1
|
Ghaffari MK, Sefati N, Esmaeilpour T, Salari V, Oblak D, Simon C. The impact of ketamine and thiopental anesthesia on ultraweak photon emission and oxidative-nitrosative stress in rat brains. Front Syst Neurosci 2025; 19:1502589. [PMID: 40191280 PMCID: PMC11968709 DOI: 10.3389/fnsys.2025.1502589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
Anesthetics such as ketamine and thiopental, commonly used for inducing unconsciousness, have distinct effects on neuronal activity, metabolism, and cardiovascular and respiratory systems. Ketamine increases heart rate and blood pressure while preserving respiratory function, whereas thiopental decreases both and can cause respiratory depression. This study investigates the impact of ketamine (100 mg/kg) and thiopental (45 mg/kg) on ultraweak photon emission (UPE), oxidative-nitrosative stress, and antioxidant capacity in isolated rat brains. To our knowledge, no previous study has investigated and compared UPE in the presence and absence of anesthesia. Here, we compare the effects of ketamine and thiopental anesthetics with each other and with a non-anesthetized control group. Ketamine increased UPE, lipid peroxidation, and antioxidant enzyme activity while reducing thiol levels. Conversely, thiopental decreased UPE, oxidative markers, and antioxidant enzyme activity, while increasing thiol levels. UPE was negatively correlated with thiol levels and positively correlated with oxidative stress markers. These findings suggest that the contrasting effects of ketamine and thiopental on UPE are linked to their differing impacts on brain oxidative stress and antioxidant capacity. This research suggests a potential method to monitor brain oxidative stress via UPE during anesthesia, and opens up new ways for understanding and managing anesthetic effects.
Collapse
Affiliation(s)
- Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Sefati
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Tahereh Esmaeilpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Salari
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
| | - Daniel Oblak
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Rekuviene E, Ivanoviene L, Borutaite V, Morkuniene R. Effects of Anesthesia with Pentobarbital/Ketamine on Mitochondrial Permeability Transition Pore Opening and Ischemic Brain Damage. Biomedicines 2024; 12:2342. [PMID: 39457655 PMCID: PMC11504713 DOI: 10.3390/biomedicines12102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVE The alteration of mitochondrial functions, especially the opening of the mitochondrial permeability transition pore (mPTP), has been proposed as a key mechanism in the development of lesions in cerebral ischemia, wherefore it is considered as an important target for drugs against ischemic injury. In this study, we aimed to investigate the effects of mitochondrial complex I inhibitors as possible regulators of mPTP using an in vitro brain ischemia model of the pentobarbital/ketamine (PBK)-anesthetized rats. RESULTS We found that PBK anesthesia itself delayed Ca2+-induced mPTP opening and partially recovered the respiratory functions of mitochondria, isolated from rat brain cortex and cerebellum. In addition, PBK reduced cell death in rat brain slices of cerebral cortex and cerebellum. PBK inhibited the adenosine diphosphate (ADP)-stimulated respiration of isolated cortical and cerebellar mitochondria respiring with complex I-dependent substrates pyruvate and malate. Moreover, pentobarbital alone directly increased the resistance of isolated cortex mitochondria to Ca2+-induced activation of mPTP and inhibited complex I-dependent respiration and mitochondrial complex I activity. In contrast, ketamine had no direct effect on functions of isolated normal cortex and cerebellum mitochondria. CONCLUSIONS Altogether, this suggests that modulation of mitochondrial complex I activity by pentobarbital during PBK anesthesia may increase the resistance of mitochondria to mPTP opening, which is considered the key event in brain cell necrosis during ischemia.
Collapse
Affiliation(s)
- Evelina Rekuviene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (V.B.); (R.M.)
- Department of Biochemistry, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Laima Ivanoviene
- Department of Biochemistry, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Vilmante Borutaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (V.B.); (R.M.)
- Department of Biochemistry, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Ramune Morkuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (V.B.); (R.M.)
- Department of Drug Chemistry, Lithuanian University of Health Sciences, Sukileliu 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
3
|
Chen X, Xiang W, Li L, Xu K. Copper Chaperone Atox1 Protected the Cochlea From Cisplatin by Regulating the Copper Transport Family and Cell Cycle. Int J Toxicol 2024; 43:134-145. [PMID: 37859596 DOI: 10.1177/10915818231206665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Antioxidant 1 copper chaperone (Atox1) may contribute to preventing DDP cochlear damage by regulating copper transport family and cell cycle proteins. A rat model of cochlear damage was developed by placing gelatin sponges treated with DDP in the cochlea. HEI-OC1 cells were treated with 133 μM DDP as a cell model. DDP-induced ototoxicity in rats was confirmed by immunofluorescence (IF) imaging. The damage of DDP to HEI-OC1 cells was assessed by using CCK-8, TUNEL, and flow cytometry. The relationship between Atox1, a member of the copper transport protein family, and the damage to in vivo/vitro models was explored by qRT-PCR, western blot, CCK-8, TUNEL, and flow cytometry. DDP had toxic and other side effects causing cochlear damage and promoted HEI-OC1 cell apoptosis and cell cycle arrest. The over-expression of Atox1 (oe-Atox1) was accomplished by transfecting lentiviral vectors into in vitro/vivo models. We found that oe-Atox1 increased the levels of Atox1, copper transporter 1 (CTR1), and SOD3 in HEI-OC1 cells and decreased the expression levels of ATPase copper transporting α (ATP7A) and ATPase copper transporting β (ATP7B). In addition, the transfection of oe-Atox1 decreased cell apoptosis rate and the number of G2/M stage cells. Similarly, the expression of myosin VI and phalloidin of cochlea cells in vivo decreased. Atox1 ameliorated DDP-induced damage to HEI-OC1 cells or rats' cochlea by regulating the levels of members of the copper transport family.
