1
|
Kawabata R, Yamamoto S, Kamimura N, Yao I, Yoshikawa K, Koga K. Cuprizone-induced demyelination provokes abnormal intrinsic properties and excitatory synaptic transmission in the male mouse anterior cingulate cortex. Neuropharmacology 2025; 271:110403. [PMID: 40043749 DOI: 10.1016/j.neuropharm.2025.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/09/2025]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS). Demyelination in the CNS provokes hyperalgesia, negative emotions, and/or cognitive impairment. Cuprizone (CPZ)-induced demyelination is a major demyelinating disease model for rodents. The anterior cingulate cortex (ACC) is a brain region that is responsible for higher brain functions related to MS symptoms. However, little is known whether CPZ exposure induces demyelination in the ACC coincides with changes to intrinsic neuron properties and synaptic transmission. In this study, we first examined if CPZ exposure induces demyelination in the male mouse ACC. CPZ exposure induced demyelination in the ACC and decreased body weight. In addition, demyelination altered intrinsic properties and excitatory synaptic transmission in layer II/III pyramidal neurons from the ACC as indicated by whole-cell patch-clamp in brain slice preparations. CPZ exposure decreased the frequency of action potentials due to increasing rheobase. At the synapse level, CPZ exposure also suppressed evoked excitatory synaptic transmission to the ACC. Finally, CPZ exposure also changed the kinetics of AMPA and NMDA receptors. These results suggest that CPZ exposure induces demyelination in the ACC coinciding with changes in intrinsic properties, action potentials and excitatory synaptic transmission.
Collapse
Affiliation(s)
- Ryo Kawabata
- Biomedical Chemistry Major, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan; Department of Neurophysiology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Shinji Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Moroyama-Machi, Iruma-Gun, Saitama, Japan
| | - Nana Kamimura
- Biomedical Chemistry Major, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Ikuko Yao
- Biomedical Chemistry Major, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Moroyama-Machi, Iruma-Gun, Saitama, Japan.
| | - Kohei Koga
- Department of Neurophysiology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan.
| |
Collapse
|
2
|
Ten Barge JA, van den Bosch GE, Slater R, van den Hoogen NJ, Reiss IKM, Simons SHP. Visceral Pain in Preterm Infants with Necrotizing Enterocolitis: Underlying Mechanisms and Implications for Treatment. Paediatr Drugs 2025; 27:201-220. [PMID: 39752054 PMCID: PMC11829917 DOI: 10.1007/s40272-024-00676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
Necrotizing enterocolitis (NEC) is a relatively rare but very severe gastrointestinal disease primarily affecting very preterm infants. NEC is characterized by excessive inflammation and ischemia in the intestines, and is associated with prolonged, severe visceral pain. Despite its recognition as a highly painful disease, current pain management for NEC is often inadequate, and research on optimal analgesic therapy for these patients is lacking. Insight into the mechanisms underlying intestinal pain in infants with NEC-visceral pain-could help identify the most effective analgesics for these vulnerable patients. Therefore, this comprehensive review aims to provide an overview of visceral nociception, including transduction, transmission, modulation, and experience, and discuss the implications for analgesic therapy in preterm infants with NEC. The transmission of visceral pain differs from that of somatic pain, contributing to the diffuse nature of visceral pain. Studies evaluating the effectiveness of analgesics for treating visceral pain in infants are scarce. However, research in visceral pain models highlights agents that may be particularly effective for treating visceral pain based on their mechanisms of action. Further research is necessary to determine whether agents that have shown promise for treating visceral pain in preclinical studies and adults are effective in infants with NEC as well.
Collapse
Affiliation(s)
- Judith A Ten Barge
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Gerbrich E van den Bosch
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | - Irwin K M Reiss
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sinno H P Simons
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Costa BM, Hines D, Phillip N, Boehringer SC, Anandakrishnan R, Council-Troche M, Davis JL. Preliminary pharmacokinetics and in vivo studies indicate analgesic and stress mitigation effects of a novel NMDA receptor modulator. J Pharmacol Exp Ther 2025; 392:103401. [PMID: 40086100 DOI: 10.1016/j.jpet.2025.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
N-methyl D-aspartate receptor (NMDAR) channel blockers produce analgesic and antidepressant effects by preferentially inhibiting the GluN2D subtype at lower doses. Given the distinct physiological role of GluN2 subunits, we hypothesized that compounds capable of simultaneously modulating GluN2A and GluN2D subtypes in opposite directions could serve as effective analgesics with minimal cognitive adverse effects. In this translational study, we investigated the in vivo effects of costa NMDAR stimulator 4 (CNS4), a recently discovered glutamate concentration-dependent NMDAR modulator. Pharmacokinetic data revealed that CNS4 reaches peak plasma and brain concentrations within 0.25 hours after intraperitoneal injection, with brain concentrations reaching values up to 8.4% of those in plasma (64.9 vs 5.47 μg/mL). Preliminary results showed that CNS4, a nonopioid compound, increased escape latency in mice during a hotplate assay by 1.74-fold compared with saline. In a fear conditioning experiment, CNS4 anecdotally reduced the electric shock sensation and significantly decreased stress-related defecation (fecal pellets: males, 21 vs 1; females, 19 vs 3). CNS4 also improved hyperarousal behavior (25 vs 4 jumps), without affecting fear memory parameters such as freezing episodes, duration, or latency. CNS4 caused no changes in locomotion across 8 of 9 parameters studied. Remarkably, approximately 50 hours after fear conditioning training, CNS4 prevented stress-induced excessive sucrose drinking behavior by more than 2-fold both in male and female mice. These findings suggest that CNS4 penetrates brain tissue and produces pharmacological effects such as those of NMDAR-targeting drugs but with a distinct mechanism, avoiding the undesirable side effects typical of traditional NMDAR blockers. Therefore, CNS4 holds potential as a novel nonopioid analgesic, warranting further investigation. SIGNIFICANCE STATEMENT: N-methyl D-aspartate (NMDA)-subtype glutamate receptors are an attractive target for chronic pain and posttraumatic stress disorder treatments because they play a critical role in forming emotional memories of stressful events. In this translational pharmacology work, we demonstrate the central analgesic and stress-mitigating characteristics of a novel glutamate concentration-biased NMDA receptor modulator, costa NMDA receptor stimulator 4.
Collapse
Affiliation(s)
- Blaise M Costa
- Pharmacology Division, Edward Via Virginia College of Osteopathic Medicine, Blacksburg, Virginia; Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia.
| | - De'Yana Hines
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, Virginia
| | - Nakia Phillip
- Pharmacology Division, Edward Via Virginia College of Osteopathic Medicine, Blacksburg, Virginia
| | - Seth C Boehringer
- Pharmacology Division, Edward Via Virginia College of Osteopathic Medicine, Blacksburg, Virginia; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| | - Ramu Anandakrishnan
- Pharmacology Division, Edward Via Virginia College of Osteopathic Medicine, Blacksburg, Virginia; Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - McAlister Council-Troche
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
4
|
Mojica JJ, Eddy G, Schwenk ES. N-Methyl-D-aspartate receptor antagonists for the prevention of chronic postsurgical pain: a narrative review. Reg Anesth Pain Med 2025; 50:160-167. [PMID: 39909540 DOI: 10.1136/rapm-2024-105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/06/2024] [Indexed: 02/07/2025]
Abstract
The N-methyl-D-aspartate receptor (NMDAR) has been linked to the development of chronic postsurgical pain (CPSP), defined as pain after surgery that does not resolve by 3 months. Once the combination of a painful stimulus and glutamate binding activates the NMDAR, calcium influx triggers signaling cascades that lead to processes like central sensitization and CPSP. Three of the most widely studied perioperative NMDAR antagonists include ketamine, magnesium, and methadone, with ketamine having garnered the greatest amount of attention. While multiple studies have found improved analgesia in the acute postoperative period, fewer studies have focused on long-term outcomes and those that have are often underpowered for CPSP or have not included those patients at highest risk. Existing meta-analyses of ketamine for CPSP are inconsistent in their findings, and studies of magnesium and methadone are even more limited. Overall, the evidence supporting NMDAR antagonists for CPSP is weak and we recommend that future studies focus on high-risk patients and potentially include combinations of NMDAR antagonists administered together for the longest duration feasible. The results of ongoing trials could have a major influence on the overall direction of the evidence supporting NMDAR antagonists in preventing CPSP.
Collapse
Affiliation(s)
- Jeffrey Jon Mojica
- Anesthesiology and Perioperative Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Grace Eddy
- Anesthesiology and Perioperative Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Eric S Schwenk
- Anesthesiology and Perioperative Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Dunker C, Schlegel K, Junker A. Phenol (bio)isosteres in drug design and development. Arch Pharm (Weinheim) 2025; 358:e2400700. [PMID: 39580699 PMCID: PMC11726161 DOI: 10.1002/ardp.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
Due to their versatile properties, phenolic compounds are integral to various biologically active molecules, including many pharmaceuticals. However, their application in drug design is often hindered by issues such as poor oral bioavailability, rapid metabolism, and potential toxicity. This review explores the use of phenol bioisosteres-structurally similar compounds that can mimic the biological activity of phenols while potentially offering improved drug-like properties. We provide an extensive analysis of various phenol bioisosteres, including benzimidazolones, benzoxazolones, indoles, quinolinones, and pyridones, highlighting their impact on the pharmacokinetic and pharmacodynamic profiles of drugs. Case studies illustrate the successful application of these bioisosteres in enhancing metabolic stability, receptor selectivity, and overall therapeutic efficacy. Additionally, the review addresses the challenges associated with phenol bioisosterism, such as maintaining potency and avoiding undesirable side effects. By offering a detailed examination of current strategies and potential future directions, this review serves as a valuable resource for medicinal chemists seeking to optimize phenolic scaffolds in drug development. The insights provided herein aim to facilitate the design of more effective and safer therapeutic agents through strategic bioisosteric modifications.
