001). When adjusting for baseline injury characteristics, GFAP TRAJ group membership remained associated with GOS-E (p = 0.003). When an intensive care unit (ICU) injury burden score, developed to quantify physiological derangements, was added to the model, GFAP TRAJ group membership remained associated with GOS-E (p = 0.014). Mediation analysis suggested that ICU burden scores were in the causal pathway between TRAJ group and 6-month mortality or GOS-E. Our results suggest that GFAP may be useful to monitor serially in moderate-severe TBI patients. Future studies in larger cohorts are needed to confirm these results.
Collapse
Affiliation(s)
| | | | - Leah E McQuillan
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Williamson
- Brain Rehabilitation Research Center, Malcolm Randall VA Medical Center, Gainesville, Florida, USA
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Damon G Lamb
- Brain Rehabilitation Research Center, Malcolm Randall VA Medical Center, Gainesville, Florida, USA
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Kevin K W Wang
- Brain Rehabilitation Research Center, Malcolm Randall VA Medical Center, Gainesville, Florida, USA
- Department of Emergency Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Richard Rubenstein
- Department of Neurology, State University of New York-Downstate Health Sciences University, Brooklyn, New York, USA
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
49
|
Kobeissy F, Arja RD, Munoz JC, Shear DA, Gilsdorf J, Zhu J, Yadikar H, Haskins W, Tyndall JA, Wang KK. The game changer: UCH-L1 and GFAP-based blood test as the first marketed in vitro diagnostic test for mild traumatic brain injury. Expert Rev Mol Diagn 2024; 24:67-77. [PMID: 38275158 DOI: 10.1080/14737159.2024.2306876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Major organ-based in vitro diagnostic (IVD) tests like ALT/AST for the liver and cardiac troponins for the heart are established, but an approved IVD blood test for the brain has been missing, highlighting a gap in medical diagnostics. AREAS COVERED In response to this need, Abbott Diagnostics secured FDA clearance in 2021 for the i-STAT Alinity™, a point-of-care plasma blood test for mild traumatic brain injury (TBI). BioMerieux VIDAS, also approved in Europe, utilizes two brain-derived protein biomarkers: neuronal ubiquitin C-terminal hydrolase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP). These biomarkers, which are typically present in minimal amounts in healthy individuals, are instrumental in diagnosing mild TBI with potential brain lesions. The study explores how UCH-L1 and GFAP levels increase significantly in the bloodstream following traumatic brain injury, aiding in early and accurate diagnosis. EXPERT OPINION The introduction of the i-STAT Alinity™ and the Biomerieux VIDAS TBI blood tests mark a groundbreaking development in TBI diagnosis. It paves the way for the integration of TBI biomarker tools into clinical practice and therapeutic trials, enhancing the precision medicine approach by generating valuable data. This advancement is a critical step in addressing the long-standing gap in brain-related diagnostics and promises to revolutionize the management and treatment of mild TBI.
Collapse
Affiliation(s)
- Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Rawad Daniel Arja
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jennifer C Munoz
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection & Neurorestoration (BTNN) Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection & Neurorestoration (BTNN) Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jiepei Zhu
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Hamad Yadikar
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
- Department of Biological Sciences, Kuwait University, Safat, Kuwait
| | | | | | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
50
|
Hossain I, Marklund N, Czeiter E, Hutchinson P, Buki A. Blood biomarkers for traumatic brain injury: A narrative review of current evidence. BRAIN & SPINE 2023; 4:102735. [PMID: 38510630 PMCID: PMC10951700 DOI: 10.1016/j.bas.2023.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 03/22/2024]
Abstract
Introduction A blood-based biomarker (BBBM) test could help to better stratify patients with traumatic brain injury (TBI), reduce unnecessary imaging, to detect and treat secondary insults, predict outcomes, and monitor treatment effects and quality of care. Research question What evidence is available for clinical applications of BBBMs in TBI and how to advance this field? Material and methods This narrative review discusses the potential clinical applications of core BBBMs in TBI. A literature search in PubMed, Scopus, and ISI Web of Knowledge focused on articles in English with the words "traumatic brain injury" together with the words "blood biomarkers", "diagnostics", "outcome prediction", "extracranial injury" and "assay method" alone-, or in combination. Results Glial fibrillary acidic protein (GFAP) combined with Ubiquitin C-terminal hydrolase-L1(UCH-L1) has received FDA clearance to aid computed tomography (CT)-detection of brain lesions in mild (m) TBI. Application of S100B led to reduction of head CT scans. GFAP may also predict magnetic resonance imaging (MRI) abnormalities in CT-negative cases of TBI. Further, UCH-L1, S100B, Neurofilament light (NF-L), and total tau showed value for predicting mortality or unfavourable outcome. Nevertheless, biomarkers have less role in outcome prediction in mTBI. S100B could serve as a tool in the multimodality monitoring of patients in the neurointensive care unit. Discussion and conclusion Largescale systematic studies are required to explore the kinetics of BBBMs and their use in multiple clinical groups. Assay development/cross validation should advance the generalizability of those results which implicated GFAP, S100B and NF-L as most promising biomarkers in the diagnostics of TBI.
Collapse
Affiliation(s)
- Iftakher Hossain
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, Neurotrauma Research Group, Szentagothai Research Centre, And HUN-REN-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Andras Buki
- Department of Neurosurgery, University of Örebro, Örebro, Sweden
| |
Collapse
|