1
|
Scalfari A, Traboulsee A, Oh J, Airas L, Bittner S, Calabrese M, Garcia Dominguez JM, Granziera C, Greenberg B, Hellwig K, Illes Z, Lycke J, Popescu V, Bagnato F, Giovannoni G. Smouldering-Associated Worsening in Multiple Sclerosis: An International Consensus Statement on Definition, Biology, Clinical Implications, and Future Directions. Ann Neurol 2024; 96:826-845. [PMID: 39051525 DOI: 10.1002/ana.27034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Despite therapeutic suppression of relapses, multiple sclerosis (MS) patients often experience subtle deterioration, which extends beyond the definition of "progression independent of relapsing activity." We propose the concept of smouldering-associated-worsening (SAW), encompassing physical and cognitive symptoms, resulting from smouldering pathological processes, which remain unmet therapeutic targets. We provide a consensus-based framework of possible pathological substrates and manifestations of smouldering MS, and we discuss clinical, radiological, and serum/cerebrospinal fluid biomarkers for potentially monitoring SAW. Finally, we share considerations for optimizing disease surveillance and implications for clinical trials to promote the integration of smouldering MS into routine practice and future research efforts. ANN NEUROL 2024;96:826-845.
Collapse
Affiliation(s)
- Antonio Scalfari
- Center of Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College, London, UK
| | | | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - Laura Airas
- University of Turku and Turku University Hospital, Turku, Finland
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Cristina Granziera
- Translational Imaging in Neurology (THiNK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Basel, Switzerland
- Department of Neurology and MS Center, University Hospital Basel Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Basel, Switzerland
| | | | | | - Zsolt Illes
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Jan Lycke
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Veronica Popescu
- University MS Centre Pelt-Hasselt, Noorderhart Hospital, Belgium Hasselt University, Pelt, Belgium
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, VA Hospital, TN Valley Healthcare System, Nashville, TN, USA
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Malucchi S, Bava CI, Valentino P, Martire S, Lo Re M, Bertolotto A, Di Sapio A. In multiple sclerosis patients a single serum neurofilament light chain (sNFL) dosage is strongly associated with 12 months outcome: data from a real-life clinical setting. J Neurol 2024:10.1007/s00415-024-12701-w. [PMID: 39313638 DOI: 10.1007/s00415-024-12701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Neurofilament light chain (NFL) is a neuroaxonal cytoskeletal protein released into cerebrospinal fluid (CSF) and eventually into blood upon neuronal injury. Its detection in serum (sNFL) makes it a promising marker in multiple sclerosis (MS). OBJECTIVE To evaluate the usefulness of a single dosage of sNFL in clinical practice. METHODS 626 consecutive relapsing-remitting (RR) MS patients treated with disease modifying treatments (DMTs) for at least 12 months underwent a single sNFL dosage. 553 patients had NEDA-3 status (no relapses, no disability progression, no new/enlarging or contrast-enhancing lesions on brain magnetic resonance imaging) in the 12 months prior blood sampling. sNFL levels were measured by single molecule array (Simoa™). Association between sNFL levels and NEDA-3 status at 12, 24, and 36 months was evaluated with logistic regression models adjusted for sex, EDSS, disease duration, and type of DMTs. RESULTS 469 out of the 553 NEDA-3 patients had normal sNFL level, whereas 42 had elevated level. The two groups did not differ regarding baseline characteristics. A very strong association between elevated sNFL levels and loss of NEDA-3 status within 12 months was found, with an odds ratio [OR] of 10.74 (95% CI 4.34-26.57); 15 and 10 patients with normal and elevated sNFL, respectively lost NEDA-3 (p < 0.001). The effect was not detected during the subsequent 13-24 and 25-36 months. CONCLUSIONS A single elevated sNFL is strongly associated with NEDA-3 loss within 1 year. Elevated sNFL in apparently stable patients suggests an ongoing disease activity below the detection threshold of standard parameters.
Collapse
Affiliation(s)
- Simona Malucchi
- Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Regione Gonzole 10, 10043, Orbassano, Italy.
| | | | - Paola Valentino
- NICO-Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Serena Martire
- NICO-Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Marianna Lo Re
- Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Antonio Bertolotto
- NICO-Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Koelliker Hospital, C.so Galileo Ferraris, 247/255, 10134, Turin, Italy
| | - Alessia Di Sapio
- Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Regione Gonzole 10, 10043, Orbassano, Italy
| |
Collapse
|
3
|
Michaelson NM, Rúa SH, Kaunzner UW, Marcille M, Pliska-Bloch I, Markowitz K, Nguyen TD, Gauthier SA. Impact of paramagnetic rim lesions on disability and race in multiple sclerosis: mediation analysis. Ann Clin Transl Neurol 2024. [PMID: 39290047 DOI: 10.1002/acn3.52203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE Black American (BA) multiple sclerosis (MS) patients experience greater disability compared to White American (WA) patients. Here, we investigated the role of paramagnetic rim lesions (PRLs), a subset of chronic active lesions, on race-related disability in MS. METHODS We conducted a retrospective observational study comparing BA and WA MS patients. PRLs were identified through Quantitative Susceptibility Mapping (QSM) MRI. A causal mediation analysis explored the impact of PRLs on the relationship between race and disability, as measured by the Expanded Disability Status Scale (EDSS). RESULTS The prevalence of PRLs in BA patients with MS was higher at 55% compared to WA patients at 39% (p = 0.022). A higher percentage of PRLs among all white matter lesions was observed with BA (8.01%) patients compared to WA (3.4%) patients (p = 0.003). In a regression analysis, controlling for significant patient-level covariates and income-level demographics, the percentage of PRLs was, on average, 4.61 points higher for BA patients than for WA patients (p = 0.003). In a separate regression analysis, accounting for covariates, BA patients exhibited significantly higher EDSS scores (p < 0.001). Further analysis demonstrated that the percentage of PRLs was a mediator in the association between BA patients and greater disability (p = 0.031). Higher proportion of PRLs in BA population accounted for 14% of the total effect of race on disability. INTERPRETATION BA patients exhibit greater disability, in part, due to their higher proportion of PRLs. This study underscores the substantial impact of chronic active lesions on disability outcomes in this specific minority MS patient population.
Collapse
Affiliation(s)
- Nara M Michaelson
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Sandra H Rúa
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio, USA
| | - Ulrike W Kaunzner
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Melanie Marcille
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | | | - Kimberly Markowitz
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- Feil Family Brain and Mind Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
4
|
Wang C, Wang S, Wang Y. The association between joint Serum Neurofilament Light Chain and type 2 diabetes with all-cause and cardiovascular mortality in US adults: a longitudinal study of NHANES. BMC Endocr Disord 2024; 24:186. [PMID: 39256785 PMCID: PMC11389518 DOI: 10.1186/s12902-024-01713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND In the past, there has been a clear conclusion regarding the sole impact of serum neurofilament light chain (sNfL) levels or type 2 diabetes mellitus (DM) on the risk of death. However, the combined effect of sNfL levels and type 2 DM on all-cause and cardiovascular mortality is still uncertain. METHODS This study was a prospective cohort study based on data from the National Health and Nutrition Examination Survey (NHANES). The sNfL levels were measured through immunological methods using blood samples collected during the survey. The diagnosis of diabetes was based on rigorous criteria, and participants' mortality data were followed up until December 31, 2019. Firstly, we separately examined the effects of sNfL and type 2 DM on all-cause and cardiovascular mortality, and finally studied the comprehensive impact of the combination of sNfL and type 2 DM on the risk of mortality. Cumulative Kaplan-Meier curves, multivariate logistic regression and sensitivity analysis were incorporated throughout the entire study. RESULTS Participants in the highest quartile of sNfL were observed. Multivariable COX regression model showed that increased sNfL levels and type 2 DM were respectively associated with an increased risk of all-cause and cardiovascular mortality. Furthermore, elevated sNfL levels were significantly associated with an increased risk of all-cause mortality and cardiovascular mortality after adjustment for confounding factors. When considering both elevated sNfL levels and type 2 DM, individuals had a significantly increased risk of mortality. Sensitivity analysis confirmed the robustness of the findings. CONCLUSIONS These results suggest that elevated levels of sNfL and type 2 DM are associated with an increased risk of all-cause and cardiovascular mortality, and that participants with increased sNfL levels associated with type 2 DM have higher all-cause mortality and cardiovascular mortality.
Collapse
Affiliation(s)
- Cuihua Wang
- Ultrasound Department, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Shuguang Wang
- Cardiac Critical Care and Rehabilitation Department, Weifang People's Hospital, Weifang, Shandong, 261000, China.
| | - Ying Wang
- Department of Medical Records Room, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, China
| |
Collapse
|
5
|
Bagnato F, Sati P, Hemond CC, Elliott C, Gauthier SA, Harrison DM, Mainero C, Oh J, Pitt D, Shinohara RT, Smith SA, Trapp B, Azevedo CJ, Calabresi PA, Henry RG, Laule C, Ontaneda D, Rooney WD, Sicotte NL, Reich DS, Absinta M. Imaging chronic active lesions in multiple sclerosis: a consensus statement. Brain 2024; 147:2913-2933. [PMID: 38226694 PMCID: PMC11370808 DOI: 10.1093/brain/awae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis and have implications for non-relapsing biological progression. In recent years, the discovery of innovative MRI and PET-derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with multiple sclerosis, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted and T2-weighted scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a consensus statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this consensus statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher C Hemond
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S, Canada
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Bruce Trapp
- Department on Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90007, USA
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martina Absinta
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Translational Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
6
|
Bava CI, Valentino P, Malucchi S, Bottero R, Martire S, Sapio AD, Bertolotto A. Prevalence of elevated sNFL in a real-world setting: Results on 908 patients with different multiple sclerosis types and treatment conditions. Mult Scler Relat Disord 2024; 88:105748. [PMID: 38959590 DOI: 10.1016/j.msard.2024.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND In the field of research for new validated surrogate biomarkers of treatment efficacy, disease activity and progression in Multiple Sclerosis (MS), serum neurofilament light-chain (sNFL) are actually the best candidate for MS patient monitoring. However, before they can be implemented in clinical practice, their usefulness as additional red flag routine measure must be demonstrated. To tackle the problem, this real-life cross-sectional study at the Regional Referring Center for Multiple Sclerosis (CRESM) aims to characterize sNFL levels and prevalence of elevated sNFL, according to our age-dependent cut-off values, in a large group of patients with different types of MS and treatment conditions. METHODS 908 serum samples from as many MS patients being admitted at CRESM for diagnostic definition and/or during routinary treatment monitoring were consecutively collected between January 2019 and January 2020. sNFL levels were measured by single molecule array (Simoa™) technology on SR-X instrument using NF-light assays (Quanterix); results were interpreted using previously published cut-off values. RESULTS Primary and Secondary Progressive MS (PPMS, SPMS) forms demonstrate higher levels and prevalence of elevated sNFL (PPMS= 32 %, SPMS= 21 %) compared to the Relapse and Remitting one (RRMS = 12 %). Besides, naïve samples of RRMS and PPMS subtypes showed higher prevalence of elevated sNFL (RRMS naïve= 31 %, PPMS naïve=67 %) compared to samples from patients treated for more than 12 months (RRMS treat>12m= 9 %, PPMS treat>12m= 19 %); treated SPMS patients demonstrated higher sNFL levels and a prevalence (22 %) of elevated sNFL compared to RRMS treated patients. Focusing on RRMS, no statistical difference was found between groups of patients treated for whatever time (up to or more than 60 months) and with either DMT type (high or low-efficacy DMT). Finally, RRMS patients treated with all DMTs for more than 12 months, with the exception of teriflunomide and alemtuzumab showed a prevalence of elevated sNFL in the range of 5-10 %. CONCLUSION in a real-world setting comprising about 1000 MS patients, sNFL quantification was elevated in 5-to-67 % of patients, in different MS forms and treatment conditions. Elevated levels of sNFL must be considered a red-flag suggesting the need of a further clinical monitoring in any circumstance, as it can be indicative of new inflammation, ongoing degeneration or co-morbidities. This study supports the introduction of sNFL quantification in everyday patient management.
Collapse
Affiliation(s)
- Cecilia Irene Bava
- NICO - Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy; CRESM Biobank, University Hospital San Luigi Gonzaga, Orbassano, Italy; Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Orbassano, Italy.
| | - Paola Valentino
- NICO - Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Simona Malucchi
- Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - Rugiada Bottero
- Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - Serena Martire
- CRESM Biobank, University Hospital San Luigi Gonzaga, Orbassano, Italy; Department of Neuroscience "Rita Levi Montalcini", University of Turin, Italy
| | - Alessia Di Sapio
- CRESM Biobank, University Hospital San Luigi Gonzaga, Orbassano, Italy; Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Orbassano, Italy
| | | |
Collapse
|
7
|
Hemond CC, Gaitán MI, Absinta M, Reich DS. New Imaging Markers in Multiple Sclerosis and Related Disorders: Smoldering Inflammation and the Central Vein Sign. Neuroimaging Clin N Am 2024; 34:359-373. [PMID: 38942521 PMCID: PMC11213979 DOI: 10.1016/j.nic.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Concepts of multiple sclerosis (MS) biology continue to evolve, with observations such as "progression independent of disease activity" challenging traditional phenotypic categorization. Iron-sensitive, susceptibility-based imaging techniques are emerging as highly translatable MR imaging sequences that allow for visualization of at least 2 clinically useful biomarkers: the central vein sign and the paramagnetic rim lesion (PRL). Both biomarkers demonstrate high specificity in the discrimination of MS from other mimics and can be seen at 1.5 T and 3 T field strengths. Additionally, PRLs represent a subset of chronic active lesions engaged in "smoldering" compartmentalized inflammation behind an intact blood-brain barrier.