Collapse
Affiliation(s)
- Calvin Dunker
- European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
- Werner Siemens Imaging Center, Department of Preclinical Imaging and RadiopharmacyUniversity of TübingenTübingenGermany
| | - Katja Schlegel
- European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
| | - Anna Junker
- European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
- Werner Siemens Imaging Center, Department of Preclinical Imaging and RadiopharmacyUniversity of TübingenTübingenGermany
| |
Collapse
|
6
|
Galosi M, Pennasilico L, Piccionello AP, Serino F, Tosi F, Sassaroli S, Riccio V, Angorini A, Salvaggio A, Di Bella C. Effects of a synergic interaction between magnesium sulphate and ketamine on the perioperative nociception in dogs undergoing tibial plateau leveling osteotomy: a pilot study. Front Vet Sci 2024; 11:1453673. [PMID: 39539316 PMCID: PMC11557496 DOI: 10.3389/fvets.2024.1453673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Magnesium Sulphate (MgSO4) is commonly used in human medicine for the management of perioperative pain in different types of procedures. However, in veterinary medicine, the use of MgSO4 has not been evaluated for its analgesic efficacy in dogs, which has generated conflicts of opinion in this area of veterinary anesthesiology. The aim of this study was to evaluate the perioperative analgesic efficacy of MgSO4 in combination with Ketamine in dogs undergoing Tibial Plateau Leveling Osteotomy (TPLO). Our hypothesis is that MgSO4 plus ketamine have a synergistic action in the management of intra-and postoperative pain. Methods Twenty adult mixed breed dogs with average age 5.9 ± 2.6 years and weight 27.8 ± 9.2 kg were included in this prospective, clinical, randomized study. Dogs were randomly assigned to two groups. The MK group received ketamine (0.5 mg/kg as starting bolus followed by continuous infusion rate at 1 mg/kg/h). At the end of the ketamine bolus, MgSO4 (50 mg/kg over 15 min) was administered by the same route, followed by a constant rate infusion (CRI) at 15 mg/kg/h, IV. K group received a bolus of ketamine followed by a CRI at the same dosage described in MK group. Main cardiorespiratory parameters were recorded 10 min before the start of surgery (BASE), after the ketamine bolus (T1) and the MgSO4 bolus (T2), during the skin incision (SKIN), the osteotomy (OSTEOTOMY) and skin suturing (SUTURE). In the postoperative period, the short form of Glasgow Composite Pain scale (SF-CMPS) was used to assess pain at 30, 60, 120, and 180 min after extubation (Post30, Post60, Post120, and Post180, respectively). The main blood electrolytes (Mg2+, Ca2+, Na+, K+) were analyzed at BASE, T2, OSTEOTOMY, SUTURE and T3 (one hour after stopping MgSO4 infusion). Number of rescue analgesia and administration times were recorded both in the intra-and postoperative period. Results In K group 7 out of 10 dogs required intraoperatory rescue analgesia compared to MK group (3/10). Furthermore, mean arterial pressure (MAP) and heart rate (HR) were significantly higher at OSTEOTOMY compared to BASE time in both groups. In the postoperative period, at T120, ICMPS-SF score was higher in K group than MK group. Conclusion The administration of MgSO4 could guarantee better analgesia in the perioperative period in dogs undergoing TPLO, performing a synergistic action with ketamine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Caterina Di Bella
- School of Bioscience and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
7
|
Paris JR, Nitta Fernandes FA, Pirri F, Greco S, Gerdol M, Pallavicini A, Benoiste M, Cornec C, Zane L, Haas B, Le Bohec C, Trucchi E. Gene Expression Shifts in Emperor Penguin Adaptation to the Extreme Antarctic Environment. Mol Ecol 2024:e17552. [PMID: 39415606 DOI: 10.1111/mec.17552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Gene expression can accelerate ecological divergence by rapidly tweaking the response of an organism to novel environments, with more divergent environments exerting stronger selection and supposedly, requiring faster adaptive responses. Organisms adapted to extreme environments provide ideal systems to test this hypothesis, particularly when compared to related species with milder ecological niches. The Emperor penguin (Aptenodytes forsteri) is the only endothermic vertebrate breeding in the harsh Antarctic winter, in stark contrast with the less cold-adapted sister species, the King penguin (A. patagonicus). Assembling the first de novo transcriptomes and analysing multi-tissue (brain, kidney, liver, muscle, skin) RNA-Seq data from natural populations of both species, we quantified the shifts in tissue-enhanced genes, co-expression gene networks, and differentially expressed genes characterising Emperor penguin adaptation to the extreme Antarctic. Our analyses revealed the crucial role played by muscle and liver in temperature homeostasis, fasting, and whole-body energy metabolism (glucose/insulin regulation, lipid metabolism, fatty acid beta-oxidation, and blood coagulation). Repatterning at the regulatory level appears as more important in the brain of the Emperor penguin, showing the lowest signature of differential gene expression, but the largest co-expression gene network shift. Nevertheless, over-expressed genes related to mTOR signalling in the brain and the liver support their central role in cold and fasting responses. Besides contributing to understanding the genetics underlying complex traits, like body energy reservoir management, our results provide a first insight into the role of gene expression in adaptation to one of the most extreme environmental conditions endured by an endotherm.
Collapse
Affiliation(s)
- Josephine R Paris
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Flávia A Nitta Fernandes
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Federica Pirri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Marine Benoiste
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Clément Cornec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- ENES Bioacoustics Research Laboratory, CRNL, CNRS, Inserm, University of Lyon, Saint-Etienne, France
| | - Lorenzo Zane
- Department of Biology, University of Padova, Padova, Italy
| | - Brian Haas
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Céline Le Bohec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Département de Biologie Polaire, Centre Scientifique de Monaco, Monaco, Monaco
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
8
|
Pușcașu C, Chiriță C, Negreș S, Blebea NM. Exploring the Therapeutic Potential of N-Methyl-D-Aspartate Receptor Antagonists in Neuropathic Pain Management. Int J Mol Sci 2024; 25:11111. [PMID: 39456894 PMCID: PMC11507561 DOI: 10.3390/ijms252011111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Neuropathic pain (NeP) is a complex and debilitating condition that impacts millions of people globally. Although various treatment options exist, their effectiveness is often limited, and they can be accompanied by significant side effects. In recent years, there has been increasing interest in targeting the N-methyl-D-aspartate receptor (NMDAR) as a potential therapeutic approach to alleviate different types of neuropathic pain. This narrative review aims to provide a comprehensive examination of NMDAR antagonists, specifically ketamine, memantine, methadone, amantadine, carbamazepine, valproic acid, phenytoin, dextromethorphan, riluzole, and levorphanol, in the management of NeP. By analyzing and summarizing current preclinical and clinical studies, this review seeks to evaluate the efficacy of these pharmacologic agents in providing adequate relief for NeP.
Collapse
Affiliation(s)
- Ciprian Pușcașu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | - Cornel Chiriță
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | - Simona Negreș
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | - Nicoleta Mirela Blebea
- Faculty of Pharmacy, “Ovidius” University of Constanța, Căpitan Aviator Al. Şerbănescu 6, 900470 Constanța, Romania;
| |
Collapse
|
9
|
do Nascimento AM, Marques RB, Roldão AP, Rodrigues AM, Eslava RM, Dale CS, Reis EM, Schechtman D. Exploring protein-protein interactions for the development of new analgesics. Sci Signal 2024; 17:eadn4694. [PMID: 39378285 DOI: 10.1126/scisignal.adn4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The development of new analgesics has been challenging. Candidate drugs often have limited clinical utility due to side effects that arise because many drug targets are involved in signaling pathways other than pain transduction. Here, we explored the potential of targeting protein-protein interactions (PPIs) that mediate pain signaling as an approach to developing drugs to treat chronic pain. We reviewed the approaches used to identify small molecules and peptide modulators of PPIs and their ability to decrease pain-like behaviors in rodent animal models. We analyzed data from rodent and human sensory nerve tissues to build associated signaling networks and assessed both validated and potential interactions and the structures of the interacting domains that could inform the design of synthetic peptides and small molecules. This resource identifies PPIs that could be explored for the development of new analgesics, particularly between scaffolding proteins and receptors for various growth factors and neurotransmitters, as well as ion channels and other enzymes. Targeting the adaptor function of CBL by blocking interactions between its proline-rich carboxyl-terminal domain and its SH3-domain-containing protein partners, such as GRB2, could disrupt endosomal signaling induced by pain-associated growth factors. This approach would leave intact its E3-ligase functions, which are mediated by other domains and are critical for other cellular functions. This potential of PPI modulators to be more selective may mitigate side effects and improve the clinical management of pain.
Collapse
Affiliation(s)
- Alexandre Martins do Nascimento
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Rauni Borges Marques
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Interunit Graduate Program in Bioinformatics, University of São Paulo, SP 05508-000, Brazil
| | - Allan Pradelli Roldão
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Ana Maria Rodrigues
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Rodrigo Mendes Eslava
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Camila Squarzoni Dale
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Eduardo Moraes Reis
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Deborah Schechtman
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| |
Collapse
|
10
|
Chen Y, Wang E, Sites BD, Cohen SP. Integrating mechanistic-based and classification-based concepts into perioperative pain management: an educational guide for acute pain physicians. Reg Anesth Pain Med 2024; 49:581-601. [PMID: 36707224 DOI: 10.1136/rapm-2022-104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Chronic pain begins with acute pain. Physicians tend to classify pain by duration (acute vs chronic) and mechanism (nociceptive, neuropathic and nociplastic). Although this taxonomy may facilitate diagnosis and documentation, such categories are to some degree arbitrary constructs, with significant overlap in terms of mechanisms and treatments. In clinical practice, there are myriad different definitions for chronic pain and a substantial portion of chronic pain involves mixed phenotypes. Classification of pain based on acuity and mechanisms informs management at all levels and constitutes a critical part of guidelines and treatment for chronic pain care. Yet specialty care is often siloed, with advances in understanding lagging years behind in some areas in which these developments should be at the forefront of clinical practice. For example, in perioperative pain management, enhanced recovery protocols are not standardized and tend to drive treatment without consideration of mechanisms, which in many cases may be incongruent with personalized medicine and mechanism-based treatment. In this educational document, we discuss mechanisms and classification of pain as it pertains to commonly performed surgical procedures. Our goal is to provide a clinical reference for the acute pain physician to facilitate pain management decision-making (both diagnosis and therapy) in the perioperative period.
Collapse
Affiliation(s)
- Yian Chen
- Anesthesiology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric Wang
- Anesthesiology and Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Brian D Sites
- Anesthesiology and Orthopaedics, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Steven P Cohen
- Anesthesiology, Neurology, Physical Medicine & Rehabilitation and Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Moreau N, Korai SA, Sepe G, Panetsos F, Papa M, Cirillo G. Peripheral and central neurobiological effects of botulinum toxin A (BoNT/A) in neuropathic pain: a systematic review. Pain 2024; 165:1674-1688. [PMID: 38452215 DOI: 10.1097/j.pain.0000000000003204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 03/09/2024]
Abstract
ABSTRACT Botulinum toxin (BoNT), a presynaptic inhibitor of acetylcholine (Ach) release at the neuromuscular junction (NMJ), is a successful and safe drug for the treatment of several neurological disorders. However, a wide and recent literature review has demonstrated that BoNT exerts its effects not only at the "periphery" but also within the central nervous system (CNS). Studies from animal models, in fact, have shown a retrograde transport to the CNS, thus modulating synaptic function. The increasing number of articles reporting efficacy of BoNT on chronic neuropathic pain (CNP), a complex disease of the CNS, demonstrates that the central mechanisms of BoNT are far from being completely elucidated. In this new light, BoNT might interfere with the activity of spinal, brain stem, and cortical circuitry, modulating excitability and the functional organization of CNS in healthy conditions. Botulinum toxins efficacy on CNP is the result of a wide and complex action on many and diverse mechanisms at the basis of the maladaptive plasticity, the core of the pathogenesis of CNP. This systematic review aims to discuss in detail the BoNT's mechanisms and effects on peripheral and central neuroplasticity, at the basis for the clinical efficacy in CNP syndromes.
Collapse
Affiliation(s)
- Nathan Moreau
- Laboratoire de Neurobiologie oro-faciale, EA 7543, Université Paris Cité, Paris, France
| | - Sohaib Ali Korai
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Sepe
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, Silk Biomed SL, Madrid, Spain
| | - Michele Papa
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Cirillo
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
12
|
Qiao LY. Satellite Glial Cells Bridge Sensory Neuron Crosstalk in Visceral Pain and Cross-Organ Sensitization. J Pharmacol Exp Ther 2024; 390:213-221. [PMID: 38777604 PMCID: PMC11264254 DOI: 10.1124/jpet.123.002061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Following colonic inflammation, the uninjured bladder afferent neurons are also activated. The mechanisms and pathways underlying this sensory neuron cross-activation (from injured neurons to uninjured neurons) are not fully understood. Colonic and bladder afferent neurons reside in the same spinal segments and are separated by satellite glial cells (SGCs) and extracellular matrix in dorsal root ganglia (DRG). SGCs communicate with sensory neurons in a bidirectional fashion. This review summarizes the differentially regulated genes/proteins in the injured and uninjured DRG neurons and explores the role of SGCs in regulation of sensory neuron crosstalk in visceral cross-organ sensitization. The review also highlights the paracrine pathways in mediating neuron-SGC and SGC-neuron coupling with an emphasis on the neurotrophins and purinergic systems. Finally, I discuss the results from recent RNAseq profiling of SGCs to reveal useful molecular markers for characterization, functional study, and therapeutic targets of SGCs. SIGNIFICANCE STATEMENT: Satellite glial cells (SGCs) are the largest glial subtypes in sensory ganglia and play a critical role in mediating sensory neuron crosstalk, an underlying mechanism in colon-bladder cross-sensitization. Identification of novel and unique molecular markers of SGCs can advance the discovery of therapeutic targets in treatment of chronic pain including visceral pain comorbidity.