Collapse
Affiliation(s)
- Xubo Chen
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiren Xiang
- Department of Otolaryngology, Head and Neck Surgery, Jiu Jiang No.1 People's Hospital, Jiujiang, China
| | - Lihua Li
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Saljoughi S, Kalantar H, Azadnasab R, Khodayar MJ. Neuroprotective effects of dimethyl fumarate against manic-like behavior induced by ketamine in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3007-3016. [PMID: 37103520 DOI: 10.1007/s00210-023-02505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Medications for treating bipolar disorder (BD) are limited and can cause side effects if used chronically. Therefore, efforts are being made to use new agents in the control and treatment of BD. Considering the antioxidant and anti-inflammatory effects of dimethyl fumarate (DMF), this study was performed to examine the role of DMF on ketamine (KET)-induced manic-like behavior (MLB) in rats. Forty-eight rats were randomly divided into eight groups, including three groups of healthy rats: normal, lithium chloride (LiCl) (45 mg/kg, p.o.), and DMF (60 mg/kg, p.o.), and five groups of MLB rats: control, LiCl, and DMF (15, 30, and 60 mg/kg, p.o.), which received KET at a dose of 25 mg/kg, i.p. The levels of total sulfhydryl groups (total SH), thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), and tumor necrosis factor-alpha (TNF-α), as well as the activity of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the prefrontal cortex (PFC) and hippocampus (HPC), were measured. DMF prevented hyperlocomotion (HLM) induced by KET. It was found that DMF could inhibit the increase in the levels of TBARS, NO, and TNF-α in the HPC and PFC of the brain. Furthermore, by examining the amount of total SH and the activity of SOD, GPx, and CAT, it was found that DMF could prevent the reduction of the level of each of them in the brain HPC and PFC. DMF pretreatment improved the symptoms of the KET model of mania by reducing HLM, oxidative stress, and modulating inflammation.
Collapse
Affiliation(s)
- Shiva Saljoughi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azadnasab
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Fedorov A, Lehto A, Klein J. Inhibition of mitochondrial respiration by general anesthetic drugs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:375-381. [PMID: 36385685 PMCID: PMC9832080 DOI: 10.1007/s00210-022-02338-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
General anesthetic drugs have been associated with various unwanted effects including an interference with mitochondrial function. We had previously observed increases of lactate formation in the mouse brain during anesthesia with volatile anesthetic agents. In the present work, we used mitochondria that were freshly isolated from mouse brain to test mitochondrial respiration and ATP synthesis in the presence of six common anesthetic drugs. The volatile anesthetics isoflurane, halothane, and (to a lesser extent) sevoflurane caused an inhibition of complex I of the electron transport chain in a dose-dependent manner. Significant effects were seen at concentrations that are reached under clinical conditions (< 0.5 mM). Pentobarbital and propofol also inhibited complex I but at concentrations that were two-fold higher than clinical EC50 values. Only propofol caused an inhibition of complex II. Complex IV respiration was not affected by either agent. Ketamine did not affect mitochondrial respiration. Similarly, all anesthetic agents except ketamine suppressed ATP production at high concentrations. Only halothane increased cytochrome c release indicating damage of the mitochondrial membrane. In summary, volatile general anesthetic agents as well as pentobarbital and propofol dose-dependently inhibit mitochondrial respiration. This action may contribute to depressive actions of the drugs in the brain.
Collapse
Affiliation(s)
- Anton Fedorov
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Alina Lehto
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Jochen Klein
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
6
|
Tomsič K, Nemec Svete A. A mini-review of the effects of inhalational and intravenous anesthetics on oxidative stress in dogs. Front Vet Sci 2022; 9:987536. [PMID: 36172618 PMCID: PMC9510748 DOI: 10.3389/fvets.2022.987536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
General anesthesia increases the production of reactive oxygen species (ROS), which can exacerbate or increase oxidative stress and thus affect the prognosis of surgical procedures. Oxidative stress has been implicated in the development of cardiovascular, dermatologic, oncologic, and other diseases in dogs, as well as ischemia and reperfusion injury. Some anesthetics, such as halogenated anesthetics, have been shown to stimulate the production of ROS, while others, such as propofol, have antioxidant properties. However, the antioxidant effects of these anesthetics may not be sufficient to counteract oxidative damage at the doses used clinically. Nevertheless, the effects of anesthetics should be considered to minimize oxidative damage during anesthesia in dogs to improve the outcome of procedures requiring general anesthesia. This mini-review addresses the current knowledge on oxidative stress during inhalational and intravenous anesthesia in dogs. There is still a lack of information on the management of anesthesia in dogs with respect to oxidative stress. Further research, including comprehensive clinical studies is needed to better understand oxidative injury mechanisms and improve perioperative protocols during anesthesia in dogs.