Collapse
Affiliation(s)
- Christopher C Hemond
- Department of Neurology, University of Massachusetts Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - María I Gaitán
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
9
|
Klistorner S, Barnett MH, Parratt J, Yiannikas C, Klistorner A. Quantifying chronic lesion expansion in multiple sclerosis: Exploring imaging markers for longitudinal assessment. Mult Scler Relat Disord 2024; 87:105688. [PMID: 38824793 DOI: 10.1016/j.msard.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024]
Abstract
OBJECTIVES Gradual expansion of multiple sclerosis lesions over time is known to have a significant impact on disease progression. However, accurately quantifying the volume changes in chronic lesions presents challenges due to their slow rate of progression and the need for longitudinal segmentation. Our study addresses this by estimating the expansion of chronic lesions using data collected over a 1-2 year period and exploring imaging markers that do not require longitudinal lesion segmentation. METHODS Pre- and post-gadolinium 3D-T1, 3D FLAIR and diffusion tensor images were acquired from 42 patients with MS. Lesion expansion, stratified by the severity of tissue damage as measured by mean diffusivity change, was analysed between baseline and 48 months (Progressive Volume/Severity Index, PVSI). Central brain atrophy (CBA) and the degree of tissue loss inside chronic lesions (measured by the change of T1 intensity and mean diffusivity (MD)) were used as surrogate markers. RESULTS CBA measured after 2 years of follow-up estimated lesion expansion at 4 years with a high degree of accuracy (r = 0.82, p < 0.001, ROC area under the curve 0.92, sensitivity of 94 %, specificity of 85 %). Increased MD within chronic lesions measured over 2 years was strongly associated with future expansion (r = 0.77, p < 0.001, ROC area under the curve 0.87, sensitivity of 81 % and specificity of 81 %). In contrast, change in lesion T1 hypointensity poorly explained future PVSI (best sensitivity and specificity 60 % and 59 % respectively). INTERPRETATION CBA and, to a lesser extent, the change in MD within chronic MS lesions, measured over a period of 2 years, can provide a reliable and sensitive estimate of the extent and severity of chronic lesion expansion.
Collapse
Affiliation(s)
- Samuel Klistorner
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Michael H Barnett
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia; Sydney Neuroimaging Analysis Centre, Camperdown, New South Wales, Australia
| | - John Parratt
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Con Yiannikas
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Alexander Klistorner
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
10
|
Rimkus CDM, Otsuka FS, Nunes DM, Chaim KT, Otaduy MCG. Central Vein Sign and Paramagnetic Rim Lesions: Susceptibility Changes in Brain Tissues and Their Implications for the Study of Multiple Sclerosis Pathology. Diagnostics (Basel) 2024; 14:1362. [PMID: 39001252 PMCID: PMC11240827 DOI: 10.3390/diagnostics14131362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Multiple sclerosis (MS) is the most common acquired inflammatory and demyelinating disease in adults. The conventional diagnostic of MS and the follow-up of inflammatory activity is based on the detection of hyperintense foci in T2 and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) and lesions with brain-blood barrier (BBB) disruption in the central nervous system (CNS) parenchyma. However, T2/FLAIR hyperintense lesions are not specific to MS and the MS pathology and inflammatory processes go far beyond focal lesions and can be independent of BBB disruption. MRI techniques based on the magnetic susceptibility properties of the tissue, such as T2*, susceptibility-weighted images (SWI), and quantitative susceptibility mapping (QSM) offer tools for advanced MS diagnostic, follow-up, and the assessment of more detailed features of MS dynamic pathology. Susceptibility-weighted techniques are sensitive to the paramagnetic components of biological tissues, such as deoxyhemoglobin. This capability enables the visualization of brain parenchymal veins. Consequently, it presents an opportunity to identify veins within the core of multiple sclerosis (MS) lesions, thereby affirming their venocentric characteristics. This advancement significantly enhances the accuracy of the differential diagnostic process. Another important paramagnetic component in biological tissues is iron. In MS, the dynamic trafficking of iron between different cells, such as oligodendrocytes, astrocytes, and microglia, enables the study of different stages of demyelination and remyelination. Furthermore, the accumulation of iron in activated microglia serves as an indicator of latent inflammatory activity in chronic MS lesions, termed paramagnetic rim lesions (PRLs). PRLs have been correlated with disease progression and degenerative processes, underscoring their significance in MS pathology. This review will elucidate the underlying physical principles of magnetic susceptibility and their implications for the formation and interpretation of T2*, SWI, and QSM sequences. Additionally, it will explore their applications in multiple sclerosis (MS), particularly in detecting the central vein sign (CVS) and PRLs, and assessing iron metabolism. Furthermore, the review will discuss their role in advancing early and precise MS diagnosis and prognostic evaluation, as well as their utility in studying chronic active inflammation and degenerative processes.
Collapse
Affiliation(s)
- Carolina de Medeiros Rimkus
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HV Amsterdam, The Netherlands
- Instituto D'Or de Ensino e Pesquisa (IDOR), Sao Paulo 01401-002, SP, Brazil
| | - Fábio Seiji Otsuka
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Douglas Mendes Nunes
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Grupo Fleury, Sao Paulo 04701-200, SP, Brazil
| | - Khallil Taverna Chaim
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Maria Concepción Garcia Otaduy
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| |
Collapse
|
11
|
Elkjaer ML, Hartebrodt A, Oubounyt M, Weber A, Vitved L, Reynolds R, Thomassen M, Rottger R, Baumbach J, Illes Z. Single-Cell Multi-Omics Map of Cell Type-Specific Mechanistic Drivers of Multiple Sclerosis Lesions. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200213. [PMID: 38564686 PMCID: PMC11073880 DOI: 10.1212/nxi.0000000000200213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND AND OBJECTIVES In progressive multiple sclerosis (MS), compartmentalized inflammation plays a pivotal role in the complex pathology of tissue damage. The interplay between epigenetic regulation, transcriptional modifications, and location-specific alterations within white matter (WM) lesions at the single-cell level remains underexplored. METHODS We examined intracellular and intercellular pathways in the MS brain WM using a novel dataset obtained by integrated single-cell multi-omics techniques from 3 active lesions, 3 chronic active lesions, 3 remyelinating lesions, and 3 control WM of 6 patients with progressive MS and 3 non-neurologic controls. Single-nucleus RNA-seq and ATAC-seq were combined and additionally enriched with newly conducted spatial transcriptomics from 1 chronic active lesion. Functional gene modules were then validated in our previously published bulk tissue transcriptome data obtained from 73 WM lesions of patients with progressive MS and 25 WM of non-neurologic disease controls. RESULTS Our analysis uncovered an MS-specific oligodendrocyte genetic signature influenced by the KLF/SP gene family. This modulation has potential associations with the autocrine iron uptake signaling observed in transcripts of transferrin and its receptor LRP2. In addition, an inflammatory profile emerged within these oligodendrocytes. We observed unique cellular endophenotypes both at the periphery and within the chronic active lesion. These include a distinct metabolic astrocyte phenotype, the importance of FGF signaling among astrocytes and neurons, and a notable enrichment of mitochondrial genes at the lesion edge populated predominantly by astrocytes. Our study also identified B-cell coexpression networks indicating different functional B-cell subsets with differential location and specific tendencies toward certain lesion types. DISCUSSION The use of single-cell multi-omics has offered a detailed perspective into the cellular dynamics and interactions in MS. These nuanced findings might pave the way for deeper insights into lesion pathogenesis in progressive MS.
Collapse
Affiliation(s)
- Maria L Elkjaer
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anne Hartebrodt
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mhaned Oubounyt
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anna Weber
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lars Vitved
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Richard Reynolds
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Richard Rottger
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Goyne CE, Fair AE, Sumowski PE, Graves JS. The Impact of Aging on Multiple Sclerosis. Curr Neurol Neurosci Rep 2024; 24:83-93. [PMID: 38416310 DOI: 10.1007/s11910-024-01333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) is a chronic, immune-mediated demyelinating disorder of the central nervous system. Age is one of the most important factors in determining MS phenotype. This review provides an overview of how age influences MS clinical characteristics, pathology, and treatment. RECENT FINDINGS New methods for measuring aging have improved our understanding of the aging process in MS. New studies have characterized the molecular and cellular composition of chronic active or smoldering plaques in MS. These lesions are important contributors to disability progression in MS. These studies highlight the important role of immunosenescence and the innate immune system in sustaining chronic inflammation. Given these changes in immune function, several studies have assessed optimal treatment strategies in aging individuals with MS. MS phenotype is intimately linked with chronologic age and immunosenescence. While there are many unanswered questions, there has been much progress in understanding this relationship which may lead to more effective treatments for progressive disease.
Collapse
Affiliation(s)
- Christopher E Goyne
- Department of Neurosciences, University of California San Diego, 9452 Medical Center Drive, Ste 4W-222, La Jolla, San Diego, CA, 92037, USA
| | - Ashley E Fair
- Department of Neurosciences, University of California San Diego, 9452 Medical Center Drive, Ste 4W-222, La Jolla, San Diego, CA, 92037, USA
| | - Paige E Sumowski
- Department of Neurosciences, University of California San Diego, 9452 Medical Center Drive, Ste 4W-222, La Jolla, San Diego, CA, 92037, USA
| | - Jennifer S Graves
- Department of Neurosciences, University of California San Diego, 9452 Medical Center Drive, Ste 4W-222, La Jolla, San Diego, CA, 92037, USA.
| |
Collapse
|
14
|
Vanden Bulcke C, Stölting A, Maric D, Macq B, Absinta M, Maggi P. Comparative overview of multi-shell diffusion MRI models to characterize the microstructure of multiple sclerosis lesions and periplaques. Neuroimage Clin 2024; 42:103593. [PMID: 38520830 PMCID: PMC10978527 DOI: 10.1016/j.nicl.2024.103593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/01/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
In multiple sclerosis (MS), accurate in vivo characterization of the heterogeneous lesional and extra-lesional tissue pathology remains challenging. Marshalling several advanced imaging techniques - quantitative relaxation time (T1) mapping, a model-free average diffusion signal approach and four multi-shell diffusion models - this study investigates the performance of multi-shell diffusion models and characterizes the microstructural damage within (i) different MS lesion types - active, chronic active, and chronic inactive - (ii) their respective periplaque white matter (WM), and (iii) the surrounding normal-appearing white matter (NAWM). In 83 MS participants (56 relapsing-remitting, 27 progressive) and 23 age and sex-matched healthy controls (HC), we analysed a total of 317 paramagnetic rim lesions (PRL+), 232 non-paramagnetic rim lesions (PRL-), 38 contrast-enhancing lesions (CEL). Consistent with previous findings and histology, our analysis revealed the ability of advanced multi-shell diffusion models to characterize the unique microstructural patterns of CEL, and to elucidate their possible evolution into a resolving (chronic inactive) vs smoldering (chronic active) inflammatory stage. In addition, we showed that the microstructural damage extends well beyond the MRI-visible lesion edge, gradually fading out while moving outward from the lesion edge into the immediate WM periplaque and the NAWM, the latter still characterized by diffuse microstructural damage in MS vs HC. This study also emphasizes the critical role of selecting appropriate diffusion models to elucidate the complex pathological architecture of MS lesions and their periplaque. More specifically, multi-compartment diffusion models based on biophysically interpretable metrics such as neurite orientation dispersion and density (NODDI; mean auc=0.8002) emerge as the preferred choice for MS applications, while simpler models based on a representation of the diffusion signal, like diffusion tensor imaging (DTI; mean auc=0.6942), consistently underperformed, also when compared to T1 mapping (mean auc=0.73375).
Collapse
Affiliation(s)
- Colin Vanden Bulcke
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium; ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Anna Stölting
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Dragan Maric
- Flow and Imaging Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Benoît Macq
- ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Martina Absinta
- Translational Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
15
|
Cross AH, Gelfand JM, Thebault S, Bennett JL, von Büdingen HC, Cameron B, Carruthers R, Edwards K, Fallis R, Gerstein R, Giacomini PS, Greenberg B, Hafler DA, Ionete C, Kaunzner UW, Kodama L, Lock C, Longbrake EE, Musch B, Pardo G, Piehl F, Weber MS, Yuen S, Ziemssen T, Bose G, Freedman MS, Anania VG, Ramesh A, Winger RC, Jia X, Herman A, Harp C, Bar-Or A. Emerging Cerebrospinal Fluid Biomarkers of Disease Activity and Progression in Multiple Sclerosis. JAMA Neurol 2024:2816158. [PMID: 38466277 DOI: 10.1001/jamaneurol.2024.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Importance Biomarkers distinguishing nonrelapsing progressive disease biology from relapsing biology in multiple sclerosis (MS) are lacking. Cerebrospinal fluid (CSF) is an accessible fluid that most closely reflects central nervous system biology. Objective To identify CSF biological measures associated with progressive MS pathobiology. Design, Setting, and Participants This cohort study assessed data from 2 prospective MS cohorts: a test cohort provided serial CSF, clinical, and imaging assessments in a multicenter study of patients with relapsing MS (RMS) or primary progressive MS (PPMS) who were initiating anti-CD20 treatment (recruitment: 2016-2018; analysis: 2020-2023). A single-site confirmation cohort was used to assess CSF at baseline and long-term (>10 year) clinical follow-up (analysis: 2022-2023). Exposures Test-cohort participants initiated standard-of-care ocrelizumab treatment. Confirmation-cohort participants were untreated or received standard-of-care disease-modifying MS therapies. Main Outcomes and Measures Twenty-five CSF markers, including neurofilament light chain, neurofilament heavy chain, and glial fibrillary acid protein (GFAP); 24-week confirmed disability progression (CDP24); and brain magnetic resonance imaging measures reflecting focal injury, tissue loss, and progressive biology (slowly expanding lesions [SELs]). Results The test cohort (n = 131) included 100 patients with RMS (mean [SD] age, 36.6 [10.4] years; 68 [68%] female and 32 [32%] male; Expanded Disability Status Scale [EDSS] score, 0-5.5), and 31 patients with PPMS (mean [SD] age, 44.9 [7.4] years; 15 [48%] female and 16 [52%] male; EDSS score, 3.0-6.5). The confirmation cohort (n = 68) included 41 patients with RMS and 27 with PPMS enrolled at diagnosis (age, 40 years [range, 20-61 years]; 47 [69%] female and 21 [31%] male). In the test cohort, GFAP was correlated with SEL count (r = 0.33), greater proportion of T2 lesion volume from SELs (r = 0.24), and lower T1-weighted intensity within SELs (r = -0.33) but not with acute inflammatory measures. Neurofilament heavy chain was correlated with SEL count (r = 0.25) and lower T1-weighted intensity within SELs (r = -0.28). Immune markers correlated with measures of acute inflammation and, unlike GFAP, were impacted by anti-CD20. In the confirmation cohort, higher baseline CSF GFAP levels were associated with long-term CDP24 (hazard ratio, 2.1; 95% CI, 1.3-3.4; P = .002). Conclusions and Relevance In this study, activated glial markers (in particular GFAP) and neurofilament heavy chain were associated specifically with nonrelapsing progressive disease outcomes (independent of acute inflammatory activity). Elevated CSF GFAP was associated with long-term MS disease progression.