Collapse
Affiliation(s)
- Liya Y Qiao
- Department of Physiology and Biophysics, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
13
|
Zhaksylyk A, Abdildin YG, Sultangazin S, Zhumakanova A, Viderman D. The impact of ketamine on pain-related outcomes after thoracotomy: a systematic review with meta-analysis of randomized controlled trials. Front Med (Lausanne) 2024; 11:1394219. [PMID: 38919936 PMCID: PMC11196606 DOI: 10.3389/fmed.2024.1394219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024] Open
Abstract
Objective This meta-analysis aims to examine how effective ketamine is in the management of acute and preventing chronic post-thoracotomy pain by synthesizing the available research. Method A systematic literature search was conducted across PubMed, Scopus, and Cochrane Library till May 2023. Randomized Controlled Trials (RCT) examining the influence of ketamine on post-thoracotomy pain in adults were included. The intervention group included ketamine plus morphine, while the control group included morphine only. The outcome measures were opioid intake and pain scores at rest and on moving/coughing. Evidence quality was evaluated using the Cochrane Risk of Bias and GRADE assessment. Results Nine articles comprising 556 patients were selected for meta-analysis. The intervention group had a significant decrease in pain at rest (Std. Mean Difference (SMD = -0.60 with 95% CI [-0.83, -0.37]) and on movement/cough (SMD = -0.73 [-1.27, -0.18]) in the first postoperative days. Also, the ketamine group had lower opioid consumption (mg) in comparison with controls (SMD = -2.75 [-4.14, -1.36], p-value = 0.0001) in postoperative days 1-3. There was no data to assess the long-term effect of ketamine on chronic pain. Conclusion This meta-analysis shows that ketamine use can lower acute pain levels and morphine use after thoracotomy. In the future, larger RCTs using standardized methods and assessing both short-term and long-term analgesic effects of ketamine are necessary to deepen the understanding of the issue.
Collapse
Affiliation(s)
- Aruzhan Zhaksylyk
- Department of Surgery, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Yerkin G. Abdildin
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Suienish Sultangazin
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Aigerim Zhumakanova
- Department of Surgery, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Dmitriy Viderman
- Department of Surgery, School of Medicine, Nazarbayev University, Astana, Kazakhstan
- Department of Anesthesiology, Intensive Care and Pain Medicine, National Research Oncology Center, Astana, Kazakhstan
| |
Collapse
|
14
|
Xiang J, Cao C, Chen J, Kong F, Nian S, Li Z, Li N. Efficacy and safety of ketamine as an adjuvant to regional anesthesia: A systematic review and meta-analysis of randomized controlled trials. J Clin Anesth 2024; 94:111415. [PMID: 38394922 DOI: 10.1016/j.jclinane.2024.111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/03/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
STUDY OBJECTIVE To identify whether adding ketamine to the local anesthetics (LA) in the regional anesthesia could prolong the duration of analgesia. DESIGN A Systematic review and meta-analysis of randomized controlled trials. SETTING The major dates were obtained in the operating room and the postoperative recovery ward. PATIENTS A total of 1011 patients at ASA physical status I and II were included in the analysis. Procedure performed including cesarean section, orthopedic, radical mastectomy, urological or lower abdominal surgery and intracavitary brachytherapy implants insertion. INTERVENTIONS After an extensive search of the electronic database, patients received regional anesthesia combined or not combined general anesthesia and with or without adding ketamine to LA were included in the analysis. The regional anesthesia includes spinal anesthesia, brachial plexus block, pectoral nerve block, transversus abdominis plane block and femoral and sciatic nerve block. MEASUREMENT The primary outcome was the duration of analgesia. Secondary outcomes were the duration and onset time of motor and sensory block as well as the ketamine-related adverse effect. Data are expressed in mean differences in continuous data and odds ratios (OR) for dichotomous data with 95% confidence intervals. The risk of bias of the included studies was evaluated using the revised Cochrane risk of bias tool for randomized trials. The quality of evidence for each outcome was rated according to the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) Working Group system. MAIN RESULT Twenty randomized controlled trials were included in the analysis. When ketamine was used as an adjuvant to LA, the duration of analgesia could be prolonged(172.21 min, 95% CI, 118.20 to 226.22; P<0.00001, I2 = 98%), especially in the peripheral nerve block(366.96 min, 95% CI, 154.19 to 579.74; P = 0.0007, I2 = 98%). Secondary outcomes showed ketamine could prolong the duration of sensory block(29.12 min, 95% CI, 10.22 to 48.01; P = 0.003, I2 = 96%) but no effect on the motor block(6.94 min, 95% CI,-2.65 to 16.53;P = 0.16, I2 = 84%), the onset time of motor and sensory block (motor onset time, -1.17 min, 95% CI, -2.67 to 0.34; P = 0.13, I2 = 100%; sensory onset time, -0.33 min, 95% CI,-0.87 to 0.20; P = 0.23, I2 = 96%) as well as the ketamine-related adverse effect(OR, 1.97, 95% CI,0.93 to 4.17;P = 0.08, I2 = 57%). CONCLUSION This study indicates that ketamine could be an ideal adjuvant to local anesthetics regardless of the types of anesthesia. Overall, the quality of the evidence is low.
Collapse
Affiliation(s)
- Jiajia Xiang
- Department of Anesthesiology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China; Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Cao
- Department of Obstetrics and Gynecology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China
| | - Jiayu Chen
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Fanyi Kong
- Department of Neurology, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Sunqi Nian
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhigui Li
- Department of Anesthesiology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China.
| | - Na Li
- Department of Anesthesiology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China.
| |
Collapse
|
15
|
Wen ZH, Wu ZS, Huang SY, Chou TL, Cheng HJ, Lo YH, Jean YH, Sung CS. Local Magnesium Sulfate Administration Ameliorates Nociception, Peripheral Inflammation, and Spinal Sensitization in a Rat Model of Incisional Pain. Neuroscience 2024; 547:98-107. [PMID: 38657727 DOI: 10.1016/j.neuroscience.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Postoperative pain remains one of the most common complaints after surgery, and appropriate treatments are limited. METHODS We therefore investigated the effect of the anti-nociceptive properties of magnesium sulfate (MgSO4), an N-methyl-D-aspartate (NMDA) receptor antagonist, on incision-induced postoperative pain and peripheral and central nervous system inflammation. RESULTS We found that local MgSO4 administration dose-dependently increases paw withdrawal latency, indicating reduced peripheral postoperative pain. Furthermore, MgSO4 inhibited the expression of interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) and phosphorylation of the NMDA receptor NR1 subunit in injured paw tissue and significantly attenuated microglial and astrocytic activation in the ipsilateral lumbar spinal cord dorsal horn. CONCLUSION Locally administered MgSO4 has potential for development as an adjunctive therapy for preventing central nociceptive sensitization.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Zong-Sheng Wu
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tung-Lin Chou
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Hao-Jung Cheng
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Yi-Hao Lo
- Department of Family Medicine, Zouying Armed Forces General Hospital, Kaohsiung 813204, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Yen-Hsuan Jean
- Department of Orthopedic Surgery, Pingtung Christian Hospital, No. 60 Dalian Road, Pingtung 900026, Taiwan
| | - Chun-Sung Sung
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei 112201, Taiwan; School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
16
|
Hanna AF, Bolling D, Tadros M. From Wheelchair Bound to Working: A Case Study of Intravenous Ketamine Infusions in Treating Stiff Person Syndrome. Cureus 2024; 16:e59397. [PMID: 38817534 PMCID: PMC11139490 DOI: 10.7759/cureus.59397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Stiff Person Syndrome (SPS) is a rare autoimmune condition marked by extremely painful muscle spasms, stiffness, and rigidity throughout the body. Its rarity often translates to limited treatment options for patients and, occasionally, challenges in obtaining a definitive diagnosis. SPS also impacts patients' mental health, social and economic involvement, and overall quality of life. A 43-year-old man was initially being seen for lumbar radicular pain. A clinical diagnosis of SPS was made by a neurologist and confirmed by in-clinic follow-ups and anti-glutamic acid decarboxylase (anti-GAD) antibody testing. The Pain Management doctor agreed with this diagnosis and offered intravenous (IV) ketamine treatment, which he has found to positively impact the treatment of similar disorders. After an initial 10-day infusion, the patient reported improvement in pain and function. For almost two years, the patient received intravenous immunoglobulin (IVIg) and IV ketamine treatments to manage their condition and maintain pain control as well as quality of life. When the patient's symptoms began worsening after IVIg infusions, the decision to withdraw IVIg infusions and continue ketamine infusions was made. After discontinuing IVIg infusions, the patient reported improvement in function and pain level and continues to receive monthly two-day ketamine boosters. Outside of the infusions, the patient was able to discontinue the use of fentanyl patches and continued taking ketamine lozenges, oxycodone-acetaminophen, and dextromethorphan for at-home pain management. The patient's symptoms continue to be managed effectively with their current regimen, enabling their return to work and experiencing an enhanced quality of life. This case illustrates the potential benefits of IV ketamine treatment for patients with treatment-resistant SPS and similar neurologic and autoimmune disorders. Understanding and examining treatment alternatives for rare syndromes is crucial for achieving optimal patient outcomes. Additionally, documenting such cases offers valuable insights into the mechanism of ketamine, extending beyond these syndromes.
Collapse
Affiliation(s)
- Ashraf F Hanna
- Pain Management/Anesthesiology, Florida Spine Institute, Clearwater, USA
| | - Danielle Bolling
- Pain Management, University of South Florida (USF) Health Morsani College of Medicine, Tampa, USA
| | - Mariam Tadros
- Pain Management, Lake Erie College of Osteopathic Medicine, Bradenton, USA
| |
Collapse
|
17
|
Ivanova E, Matyushkin A, Sorokina A, Alexeeva S, Miroshkina I, Kachalov K, Voronina T, Durnev A. Low-Affinity NMDA Receptor Antagonist Hemantane in a Topical Formulation Attenuates Arthritis Induced by Freund's Complete Adjuvant in Rats. Adv Pharm Bull 2024; 14:241-252. [PMID: 38585463 PMCID: PMC10997923 DOI: 10.34172/apb.2024.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 04/12/2023] [Accepted: 07/14/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose N-methyl-D-aspartate (NMDA) receptors that are expressed by T-cells modulate T-cell proliferation, cytotoxicity and cell migration toward chemokines. Several studies have shown an anti-inflammatory effect of NMDA receptor antagonists. This study compares the effect of the noncompetitive low-affinity NMDA receptor antagonist N-(2-adamantyl)-hexamethyleneimine hydrochloride (hemantane) in a topical formulation (gel) with the cyclooxygenase (COX) inhibitor diclofenac in a topical formulation (gel) in rats with arthritis induced by Freund's Complete Adjuvant (FCA). Methods On day 14 after an FCA injection into the left hind paw, rats with contralateral hind paw edema were selected for further investigation (29/65). They were treated with 5% hemantane gel or 1% diclofenac gel applied locally to hind paws daily for 2 weeks starting 14 days after the FCA injection. Rats with arthritis were examined hind paw edema, hyperalgesia, and motor deficits; their body weight and hematological parameters were recorded. The rats were euthanized on day 28, followed by histological examination of the ankle joint (HE stain). Results Rats with arthritis exhibited hind paw inflammation and hyperalgesia, motor deficits, changes of hematological parameters, reduced weight gain and spleen hypertrophy. Histological examination of the ankle joint revealed degenerative-dystrophic lesions of the cartilaginous tissue, proliferative inflammation of the synovium, edema and lymphocytic/macrophage infiltration of periarticular tissues. Hemantane gel reduced hind paw edema, pain, motor deficits and histological signs of inflammation; its effect was comparable to diclofenac gel. Conclusion Hemantane gel alleviates FCA-induced arthritis in rats, and its effect is comparable to diclofenac gel.
Collapse
Affiliation(s)
- Elena Ivanova
- Laboratory of Psychopharmacology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| | - Alexander Matyushkin
- Laboratory of Psychopharmacology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| | - Alexandra Sorokina
- Laboratory of Drug toxicology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| | - Svetlana Alexeeva
- Laboratory of Drug toxicology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| | - Irina Miroshkina
- Laboratory of Drug toxicology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| | - Kirill Kachalov
- Laboratory of Drug toxicology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| | - Tatyana Voronina
- Laboratory of Psychopharmacology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| | - Andrey Durnev
- Laboratory of Drug toxicology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
18
|
Oschman A, Rao K. Challenges in management of refractory pain and sedation in infants. Front Pharmacol 2024; 14:1259064. [PMID: 38235119 PMCID: PMC10791862 DOI: 10.3389/fphar.2023.1259064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
The survival of preterm infants continues to improve, along with an increased in neonatal intensive care unit (NICU) management of chronic infants who are medically complex infants who have prolonged hospital stays, sometimes up until 2 years of age. Despite advances in neonatal and infant care, the management of pain and sedation in chronic NICU patients continues to be a challenge. Challenges such as development of appropriate pain, sedation, and withdrawal scales along with unfamiliarity of the NICU care team with pediatric disease states and pharmacotherapy complicate management of these patients. Opioid induced hyperalgesia (OIH) and delirium may play a large role in these refractory cases, yet are often not considered in the NICU population. Drug therapy interventions such as gabapentin, ketamine, risperidone, and others have limited data for safety and efficacy in this population. This article summarizes the available literature regarding the evidence for diagnosis and management of infants with refractory pain and sedation along with the challenges that clinicians face when managing these patients.
Collapse
Affiliation(s)
- Alexandra Oschman
- Department of Pharmacy, Children’s Mercy Hospital, Kansas City, MO, United States
| | - Karishma Rao
- Division of Neonatology, Children’s Mercy Hospital, Kansas City, MO, United States
- University of Missouri Kansas City School of Medicine, Kansas City, MO, United States
| |
Collapse
|
19
|
Hosseindoost S, Askari Rad M, Inanloo SH, Rahimi M, Dehghan S, Orandi A, Dehpour AR, Majedi H. The analgesic effects of botulinum neurotoxin by modulating pain-related receptors; A literature review. Mol Pain 2024; 20:17448069241275099. [PMID: 39093638 PMCID: PMC11339750 DOI: 10.1177/17448069241275099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, have been used for the treatment of various central and peripheral neurological conditions. Recent studies have suggested that BoNTs may also have a beneficial effect on pain conditions. It has been hypothesized that one of the mechanisms underlying BoNTs' analgesic effects is the inhibition of pain-related receptors' transmission to the neuronal cell membrane. BoNT application disrupts the integration of synaptic vesicles with the cellular membrane, which is responsible for transporting various receptors, including pain receptors such as TRP channels, calcium channels, sodium channels, purinergic receptors, neurokinin-1 receptors, and glutamate receptors. BoNT also modulates the opioidergic system and the GABAergic system, both of which are involved in the pain process. Understanding the cellular and molecular mechanisms underlying these effects can provide valuable insights for the development of novel therapeutic approaches for pain management. This review aims to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions by inhibiting the transmission of pain-related receptors.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziyar Askari Rad
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Inanloo
- Department of Urology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Rahimi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Orandi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Majedi
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Nair A, Dudhedia U, Thakre M, Borkar N. Efficacy of memantine premedication in alleviating postoperative pain- A systematic review and meta-analysis. Saudi J Anaesth 2024; 18:86-94. [PMID: 38313717 PMCID: PMC10833015 DOI: 10.4103/sja.sja_398_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 02/06/2024] Open
Abstract
Many premedication agents with opioid-sparing properties have been used in patients undergoing various elective surgeries. Memantine is an N-methyl-D-aspartate (NMDA) receptor antagonist that has been used by many researchers as an opioid-sparing strategy. Various databases like PubMed, Scopus, Cochrane Library, and clinicaltrials.gov were searched after registering the review protocol in PROSPERO for randomized-controlled trials (RCTs) that investigated the efficacy and safety of memantine premedication in adult patients undergoing various elective surgeries. The risk of bias (RoB-2) scale was used to assess the quality of evidence. From the 225 articles that were identified after a database search, 3 studies were included for a qualitative systematic review and a quantitative meta-analysis. The pooled analysis revealed that the use of memantine provided better pain scores at 2nd (mean difference: -0.82, 95% CI: -1.60, -0.05, P = 0.04) with significant heterogeneity (P = 0.06; I² =71%), and 6 hours postoperatively (mean difference: -1.80, 95% CI: -2.23, -1.37, P < 0.00001), but not at 1 hour. The sedation scores at 1 hour were higher in the memantine group but comparable in the 2nd hour. The number of doses of rescue analgesia and nausea/vomiting in the postoperative period was comparable in both groups. The results of this review suggest that memantine premedication could provide better pain scores in the immediate postoperative period with acceptable adverse effects. However, the current evidence is insufficient to suggest the routine use of memantine as a premedication before elective surgeries.
Collapse
Affiliation(s)
- Abhijit Nair
- Department of Anaesthesiology, Ibra Hospital, Ministry of Health-Oman, Ibra-414, Sultanate of Oman
| | - Ujjwalraj Dudhedia
- Department of Anaesthesiology and Pain Management, Dr. L. H. Hiranandani Hospital, Powai Mumbai, Maharashtra State, India
| | - Manish Thakre
- Department of Psychiatry, Government Medical College, Nagpur, Maharashtra State, India
| | - Nitinkumar Borkar
- Department of Pediatric Surgery, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| |
Collapse
|
21
|
van der Heijden RA, Biswal S. Up-and-coming Radiotracers for Imaging Pain Generators. Semin Musculoskelet Radiol 2023; 27:661-675. [PMID: 37935213 PMCID: PMC10629993 DOI: 10.1055/s-0043-1775745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Chronic musculoskeletal pain is among the most highly prevalent diseases worldwide. Managing patients with chronic pain remains very challenging because current imaging techniques focus on morphological causes of pain that can be inaccurate and misleading. Moving away from anatomical constructs of disease, molecular imaging has emerged as a method to identify diseases according to their molecular, physiologic, or cellular signatures that can be applied to the variety of biomolecular changes that occur in nociception and pain processing and therefore have tremendous potential for precisely pinpointing the source of a patient's pain. Several molecular imaging approaches to image the painful process are now available, including imaging of voltage-gated sodium channels, calcium channels, hypermetabolic processes, the substance P receptor, the sigma-1 receptor, and imaging of macrophage trafficking. This article provides an overview of promising molecular imaging approaches for the imaging of musculoskeletal pain with a focus on preclinical methods.
Collapse
Affiliation(s)
- Rianne A. van der Heijden
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandip Biswal
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
22
|
Gianò M, Franco C, Castrezzati S, Rezzani R. Involvement of Oxidative Stress and Nutrition in the Anatomy of Orofacial Pain. Int J Mol Sci 2023; 24:13128. [PMID: 37685933 PMCID: PMC10487620 DOI: 10.3390/ijms241713128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Pain is a very important problem of our existence, and the attempt to understand it is one the oldest challenges in the history of medicine. In this review, we summarize what has been known about pain, its pathophysiology, and neuronal transmission. We focus on orofacial pain and its classification and features, knowing that is sometimes purely subjective and not well defined. We consider the physiology of orofacial pain, evaluating the findings on the main neurotransmitters; in particular, we describe the roles of glutamate as approximately 30-80% of total peripheric neurons associated with the trigeminal ganglia are glutamatergic. Moreover, we describe the important role of oxidative stress and its association with inflammation in the etiogenesis and modulation of pain in orofacial regions. We also explore the warning and protective function of orofacial pain and the possible action of antioxidant molecules, such as melatonin, and the potential influence of nutrition and diet on its pathophysiology. Hopefully, this will provide a solid background for future studies that would allow better treatment of noxious stimuli and for opening new avenues in the management of pain.
Collapse
Affiliation(s)
- Marzia Gianò
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (S.C.)
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (S.C.)
| | - Stefania Castrezzati
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (S.C.)
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (S.C.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| |
Collapse
|
23
|
Ma X, Yan J, Jiang H. Application of Ketamine in Pain Management and the Underlying Mechanism. Pain Res Manag 2023; 2023:1928969. [PMID: 37622028 PMCID: PMC10447145 DOI: 10.1155/2023/1928969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Since ketamine was approved by the FDA as an intravenous anesthetic, it has been in clinical use for more than 50 years. Apart from its anesthetic effects, ketamine is one of the few intravenous anesthetics with potent analgesic properties. As part of the effort to develop pain management, renewed interest has focused on the use of ketamine for the treatment of acute and chronic pain. Ketamine is commonly used to treat various kinds of chronic pain syndromes and is also applied to control perioperative pain and reduce the consumption of postoperative analgesics. However, its precise mechanisms of action remain mysterious for a large part. Despite extensive research in the field, the mechanism of ketamine is still unclear. Its analgesic effect appears to be largely mediated by blockade of NMDARs, but opioid, GABA, and monoaminergic system seem to partly participate in the pain transmission procedure. Its metabolites also have an analgesic effect, which may prolong pain relief. More recently, the antidepressant effect of ketamine has been considered to reduce pain-related aversion to relieve chronic pain. Overall, the analgesic mechanism of ketamine seems to be a complex combination of multiple factors. Due to its potent analgesic properties, ketamine is an analgesic with great clinical application prospects. Exploring the precise mechanism of action of ketamine will help guide clinical medication and confirm indications for ketamine analgesia. This review aims to list the application of ketamine in pain management and discuss its analgesic mechanism.
Collapse
Affiliation(s)
- Xiaofan Ma
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Riccardi A, Guarino M, Serra S, Spampinato MD, Vanni S, Shiffer D, Voza A, Fabbri A, De Iaco F. Narrative Review: Low-Dose Ketamine for Pain Management. J Clin Med 2023; 12:jcm12093256. [PMID: 37176696 PMCID: PMC10179418 DOI: 10.3390/jcm12093256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Pain is the leading cause of medical consultations and occurs in 50-70% of emergency department visits. To date, several drugs have been used to manage pain. The clinical use of ketamine began in the 1960s and it immediately emerged as a manageable and safe drug for sedation and anesthesia. The analgesic properties of this drug were first reported shortly after its use; however, its psychomimetic effects have limited its use in emergency departments. Owing to the misuse and abuse of opioids in some countries worldwide, ketamine has become a versatile tool for sedation and analgesia. In this narrative review, ketamine's role as an analgesic is discussed, with both known and new applications in various contexts (acute, chronic, and neuropathic pain), along with its strengths and weaknesses, especially in terms of psychomimetic, cardiovascular, and hepatic effects. Moreover, new scientific evidence has been reviewed on the use of additional drugs with ketamine, such as magnesium infusion for improving analgesia and clonidine for treating psychomimetic symptoms. Finally, this narrative review was refined by the experience of the Pain Group of the Italian Society of Emergency Medicine (SIMEU) in treating acute and chronic pain with acute manifestations in Italian Emergency Departments.
Collapse
Affiliation(s)
| | - Mario Guarino
- Emergency Department, Centro Traumatologico Ortopedico, Azienda Ospedaliera di Rilievo Nazionale dei Colli, 80131 Napoli, Italy
| | - Sossio Serra
- Emergency Department, Maurizio Bufalini Hospital, 47522 Cesena, Italy
| | | | - Simone Vanni
- Dipartimento Emergenza e Area Critica, Azienda USL Toscana Centro Struttura Complessa di Medicina d'Urgenza, 50053 Empoli, Italy
| | - Dana Shiffer
- Emergency Department, Humanitas University, Via Rita Levi Montalcini 4, 20089 Milan, Italy
| | - Antonio Voza
- Emergency Department, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Andrea Fabbri
- Emergency Department, AUSL Romagna, Presidio Ospedaliero Morgagni-Pierantoni, 47121 Forlì, Italy
| | - Fabio De Iaco
- Emergency Department, Ospedale Maria Vittoria, 10144 Turin, Italy
| |
Collapse
|
25
|
Irwin MR, Curay CM, Choi S, Kiyatkin EA. Basic metabolic and vascular effects of ketamine and its interaction with fentanyl. Neuropharmacology 2023; 228:109465. [PMID: 36801400 PMCID: PMC10006345 DOI: 10.1016/j.neuropharm.2023.109465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Ketamine is a short-acting general anesthetic with hallucinogenic, analgesic, and amnestic properties. In addition to its anesthetic use, ketamine is commonly abused in rave settings. While safe when used by medical professionals, uncontrolled recreational use of ketamine is dangerous, especially when mixed with other sedative drugs, including alcohol, benzodiazepines, and opioid drugs. Since synergistic antinociceptive interactions between opioids and ketamine were demonstrated in both preclinical and clinical studies, such an interaction could exist for the hypoxic effects of opioid drugs. Here, we focused on the basic physiological effects of ketamine as a recreational drug and its possible interactions with fentanyl-a highly potent opioid that induces strong respiratory depression and robust brain hypoxia. By using multi-site thermorecording in freely-moving rats, we showed that intravenous ketamine at a range of human relevant doses (3, 9, 27 mg/kg) dose-dependently increases locomotor activity and brain temperature, as assessed in the nucleus accumbens (NAc). By determining temperature differentials between the brain, temporal muscle, and skin, we showed that the brain hyperthermic effect of ketamine results from increased intracerebral heat production, an index of metabolic neural activation, and decreased heat loss due to peripheral vasoconstriction. By using oxygen sensors coupled with high-speed amperometry we showed that ketamine at the same doses increases NAc oxygen levels. Finally, co-administration of ketamine with intravenous fentanyl results in modest enhancement of fentanyl-induced brain hypoxia also enhancing the post-hypoxic oxygen increase. Therefore, in contrast to fentanyl, ketamine increases brain oxygenation but potentiates brain hypoxia induced by fentanyl.