Collapse
Affiliation(s)
- Anne H Cross
- Washington University School of Medicine, St Louis, Missouri
| | | | - Simon Thebault
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | | | | | | | | | - Robert Fallis
- The Ohio State University Wexner Medical Center, Columbus
| | | | | | | | | | | | | | - Lay Kodama
- Genentech, South San Francisco, California
| | | | | | | | | | | | - Martin S Weber
- Institute of Neuropathology, Department of Neurology, University Medical Center, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Göttingen, Germany
| | | | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Carl Gustav Carus University Clinic, Dresden, Germany
| | - Gauruv Bose
- Department of Medicine in Neurology, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Mark S Freedman
- Department of Medicine in Neurology, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | - Ann Herman
- Genentech, South San Francisco, California
| | | | - Amit Bar-Or
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
16
|
Preziosa P, Pagani E, Meani A, Storelli L, Margoni M, Yudin Y, Tedone N, Biondi D, Rubin M, Rocca MA, Filippi M. Chronic Active Lesions and Larger Choroid Plexus Explain Cognition and Fatigue in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200205. [PMID: 38350048 DOI: 10.1212/nxi.0000000000200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND AND OBJECTIVES Chronic inflammation may contribute to cognitive dysfunction and fatigue in patients with multiple sclerosis (MS). Paramagnetic rim lesions (PRLs) and choroid plexus (CP) enlargement have been proposed as markers of chronic inflammation in MS being associated with a more severe disease course. However, their relation with cognitive impairment and fatigue has not been fully explored yet. Here, we investigated the contribution of PRL number and volume and CP enlargement to cognitive impairment and fatigue in patients with MS. METHODS Brain 3T MRI, neurologic evaluation, and neuropsychological assessment, including the Brief Repeatable Battery of Neuropsychological Tests and Modified Fatigue Impact Scale, were obtained from 129 patients with MS and 73 age-matched and sex-matched healthy controls (HC). PRLs were identified on phase images of susceptibility-weighted imaging, whereas CP volume was quantified using a fully automatic method on brain three-dimensional T1-weighted and fluid-attenuated inversion recovery MRI sequences. Predictors of cognitive impairment and fatigue were identified using random forest. RESULTS Thirty-six (27.9%) patients with MS were cognitively impaired, and 31/113 (27.4%) patients had fatigue. Fifty-nine (45.7%) patients with MS had ≥1 PRLs (median = 0, interquartile range = 0;2). Compared with HC, patients with MS showed significantly higher T2-hyperintense white matter lesion (WM) volume; lower normalized brain, thalamic, hippocampal, caudate, cortical, and WM volumes; and higher normalized CP volume (p from <0.001 to 0.040). The predictors of cognitive impairment (relative importance) (out-of-bag area under the curve [OOB-AUC] = 0.707) were normalized brain volume (100%), normalized caudate volume (89.1%), normalized CP volume (80.3%), normalized cortical volume (70.3%), number (67.3%) and volume (66.7%) of PRLs, and T2-hyperintense WM lesion volume (64.0%). Normalized CP volume was the only predictor of the presence of fatigue (OOB-AUC = 0.563). DISCUSSION Chronic inflammation, with higher number and volume of PRLs and enlarged CP, may contribute to cognitive impairment in MS in addition to gray matter atrophy. The contribution of enlarged CP in explaining fatigue supports the relevance of immune-related processes in determining this manifestation independently of disease severity. PRLs and CP enlargement may contribute to the pathophysiology of cognitive impairment and fatigue in MS, and they may represent clinically relevant therapeutic targets to limit the impact of these clinical manifestations in MS.
Collapse
Affiliation(s)
- Paolo Preziosa
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yury Yudin
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicolò Tedone
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Diana Biondi
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Rubin
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
17
|
Cagol A, Benkert P, Melie-Garcia L, Schaedelin SA, Leber S, Tsagkas C, Barakovic M, Galbusera R, Lu PJ, Weigel M, Ruberte E, Radue EW, Yaldizli Ö, Oechtering J, Lorscheider J, D'Souza M, Fischer-Barnicol B, Müller S, Achtnichts L, Vehoff J, Disanto G, Findling O, Chan A, Salmen A, Pot C, Bridel C, Zecca C, Derfuss T, Lieb JM, Remonda L, Wagner F, Vargas MI, Du Pasquier RA, Lalive PH, Pravatà E, Weber J, Cattin PC, Absinta M, Gobbi C, Leppert D, Kappos L, Kuhle J, Granziera C. Association of Spinal Cord Atrophy and Brain Paramagnetic Rim Lesions With Progression Independent of Relapse Activity in People With MS. Neurology 2024; 102:e207768. [PMID: 38165377 PMCID: PMC10834139 DOI: 10.1212/wnl.0000000000207768] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/18/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Progression independent of relapse activity (PIRA) is a crucial determinant of overall disability accumulation in multiple sclerosis (MS). Accelerated brain atrophy has been shown in patients experiencing PIRA. In this study, we assessed the relation between PIRA and neurodegenerative processes reflected by (1) longitudinal spinal cord atrophy and (2) brain paramagnetic rim lesions (PRLs). Besides, the same relationship was investigated in progressive MS (PMS). Last, we explored the value of cross-sectional brain and spinal cord volumetric measurements in predicting PIRA. METHODS From an ongoing multicentric cohort study, we selected patients with MS with (1) availability of a susceptibility-based MRI scan and (2) regular clinical and conventional MRI follow-up in the 4 years before the susceptibility-based MRI. Comparisons in spinal cord atrophy rates (explored with linear mixed-effect models) and PRL count (explored with negative binomial regression models) were performed between: (1) relapsing-remitting (RRMS) and PMS phenotypes and (2) patients experiencing PIRA and patients without confirmed disability accumulation (CDA) during follow-up (both considering the entire cohort and the subgroup of patients with RRMS). Associations between baseline MRI volumetric measurements and time to PIRA were explored with multivariable Cox regression analyses. RESULTS In total, 445 patients with MS (64.9% female; mean [SD] age at baseline 45.0 [11.4] years; 11.2% with PMS) were enrolled. Compared with patients with RRMS, those with PMS had accelerated cervical cord atrophy (mean difference in annual percentage volume change [MD-APC] -1.41; p = 0.004) and higher PRL load (incidence rate ratio [IRR] 1.93; p = 0.005). Increased spinal cord atrophy (MD-APC -1.39; p = 0.0008) and PRL burden (IRR 1.95; p = 0.0008) were measured in patients with PIRA compared with patients without CDA; such differences were also confirmed when restricting the analysis to patients with RRMS. Baseline volumetric measurements of the cervical cord, whole brain, and cerebral cortex significantly predicted time to PIRA (all p ≤ 0.002). DISCUSSION Our results show that PIRA is associated with both increased spinal cord atrophy and PRL burden, and this association is evident also in patients with RRMS. These findings further point to the need to develop targeted treatment strategies for PIRA to prevent irreversible neuroaxonal loss and optimize long-term outcomes of patients with MS.
Collapse
Affiliation(s)
- Alessandro Cagol
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Pascal Benkert
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Lester Melie-Garcia
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Sabine A Schaedelin
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Selina Leber
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Charidimos Tsagkas
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Muhamed Barakovic
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Riccardo Galbusera
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Po-Jui Lu
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Matthias Weigel
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Esther Ruberte
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Ernst-Wilhelm Radue
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Özgür Yaldizli
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Johanna Oechtering
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Johannes Lorscheider
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Marcus D'Souza
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Bettina Fischer-Barnicol
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Stefanie Müller
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Lutz Achtnichts
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Jochen Vehoff
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Giulio Disanto
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Oliver Findling
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Andrew Chan
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Anke Salmen
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Caroline Pot
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Claire Bridel
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Chiara Zecca
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Tobias Derfuss
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Johanna M Lieb
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Luca Remonda
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Franca Wagner
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Maria Isabel Vargas
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Renaud A Du Pasquier
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Patrice H Lalive
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Emanuele Pravatà
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Johannes Weber
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Philippe C Cattin
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Martina Absinta
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Claudio Gobbi
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - David Leppert
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Ludwig Kappos
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Jens Kuhle
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Cristina Granziera
- From Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine (A. Cagol, L.M.-G., S.L., C.T., M.B., R.G., P.-J.L., M.W., E.R., E.-W.R., Ö.Y., L.K., C. Granziera), Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A. Cagol, L.M.-G., C.T., M.B., R.G., P.-J.L., M.W., E.R.,O.Y., J.O., J.L., M.D.S., B.F.-B., T.D., D.L., L.K., J.K., C. Granziera), Department of Clinical Research (P.B., S.A.S.), Division of Radiological Physics, Department of Radiology (M.W.), and Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine (J.M.L.), University Hospital Basel, University of Basel, Switzerland; Translational Neuroradiology Section (C.T), National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD; Medical Image Analysis Center (MIAC) and Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering (E.R., P.C.C.), University Basel; Departments of Neurology (S.M., J.V.) and Radiology (J.W.), Cantonal Hospital St. Gallen; Departments of Neurology (L.A., O.F.) and Radiology (L.R.), Cantonal Hospital Aarau; Departments of Neurology (G.D., C.Z., C.G.) and Neuroradiology (E.P.), Neurocenter of Southern Switzerland, Lugano; Departments of Neurology, Inselspital (A. Chan, A.S.), and Diagnostic and Interventional Neuroradiology, Inselspital (F.W.) Bern University Hospital and University of Bern; Departments of Clinical Neurosciences, Division of Neurology (C.P., R.A.D.P.), and Radiology (R.A.D.P.) Lausanne University Hospital and University of Lausanne; Department of Clinical Neurosciences, Division of Neurology (C.B., P.H.L.), and Radiology (M.I.V.) Geneva University Hospitals and Faculty of Medicine; Faculty of Biomedical Sciences (C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Institute of Experimental Neurology, Division of Neuroscience (M.A.); Vita-Salute San Raffaele University and Hospital, Milan, Italy
| |
Collapse
|
18
|
Bellanca CM, Augello E, Mariottini A, Bonaventura G, La Cognata V, Di Benedetto G, Cantone AF, Attaguile G, Di Mauro R, Cantarella G, Massacesi L, Bernardini R. Disease Modifying Strategies in Multiple Sclerosis: New Rays of Hope to Combat Disability? Curr Neuropharmacol 2024; 22:1286-1326. [PMID: 38275058 PMCID: PMC11092922 DOI: 10.2174/1570159x22666240124114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 01/27/2024] Open
Abstract
Multiple sclerosis (MS) is the most prevalent chronic autoimmune inflammatory- demyelinating disorder of the central nervous system (CNS). It usually begins in young adulthood, mainly between the second and fourth decades of life. Usually, the clinical course is characterized by the involvement of multiple CNS functional systems and by different, often overlapping phenotypes. In the last decades, remarkable results have been achieved in the treatment of MS, particularly in the relapsing- remitting (RRMS) form, thus improving the long-term outcome for many patients. As deeper knowledge of MS pathogenesis and respective molecular targets keeps growing, nowadays, several lines of disease-modifying treatments (DMT) are available, an impressive change compared to the relative poverty of options available in the past. Current MS management by DMTs is aimed at reducing relapse frequency, ameliorating symptoms, and preventing clinical disability and progression. Notwithstanding the relevant increase in pharmacological options for the management of RRMS, research is now increasingly pointing to identify new molecules with high efficacy, particularly in progressive forms. Hence, future efforts should be concentrated on achieving a more extensive, if not exhaustive, understanding of the pathogenetic mechanisms underlying this phase of the disease in order to characterize novel molecules for therapeutic intervention. The purpose of this review is to provide a compact overview of the numerous currently approved treatments and future innovative approaches, including neuroprotective treatments as anti-LINGO-1 monoclonal antibody and cell therapies, for effective and safe management of MS, potentially leading to a cure for this disease.