Collapse
Affiliation(s)
- Matthew R Irwin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, 21224, USA
| | - Carlos M Curay
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, 21224, USA
| | - Shinbe Choi
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, 21224, USA
| | - Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, 21224, USA.
| |
Collapse
|
26
|
Cataldo G, Lunzer MM, Akgün E, Wong HL, Portoghese PS, Simone DA. MMG22 Potently Blocks Hyperalgesia in Cisplatin-treated Mice. Neuroscience 2023; 516:54-61. [PMID: 36805004 PMCID: PMC10065962 DOI: 10.1016/j.neuroscience.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
MMG22 is a bivalent ligand containing MOR agonist and mGluR5 antagonist pharmacophores connected by a 22-atom linker. Intrathecal (i.t.) administration of MMG22 to inflamed mice has been reported to produce fmol-range antinociception in the reversal of LPS-induced hyperalgesia. MMG22 reduced hyperalgesia in the spared nerve injury (SNI) model of neuropathic pain at 10 days after injury but not at 30 days after injury, perhaps related to the inflammation that occurs early after injury but subsequently subsides. The present study determined the efficacy of MMG22 in cisplatin-treated male mice in order to provide data relating to the efficacy of MMG22 in the treatment of neuropathic pain that is associated with inflammation. Groups of eight mice each received daily intraperitoneal (i.p.) injections of cisplatin for seven days to produce robust mechanical allodynia defined by the decrease in withdrawal threshold using an electronic von Frey applied to the plantar surface of the hind paw. Intrathecal administration of MMG22 potently reduced mechanical hyperalgesia (ED50 0.04 fmol/mouse) without tolerance, whereas MMG10 was essentially inactive. Morphine was less potent than MMG22 by >5-orders of magnitude and displayed tolerance. Subcutaneous MMG22 was effective (ED50 = 2.41 mg/kg) and devoid of chronic tolerance. We propose that MMG22 induces the formation of a MOR-mGluR5 heteromer through selective interaction with the upregulated NR2B subunit of activated NMDAR, in view of the 4600-fold reduction of i.t. MMG22 antinociception by the selective NR2B antagonist, Ro25-6981. A possible explanation for the substantially reduced potency for MMG22 in the SNI model is discussed.
Collapse
Affiliation(s)
- Giuseppe Cataldo
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mary M Lunzer
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eyup Akgün
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Henry L Wong
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Philip S Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
27
|
Irwin MR, Curay CM, Choi S, Kiyatkin EA. Basic physiological effects of ketamine-xylazine mixture as a general anesthetic preparation for rodent surgeries. Brain Res 2023; 1804:148251. [PMID: 36690168 PMCID: PMC9975069 DOI: 10.1016/j.brainres.2023.148251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Among the numerous general anesthetics utilized in rodent surgical procedures, the co-administration of ketamine and xylazine is the current standard for induction and maintenance of surgical planes of anesthesia and pain control. In contrast to classical GABAergic anesthetics, which act to inhibit CNS activity, inducing muscle relaxation, sedation, hypothermia, and brain hypoxia, ketamine and xylazine act through different mechanisms to induce similar effects while also providing potent analgesia. By using three-point thermorecording in freely moving rats, we show that the ketamine-xylazine mixture induces modest brain hyperthermia, resulting from increased intra-cerebral heat production due to metabolic brain activation and increased heat loss due to skin vasodilation. The first effect derives from ketamine, which alone increases brain and body temperatures due to brain metabolic activation and skin vasoconstriction. The second effect derives from xylazine, which increases heat loss due to potent skin vasodilation. By using oxygen sensors coupled with amperometry, we show that the ketamine-xylazine mixture modestly decreases brain oxygen levels that results from relatively weak respiratory depression. This tonic pharmacological effect was preceded by a strong but transient oxygen increase that may result from a stressful injection or unknown, possibly peripheral action of this drug combination. This pattern of physiological effects elicited by the ketamine-xylazine mixture differs from the effects of other general anesthetic drugs, particularly barbiturates.
Collapse
Affiliation(s)
- Matthew R Irwin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD 21224, USA
| | - Carlos M Curay
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD 21224, USA
| | - Shinbe Choi
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD 21224, USA
| | - Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD 21224, USA.
| |
Collapse
|
28
|
Harris L, Regan MC, Myers SJ, Nocilla KA, Akins NS, Tahirovic YA, Wilson LJ, Dingledine R, Furukawa H, Traynelis SF, Liotta DC. Novel GluN2B-Selective NMDA Receptor Negative Allosteric Modulator Possesses Intrinsic Analgesic Properties and Enhances Analgesia of Morphine in a Rodent Tail Flick Pain Model. ACS Chem Neurosci 2023; 14:917-935. [PMID: 36779874 PMCID: PMC9983021 DOI: 10.1021/acschemneuro.2c00779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 02/14/2023] Open
Abstract
Many cases of accidental death associated with drug overdose are due to chronic opioid use, tolerance, and addiction. Analgesic tolerance is characterized by a decreased response to the analgesic effects of opioids, requiring increasingly higher doses to maintain the desired level of pain relief. Overactivation of GluN2B-containing N-methyl-d-Aspartate receptors is thought to play a key role in mechanisms underlying cellular adaptation that takes place in the development of analgesic tolerance. Herein, we describe a novel GluN2B-selective negative allosteric modulator, EU93-108, that shows high potency and brain penetrance. We describe the structural basis for binding at atomic resolution. This compound possesses intrinsic analgesic properties in the rodent tail immersion test. EU93-108 has an acute and significant anodyne effect, whereby morphine when combined with EU93-108 produces a higher tail flick latency compared to that of morphine alone. These data suggest that engagement of GluN2B as a target has utility in the treatment of pain, and EU93-108 could serve as an appropriate tool compound to interrogate this hypothesis. Future structure-activity relationship work around this scaffold could give rise to compounds that can be co-administered with opioids to diminish the onset of tolerance due to chronic opioid use, thereby modifying their utility.
Collapse
Affiliation(s)
- Lynnea
D. Harris
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Michael C. Regan
- W.M.
Keck Structural Biology Laboratory, Cold
Spring Harbor Laboratory, New York, New York11724, United States
- RADD
Pharmaceuticals, Westport, Connecticut06880, United States
| | - Scott J. Myers
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Kelsey A. Nocilla
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Nicholas S. Akins
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Yesim A. Tahirovic
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Lawrence J. Wilson
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Ray Dingledine
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Hiro Furukawa
- W.M.
Keck Structural Biology Laboratory, Cold
Spring Harbor Laboratory, New York, New York11724, United States
| | - Stephen F. Traynelis
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Dennis C. Liotta
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| |
Collapse
|
29
|
Hassan ME, Mahran E. Effect of magnesium sulfate with ketamine infusions on intraoperative and postoperative analgesia in cancer breast surgeries: a randomized double-blind trial. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2023; 73:165-170. [PMID: 34332956 PMCID: PMC10068526 DOI: 10.1016/j.bjane.2021.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Opioids are the cornerstone in managing postoperative pain; however, they have many side effects. Ketamine and Magnesium (Mg) are NMDA receptor antagonists used as adjuvant analgesics to decrease postoperative opioid consumption. OBJECTIVE We assumed that adding Mg to ketamine infusion can improve the intraoperative and postoperative analgesic efficacy of ketamine infusion alone in cancer breast surgeries. METHODS Ninety patients aged between 18 and 65 years and undergoing elective cancer breast surgery were included in this prospective randomized, double-blind study. Group K received ketamine 0.5.ßmg.kg...1 bolus then 0.12.ßmg.kg...1.h...1 infusion for the first 24.ßhours postoperatively. Group KM: received ketamine 0.5.ßmg.kg...1 and Mg sulfate 50.ßmg.kg...1, then ketamine 0.12.ßmg.kg...1.h...1 and Mg sulfate 8.ßmg.kg...1.h...1 infusions for the first 24.ßhours postoperative. The primary outcome was the morphine consumption in the first 24.ßhours postoperative, while the secondary outcomes were: intraoperative fentanyl consumption, NRS, side effects, and chronic postoperative pain. RESULTS Group KM had less postoperative opioid consumption (14.12.ß...ß5.11.ßmg) than Group K (19.43.ß...ß6.8.ßmg). Also, Group KM had less intraoperative fentanyl consumption. Both groups were similar in postoperative NRS scores, the incidence of side effects related to opioids, and chronic neuropathic pain. CONCLUSION Adding Mg to ketamine infusion can safely improve intraoperative and postoperative analgesia with opioid-sparing effect in cancer breast surgery.
Collapse
Affiliation(s)
| | - Essam Mahran
- Cairo University, National Cancer Institute, Cairo, Egypt
| |
Collapse
|
30
|
Spinal cord astrocyte P2X7Rs mediate the inhibitory effect of electroacupuncture on visceral hypersensitivity of rat with irritable bowel syndrome. Purinergic Signal 2023; 19:43-53. [PMID: 35389158 PMCID: PMC9984627 DOI: 10.1007/s11302-021-09830-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/17/2021] [Indexed: 10/18/2022] Open
Abstract
This study explored the role of P2X7 receptors in spinal cord astrocytes in the electroacupuncture-induced inhibition of visceral hypersensitivity (VH) in rats with irritable bowel syndrome (IBS). Visceral hypersensitivity of IBS was intracolonically induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Visceromotor responses to colorectal distension (CRD-20,40,60,80 mmHg) and abdominal withdrawal reflex scoring (AWRs) were recorded after electroacupuncture at bilateral Zusanli (ST36) and Sanyinjiao (SP6) acupoints to evaluate the analgesic effect of electroacupuncture on visceral pain in rats with IBS. Fluorocitric acid (FCA), an astrocyte activity inhibitor, was injected intrathecally before electroacupuncture intervention and AWRs were recorded. Western blot and real-time qPCR were used to detect the expression of NMDA and P2X7 receptor to observe the regulation effect of electroacupuncture on NMDA receptor in the spinal cord of rats with visceral hypersensitivity. Intrathecal injection of P2X7 agonist or antagonist was administered before electroacupuncture treatment. To observe the effect of P2X7 receptor in spinal astrocytes on the inhibition of visceral hyperalgesia by electroacupuncture, the changes of AWR score, NMDA receptor in the spinal cord, and GFAP expression in astrocytes were detected. Inflammation of the colon had basically subsided at day 21 post-TNBS; persistent visceral hypersensitivity could be suppressed by electroacupuncture. This analgesic effect could be inhibited by FCA. The analgesic effect, downregulation of NMDA receptor NR1 subunit, and P2X7 protein of electroacupuncture were all reversed by FCA. P2X7 receptor antagonist A740003 can cooperate with EA to carry out analgesic effect in rats with visceral pain and downregulate the expression of NR1, NR2B, and GFAP in spinal dorsal horn. However, the P2X7 receptor agonist BzATP could partially reverse the analgesic effect of EA, inhibiting the downregulatory effect of EA on the expression of NR1, NR2B, and GFAP. These results indicate that EA may downregulate the expression of the NMDA receptor by inhibiting the P2X7 receptor in the spinal cord, thereby inhibiting spinal cord sensitization in IBS rats with visceral pain, in which astrocytes are an important medium.