Collapse
Affiliation(s)
- Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Egle Augello
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Alice Mariottini
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Gabriele Bonaventura
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppe Attaguile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Luca Massacesi
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| |
Collapse
|
19
|
Pollock NM, Fernandes JP, Woodfield J, Moussa E, Hlavay B, Branton WG, Wuest M, Mohammadzadeh N, Schmitt L, Plemel JR, Julien O, Wuest F, Power C. Gasdermin D activation in oligodendrocytes and microglia drives inflammatory demyelination in progressive multiple sclerosis. Brain Behav Immun 2024; 115:374-393. [PMID: 37914099 DOI: 10.1016/j.bbi.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023] Open
Abstract
Neuroinflammation coupled with demyelination and neuro-axonal damage in the central nervous system (CNS) contribute to disease advancement in progressive multiple sclerosis (P-MS). Inflammasome activation accompanied by proteolytic cleavage of gasdermin D (GSDMD) results in cellular hyperactivation and lytic death. Using multiple experimental platforms, we investigated the actions of GSDMD within the CNS and its contributions to P-MS. Brain tissues from persons with P-MS showed significantly increased expression of GSDMD, NINJ1, IL-1β, and -18 within chronic active demyelinating lesions compared to MS normal appearing white matter and nonMS (control) white matter. Conditioned media (CM) from stimulated GSDMD+/+ human macrophages caused significantly greater cytotoxicity of oligodendroglial and neuronal cells, compared to CM from GSDMD-/- macrophages. Oligodendrocytes and CNS macrophages displayed increased Gsdmd immunoreactivity in the central corpus callosum (CCC) of cuprizone (CPZ)-exposed Gsdmd+/+ mice, associated with greater demyelination and reduced oligodendrocyte precursor cell proliferation, compared to CPZ-exposed Gsdmd-/- animals. CPZ-exposed Gsdmd+/+ mice exhibited significantly increased G-ratios and reduced axonal densities in the CCC compared to CPZ-exposed Gsdmd-/- mice. Proteomic analyses revealed increased brain complement C1q proteins and hexokinases in CPZ-exposed Gsdmd-/- animals. [18F]FDG PET imaging showed increased glucose metabolism in the hippocampus and whole brain with intact neurobehavioral performance in Gsdmd-/- animals after CPZ exposure. GSDMD activation in CNS macrophages and oligodendrocytes contributes to inflammatory demyelination and neuroaxonal injury, offering mechanistic and potential therapeutic insights into P-MS pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Laura Schmitt
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton AB, Canada.
| | | | | | | | - Christopher Power
- Department of Medicine (Neurology), Canada; Department of Medical Microbiology & Immunology, Canada.
| |
Collapse
|
20
|
Elkjaer ML, Waede MR, Kingo C, Damsbo K, Illes Z. Expression of Bruton´s tyrosine kinase in different type of brain lesions of multiple sclerosis patients and during experimental demyelination. Front Immunol 2023; 14:1264128. [PMID: 38022591 PMCID: PMC10679451 DOI: 10.3389/fimmu.2023.1264128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Inhibition of Bruton's tyrosine kinase (BTK) is an emerging multiple sclerosis (MS) therapy. BTK inhibitors (BTKi) cross the blood-brain barrier and modulate B cells and microglia, major cellular players in active and chronic active lesions. Objective To assess potential lesional and cellular targets of BTKi, we examined BTK expression in different type of MS white matter (WM) lesions, in unmanipulated CNS resident cells, and in a degenerative MS model associated with microglia activation in vivo. Methods We examined BTK expression by next-generation RNA-sequencing in postmortem 25 control WM, 19 NAWM, 6 remyelinating, 18 active, 13 inactive and 17 chronic active lesions. Presence of B cells and microglia were examined by immunohistochemistry. CNS resident cells were isolated from the mouse brain by magnetic sorting. BTK expression was examined by quantitative PCR in isolated cells and dissected corpus callosum from mice treated with cuprizone (CPZ). Results BTK expression was significantly increased in active and chronic active lesions with upregulated complement receptors and Fcγ receptors. Active lesions contained high number of perivascular B cells, microglia, and macrophages. Chronic active lesions were characterized by microglia/macrophages in the rim. Microglia expressed BTK at high level (120-fold) in contrast to other CNS cell types (2-4-fold). BTK expression was increasing during CPZ treatment reaching significance after stopping CPZ. Conclusion Considering BTK expression in MS lesions and resident cells, BTKi may exert effect on B cells, microglia/macrophages in active lesions, and limit microglia activation in chronic active lesions, where tissue damage propagates.
Collapse
Affiliation(s)
- Maria L. Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mie R. Waede
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christina Kingo
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Karina Damsbo
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE – Brain Research Interdisciplinary Guided Ecxellence, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
21
|
Hofmann A, Krajnc N, Dal-Bianco A, Riedl CJ, Zrzavy T, Lerma-Martin C, Kasprian G, Weber CE, Pezzini F, Leutmezer F, Rommer P, Bsteh G, Platten M, Gass A, Berger T, Eisele P, Magliozzi R, Schirmer L, Hametner S. Myeloid cell iron uptake pathways and paramagnetic rim formation in multiple sclerosis. Acta Neuropathol 2023; 146:707-724. [PMID: 37715818 PMCID: PMC10564819 DOI: 10.1007/s00401-023-02627-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/18/2023]
Abstract
In multiple sclerosis (MS), sustained inflammatory activity can be visualized by iron-sensitive magnetic resonance imaging (MRI) at the edges of chronic lesions. These paramagnetic rim lesions (PRLs) are associated with clinical worsening, although the cell type-specific and molecular pathways of iron uptake and metabolism are not well known. We studied two postmortem cohorts: an exploratory formalin-fixed paraffin-embedded (FFPE) tissue cohort of 18 controls and 24 MS cases and a confirmatory snap-frozen cohort of 6 controls and 14 MS cases. Besides myelin and non-heme iron imaging, the haptoglobin-hemoglobin scavenger receptor CD163, the iron-metabolizing markers HMOX1 and HAMP as well as immune-related markers P2RY12, CD68, C1QA and IL10 were visualized in myeloid cell (MC) subtypes at RNA and protein levels across different MS lesion areas. In addition, we studied PRLs in vivo in a cohort of 98 people with MS (pwMS) via iron-sensitive 3 T MRI and haptoglobin genotyping by PCR. CSF samples were available from 38 pwMS for soluble CD163 (sCD163) protein level measurements by ELISA. In postmortem tissues, we observed that iron uptake was linked to rim-associated C1QA-expressing MC subtypes, characterized by upregulation of CD163, HMOX1, HAMP and, conversely, downregulation of P2RY12. We found that pwMS with [Formula: see text] 4 PRLs had higher sCD163 levels in the CSF than pwMS with [Formula: see text] 3 PRLs with sCD163 correlating with the number of PRLs. The number of PRLs was associated with clinical worsening but not with age, sex or haptoglobin genotype of pwMS. However, pwMS with Hp2-1/Hp2-2 haplotypes had higher clinical disability scores than pwMS with Hp1-1. In summary, we observed upregulation of the CD163-HMOX1-HAMP axis in MC subtypes at chronic active lesion rims, suggesting haptoglobin-bound hemoglobin but not transferrin-bound iron as a critical source for MC-associated iron uptake in MS. The correlation of CSF-associated sCD163 with PRL counts in MS highlights the relevance of CD163-mediated iron uptake via haptoglobin-bound hemoglobin. Also, while Hp haplotypes had no noticeable influence on PRL counts, pwMS carriers of a Hp2 allele might have a higher risk to experience clinical worsening.
Collapse
Affiliation(s)
- Annika Hofmann
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nik Krajnc
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Assunta Dal-Bianco
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Christian J Riedl
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Celia Lerma-Martin
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gregor Kasprian
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Claudia E Weber
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Francesco Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Fritz Leutmezer
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabriel Bsteh
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunity, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, INF 280, Heidelberg, Germany
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Berger
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Philipp Eisele
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Roberta Magliozzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Mannheim Institute for Innate Immunity, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Wiggermann V, Endmayr V, Hernández‐Torres E, Höftberger R, Kasprian G, Hametner S, Rauscher A. Quantitative magnetic resonance imaging reflects different levels of histologically determined myelin densities in multiple sclerosis, including remyelination in inactive multiple sclerosis lesions. Brain Pathol 2023; 33:e13150. [PMID: 36720269 PMCID: PMC10580011 DOI: 10.1111/bpa.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/16/2022] [Indexed: 02/02/2023] Open
Abstract
Magnetic resonance imaging (MRI) of focal or diffuse myelin damage or remyelination may provide important insights into disease progression and potential treatment efficacy in multiple sclerosis (MS). We performed post-mortem MRI and histopathological myelin measurements in seven progressive MS cases to evaluate the ability of three myelin-sensitive MRI scans to distinguish different stages of MS pathology, particularly chronic demyelinated and remyelinated lesions. At 3 Tesla, we acquired two different myelin water imaging (MWI) scans and magnetisation transfer ratio (MTR) data. Histopathology included histochemical stainings for myelin phospholipids (LFB) and iron as well as immunohistochemistry for myelin proteolipid protein (PLP), CD68 (phagocytosing microglia/macrophages) and BCAS1 (remyelinating oligodendrocytes). Mixed-effects modelling determined which histopathological metric best predicted MWF and MTR in normal-appearing and diffusely abnormal white matter, active/inactive, inactive, remyelinated and ischemic lesions. Both MWI measures correlated well with each other and histology across regions, reflecting the different stages of MS pathology. MTR data showed a considerable influence of components other than myelin and a strong dependency on tissue storage duration. Both MRI and histology revealed increased myelin densities in inactive compared with active/inactive lesions. Chronic inactive lesions harboured single scattered myelin fibres indicative of low-level remyelination. Mixed-effects modelling showed that smaller differences between white matter areas were linked to PLP densities and only to a small extent confounded by iron. MWI reflects differences in myelin lipids and proteins across various levels of myelin densities encountered in MS, including low-level remyelination in chronic inactive lesions.
Collapse
Affiliation(s)
- Vanessa Wiggermann
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PediatricsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Danish Research Centre for Magnetic ResonanceCopenhagen University Hospital Amager & HvidovreCopenhagenDenmark
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
- Centre for Brain ResearchMedical University of ViennaViennaAustria
| | - Enedino Hernández‐Torres
- Danish Research Centre for Magnetic ResonanceCopenhagen University Hospital Amager & HvidovreCopenhagenDenmark
- Faculty of Medicine (Division Neurology)University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
- Centre for Brain ResearchMedical University of ViennaViennaAustria
| | - Alexander Rauscher
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PediatricsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of RadiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- BC Children's Hospital Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
23
|
Reeves JA, Mohebbi M, Zivadinov R, Bergsland N, Dwyer MG, Salman F, Schweser F, Jakimovski D. Reliability of paramagnetic rim lesion classification on quantitative susceptibility mapping (QSM) in people with multiple sclerosis: Single-site experience and systematic review. Mult Scler Relat Disord 2023; 79:104968. [PMID: 37716210 PMCID: PMC11092095 DOI: 10.1016/j.msard.2023.104968] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/15/2023] [Accepted: 08/28/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Recent developments in iron-sensitive MRI techniques have enabled visualization of chronic active lesions as paramagnetic rim lesions (PRLs) in vivo. Although PRLs have potential as a diagnostic and prognostic tool for multiple sclerosis (MS), limited studies have reported the reliability of PRL assessment. Further evaluation of PRL reliability, through original investigations and review of PRL literature, are warranted. METHODS A single-center cohort study was conducted to evaluate the inter-rater reliability of PRL identification on quantitative susceptibiltiy mapping (QSM) in 10 people with MS, 5 people with clinically isolated syndrome, and 5 healthy controls. An additional systematic literature search was then conducted of published PRL reliability data, and these results were synthesized. RESULTS In the single-center study, both inter-rater and intra-rater reliability of per-subject PRL number were at an "Excellent" (intraclass correlation coefficient (ICC) of 0.901 for both) level with only 2-years lesion classification experience. Across the reported literature values, reliability of per-lesion rim presence was on average "Near perfect" (for intra-rater; Cohen's κ = 0.833) and "Substantial" (for inter-rater; Cohens κ = 0.687), whereas inter-rater reliability of per-subject PRL number was "Good" (ICC = 0.874). Only 4/22 studies reported complete information on rater experience, rater level of training, detailed PRL classification criteria, and reliability cohort size and disease subtypes. CONCLUSION PRLs can be reliably detected both at per-lesion and per-subject level. We recommend that future PRL studies report detailed reliability results, including rater experience level, and use a standardized set of reliability metrics (Cohen's κ or ICC) for improved comparability between studies.
Collapse
Affiliation(s)
- Jack A Reeves
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY 14203, USA
| | - Maryam Mohebbi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY 14203, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY 14203, USA; Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY 14203, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY 14203, USA
| | - Fahad Salman
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY 14203, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY 14203, USA; Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY 14203, USA.
| |
Collapse
|
24
|
Lipka A, Bogner W, Dal-Bianco A, Hangel GJ, Rommer PS, Strasser B, Motyka S, Hingerl L, Berger T, Leutmezer F, Gruber S, Trattnig S, Niess E. Metabolic Insights into Iron Deposition in Relapsing-Remitting Multiple Sclerosis via 7 T Magnetic Resonance Spectroscopic Imaging. Neuroimage Clin 2023; 40:103524. [PMID: 37839194 PMCID: PMC10590870 DOI: 10.1016/j.nicl.2023.103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE To investigate the metabolic pattern of different types of iron accumulation in multiple sclerosis (MS) lesions, and compare metabolic alterations within and at the periphery of lesions and newly emerging lesions in vivo according to iron deposition. METHODS 7 T MR spectroscopic imaging and susceptibility-weighted imaging was performed in 31 patients with relapsing-remitting MS (16 female/15 male; mean age, 36.9 ± 10.3 years). Mean metabolic ratios of four neuro-metabolites were calculated for regions of interest (ROI) of normal appearing white matter (NAWM), "non-iron" (lesion without iron accumulation on SWI), and three distinct types of iron-laden lesions ("rim": distinct rim-shaped iron accumulation; "area": iron deposition across the entire lesions; "transition": transition between "area" and "rim" accumulation shape), and for lesion layers of "non-iron" and "rim" lesions. Furthermore, newly emerging "non-iron" and "iron" lesions were compared longitudinally, as measured before their appearance and one year later. RESULTS Thirty-nine of 75 iron-containing lesions showed no distinct paramagnetic rim. Of these, "area" lesions exhibited a 65% higher mIns/tNAA (p = 0.035) than "rim" lesions. Comparing lesion layers of both "non-iron" and "rim" lesions, a steeper metabolic gradient of mIns/tNAA ("non-iron" +15%, "rim" +40%) and tNAA/tCr ("non-iron" -15%, "rim" -35%) was found in "iron" lesions, with the lesion core showing +22% higher mIns/tNAA (p = 0.005) and -23% lower tNAA/tCr (p = 0.048) in "iron" compared to "non-iron" lesions. In newly emerging lesions, 18 of 39 showed iron accumulation, with the drop in tNAA/tCr after lesion formation remaining significantly lower compared to pre-lesional tissue over time in "iron" lesions (year 0: p = 0.013, year 1: p = 0.041) as opposed to "non-iron" lesions (year 0: p = 0.022, year 1: p = 0.231). CONCLUSION 7 T MRSI allows in vivo characterization of different iron accumulation types each presenting with a distinct metabolic profile. Furthermore, the larger extent of neuronal damage in lesions with a distinct iron rim was reconfirmed via reduced tNAA/tCr concentrations, but with metabolic differences in lesion development between (non)-iron-containing lesions. This highlights the ability of MRSI to further investigate different types of iron accumulation and suggests possible implications for disease monitoring.
Collapse
Affiliation(s)
- Alexandra Lipka
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna.
| | | | - Gilbert J Hangel
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Paulus S Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Strasser
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stanislav Motyka
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Hingerl
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Stephan Gruber
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria
| | - Eva Niess
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna
| |
Collapse
|
25
|
Krajnc N, Schmidbauer V, Leinkauf J, Haider L, Bsteh G, Kasprian G, Leutmezer F, Kornek B, Rommer PS, Berger T, Lassmann H, Dal-Bianco A, Hametner S. Paramagnetic rim lesions lead to pronounced diffuse periplaque white matter damage in multiple sclerosis. Mult Scler 2023; 29:1406-1417. [PMID: 37712486 PMCID: PMC10580674 DOI: 10.1177/13524585231197954] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Paramagnetic rim lesions (PRLs) are an imaging biomarker in multiple sclerosis (MS), associated with a more severe disease. OBJECTIVES To determine quantitative magnetic resonance imaging (MRI) metrics of PRLs, lesions with diffuse susceptibility-weighted imaging (SWI)-hypointense signal (DSHLs) and SWI-isointense lesions (SILs), their surrounding periplaque area (PPA) and the normal-appearing white matter (NAWM). METHODS In a cross-sectional study, quantitative MRI metrics were measured in people with multiple sclerosis (pwMS) using the multi-dynamic multi-echo (MDME) sequence post-processing software "SyMRI." RESULTS In 30 pwMS, 59 PRLs, 74 DSHLs, and 107 SILs were identified. Beside longer T1 relaxation times of PRLs compared to DSHLs and SILs (2030.5 (1519-2540) vs 1615.8 (1403.3-1953.5) vs 1199.5 (1089.6-1334.6), both p < 0.001), longer T1 relaxation times were observed in the PRL PPA compared to the SIL PPA and the NAWM but not the DSHL PPA. Patients with secondary progressive multiple sclerosis (SPMS) had longer T1 relaxation times in PRLs compared to patients with late relapsing multiple sclerosis (lRMS) (2394.5 (2030.5-3040) vs 1869.3 (1491.4-2451.3), p = 0.015) and also in the PRL PPA compared to patients with early relapsing multiple sclerosis (eRMS) (982 (927-1093.5) vs 904.3 (793.3-958.5), p = 0.013). CONCLUSION PRLs are more destructive than SILs, leading to diffuse periplaque white matter (WM) damage. The quantitative MRI-based evaluation of the PRL PPA could be a marker for silent progression in pwMS.
Collapse
Affiliation(s)
- Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Victor Schmidbauer
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Joel Leinkauf
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Haider
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Paulus Stefan Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Simon Hametner
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Saraste M, Matilainen M, Vuorimaa A, Laaksonen S, Sucksdorff M, Leppert D, Kuhle J, Airas L. Association of serum neurofilament light with microglial activation in multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 94:698-706. [PMID: 37130728 PMCID: PMC10447382 DOI: 10.1136/jnnp-2023-331051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/09/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Translocator protein (TSPO)-PET and neurofilament light (NfL) both report on brain pathology, but their potential association has not yet been studied in multiple sclerosis (MS) in vivo. We aimed to evaluate the association between serum NfL (sNfL) and TSPO-PET-measurable microglial activation in the brain of patients with MS. METHODS Microglial activation was detected using PET and the TSPO-binding radioligand [11C]PK11195. Distribution volume ratio (DVR) was used to evaluate specific [11C]PK11195-binding. sNfL levels were measured using single molecule array (Simoa). The associations between [11C]PK11195 DVR and sNfL were evaluated using correlation analyses and false discovery rate (FDR) corrected linear regression modelling. RESULTS 44 patients with MS (40 relapsing-remitting and 4 secondary progressive) and 24 age-matched and sex-matched healthy controls were included. In the patient group with elevated brain [11C]PK11195 DVR (n=19), increased sNfL associated with higher DVR in the lesion rim (estimate (95% CI) 0.49 (0.15 to 0.83), p(FDR)=0.04) and perilesional normal appearing white matter (0.48 (0.14 to 0.83), p(FDR)=0.04), and with a higher number and larger volume of TSPO-PET-detectable rim-active lesions defined by microglial activation at the plaque edge (0.46 (0.10 to 0.81), p(FDR)=0.04 and 0.50 (0.17 to 0.84), p(FDR)=0.04, respectively). Based on the multivariate stepwise linear regression model, the volume of rim-active lesions was the most relevant factor affecting sNfL. CONCLUSIONS Our demonstration of an association between microglial activation as measured by increased TSPO-PET signal, and elevated sNfL emphasises the significance of smouldering inflammation for progression-promoting pathology in MS and highlights the role of rim-active lesions in promoting neuroaxonal damage.
Collapse
Affiliation(s)
- Maija Saraste
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku, Finland
- Faculty of Science and Engineering, Åbo Akademi University, Abo, Finland
| | - Anna Vuorimaa
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Sini Laaksonen
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Marcus Sucksdorff
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - David Leppert
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Laura Airas
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
27
|
Elmers J, Colzato LS, Akgün K, Ziemssen T, Beste C. Neurofilaments - Small proteins of physiological significance and predictive power for future neurodegeneration and cognitive decline across the life span. Ageing Res Rev 2023; 90:102037. [PMID: 37619618 DOI: 10.1016/j.arr.2023.102037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Neurofilaments (NFs) are not only important for axonal integrity and nerve conduction in large myelinated axons but they are also thought to be crucial for receptor and synaptic functioning. Therefore, NFs may play a critical role in cognitive functions, as cognitive processes are known to depend on synaptic integrity and are modulated by dopaminergic signaling. Here, we present a theory-driven interdisciplinary approach that NFs may link inflammation, neurodegeneration, and cognitive functions. We base our hypothesis on a wealth of evidence suggesting a causal link between inflammation and neurodegeneration and between these two and cognitive decline (see Fig. 1), also taking dopaminergic signaling into account. We conclude that NFs may not only serve as biomarkers for inflammatory, neurodegenerative, and cognitive processes but also represent a potential mechanical hinge between them, moreover, they may even have predictive power regarding future cognitive decline. In addition, we advocate the use of both NFs and MRI parameters, as their synthesis offers the opportunity to individualize medical treatment by providing a comprehensive view of underlying disease activity in neurological diseases. Since our society will become significantly older in the upcoming years and decades, maintaining cognitive functions and healthy aging will play an important role. Thanks to technological advances in recent decades, NFs could serve as a rapid, noninvasive, and relatively inexpensive early warning system to identify individuals at increased risk for cognitive decline and could facilitate the management of cognitive dysfunctions across the lifespan.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
28
|
Maggi P, Bulcke CV, Pedrini E, Bugli C, Sellimi A, Wynen M, Stölting A, Mullins WA, Kalaitzidis G, Lolli V, Perrotta G, El Sankari S, Duprez T, Li X, Calabresi PA, van Pesch V, Reich DS, Absinta M. B cell depletion therapy does not resolve chronic active multiple sclerosis lesions. EBioMedicine 2023; 94:104701. [PMID: 37437310 PMCID: PMC10436266 DOI: 10.1016/j.ebiom.2023.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Chronic active lesions (CAL) in multiple sclerosis (MS) have been observed even in patients taking high-efficacy disease-modifying therapy, including B-cell depletion. Given that CAL are a major determinant of clinical progression, including progression independent of relapse activity (PIRA), understanding the predicted activity and real-world effects of targeting specific lymphocyte populations is critical for designing next-generation treatments to mitigate chronic inflammation in MS. METHODS We analyzed published lymphocyte single-cell transcriptomes from MS lesions and bioinformatically predicted the effects of depleting lymphocyte subpopulations (including CD20 B-cells) from CAL via gene-regulatory-network machine-learning analysis. Motivated by the results, we performed in vivo MRI assessment of PRL changes in 72 adults with MS, 46 treated with anti-CD20 antibodies and 26 untreated, over ∼2 years. FINDINGS Although only 4.3% of lymphocytes in CAL were CD20 B-cells, their depletion is predicted to affect microglial genes involved in iron/heme metabolism, hypoxia, and antigen presentation. In vivo, tracking 202 PRL (150 treated) and 175 non-PRL (124 treated), none of the treated paramagnetic rims disappeared at follow-up, nor was there a treatment effect on PRL for lesion volume, magnetic susceptibility, or T1 time. PIRA occurred in 20% of treated patients, more frequently in those with ≥4 PRL (p = 0.027). INTERPRETATION Despite predicted effects on microglia-mediated inflammatory networks in CAL and iron metabolism, anti-CD20 therapies do not fully resolve PRL after 2-year MRI follow up. Limited tissue turnover of B-cells, inefficient passage of anti-CD20 antibodies across the blood-brain-barrier, and a paucity of B-cells in CAL could explain our findings. FUNDING Intramural Research Program of NINDS, NIH; NINDS grants R01NS082347 and R01NS082347; Dr. Miriam and Sheldon G. Adelson Medical Research Foundation; Cariplo Foundation (grant #1677), FRRB Early Career Award (grant #1750327); Fund for Scientific Research (FNRS).
Collapse
Affiliation(s)
- Pietro Maggi
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium; Neuroinflammation Imaging Lab (NIL), Université Catholique de Louvain, Brussels, Belgium; Centre Hospitalier Universitaire Vaudois, Université de Lausanne, Lausanne, Switzerland.
| | - Colin Vanden Bulcke
- Neuroinflammation Imaging Lab (NIL), Université Catholique de Louvain, Brussels, Belgium
| | - Edoardo Pedrini
- Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Céline Bugli
- Plateforme Technologique de Support en Méthodologie et Calcul Statistique, Université Catholique de Louvain, Brussels, Belgium
| | - Amina Sellimi
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Maxence Wynen
- Neuroinflammation Imaging Lab (NIL), Université Catholique de Louvain, Brussels, Belgium
| | - Anna Stölting
- Neuroinflammation Imaging Lab (NIL), Université Catholique de Louvain, Brussels, Belgium
| | - William A Mullins
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Grigorios Kalaitzidis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valentina Lolli
- Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Gaetano Perrotta
- Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Souraya El Sankari
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Thierry Duprez
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Xu Li
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincent van Pesch
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Martina Absinta
- Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Cheng GWY, Ma IWT, Huang J, Yeung SHS, Ho P, Chen Z, Mak HKF, Herrup K, Chan KWY, Tse KH. Cuprizone drives divergent neuropathological changes in different mouse models of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.547147. [PMID: 37546935 PMCID: PMC10402084 DOI: 10.1101/2023.07.24.547147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Myelin degradation is a normal feature of brain aging that accelerates in Alzheimer's disease (AD). To date, however, the underlying biological basis of this correlation remains elusive. The amyloid cascade hypothesis predicts that demyelination is caused by increased levels of the β-amyloid (Aβ) peptide. Here we report on work supporting the alternative hypothesis that early demyelination is upstream of amyloid. We challenged two different mouse models of AD (R1.40 and APP/PS1) using cuprizone-induced demyelination and tracked the responses with both neuroimaging and neuropathology. In oppose to amyloid cascade hypothesis, R1.40 mice, carrying only a single human mutant APP (Swedish; APP SWE ) transgene, showed a more abnormal changes of magnetization transfer ratio and diffusivity than in APP/PS1 mice, which carry both APP SWE and a second PSEN1 transgene (delta exon 9; PSEN1 dE9 ). Although cuprizone targets oligodendrocytes (OL), magnetic resonance spectroscopy and targeted RNA-seq data in R1.40 mice suggested a possible metabolic alternation in axons. In support of alternative hypotheses, cuprizone induced significant intraneuronal amyloid deposition in young APP/PS1, but not in R1.40 mice, and it suggested the presence of PSEN deficiencies, may accelerate Aβ deposition upon demyelination. In APP/PS1, mature OL is highly vulnerable to cuprizone with significant DNA double strand breaks (53BP1 + ) formation. Despite these major changes in myelin, OLs, and Aβ immunoreactivity, no cognitive impairment or hippocampal pathology was detected in APP/PS1 mice after cuprizone treatment. Together, our data supports the hypothesis that myelin loss can be the cause, but not the consequence, of AD pathology. SIGNIFICANCE STATEMENT The causal relationship between early myelin loss and the progression of Alzheimer's disease remains unclear. Using two different AD mouse models, R1.40 and APP/PS1, our study supports the hypothesis that myelin abnormalities are upstream of amyloid production and deposition. We find that acute demyelination initiates intraneuronal amyloid deposition in the frontal cortex. Further, the loss of oligodendrocytes, coupled with the accelerated intraneuronal amyloid deposition, interferes with myelin tract diffusivity at a stage before any hippocampus pathology or cognitive impairments occur. We propose that myelin loss could be the cause, not the consequence, of amyloid pathology during the early stages of Alzheimer's disease.