Collapse
|
31
|
Ma X, Peng J, Chen Y, Wang Z, Zhou Q, Yan J, Jiang H. Esketamine Anesthetizes Mice With a Similar Potency to Racemic Ketamine. Dose Response 2023; 21:15593258231157563. [PMID: 36798635 PMCID: PMC9926386 DOI: 10.1177/15593258231157563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/13/2023] Open
Abstract
Esketamine, the right-handed optical isomer of racemic ketamine, has recently become widely used for anesthesia and analgesia as a replacement for racemic ketamine. However, there are limited studies comparing the anesthetic and analgesic effects of esketamine and racemic ketamine in mice. This research was conducted to analyze the dose-dependent anesthetic and analgesic efficacy of esketamine in mice and to compare its potency with that of the racemate. We tested the anesthetic effects of different doses of esketamine and compared its potency with that of the racemate using righting reflex tests. Then, the acetic acid-induced pain model and formalin-induced pain model were used to investigate the analgesic effect. Compared with racemic ketamine, an equivalent dose of esketamine at 100 mg/kg was required to induce stable anesthesia. In contrast, 5 mg/kg esketamine was sufficient to provide analgesic effects similar to those of 10 mg/kg ketamine. Together, esketamine had a similar potency to racemic ketamine for anesthesia and a stronger potency for analgesia in mice.
Collapse
Affiliation(s)
- Xiaofan Ma
- Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People’s Hospital, Shanghai, China
| | - Jiali Peng
- Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People’s Hospital, Shanghai, China
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zeyi Wang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People’s Hospital, Shanghai, China,Jia Yan, Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People’s Hospital, No. 639, Zhizaoju Road, Shanghai 200011, China.
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People’s Hospital, Shanghai, China,Hong Jiang, Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, No. 639, Zhizaoju Road, Shanghai, China.
| |
Collapse
|
32
|
Ferreyra S, González S. Therapeutic potential of progesterone in spinal cord injury-induced neuropathic pain: At the crossroads between neuroinflammation and N-methyl-D-aspartate receptor. J Neuroendocrinol 2023; 35:e13181. [PMID: 35924434 DOI: 10.1111/jne.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
In recent decades, an area of active research has supported the notion that progesterone promotes a wide range of remarkable protective actions in experimental models of nervous system trauma or disease, and has also provided a strong basis for considering this steroid as a promising molecule for modulating the complex maladaptive changes that lead to neuropathic pain, especially after spinal cord injury. In this review, we intend to give the readers a brief appraisal of the main mechanisms underlying the increased excitability of the spinal circuit in the pain pathway after trauma, with particular emphasis on those mediated by the activation of resident glial cells, the subsequent release of proinflammatory cytokines and their impact on N-methyl-D-aspartate receptor function. We then summarize the available preclinical data pointing to progesterone as a valuable repurposing molecule for blocking critical cellular and molecular events that occur in the dorsal horn of the injured spinal cord and are related to the development of chronic pain. Since the treatment and management of neuropathic pain after spinal injury remains challenging, the potential therapeutic value of progesterone opens new traslational perspectives to prevent central pain.
Collapse
Affiliation(s)
- Sol Ferreyra
- Instituto de Biología y Medicina Experimental, Laboratorio de Nocicepción y Dolor Neuropático, CONICET, Buenos Aires, Argentina
| | - Susana González
- Instituto de Biología y Medicina Experimental, Laboratorio de Nocicepción y Dolor Neuropático, CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| |
Collapse
|
33
|
Ackermann PW, Alim MA, Pejler G, Peterson M. Tendon pain - what are the mechanisms behind it? Scand J Pain 2023; 23:14-24. [PMID: 35850720 DOI: 10.1515/sjpain-2022-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/16/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Management of chronic tendon pain is difficult and controversial. This is due to poor knowledge of the underlying pathophysiology of chronic tendon pain, priorly known as tendinitis but now termed tendinopathy. The objective of this topical review was to synthesize evolving information of mechanisms in tendon pain, using a comprehensive search of the available literature on this topic. CONTENT This review found no correlations between tendon degeneration, collagen separation or neovascularization and chronic tendon pain. The synthesis demonstrated that chronic tendon pain, however, is characterized by excessive nerve sprouting with ingrowth in the tendon proper, which corresponds to alterations oberserved also in other connective tissues of chronic pain conditions. Healthy, painfree tendons are devoid of nerve fibers in the tendon proper, while innervation is confined to tendon surrounding structures, such as sheaths. Chronic painful tendons exhibit elevated amounts of pain neuromediators, such as glutamate and substance p as well as up-regulated expression and excitability of pain receptors, such as the glutamate receptor NMDAR1 and the SP receptor NK1, found on ingrown nerves and immune cells. Increasing evidence indicates that mast cells serve as an important link between the peripheral nervous system and the immune systems resulting in so called neurogenic inflammation. SUMMARY Chronic painful tendons exhibit (1) protracted ingrowth of sensory nerves (2) elevated pain mediator levels and (3) up-regulated expression and excitability of pain receptors, participating in (4) neuro-immune pathways involved in pain regulation. Current treatments that entail the highest scientific evidence to mitigate chronic tendon pain include eccentric exercises and extracorporeal shockwave, which both target peripheral neoinnervation aiming at nerve regeneration. OUTLOOK Potential mechanism-based pharmacological treatment approaches could be developed by blocking promotors of nerve ingrowth, such as NGF, and promoting inhibitors of nerve ingrowth, like semaphorins, as well as blocking glutamate-NMDA-receptor pathways, which are prominent in chronic tendon pain.
Collapse
Affiliation(s)
- Paul W Ackermann
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Trauma, Acute Surgery and Orthopaedics, Stockholm, Sweden
| | - Md Abdul Alim
- Department of Public Health and Caring Sciences, General Medicine, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Peterson
- Department of Public Health and Caring Sciences, General Medicine, Uppsala University, Uppsala, Sweden
- Academic Primary Health Care, Region Uppsala, Sweden
| |
Collapse
|
34
|
Zhai Z, Zhu Z, Kong F, Xie D, Cai J, Dai J, Zhong Y, Gan Y, Zheng S, Xu Y, Sun T. Distinguish the Characteristic Mechanism of 3 Drug Pairs of Corydalis Rhizome in Ameliorating Angina Pectoris: Network Pharmacology and Meta-Analysis. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231152309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Objective: Angina pectoris (AP), affecting over 523 million people, can be alleviated by corydalis rhizome (CR), usually combined with chuanxiong rhizome (CXR), angelica dahuricae radix (ADR), or astragali radix (AR) to enhance the effect. This study aims to distinguish the different mechanisms among 3 drug pairs to treat AP. Methods: The drug pair-disease intersection targets, compound targets, protein–protein interaction (PPI), and herb-compound-target-pathway network were obtained by Cytoscape, STRING, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses ( http://www.kegg.jp/ or http://www.genome.jp/kegg/ ). Importantly, with principal component analysis (PCA), the key point of KEGG and GO were explored and supported, while by meta-analysis, the different mechanisms of the drug pairs on AP were discovered. Results: JUN, SRC, PIK3CA, and MAPK1 as PPI core network of CR-AP, (CR-CXR)-AP, (CR-ADR)-AP, and (CR-AR)-AP. (highest confidence > 0.9). 10, 45, 35, and 21 key compounds, and 68, 123, 117, and 97 core targets were obtained from CR-AP, (CR-CXR)-AP, (CR-ADR)-AP, and (CR-AR)-AP based on more than 2-fold median value for degree and betweenness centrality, more than the median of closeness centrality. The core pathways of (CR-CXR)-AP and (CR-AR)-AP cover “fluid shear stress and atherosclerosis” and the “pathways in cancer”, while (CR-ADR)-AP was found as the “pathways in cancer” by PCA and KEGG ( P < .01). The core biological processes of (BP) (CR-CXR)-AP, (CR-ADR)-AP, and (CR-AR)-AP were all enriched in the “circulatory system process” by PCA and GO ( P < .01). Moreover, meta-analysis indicated the significant differences ( P < .05) of the 3 drug pairs. Conclusion: CR-CXR, CR-ADR, or CR-AR outperformed CR-AP in AP mitigation. Furthermore, meta-analysis revealed, CR-CXR was superior to alleviating AP by affecting “circulatory system process” and “fluid shear stress and atherosclerosis”, particularly the targets PTGS1, PTGS2, ADRB2, ADRA2C, and NOS, when compared with the drug pair of CR-ADR and the CR-AR.
Collapse
Affiliation(s)
- Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhishan Zhu
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanjing Kong
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Cai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyi Dai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanmei Zhong
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanxiong Gan
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shichao Zheng
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
35
|
Arylcyclohexylamine Derivatives: Pharmacokinetic, Pharmacodynamic, Clinical and Forensic Aspects. Int J Mol Sci 2022; 23:ijms232415574. [PMID: 36555217 PMCID: PMC9779550 DOI: 10.3390/ijms232415574] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Since the 2000s, an increasing number of new psychoactive substances (NPS) have appeared on the drug market. Arylcyclohexylamine (ACH) compounds such as ketamine, phencyclidine and eticyclidine derivatives are of particular concern, given their rapidly increasing use and the absence of detailed toxicity data. First used mainly for their pharmacological properties in anesthesia, their recreational use is increasing. ACH derivatives have an antagonistic activity against the N-methyl-D-aspartate receptor, which leads to dissociative effects (dissociation of body and mind). Synthetic ketamine derivatives produced in Asia are now arriving in Europe, where most are not listed as narcotics and are, thus, legal. These structural derivatives have pharmacokinetic and pharmacodynamic properties that are sometimes very different from ketamine. Here, we describe the pharmacology, epidemiology, chemistry and metabolism of ACH derivatives, and we review the case reports on intoxication.
Collapse
|
36
|
Zhigulin AS, Tikhonov DB, Barygin OI. Mechanisms of acid-sensing ion channels inhibition by nafamostat, sepimostat and diminazene. Eur J Pharmacol 2022; 938:175394. [PMID: 36403685 DOI: 10.1016/j.ejphar.2022.175394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Acid-sensing ion channels (ASICs) are blocked by many cationic compounds. Mechanisms of action, which may include pore block, modulation of activation and desensitization, need systematic analysis to allow predictable design of new potent and selective drugs. In this work, we studied the action of the serine protease inhibitors nafamostat, sepimostat, gabexate and camostat, on native ASICs in rat giant striatal interneurons and recombinant ASIC1a and ASIC2a channels, and compared it to that of well-known small molecule ASIC blocker diminazene. All these compounds have positively charged amidine and/or guanidine groups in their structure. Nafamostat, sepimostat and diminazene inhibited pH 6.5-induced currents in rat striatal interneurons at -80 mV holding voltage with IC50 values of 0.78 ± 0.12 μM, 2.4 ± 0.3 μM and 0.40 ± 0.09 μM, respectively, whereas camostat and gabexate were practically ineffective. The inhibition by nafamostat, sepimostat and diminazene was voltage-dependent evidencing binding in the channel pore. They were not trapped in the closed channels, suggesting "foot-in-the-door" mechanism of action. The inhibitory activity of nafamostat, sepimostat and diminazene was similar in experiments on native ASICs and recombinant ASIC1a channels, while all of them were drastically less active against ASIC2a channels. According to our molecular modeling, three active compounds bind in the channel pore between Glu 433 and Ala 444 in a similar way. In view of the relative safety of nafamostat for clinical use in humans, it can be considered as a potential candidate for the treatment of pathophysiological conditions linked to ASICs disfunction, including inflammatory pain and ischemic stroke.