Collapse
|
30
|
Temmerman J, Engelborghs S, Bjerke M, D’haeseleer M. Cerebrospinal fluid inflammatory biomarkers for disease progression in Alzheimer's disease and multiple sclerosis: a systematic review. Front Immunol 2023; 14:1162340. [PMID: 37520580 PMCID: PMC10374015 DOI: 10.3389/fimmu.2023.1162340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 08/01/2023] Open
Abstract
Inflammatory processes are involved in the pathophysiology of both Alzheimer's disease (AD) and multiple sclerosis (MS) but their exact contribution to disease progression remains to be deciphered. Biomarkers are needed to define pathophysiological processes of these disorders, who may increasingly co-exist in the elderly generations of the future, due to the rising prevalence in both and ameliorated treatment options with improved life expectancy in MS. The purpose of this review was to provide a systematic overview of inflammatory biomarkers, as measured in the cerebrospinal fluid (CSF), that are associated with clinical disease progression. International peer-reviewed literature was screened using the PubMed and Web of Science databases. Disease progression had to be measured using clinically validated tests representing baseline functional and/or cognitive status, the evolution of such clinical scores over time and/or the transitioning from one disease stage to a more severe stage. The quality of included studies was systematically evaluated using a set of questions for clinical, neurochemical and statistical characteristics of the study. A total of 84 papers were included (twenty-five for AD and 59 for MS). Elevated CSF levels of chitinase-3-like protein 1 (YKL-40) were associated with disease progression in both AD and MS. Osteopontin and monocyte chemoattractant protein-1 were more specifically related to disease progression in AD, whereas the same was true for interleukin-1 beta, tumor necrosis factor alpha, C-X-C motif ligand 13, glial fibrillary acidic protein and IgG oligoclonal bands in MS. We observed a broad heterogeneity of studies with varying cohort characterization, non-disclosure of quality measures for neurochemical analyses and a lack of adequate longitudinal designs. Most of the retrieved biomarkers are related to innate immune system activity, which seems to be an important mediator of clinical disease progression in AD and MS. Overall study quality was limited and we have framed some recommendations for future biomarker research in this field. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021264741.
Collapse
Affiliation(s)
- Joke Temmerman
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universiteit Antwerpen, Department of Biomedical Sciences and Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Wilrijk, Antwerp, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universiteit Antwerpen, Department of Biomedical Sciences and Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Wilrijk, Antwerp, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
| | - Maria Bjerke
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universiteit Antwerpen, Department of Biomedical Sciences and Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Wilrijk, Antwerp, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Clinical Biology, Laboratory of Clinical Neurochemistry, Jette, Brussels, Belgium
| | - Miguel D’haeseleer
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
- National MS Center (NMSC), Neurology, Melsbroek, Steenokkerzeel, Belgium
| |
Collapse
|
31
|
Bittner S, Pape K, Klotz L, Zipp F. Implications of immunometabolism for smouldering MS pathology and therapy. Nat Rev Neurol 2023:10.1038/s41582-023-00839-6. [PMID: 37430070 DOI: 10.1038/s41582-023-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/12/2023]
Abstract
Clinical symptom worsening in patients with multiple sclerosis (MS) is driven by inflammation compartmentalized within the CNS, which results in chronic neuronal damage owing to insufficient repair mechanisms. The term 'smouldering inflammation' summarizes the biological aspects underlying this chronic, non-relapsing and immune-mediated mechanism of disease progression. Smouldering inflammation is likely to be shaped and sustained by local factors in the CNS that account for the persistence of this inflammatory response and explain why current treatments for MS do not sufficiently target this process. Local factors that affect the metabolic properties of glial cells and neurons include cytokines, pH value, lactate levels and nutrient availability. This Review summarizes current knowledge of the local inflammatory microenvironment in smouldering inflammation and how it interacts with the metabolism of tissue-resident immune cells, thereby promoting inflammatory niches within the CNS. The discussion highlights environmental and lifestyle factors that are increasingly recognized as capable of altering immune cell metabolism and potentially responsible for smouldering pathology in the CNS. Currently approved MS therapies that target metabolic pathways are also discussed, along with their potential for preventing the processes that contribute to smouldering inflammation and thereby to progressive neurodegenerative damage in MS.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Katrin Pape
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
32
|
Bar-Or A, Thanei GA, Harp C, Bernasconi C, Bonati U, Cross AH, Fischer S, Gaetano L, Hauser SL, Hendricks R, Kappos L, Kuhle J, Leppert D, Model F, Sauter A, Koendgen H, Jia X, Herman AE. Blood neurofilament light levels predict non-relapsing progression following anti-CD20 therapy in relapsing and primary progressive multiple sclerosis: findings from the ocrelizumab randomised, double-blind phase 3 clinical trials. EBioMedicine 2023; 93:104662. [PMID: 37354600 DOI: 10.1016/j.ebiom.2023.104662] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Neurofilament light chain (NfL), a neuronal cytoskeletal protein that is released upon neuroaxonal injury, is associated with multiple sclerosis (MS) relapsing activity and has demonstrated some prognostic ability for future relapse-related disease progression, yet its value in assessing non-relapsing disease progression remains unclear. METHODS We examined baseline and longitudinal blood NfL levels in 1421 persons with relapsing MS (RMS) and 596 persons with primary progressive MS (PPMS) from the pivotal ocrelizumab MS trials. NfL treatment-response and risk for disease worsening (including disability progression into the open-label extension period and slowly expanding lesions [SELs] on brain MRI) at baseline and following treatment with ocrelizumab were evaluated using time-to-event analysis and linear regression models. FINDINGS In persons from the RMS control arms without acute disease activity and in the entire PPMS control arm, higher baseline NfL was prognostic for greater whole brain and thalamic atrophy, greater volume expansion of SELs, and clinical progression. Ocrelizumab reduced NfL levels vs. controls in persons with RMS and those with PPMS, and abrogated the prognostic value of baseline NfL on disability progression. Following effective suppression of relapse activity by ocrelizumab, NfL levels at weeks 24 and 48 were significantly associated with long-term risk for disability progression, including up to 9 years of observation in RMS and PPMS. INTERPRETATION Highly elevated NfL from acute MS disease activity may mask a more subtle NfL abnormality that reflects underlying non-relapsing progressive biology. Ocrelizumab significantly reduced NfL levels, consistent with its effects on acute disease activity and disability progression. Persistently elevated NfL levels, observed in a subgroup of persons under ocrelizumab treatment, demonstrate potential clinical utility as a predictive biomarker of increased risk for clinical progression. Suppression of relapsing biology with high-efficacy immunotherapy provides a window into the relationship between NfL levels and future non-relapsing progression. FUNDING F. Hoffmann-La Roche Ltd.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | - Anne H Cross
- Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | - Ludwig Kappos
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel and University of Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel and University of Basel, Switzerland
| | - David Leppert
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel and University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Coutinho Costa VG, Araújo SES, Alves-Leon SV, Gomes FCA. Central nervous system demyelinating diseases: glial cells at the hub of pathology. Front Immunol 2023; 14:1135540. [PMID: 37261349 PMCID: PMC10227605 DOI: 10.3389/fimmu.2023.1135540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
Inflammatory demyelinating diseases (IDDs) are among the main causes of inflammatory and neurodegenerative injury of the central nervous system (CNS) in young adult patients. Of these, multiple sclerosis (MS) is the most frequent and studied, as it affects about a million people in the USA alone. The understanding of the mechanisms underlying their pathology has been advancing, although there are still no highly effective disease-modifying treatments for the progressive symptoms and disability in the late stages of disease. Among these mechanisms, the action of glial cells upon lesion and regeneration has become a prominent research topic, helped not only by the discovery of glia as targets of autoantibodies, but also by their role on CNS homeostasis and neuroinflammation. In the present article, we discuss the participation of glial cells in IDDs, as well as their association with demyelination and synaptic dysfunction throughout the course of the disease and in experimental models, with a focus on MS phenotypes. Further, we discuss the involvement of microglia and astrocytes in lesion formation and organization, remyelination, synaptic induction and pruning through different signaling pathways. We argue that evidence of the several glia-mediated mechanisms in the course of CNS demyelinating diseases supports glial cells as viable targets for therapy development.
Collapse
Affiliation(s)
| | - Sheila Espírito-Santo Araújo
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Soniza Vieira Alves-Leon
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
34
|
Vainchtein ID, Alsema AM, Dubbelaar ML, Grit C, Vinet J, van Weering HRJ, Al‐Izki S, Biagini G, Brouwer N, Amor S, Baker D, Eggen BJL, Boddeke EWGM, Kooistra SM. Characterizing microglial gene expression in a model of secondary progressive multiple sclerosis. Glia 2023; 71:588-601. [PMID: 36377669 PMCID: PMC10100411 DOI: 10.1002/glia.24297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Multiple sclerosis (MS) is the most common inflammatory, demyelinating and neurodegenerative disease of the central nervous system in young adults. Chronic-relapsing experimental autoimmune encephalomyelitis (crEAE) in Biozzi ABH mice is an experimental model of MS. This crEAE model is characterized by an acute phase with severe neurological disability, followed by remission of disease, relapse of neurological disease and remission that eventually results in a chronic progressive phase that mimics the secondary progressive phase (SPEAE) of MS. In both MS and SPEAE, the role of microglia is poorly defined. We used a crEAE model to characterize microglia in the different phases of crEAE phases using morphometric and RNA sequencing analyses. At the initial, acute inflammation phase, microglia acquired a pro-inflammatory phenotype. At the remission phase, expression of standard immune activation genes was decreased while expression of genes associated with lipid metabolism and tissue remodeling were increased. Chronic phase microglia partially regain inflammatory gene sets and increase expression of genes associated with proliferation. Together, the data presented here indicate that microglia obtain different features at different stages of crEAE and a particularly mixed phenotype in the chronic stage. Understanding the properties of microglia that are present at the chronic phase of EAE will help to understand the role of microglia in secondary progressive MS, to better aid the development of therapies for this phase of the disease.
Collapse
Affiliation(s)
- Ilia D. Vainchtein
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Astrid M. Alsema
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Marissa L. Dubbelaar
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Corien Grit
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Jonathan Vinet
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Hilmar R. J. van Weering
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sarah Al‐Izki
- Department of NeuroimmunologyBlizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Nieske Brouwer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sandra Amor
- Department of NeuroimmunologyBlizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
- Department of PathologyVUMCAmsterdamThe Netherlands
| | - David Baker
- Department of NeuroimmunologyBlizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Erik W. G. M. Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Cellular and Molecular MedicineCenter for Healthy Ageing, University of CopenhagenCopenhagenDenmark
| | - Susanne M. Kooistra
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
35
|
Meier S, Willemse EA, Schaedelin S, Oechtering J, Lorscheider J, Melie-Garcia L, Cagol A, Barakovic M, Galbusera R, Subramaniam S, Barro C, Abdelhak A, Thebault S, Achtnichts L, Lalive P, Müller S, Pot C, Salmen A, Disanto G, Zecca C, D’Souza M, Orleth A, Khalil M, Buchmann A, Du Pasquier R, Yaldizli Ö, Derfuss T, Berger K, Hermesdorf M, Wiendl H, Piehl F, Battaglini M, Fischer U, Kappos L, Gobbi C, Granziera C, Bridel C, Leppert D, Maleska Maceski A, Benkert P, Kuhle J. Serum Glial Fibrillary Acidic Protein Compared With Neurofilament Light Chain as a Biomarker for Disease Progression in Multiple Sclerosis. JAMA Neurol 2023; 80:287-297. [PMID: 36745446 PMCID: PMC10011932 DOI: 10.1001/jamaneurol.2022.5250] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/23/2022] [Indexed: 02/07/2023]
Abstract
Importance There is a lack of validated biomarkers for disability progression independent of relapse activity (PIRA) in multiple sclerosis (MS). Objective To determine how serum glial fibrillary acidic protein (sGFAP) and serum neurofilament light chain (sNfL) correlate with features of disease progression vs acute focal inflammation in MS and how they can prognosticate disease progression. Design, Setting, and Participants Data were acquired in the longitudinal Swiss MS cohort (SMSC; a consortium of tertiary referral hospitals) from January 1, 2012, to October 20, 2022. The SMSC is a prospective, multicenter study performed in 8 centers in Switzerland. For this nested study, participants had to meet the following inclusion criteria: cohort 1, patients with MS and either stable or worsening disability and similar baseline Expanded Disability Status Scale scores with no relapses during the entire follow-up; and cohort 2, all SMSC study patients who had initiated and continued B-cell-depleting treatment (ie, ocrelizumab or rituximab). Exposures Patients received standard immunotherapies or were untreated. Main Outcomes and Measures In cohort 1, sGFAP and sNfL levels were measured longitudinally using Simoa assays. Healthy control samples served as the reference. In cohort 2, sGFAP and sNfL levels were determined cross-sectionally. Results This study included a total of 355 patients (103 [29.0%] in cohort 1: median [IQR] age, 42.1 [33.2-47.6] years; 73 female patients [70.9%]; and 252 [71.0%] in cohort 2: median [IQR] age, 44.3 [33.3-54.7] years; 156 female patients [61.9%]) and 259 healthy controls with a median [IQR] age of 44.3 [36.3-52.3] years and 177 female individuals (68.3%). sGFAP levels in controls increased as a function of age (1.5% per year; P < .001), were inversely correlated with BMI (-1.1% per BMI unit; P = .01), and were 14.9% higher in women than in men (P = .004). In cohort 1, patients with worsening progressive MS showed 50.9% higher sGFAP levels compared with those with stable MS after additional sNfL adjustment, whereas the 25% increase of sNfL disappeared after additional sGFAP adjustment. Higher sGFAP at baseline was associated with accelerated gray matter brain volume loss (per doubling: 0.24% per year; P < .001) but not white matter loss. sGFAP levels remained unchanged during disease exacerbations vs remission phases. In cohort 2, median (IQR) sGFAP z scores were higher in patients developing future confirmed disability worsening compared with those with stable disability (1.94 [0.36-2.23] vs 0.71 [-0.13 to 1.73]; P = .002); this was not significant for sNfL. However, the combined elevation of z scores of both biomarkers resulted in a 4- to 5-fold increased risk of confirmed disability worsening (hazard ratio [HR], 4.09; 95% CI, 2.04-8.18; P < .001) and PIRA (HR, 4.71; 95% CI, 2.05-9.77; P < .001). Conclusions and Relevance Results of this cohort study suggest that sGFAP is a prognostic biomarker for future PIRA and revealed its complementary potential next to sNfL. sGFAP may serve as a useful biomarker for disease progression in MS in individual patient management and drug development.