Collapse
Affiliation(s)
- Arseniy S Zhigulin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Denis B Tikhonov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Oleg I Barygin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia.
| |
Collapse
|
37
|
Robilotto GL, Mohapatra DP, Shepherd AJ, Mickle AD. Role of Src kinase in regulating protein kinase C mediated phosphorylation of TRPV1. Eur J Pain 2022; 26:1967-1978. [PMID: 35900227 PMCID: PMC9483845 DOI: 10.1002/ejp.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/19/2022] [Accepted: 07/23/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Transient receptor potential vanilloid-1 (TRPV1), activated by heat, acidic pH, endogenous vanilloids and capsaicin, is essential for thermal hyperalgesia. Under inflammatory conditions, phosphorylation of TRPV1 by protein kinase C (PKC) can sensitize the channel and decrease the activation threshold. Src kinase also phosphorylates TRPV1, promoting channel trafficking to the plasma membrane. These post-translational modifications are important for several chronic pain conditions. This study presents a previously undescribed relationship between Src and PKC phosphorylation of TRPV1, influencing the thermal hypersensitivity associated with TRPV1 activation. METHODS We assessed TRPV1 channel activity using intracellular calcium imaging and patch-clamp electrophysiology in mouse dorsal root ganglion cultures. Additionally, we used behavioural experiments to evaluate plantar thermal sensitivity following intraplantar injections of activators of known modulators of TRPV1 with and without an Src antagonist. RESULTS Using calcium imaging and patch-clamp techniques, we demonstrated that pharmacological inhibition of Src kinase or mutation of the Src phosphorylation site on TRPV1 prevented PKC but not PKA-mediated sensitization of TRPV1 in vitro. We found that intraplantar injection of the PKC activator phorbol 12-myristate 13-acetate (PMA) or bradykinin produces thermal hypersensitivity that can be attenuated by pharmacological inhibition of Src. Additionally, complete Freund's Adjuvant (CFA)-induced inflammatory hypersensitivity could also be attenuated by local Src kinase inhibition. CONCLUSIONS Our data demonstrate that Src phosphorylation is critical for PKC-mediated sensitization of TRPV1. Further, in a model of inflammatory pain, CFA, Src kinase inhibition could reduce thermal hypersensitivity. Targeting of Src kinase may have analgesic benefits in inflammatory pain conditions. SIGNIFICANCE Src kinase-mediated phosphorylation of TRPV1 is a critical regulator of the PKC-induced sensitization induced by multiple inflammatory mediators. This suggest a new regulatory mechanism governing TRPV1 function and a potential therapeutic target for inflammatory type pain, including cancer pain where Src antagonists are currently utilized.
Collapse
Affiliation(s)
- Gabriella L. Robilotto
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida
| | - Durga P. Mohapatra
- Department of Pharmacology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242
- Anesthesia, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242
| | - Andrew J. Shepherd
- Department of Pharmacology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Aaron D. Mickle
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida
- Department of Pharmacology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering, University of Florida
- Department of Neuroscience, College of Medicine, University of Florida
| |
Collapse
|
38
|
Liu YJ, Li YL, Fang ZH, Liao HL, Zhang YY, Lin J, Liu F, Shen JF. NMDARs mediate peripheral and central sensitization contributing to chronic orofacial pain. Front Cell Neurosci 2022; 16:999509. [PMID: 36238833 PMCID: PMC9553029 DOI: 10.3389/fncel.2022.999509] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Peripheral and central sensitizations of the trigeminal nervous system are the main mechanisms to promote the development and maintenance of chronic orofacial pain characterized by allodynia, hyperalgesia, and ectopic pain after trigeminal nerve injury or inflammation. Although the pathomechanisms of chronic orofacial pain are complex and not well known, sufficient clinical and preclinical evidence supports the contribution of the N-methyl-D-aspartate receptors (NMDARs, a subclass of ionotropic glutamate receptors) to the trigeminal nociceptive signal processing pathway under various pathological conditions. NMDARs not only have been implicated as a potential mediator of pain-related neuroplasticity in the peripheral nervous system (PNS) but also mediate excitatory synaptic transmission and synaptic plasticity in the central nervous system (CNS). In this review, we focus on the pivotal roles and mechanisms of NMDARs in the trigeminal nervous system under orofacial neuropathic and inflammatory pain. In particular, we summarize the types, components, and distribution of NMDARs in the trigeminal nervous system. Besides, we discuss the regulatory roles of neuron-nonneuronal cell/neuron-neuron communication mediated by NMDARs in the peripheral mechanisms of chronic orofacial pain following neuropathic injury and inflammation. Furthermore, we review the functional roles and mechanisms of NMDARs in the ascending and descending circuits under orofacial neuropathic and inflammatory pain conditions, which contribute to the central sensitization. These findings are not only relevant to understanding the underlying mechanisms, but also shed new light on the targeted therapy of chronic orofacial pain.
Collapse
Affiliation(s)
- Ya-Jing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong-Lin Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie-Fei Shen Fei Liu
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie-Fei Shen Fei Liu
| |
Collapse
|
39
|
Casili G, Lanza M, Filippone A, Cucinotta L, Paterniti I, Repici A, Capra AP, Cuzzocrea S, Esposito E, Campolo M. Dimethyl Fumarate (DMF) Alleviated Post-Operative (PO) Pain through the N-Methyl-d-Aspartate (NMDA) Receptors. Antioxidants (Basel) 2022; 11:antiox11091774. [PMID: 36139848 PMCID: PMC9495385 DOI: 10.3390/antiox11091774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
The management of post-operative (PO) pain has generally been shown to be inadequate; therefore, acquiring a novel understanding of PO pain mechanisms would increase the therapeutic options available. There is accumulating evidence to implicate N-methyl-d-aspartate (NMDA) receptors in the induction and maintenance of central sensitization during pain states by reinforcing glutamate sensory transmission. It is known that DMF protects from oxidative glutamate toxicity. Therefore, NMDA receptor antagonists have been implicated in peri-operative pain management. Recent advances demonstrated that dimethyl fumarate (DMF), a non-opioid and orally bioavailable drug, is able to resolve neuroinflammation through mechanisms that drive nociceptive hypersensitivity. Therefore, in this study, we evaluated the role of DMF on pain and neuroinflammation in a mouse model of PO pain. An incision of the hind paw was performed, and DMF at two different doses (30 and 100 mg/kg) was administered by oral gavage for five consecutive days. Mechanical allodynia, thermal hyperalgesia and locomotor dysfunction were evaluated daily for five days after surgery. Mice were sacrificed at day 7 following PO pain induction, and hind paw and lumbar spinal cord samples were collected for histological and molecular studies. DMF administration significantly reduced hyperalgesia and allodynia, alleviating motor disfunction. Treatment with DMF significantly reduced histological damage, counteracted mast cell activation and reduced the nuclear factor kappa-light-chain-enhancer of the activated B cell (NF-κB) inflammatory pathway, in addition to downregulating tumor necrosis factor-α (TNF-α), Interleukin-1β (Il-1β) and Il-4 expression. Interestingly, DMF treatment lowered the activation of NMDA receptor subtypes (NR2B and NR1) and the NMDA-receptor-interacting PDZ proteins, including PSD93 and PSD95. Furthermore, DMF interfered with calcium ion release, modulating nociception. Thus, DMF administration modulated PO pain, managing NMDA signaling pathways. The results suggest that DMF positively modulated persistent nociception related to PO pain, through predominantly NMDA-receptor-operated calcium channels.
Collapse
|
40
|
Opioid Sparing Analgesics in Spine Surgery. Adv Orthop 2022; 2022:1026547. [PMID: 35942400 PMCID: PMC9356873 DOI: 10.1155/2022/1026547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
Combinations of various nonopioid analgesics have been used to decrease pain and opioid consumption postoperatively allowing for faster recovery, improved patient satisfaction, and decreased morbidity. These opioid alternatives include acetaminophen, NSAIDs, COX-2 specific inhibitors, gabapentinoids, local anesthetics, dexamethasone, and ketamine. Each of these drugs presents its own advantages and disadvantages which can make it difficult to implement universally. In addition, ambiguous administration guidelines for these nonopioid analgesics lead to a difficult implementation of standardization protocols in spine surgery. A focus on the efficacy of different pain modalities specifically within spine surgery was implemented to assist with this standardized protocol endeavor and to educate surgeons on limiting opioid prescribing in the postoperative period. The purpose of this review article is to investigate the various opioid sparing medications that have been used to decrease morbidity in spine surgery and better assist surgeons in managing postoperative pain. Methods. A narrative review of published literature was conducted using the search function in Google scholar and PubMed was used to narrow down search criteria. The keywords “analgesics,” “spine,” and “pain” were used.
Collapse
|
41
|
Prabhakar NK, Chadwick AL, Nwaneshiudu C, Aggarwal A, Salmasi V, Lii TR, Hah JM. Management of Postoperative Pain in Patients Following Spine Surgery: A Narrative Review. Int J Gen Med 2022; 15:4535-4549. [PMID: 35528286 PMCID: PMC9075013 DOI: 10.2147/ijgm.s292698] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Perioperative pain management is a unique challenge in patients undergoing spine surgery due to the increased incidence of both pre-existing chronic pain conditions and chronic postsurgical pain. Peri-operative planning and counseling in spine surgery should involve an interdisciplinary approach that includes consideration of patient-level risk factors, as well as pharmacologic and non-pharmacologic pain management techniques. Consideration of psychological factors and patient focused education as an adjunct to these measures is paramount in developing a personalized perioperative pain management plan. Understanding the currently available body of knowledge surrounding perioperative opioid management, management of opioid use disorder, regional/neuraxial anesthetic techniques, ketamine/lidocaine infusions, non-opioid oral analgesics, and behavioral interventions can be useful in developing a comprehensive, multi-modal treatment plan among patients undergoing spine surgery. Although many of these techniques have proved efficacious in the immediate postoperative period, long-term follow-up is needed to define the impact of such approaches on persistent pain and opioid use. Future techniques involving the use of precision medicine may help identify phenotypic and physiologic characteristics that can identify patients that are most at risk of developing persistent postoperative pain after spine surgery.
Collapse
Affiliation(s)
- Nitin K Prabhakar
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Andrea L Chadwick
- Department of Anesthesiology, Pain, and Perioperative Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Chinwe Nwaneshiudu
- Department of Anesthesiology, Perioperative and Pain Management, Mount Sinai Hospital, Icahn School of Medicine, New York, NY, USA
| | - Anuj Aggarwal
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Vafi Salmasi
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Theresa R Lii
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Jennifer M Hah
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
42
|
Lai G, Aroke EN, Zhang SJ. Rediscovery of Methadone to Improve Outcomes in Pain Management. J Perianesth Nurs 2022; 37:425-434. [PMID: 35396188 DOI: 10.1016/j.jopan.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/09/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
Clinically, methadone is most known for its use in the treatment of opioid maintenance therapy. However, methadone's pharmacological profile makes it an excellent analgesic that can enhance acute and chronic pain management. It is a potent μ-receptor agonist with a longer elimination half-life than most clinically used opioids. In addition, methadone inhibits serotonin and norepinephrine uptake, and it is an N-methyl-D-aspartate antagonist. These distinct analgesic pathways mediate hyperalgesic, allodynic, and neuropathic pain. Its unique analgesic properties provide several essential benefits in perioperative use, neuropathic pain, cancer, and noncancer pain. Despite these proven clinical utilities, methadone has not been used widely to treat acute and chronic pain in opioid naïve patients. This article describes the unique pharmacology of methadone and provides emerging evidence to support its application in acute and chronic pain management. Pain management options and guidelines for surgical patients on methadone are discussed as well.