Collapse
Affiliation(s)
- Stephanie Meier
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Eline A.J. Willemse
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sabine Schaedelin
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Johanna Oechtering
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Johannes Lorscheider
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Lester Melie-Garcia
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Riccardo Galbusera
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Suvitha Subramaniam
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Barro
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco
| | - Simon Thebault
- Department of Medicine and the Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, Ontario, Canada
| | - Lutz Achtnichts
- Department of Neurology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Patrice Lalive
- Unit of Neuroimmunology, Division of Neurology, Department of Clinical Neurosciences, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Stefanie Müller
- Department of Neurology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Caroline Pot
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Anke Salmen
- Department of Neurology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Giulio Disanto
- Multiple Sclerosis Center, Department of Neurology, Neurocenter of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Chiara Zecca
- Multiple Sclerosis Center, Department of Neurology, Neurocenter of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Marcus D’Souza
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Annette Orleth
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Renaud Du Pasquier
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Özgür Yaldizli
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tobias Derfuss
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Marco Hermesdorf
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Marco Battaglini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Urs Fischer
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Ludwig Kappos
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Claudio Gobbi
- Multiple Sclerosis Center, Department of Neurology, Neurocenter of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Cristina Granziera
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Claire Bridel
- Unit of Neuroimmunology, Division of Neurology, Department of Clinical Neurosciences, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - David Leppert
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Aleksandra Maleska Maceski
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Pascal Benkert
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| |
Collapse
|
36
|
Krajnc N, Dal-Bianco A, Leutmezer F, Kasprian G, Pemp B, Kornek B, Berger T, Rommer PS, Hametner S, Lassmann H, Bsteh G. Association of paramagnetic rim lesions and retinal layer thickness in patients with multiple sclerosis. Mult Scler 2023; 29:374-384. [PMID: 36537667 DOI: 10.1177/13524585221138486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
BACKGROUND Paramagnetic rim lesions (PRLs) are chronic active lesions associated with a more severe disease course in multiple sclerosis (MS). Retinal layer thinning measured by optical coherence tomography (OCT) is a biomarker of neuroaxonal damage associated with disability progression in MS. OBJECTIVE We aimed to determine a potential association between OCT parameters (peripapillary retinal nerve fiber layer (pRNFL) ganglion cell-inner plexiform layer (GCIPL), inner nuclear layer (INL) thickness), and PRLs in patients with MS (pwMS). METHODS In this cross-sectional retrospective study, we included pwMS with both 3T brain MRI and an OCT scan. Regression models were calculated with OCT parameters (pRNFL, GCIPL, INL) as dependent variables, and the number of PRLs as an independent variable adjusted for covariates. RESULTS We analyzed data from 107 pwMS (mean age 34.7 years (SD 10.9), 64.5% female, median disease duration 6 years (IQR 1-13), median EDSS 1.5 (range 0-6.5)). Higher number of PRLs was associated with lower pRNFL (β = -0.18; 95% CI -0.98, -0.03; p = 0.038) and GCIPL thickness (β = -0.21; 95% CI -0.58, -0.02; p = 0.039). CONCLUSION The association between higher number of PRLs and lower pRNFL and GCIPL thicknesses provides additional evidence that pwMS with PRLs are affected by a more pronounced neurodegenerative process.
Collapse
Affiliation(s)
- Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Berthold Pemp
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Paulus Stefan Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Simon Hametner
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Ransohoff RM. Multiple sclerosis: role of meningeal lymphoid aggregates in progression independent of relapse activity. Trends Immunol 2023; 44:266-275. [PMID: 36868982 DOI: 10.1016/j.it.2023.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 03/05/2023]
Abstract
The emphasis on mechanisms driving multiple sclerosis (MS) symptomatic worsening suggests that we move beyond categorical clinical classifiers such as relapsing-remitting MS (RR-MS) and progressive MS (P-MS). Here, we focus on the clinical phenomenon progression independent of relapse activity (PIRA), which begins early in the disease course. PIRA occurs throughout MS, becoming more phenotypically evident as patients age. The underlying mechanisms for PIRA include chronic-active demyelinating lesions (CALs), subpial cortical demyelination, and nerve fiber injury following demyelination. We propose that much of the tissue injury associated with PIRA is driven by autonomous meningeal lymphoid aggregates, present before disease onset and unresponsive to current therapeutics. Recently, specialized magnetic resonance imaging (MRI) has identified and characterized CALs as paramagnetic rim lesions in humans, enabling novel radiographic-biomarker-clinical correlations to further understand and treat PIRA.
Collapse
Affiliation(s)
- Richard M Ransohoff
- Third Rock Ventures, Boston, MA, USA; Abata Therapeutics, 100 Forge Road, Suite 200, Boston, MA 02472, USA.
| |
Collapse
|
38
|
Advances in Neurodegenerative Diseases. J Clin Med 2023; 12:jcm12051709. [PMID: 36902495 PMCID: PMC10002914 DOI: 10.3390/jcm12051709] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Neurological disorders are the leading cause of physical and cognitive disability across the globe, currently affecting approximately 15% of the worldwide population [...].
Collapse
|
39
|
Buchmann A, Pirpamer L, Pinter D, Voortman M, Helmlinger B, Pichler A, Maceski AM, Benkert P, Bachmaier G, Ropele S, Reindl M, Leppert D, Kuhle J, Enzinger C, Khalil M. High serum neurofilament light chain levels correlate with brain atrophy and physical disability in multiple sclerosis. Eur J Neurol 2023; 30:1389-1399. [PMID: 36779855 DOI: 10.1111/ene.15742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/23/2022] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
BACKGROUND AND PURPOSE Serum neurofilament light chain (sNfL) is a promising biomarker of neuroaxonal damage in persons with multiple sclerosis (pwMS). In cross-sectional studies, sNfL has been associated with disease activity and brain magnetic resonance imaging (MRI) changes; however, it is still unclear to what extent in particular high sNfL levels impact on subsequent disease evolution. METHODS sNfL was quantified by an ultrasensitive single molecule array (Simoa) in 199 pwMS (median age = 34.2 years, 64.3% female) and 49 controls. All pwMS underwent 3-T MRI to assess global and compartmental normalized brain volumes, T2-lesion load, and cortical mean thickness. Follow-up data and serum samples were available in 144 pwMS (median follow-up time = 3.8 years). Linear and binary logistic models were used to estimate the independent contribution of sNfL for changes in MRI and Expanded Disability Status Scale (EDSS). Age-corrected sNfL z-scores from a normative database of healthy controls were used for sensitivity analyses. RESULTS High sNfL levels at baseline were associated with atrophy measures of the whole brain (standardized beta coefficient βj = -0.352, p < 0.001), white matter (βj = -0.229, p = 0.007), thalamus (βj = -0.372, p = 0.004), and putamen (βj = -1.687, p = 0.012). pwMS with high levels of sNfL at baseline and follow-up had a greater risk of EDSS worsening (p = 0.007). CONCLUSIONS Already single time point elevation of sNfL has a distinct effect on brain volume changes over a short-term period, and repeated high levels of sNfL indicate accumulating physical disability. Serial assessment of sNfL may provide added value in the clinical management of pwMS.
Collapse
Affiliation(s)
| | - Lukas Pirpamer
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Daniela Pinter
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | | | | | - Aleksandra Maleska Maceski
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.,Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.,Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Gerhard Bachmaier
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - David Leppert
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.,Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.,Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Graz, Austria.,Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| |
Collapse
|
40
|
Graves JS, Krysko KM, Hua LH, Absinta M, Franklin RJM, Segal BM. Ageing and multiple sclerosis. Lancet Neurol 2023; 22:66-77. [PMID: 36216015 DOI: 10.1016/s1474-4422(22)00184-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 11/07/2022]
Abstract
The factor that is most relevant and strongly associated with the clinical course of multiple sclerosis is chronological age. Very young patients exclusively have relapsing remitting disease, whereas those with later onset disease face a more rapid development of permanent disability. For people with progressive multiple sclerosis, the poor response to current disease modifying therapies might be related to ageing in the immune system and CNS. Ageing is also associated with increased risks of side-effects caused by some multiple sclerosis therapies. Both somatic and reproductive ageing processes might contribute to development of progressive multiple sclerosis. Understanding the role of ageing in immune and neural cell function in patients with multiple sclerosis might be key to halting non-relapse-related progression. The growing literature on potential therapies that target senescent cells and ageing processes might provide effective strategies for remyelination and neuroprotection.
Collapse
Affiliation(s)
- Jennifer S Graves
- Department of Neurosciences, University of California, San Diego, CA, USA; Pediatric Multiple Sclerosis Center, Rady Children's Hospital, San Diego, CA, USA; Department of Neurology, San Diego VA Hospital, San Diego, CA, USA.
| | - Kristen M Krysko
- Division of Neurology, Department of Medicine, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Le H Hua
- Department of Neurology, Cleveland Clinic, Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA; Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Robin J M Franklin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Benjamin M Segal
- Department of Neurology and the Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
41
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
42
|
Fitzgerald KC, Sotirchos ES, Smith MD, Lord HN, DuVal A, Mowry EM, Calabresi PA. Contributors to Serum NfL Levels in People without Neurologic Disease. Ann Neurol 2022; 92:688-698. [PMID: 35730070 PMCID: PMC9489658 DOI: 10.1002/ana.26446] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To assess the effects of demographics, lifestyle factors, and comorbidities on serum neurofilament light chain (sNfL) levels in people without neurologic disease and establish demographic-specific reference ranges of sNfL. METHODS The National Health and Nutrition Examination Survey (NHANES) is a representative sample of the US population in which detailed information on demographic, lifestyle, routine laboratory tests, and overall health status are systematically collected. From stored serum samples, we measured sNfL levels using a novel high-throughput immunoassay (Siemens Healthineers). We evaluated the predictive capacity of 52 demographic, lifestyle, comorbidity, anthropometric, or laboratory characteristics in explaining variability in sNfL levels. Predictive performance was assessed using cross-validated R2 (R2 cv ) and forward selection was used to obtain a set of best predictors of sNfL levels. Adjusted reference ranges were derived incorporating characteristics using generalized additive models for location, scale, and shape. RESULTS We included 1,706 NHANES participants (average age: 43.6 ± 14.8 y; 50.6% male, 35% non-white) without neurological disorders. In univariate models, age explained the most variability in sNfL (R2 cv = 26.8%). Multivariable prediction models for sNfL contained three covariates (in order of their selection): age, creatinine, and glycosylated hemoglobin (HbA1c) (standardized β-age: 0.46, 95% confidence interval [CI]: 0.43, 0.50; creatinine: 0.18, 95% CI: 0.13, 0.22; HbA1c: 0.09, 95% CI: 0.06, 0.11). Adjusted centile curves were derived incorporating identified predictors. We provide an interactive R Shiny application to translate our findings and allow other investigators to use the derived centile curves. INTERPRETATION Results will help to guide interpretation of sNfL levels as they relate to neurologic conditions. ANN NEUROL 2022;92:688-698.
Collapse
Affiliation(s)
- Kathryn C Fitzgerald
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Elias S Sotirchos
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Matthew D Smith
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hannah-Noelle Lord
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Anna DuVal
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ellen M Mowry
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Peter A Calabresi
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Martire MS, Moiola L, Rocca MA, Filippi M, Absinta M. What is the potential of paramagnetic rim lesions as diagnostic indicators in multiple sclerosis? Expert Rev Neurother 2022; 22:829-837. [PMID: 36342396 DOI: 10.1080/14737175.2022.2143265] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION In multiple sclerosis (MS), paramagnetic rim lesions (PRLs) on MRI identify a subset of chronic active lesions (CALs), which have been linked through clinical and pathological studies to more severe disease course and greater disability accumulation. Beside their prognostic relevance, increasing evidence supports the use of PRL as a diagnostic biomarker. AREAS COVERED This review summarizes the most recent updates regarding the MRI pathophysiology of PRL, their prevalence in MS (by clinical phenotypes) vs mimicking conditions, and their potential role as diagnostic MS biomarkers. We searched PubMed with terms including 'multiple sclerosis' AND 'paramagnetic rim lesions' OR 'iron rim lesions' OR 'rim lesions' for manuscripts published between January 2008 and July 2022. EXPERT OPINION Current research suggests that PRL can improve the diagnostic specificity and the overall accuracy of MS diagnosis when used together with the dissemination in space MRI criteria and the central vein sign. Nevertheless, future prospective multicenter studies should further define the real-world prevalence and specificity of PRL. International guidelines are needed to establish methodological criteria for PRL identification before its implementation into clinical practice.
Collapse
Affiliation(s)
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Assunta Rocca
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Absinta
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
44
|
La Rosa F, Wynen M, Al-Louzi O, Beck ES, Huelnhagen T, Maggi P, Thiran JP, Kober T, Shinohara RT, Sati P, Reich DS, Granziera C, Absinta M, Bach Cuadra M. Cortical lesions, central vein sign, and paramagnetic rim lesions in multiple sclerosis: Emerging machine learning techniques and future avenues. Neuroimage Clin 2022; 36:103205. [PMID: 36201950 PMCID: PMC9668629 DOI: 10.1016/j.nicl.2022.103205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
The current diagnostic criteria for multiple sclerosis (MS) lack specificity, and this may lead to misdiagnosis, which remains an issue in present-day clinical practice. In addition, conventional biomarkers only moderately correlate with MS disease progression. Recently, some MS lesional imaging biomarkers such as cortical lesions (CL), the central vein sign (CVS), and paramagnetic rim lesions (PRL), visible in specialized magnetic resonance imaging (MRI) sequences, have shown higher specificity in differential diagnosis. Moreover, studies have shown that CL and PRL are potential prognostic biomarkers, the former correlating with cognitive impairments and the latter with early disability progression. As machine learning-based methods have achieved extraordinary performance in the assessment of conventional imaging biomarkers, such as white matter lesion segmentation, several automated or semi-automated methods have been proposed as well for CL, PRL, and CVS. In the present review, we first introduce these MS biomarkers and their imaging methods. Subsequently, we describe the corresponding machine learning-based methods that were proposed to tackle these clinical questions, putting them into context with respect to the challenges they are facing, including non-standardized MRI protocols, limited datasets, and moderate inter-rater variability. We conclude by presenting the current limitations that prevent their broader deployment and suggesting future research directions.