Collapse
Affiliation(s)
- Gloria Lai
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA
| | - Edwin N Aroke
- Nurse Anesthesia Program, School of Nursing, University of Alabama at Birmingham, Birmingham, AL
| | - Sarah Jingying Zhang
- Nurse Anesthesiology Program, School of Nursing, University of South Florida, Tampa, CA; Nurse Anesthesia Program, School of Nursing, Samuel Merritt University, Oakland, CA.
| |
Collapse
|
43
|
Singh V, Gillespie TW, Lane O, Spektor B, Zarrabi AJ, Egan K, Curseen K, Tsvetkova M, Beumer JH, Sniecinski R, Shteamer J, Switchenko J, Harvey RD. A dose‐escalation clinical trial of intranasal ketamine for uncontrolled cancer‐related pain. Pharmacotherapy 2022; 42:298-310. [DOI: 10.1002/phar.2669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Vinita Singh
- Department of Anesthesiology Emory University School of Medicine Atlanta Georgia USA
| | - Theresa W. Gillespie
- Department of Hematology and Medical Oncology Emory University School of Medicine Atlanta Georgia USA
- Department of Surgery Emory University School of Medicine Atlanta Georgia USA
| | - Olabisi Lane
- Department of Anesthesiology Emory University School of Medicine Atlanta Georgia USA
| | - Boris Spektor
- Department of Anesthesiology Emory University School of Medicine Atlanta Georgia USA
| | - Ali John Zarrabi
- Department of Family Medicine Emory University School of Medicine Atlanta Georgia USA
| | - Katherine Egan
- Department of Anesthesiology Emory University School of Medicine Atlanta Georgia USA
| | - Kimberly Curseen
- Department of Family Medicine Emory University School of Medicine Atlanta Georgia USA
| | - Maya Tsvetkova
- Cancer Therapeutics Program UPMC Hillman Cancer Center Pittsburgh Pennsylvania USA
- Department of Pharmaceutical Sciences School of Pharmacy University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Jan H. Beumer
- Cancer Therapeutics Program UPMC Hillman Cancer Center Pittsburgh Pennsylvania USA
- Department of Pharmaceutical Sciences School of Pharmacy University of Pittsburgh Pittsburgh Pennsylvania USA
- Division of Hematology‐Oncology Department of Medicine University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA
| | - Roman Sniecinski
- Department of Anesthesiology Emory University School of Medicine Atlanta Georgia USA
| | - Jack W. Shteamer
- Department of Anesthesiology Emory University School of Medicine Atlanta Georgia USA
| | - Jeffery Switchenko
- Department of Biostatistics and Bioinformatics Rollins School of Public Health Emory University Atlanta Georgia USA
| | - R. Donald Harvey
- Department of Hematology and Medical Oncology Emory University School of Medicine Atlanta Georgia USA
- Department of Pharmacology Emory University School of Medicine Atlanta Georgia USA
| |
Collapse
|
44
|
Wolfe RC, Bush B. Magnesium: An Emerging Perioperative Analgesic Adjunct. J Perianesth Nurs 2022; 37:280-281. [DOI: 10.1016/j.jopan.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
|
45
|
Subramanian S, Haroutounian S, Palanca BJA, Lenze EJ. Ketamine as a therapeutic agent for depression and pain: mechanisms and evidence. J Neurol Sci 2022; 434:120152. [PMID: 35092901 DOI: 10.1016/j.jns.2022.120152] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/14/2022]
Abstract
Ketamine is an anesthetic drug which is now used to treat chronic pain conditions and psychiatric disorders, especially depression. It is an N-methyl-D-aspartate (NMDA) receptor antagonist with additional effects on α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, opioid receptors, and monoaminergic receptors. This article focuses on ketamine's role in treating depression and pain, two commonly comorbid challenging conditions with potentially shared neurobiologic circuitry. Many clinical trials have utilized intravenous or intranasal ketamine for treating depression and pain. Intravenous ketamine is more bioavailable than intranasal ketamine and both are effective for acute depressive episodes. Intravenous ketamine is advantageous for post-operative analgesia and is associated with a reduction in total opioid requirements. Few studies have treated chronic pain or concurrent depression and pain with ketamine. Larger, randomized control trials are needed to examine the safety and efficacy of intravenous vs. intranasal ketamine, ideal target populations, and optimal dosing to treat both depression and pain.
Collapse
Affiliation(s)
- Subha Subramanian
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Simon Haroutounian
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ben Julian A Palanca
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
46
|
Zhou L, Su S, Yu J, Wan S, Xu X, Li X, Xiong M, Tian W, Wang L, Wu Y, Ke C. Schnurri-2 promotes the expression of excitatory glutamate receptors and contributes to neuropathic pain. Neuroscience 2022; 488:20-31. [PMID: 35218885 DOI: 10.1016/j.neuroscience.2022.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
Neuropathic pain is a type of chronic pain with complex mechanisms, and current treatments have shown limited success in treating patients suffering from chronic pain. Accumulating evidence has shown that the pathogenesis of neuropathic pain is mediated by the plasticity of excitatory neurons in the dorsal horn of the spinal cord, which provides insights into the treatment of hyperalgesia. In this study, we found that Schnurri-2 (Shn2) was significantly upregulated in the L4-L6 segments of the spinal cord of C57 mice with spared nerve injury, which was accompanied by an increase in GluN2D subunit and glutamate receptor subunit 1 (GluR1) levels. Knocking down the expression of Shn2 using a lentivirus in the spinal cord decreased the GluN2D subunit and GluR1 levels in spared nerve injury mice and eventually alleviated mechanical allodynia. In summary, Shn2 regulates neuropathic pain, promotes the upregulation of GluN2D in glutamatergic neurons and increases the accumulation of GluR1 in excitatory neurons. Taken together, our study provides a new underlying mechanism for the development of neuropathic pain.
Collapse
Affiliation(s)
- Lingyu Zhou
- Jinzhou Medical University, Jinzhou 121001, China; Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Shanchun Su
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jiaqi Yu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Shengjun Wan
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xueqin Xu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaohui Li
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Mengyuan Xiong
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Wei Tian
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Linhan Wang
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yanqiong Wu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Changbin Ke
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
47
|
Somogyi AA, Musolino ST, Barratt DT. New pharmacological perspectives and therapeutic options for opioids: Differences matter. Anaesth Intensive Care 2022; 50:127-140. [PMID: 35112584 DOI: 10.1177/0310057x211063891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Opioids remain the major drug class for the treatment of acute, chronic and cancer pain, but have major harmful effects such as dependence and opioid-induced ventilatory impairment. Although no new typical opioids have come onto the market in the past almost 50 years, a plethora of new innovative formulations has been developed to meet the clinical need. This review is intended to shed light on new understanding of the molecular pharmacology of opioids, which has arisen largely due to the genomic revolution, and what new drugs may become available in the coming years. Atypical opioids have and are being developed which not only target the mu opioid receptor but other targets in the pain pathway. Biased mu agonists have been developed but remain 'unbiased' clinically. The contribution of drugs targeting non-mu opioid receptors either alone or as heterodimers shows potential promise but remains understudied. That gene splice variants of the mu opioid receptor produce multiple receptor isoforms in different brain regions, and may change with pain chronicity and phenotype, presents new challenges but also opportunities for precision pain medicine. Finally, that opioids also have pro-inflammatory effects not aligned with mu opioid receptor binding affinity implicates a fresh understanding of their role in chronic pain, whether cancer or non-cancer. Hopefully, a new understanding of opioid analgesic drug action may lead to new drug development and better precision medicine in acute and chronic pain relief with less patient harm.
Collapse
Affiliation(s)
- Andrew A Somogyi
- Discipline of Pharmacology, University of Adelaide, Adelaide, Australia
| | - Stefan T Musolino
- Discipline of Pharmacology, University of Adelaide, Adelaide, Australia
| | - Daniel T Barratt
- Discipline of Physiology, University of Adelaide, Adelaide, Australia
| |
Collapse
|
48
|
Melcer T, Walker GJ, Dye JL, Walrath B, MacGregor AJ, Perez K, Galarneau MR. Is Prehospital Ketamine Associated With a Change in the Prognosis of PTSD? Mil Med 2022; 188:usac014. [PMID: 35104347 DOI: 10.1093/milmed/usac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Ketamine is an alternative to opioids for prehospital analgesia following serious combat injury. Limited research has examined prehospital ketamine use, associated injuries including traumatic brain injury (TBI) and PTSD outcomes following serious combat injury. MATERIALS AND METHODS We randomly selected 398 U.S. service members from the Expeditionary Medical Encounter Database who sustained serious combat injuries in Iraq and Afghanistan, 2010-2013. Of these 398 patients, 213 individuals had charted prehospital medications. Clinicians reviewed casualty records to identify injuries and all medications administered. Outcomes were PTSD diagnoses during the first year and during the first 2 years postinjury extracted from military health databases. We compared PTSD outcomes for patients treated with either (a) prehospital ketamine (with or without opioids) or (b) prehospital opioids (without ketamine). RESULTS Fewer patients received prehospital ketamine (26%, 56 of 213) than only prehospital opioids (69%, 146 of 213) (5%, 11 of 213 received neither ketamine nor opioids). The ketamine group averaged significantly more moderate-to-serious injuries, particularly lower limb amputations and open wounds, compared with the opioid group (Ps < .05). Multivariable regressions showed a significant interaction between prehospital ketamine (versus opioids) and TBI on first-year PTSD (P = .027). In subsequent comparisons, the prehospital ketamine group had significantly lower odds of first-year PTSD (OR = 0.08, 95% CI [0.01, 0.71], P = .023) versus prehospital opioids only among patients who did not sustain TBI. We also report results from separate analyses of PTSD outcomes among patients treated with different prehospital opioids only (without ketamine), either morphine or fentanyl. CONCLUSIONS The present results showed that patients treated with prehospital ketamine had significantly lower odds of PTSD during the first year postinjury only among patients who did not sustain TBI. These findings can inform combat casualty care guidelines for use of prehospital ketamine and opioid analgesics following serious combat injury.
Collapse
|
49
|
Jing PB, Chen XH, Lu HJ, Gao YJ, Wu XB. Enhanced function of NR2C/2D-containing NMDA receptor in the nucleus accumbens contributes to peripheral nerve injury-induced neuropathic pain and depression in mice. Mol Pain 2022; 18:17448069211053255. [PMID: 35057644 PMCID: PMC8785348 DOI: 10.1177/17448069211053255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) dysfunction in the nucleus accumbens (NAc) participates in regulating many neurological and psychiatric disorders such as drug addiction, chronic pain, and depression. NMDARs are heterotetrameric complexes generally composed of two NR1 and two NR2 subunits (NR2A, NR2B, NR2C and NR2D). Much attention has been focused on the role of NR2A and NR2B-containing NMDARs in a variety of neurological disorders; however, the function of NR2C/2D subunits at NAc in chronic pain remains unknown. In this study, spinal nerve ligation (SNL) induced a persistent sensory abnormity and depressive-like behavior. The whole-cell patch clamp recording on medium spiny neurons (MSNs) in the NAc showed that the amplitude of NMDAR-mediated excitatory postsynaptic currents (EPSCs) was significantly increased when membrane potential held at −40 to 0 mV in mice after 14 days of SNL operation. In addition, selective inhibition of NR2C/2D-containing NMDARs with PPDA caused a larger decrease on peak amplitude of NMDAR-EPSCs in SNL than that in sham-operated mice. Appling of selective potentiator of NR2C/2D, CIQ, markedly enhanced the evoked NMDAR-EPSCs in SNL-operated mice, but no change in sham-operated mice. Finally, intra-NAc injection of PPDA significantly attenuated SNL-induced mechanical allodynia and depressive-like behavior. These results for the first time showed that the functional change of NR2C/2D subunits-containing NMDARs in the NAc might contribute to the sensory and affective components in neuropathic pain.
Collapse
Affiliation(s)
- Peng-Bo Jing
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Hong Chen
- Department of Anesthesiology, Tumor Hospital Affiliated to Nantong University and Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Huan-Jun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
50
|
Wistrom E, Chase R, Smith PR, Campbell ZT. A compendium of validated pain genes. WIREs Mech Dis 2022; 14:e1570. [PMID: 35760453 PMCID: PMC9787016 DOI: 10.1002/wsbm.1570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022]
Abstract
The development of novel pain therapeutics hinges on the identification and rigorous validation of potential targets. Model organisms provide a means to test the involvement of specific genes and regulatory elements in pain. Here we provide a list of genes linked to pain-associated behaviors. We capitalize on results spanning over three decades to identify a set of 242 genes. They support a remarkable diversity of functions spanning action potential propagation, immune response, GPCR signaling, enzymatic catalysis, nucleic acid regulation, and intercellular signaling. Making use of existing tissue and single-cell high-throughput RNA sequencing datasets, we examine their patterns of expression. For each gene class, we discuss archetypal members, with an emphasis on opportunities for additional experimentation. Finally, we discuss how powerful and increasingly ubiquitous forward genetic screening approaches could be used to improve our ability to identify pain genes. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Eric Wistrom
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Rebecca Chase
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Patrick R. Smith
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Zachary T. Campbell
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA,Center for Advanced Pain StudiesUniversity of Texas at DallasRichardsonTexasUSA
| |
Collapse
|