Collapse
Key Words
- ms, multiple sclerosis
- mri, magnetic resonance imaging
- dl, deep learning
- ml, machine learning
- cl, cortical lesions
- prl, paramagnetic rim lesions
- cvs, central vein sign
- wml, white matter lesions
- flair, fluid-attenuated inversion recovery
- mprage, magnetization prepared rapid gradient-echo
- gm, gray matter
- wm, white matter
- psir, phase-sensitive inversion recovery
- dir, double inversion recovery
- mp2rage, magnetization-prepared 2 rapid gradient echoes
- sels, slowly evolving/expanding lesions
- cnn, convolutional neural network
- xai, explainable ai
- pv, partial volume
Collapse
Affiliation(s)
- Francesco La Rosa
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Switzerland; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Maxence Wynen
- CIBM Center for Biomedical Imaging, Switzerland; ICTeam, UCLouvain, Louvain-la-Neuve, Belgium; Louvain Inflammation Imaging Lab (NIL), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium; Radiology Department, Lausanne University and University Hospital, Switzerland
| | - Omar Al-Louzi
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erin S Beck
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Till Huelnhagen
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Pietro Maggi
- Louvain Inflammation Imaging Lab (NIL), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium; Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, CHUV, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland
| | - Tobias Kober
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analysis (CBICA), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Switzerland; Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Martina Absinta
- IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland
| |
Collapse
|
45
|
Kolb H, Al-Louzi O, Beck ES, Sati P, Absinta M, Reich DS. From pathology to MRI and back: Clinically relevant biomarkers of multiple sclerosis lesions. Neuroimage Clin 2022; 36:103194. [PMID: 36170753 PMCID: PMC9668624 DOI: 10.1016/j.nicl.2022.103194] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Focal lesions in both white and gray matter are characteristic of multiple sclerosis (MS). Histopathological studies have helped define the main underlying pathological processes involved in lesion formation and evolution, serving as a gold standard for many years. However, histopathology suffers from an intrinsic bias resulting from over-reliance on tissue samples from late stages of the disease or atypical cases and is inadequate for routine patient assessment. Pathological-radiological correlative studies have established advanced MRI's sensitivity to several relevant MS-pathological substrates and its practicality for assessing dynamic changes and following lesions over time. This review focuses on novel imaging techniques that serve as biomarkers of critical pathological substrates of MS lesions: the central vein, chronic inflammation, remyelination and repair, and cortical lesions. For each pathological process, we address the correlative value of MRI to MS pathology, its contribution in elucidating MS pathology in vivo, and the clinical utility of the imaging biomarker.
Collapse
Affiliation(s)
- Hadar Kolb
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv-Yaffo, Israel,Corresponding author at: Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv-Yaffo, Israel.
| | - Omar Al-Louzi
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erin S. Beck
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Institute of Experimental Neurology (INSPE), IRCSS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy,Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
46
|
Klistorner S, Barnett MH, Parratt J, Yiannikas C, Graham SL, Klistorner A. Choroid plexus volume in multiple sclerosis predicts expansion of chronic lesions and brain atrophy. Ann Clin Transl Neurol 2022; 9:1528-1537. [PMID: 36056634 PMCID: PMC9539382 DOI: 10.1002/acn3.51644] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives Recent studies suggested that the expansion of long‐standing multiple sclerosis (MS) lesions and an enlargement of choroid plexus may be linked to chronic inflammation and microglial activation. We investigated the potential association between plexus volume and subsequent lesion expansion in patients with relapsing‐remitting MS. Methods Pre‐ and post‐gadolinium 3D‐T1, 3D FLAIR and diffusion tensor images were acquired from 49 patients. Choroid plexus (CP) volume (normalised by Total Intracranial Volume, TIV) and lesion activity were analysed between baseline and 48 months. In addition, plexus volume was measured in 40 healthy controls of similar age and gender. Results Baseline CP/TIV ratio was significantly larger in RRMS patients compared to normal controls (p < 0.001). CP/TIV ratio remained stable in RRMS patients during follow‐up period. There was a strong correlation between baseline CP/TIV ratio and subsequent rate of chronic lesion expansion (p < 0.001), which was stronger in close proximity to CSF. A cut‐off of 98 × 10−5 CP/TIV ratio predicted future lesion expansion with a sensitivity of 85% and specificity of 76%. CP/TIV ratio larger than a cut‐off was associated with >8‐fold increased risk of chronic lesion expansion. Baseline CP/TIV ratio was also associated with change in Mean Diffusivity (MD) inside of chronic lesions. Furthermore, baseline CP/TIV ratio significantly correlated with central brain atrophy. There was, however, no correlation between CP/TIV ratio and volume of new lesions. Interpretation Our data demonstrate that baseline CP/TIV ratio predicts subsequent expansion of chronic periventricular MS lesions and associated tissue damage within and outside of chronic lesions.
Collapse
Affiliation(s)
- Samuel Klistorner
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Michael H Barnett
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.,Sydney Neuroimaging Analysis Centre, Camperdown, New South Wales, Australia
| | - John Parratt
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Con Yiannikas
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alexander Klistorner
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
47
|
Williams T, Heslegrave A, Zetterberg H, Miszkiel KA, Barkhof F, Ciccarelli O, Brownlee WJ, Chataway J. The prognostic significance of early blood neurofilament light chain concentration and magnetic resonance imaging variables in relapse-onset multiple sclerosis. Brain Behav 2022; 12:e2700. [PMID: 35925940 PMCID: PMC9480937 DOI: 10.1002/brb3.2700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Improved prognostication remains vital in multiple sclerosis to inform personalized treatment approaches. Blood neurofilament light (bNfL) is a promising prognostic biomarker, but to what extent it provides additional information, independent of established MRI metrics, is yet to be established. METHODS We obtained all available bNfL data for 133 patients from a longitudinal observational cohort study. Patients were dichotomized into good or poor outcome groups based upon clinical and cognitive assessments performed 15 years after a clinically isolated syndrome. We performed longitudinal modeling of early NfL and MRI variables to examine differences between outcome groups. RESULTS The bNfL dataset was incomplete, with one to three (mean 1.5) samples available per participant. Within 3 months of onset, bNfL was similar between groups. The bNfL concentration subsequently decreased in those with a good outcome, and remained persistently elevated in those with a poor outcome. By year 5, NfL in the poor outcome group was approximately double that of those with a good outcome (14.58 [10.40-18.77] vs. 7.71 [6.39-9.04] pg/ml, respectively). Differences were reduced after adjustment for longitudinal changes in T2LV, but trends persisted for a greater rate of increase in NfL in those with a poor outcome, independent of T2LV. CONCLUSIONS This analysis requires replication in cohorts with more complete bNfL datasets, but suggests that persistently elevated blood NfL may be more common in patients with a poor long-term outcome. Persistent elevation of blood NfL may provide additional prognostic information not wholly accounted for by standard monitoring techniques.
Collapse
Affiliation(s)
- Thomas Williams
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, University College London, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, University College London, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Katherine A Miszkiel
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,Centre for Medical Image Computing (CMIC), Department of Computer Science, Faculty of Engineering Sciences, University College London, London, UK.,Radiology & Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands.,Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Institute for Health Research, University College London Hospitals Biomedical Research Centre, London, UK
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,National Institute for Health Research, University College London Hospitals Biomedical Research Centre, London, UK
| | - Wallace J Brownlee
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,National Institute for Health Research, University College London Hospitals Biomedical Research Centre, London, UK
| |
Collapse
|
48
|
Kölliker Frers RA, Otero-Losada M, Kobiec T, Udovin LD, Aon Bertolino ML, Herrera MI, Capani F. Multidimensional overview of neurofilament light chain contribution to comprehensively understanding multiple sclerosis. Front Immunol 2022; 13:912005. [PMID: 35967312 PMCID: PMC9368191 DOI: 10.3389/fimmu.2022.912005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease characterized by demyelination, progressive axonal loss, and varying clinical presentations. Axonal damage associated with the inflammatory process causes neurofilaments, the major neuron structural proteins, to be released into the extracellular space, reaching the cerebrospinal fluid (CSF) and the peripheral blood. Methodological advances in neurofilaments’ serological detection and imaging technology, along with many clinical and therapeutic studies in the last years, have deepened our understanding of MS immunopathogenesis. This review examines the use of light chain neurofilaments (NFLs) as peripheral MS biomarkers in light of the current clinical and therapeutic evidence, MS immunopathology, and technological advances in diagnostic tools. It aims to highlight NFL multidimensional value as a reliable MS biomarker with a diagnostic-prognostic profile while improving our comprehension of inflammatory neurodegenerative processes, mainly RRMS, the most frequent clinical presentation of MS.
Collapse
Affiliation(s)
- Rodolfo A. Kölliker Frers
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Unidad de Parasitología, Hospital J. M. Ramos Mejía, Buenos Aires, Argentina
| | - Matilde Otero-Losada
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- *Correspondence: Matilde Otero-Losada,
| | - Tamara Kobiec
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Lucas D. Udovin
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
| | - María Laura Aon Bertolino
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
| | - María I. Herrera
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Francisco Capani
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Departamento de Biología, Universidad Argentina John Kennedy (UAJK), Buenos Aires, Argentina
| |
Collapse
|
49
|
Johnsson M, Farman HH, Blennow K, Zetterberg H, Malmeström C, Axelsson M, Lycke J. No increase of serum neurofilament light in relapsing-remitting multiple sclerosis patients switching from standard to extended-interval dosing of natalizumab. Mult Scler 2022; 28:2070-2080. [PMID: 35856574 PMCID: PMC9574231 DOI: 10.1177/13524585221108080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Accumulating evidence supports the efficacy of administering natalizumab (NZ) with extended-interval dosing (EID) in patients with relapsing-remitting multiple sclerosis (RRMS). Objectives: We switched NZ dosing from 4-week to 6-week intervals in patients with RRMS, and investigated the effect on serum neurofilament light chain (sNfL) concentrations. Methods: We included two cohorts of patients with RRMS treated with NZ: one received the standard-interval dosing (4 weeks) at baseline, and were switched to 6-week intervals (EID4–6, N = 45). The other cohort received EID (5- or 6-week intervals) both at baseline and during follow-up (EID5/6, N = 25). Serum samples were collected in the EID4–6 cohort at every NZ infusion, for 12 months. The primary outcome was the change in sNfL concentrations after switching to EID. Results: The baseline mean sNfL concentration in the EID4–6 cohort was 10.5 ng/L (standard deviation (SD) = 6.1), and it remained unchanged at 12 months. Moreover, individual sNfL concentrations did not change significantly after extending the NZ dosing intervals. In addition, the EID4–6 and EID5/6 cohorts had similar baseline sNfL concentrations. Conclusion: We concluded that extending the NZ dosing interval did not increase axonal damage, as determined with sNfL, in patients with RRMS.
Collapse
Affiliation(s)
- Magnus Johnsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden/Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helen H Farman
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden/Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden/Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden/Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK/UK Dementia Research Institute, University College London, London, UK
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
50
|
Krajnc N, Bsteh G, Kasprian G, Zrzavy T, Kornek B, Berger T, Leutmezer F, Rommer P, Lassmann H, Hametner S, Dal-Bianco A. Peripheral Hemolysis in Relation to Iron Rim Presence and Brain Volume in Multiple Sclerosis. Front Neurol 2022; 13:928582. [PMID: 35865643 PMCID: PMC9295598 DOI: 10.3389/fneur.2022.928582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/09/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Iron rim lesions (IRLs) represent chronic lesion activity and are associated with a more severe disease course in multiple sclerosis (MS). How the iron rims around the lesions arise in patients with MS (pwMS), and whether peripheral hemolysis may be a source of iron in rim associated macrophages, is unclear. Objective To determine a potential correlation between peripheral hemolysis parameters and IRL presence in pwMS. Methods This retrospective study included pwMS, who underwent a 3T brain MRI between 2015 and 2020 and had a blood sample drawn at ± 2 weeks. Patients with vertigo served as a control group. Results We analyzed 75 pwMS (mean age 37.0 years [SD 9.0], 53.3% female) and 43 controls (mean age 38.3 years [SD 9.8], 51.2% female). Median number of IRLs was 1 (IQR 4), 28 (37.3%) pwMS had no IRLs. IRL patients showed significantly higher Expanded Disability Status Scale (EDSS) compared to non-IRL patients (median EDSS 2.3 [IQR 2.9] vs. 1.3 [IQR 2.9], p = 0.017). Number of IRLs correlated significantly with disease duration (rs = 0.239, p = 0.039), EDSS (rs = 0.387, p < 0.001) and Multiple Sclerosis Severity Scale (MSSS) (rs = 0.289, p = 0.014). There was no significant difference in hemolysis parameters between non-IRL, IRL patients (regardless of gender and/or disease type) and controls, nor between hemolysis parameters and the number of IRLs. Total brain volume was associated with fibrinogen (β= −0.34, 95% CI −1.32 to −0.145, p = 0.016), and absolute cortical and total gray matter volumes were associated with hemoglobin (β = 0.34, 95% CI 3.39–24.68, p = 0.011; β = 0.33, 95% CI 3.29–28.95, p = 0.015; respectively). Conclusion Our data do not suggest an association between hemolysis parameters and IRL presence despite a significant association between these parameters and markers for neurodegeneration.
Collapse
Affiliation(s)
- Nik Krajnc
- Medical University of Vienna, Department of Neurology, Vienna, Austria
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gabriel Bsteh
- Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Gregor Kasprian
- Medical University of Vienna, Biomedical Imaging and Image-Guided Therapy, Vienna, Austria
| | - Tobias Zrzavy
- Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Barbara Kornek
- Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Thomas Berger
- Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Fritz Leutmezer
- Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Paulus Rommer
- Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Assunta Dal-Bianco
- Medical University of Vienna, Department of Neurology, Vienna, Austria
- *Correspondence: Assunta Dal-Bianco
| |
Collapse
|