Collapse
|
7
|
Robertson J, Jeffs A, Hedges C, Hickey AJR. Cardiac mitochondrial energetics of the Australasian red spiny lobster, Jasus edwardsii, when exposed to isoeugenol within the commercial anaesthetic AQUI-S. J Exp Biol 2022; 225:275578. [PMID: 35647661 DOI: 10.1242/jeb.242771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
The anaesthetic isoeugenol has been used as metabolic suppressant for commercial transport of live lobsters in order to decrease energy expenditure aand improve survival. Given the central role of mitochondria in metabolism and structural similarities of isoeugenol to the mitochondrial electron carrier coenzyme Q, we explored the influence on mitochondrial function of isoeugenol. Mitochondrial function was measured using high resolution respirometry and saponin permeabilized heart fibres from the Australasian red spiny lobster, Jasus edwardsii. Relative to vehicle (polysorbate), isoeugenol inhibited respiration supported by complex I (CI) and cytochrome c oxidase (CCO). While complex II (CII), which also reduces coenzyme Q was largely unaffected by isoeugenol, respiration supported by CII when uncoupled was depressed. Titration of isoeugenol indicates that respiration through CI has a half inhibition constant (IC50) of 2.4±0.1 µM, and full inhibition constant IC100 of approximately 6.3 µM. These concentrations are consistent with those used for transport and euthanasia of J. edwardsii and indicates that CI is a possible target of isoeugenol like many other anaesthetics with quinone-like structures.
Collapse
Affiliation(s)
- James Robertson
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Andrew Jeffs
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Christopher Hedges
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Anthony J R Hickey
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
8
|
Rose GA, Davies RG, Appadurai IR, Williams IM, Bashir M, Berg RMG, Poole DC, Bailey DM. 'Fit for surgery': The relationship between cardiorespiratory fitness and postoperative outcomes. Exp Physiol 2022; 107:787-799. [PMID: 35579479 PMCID: PMC9545112 DOI: 10.1113/ep090156] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022]
Abstract
New Findings What is the topic of this review? The relationships and physiological mechanisms underlying the clinical benefits of cardiorespiratory fitness (CRF) in patients undergoing major intra‐abdominal surgery. What advances does it highlight? Elevated CRF reduces postoperative morbidity/mortality, thus highlighting the importance of CRF as an independent risk factor. The vascular protection afforded by exercise prehabilitation can further improve surgical risk stratification and postoperative outcomes.
Abstract Surgery accounts for 7.7% of all deaths globally and the number of procedures is increasing annually. A patient's ‘fitness for surgery’ describes the ability to tolerate a physiological insult, fundamental to risk assessment and care planning. We have evolved as obligate aerobes that rely on oxygen (O2). Systemic O2 consumption can be measured via cardiopulmonary exercise testing (CPET) providing objective metrics of cardiorespiratory fitness (CRF). Impaired CRF is an independent risk factor for mortality and morbidity. The perioperative period is associated with increased O2 demand, which if not met leads to O2 deficit, the magnitude and duration of which dictates organ failure and ultimately death. CRF is by far the greatest modifiable risk factor, and optimal exercise interventions are currently under investigation in patient prehabilitation programmes. However, current practice demonstrates potential for up to 60% of patients, who undergo preoperative CPET, to have their fitness incorrectly stratified. To optimise this work we must improve the detection of CRF and reduce potential for interpretive error that may misinform risk classification and subsequent patient care, better quantify risk by expressing the power of CRF to predict mortality and morbidity compared to traditional cardiovascular risk factors, and improve patient interventions with the capacity to further enhance vascular adaptation. Thus, a better understanding of CRF, used to determine fitness for surgery, will enable both clinicians and exercise physiologists to further refine patient care and management to improve survival.
Collapse
Affiliation(s)
- George A Rose
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Richard G Davies
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK.,Department of Anaesthetics, University Hospital of Wales, Cardiff, UK
| | - Ian R Appadurai
- Department of Anaesthetics, University Hospital of Wales, Cardiff, UK
| | - Ian M Williams
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK.,Department of Surgery, University Hospital of Wales, Cardiff, UK
| | - Mohammad Bashir
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK.,Department of Surgery, University Hospital of Wales, Cardiff, UK
| | - Ronan M G Berg
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology and Nuclear Medicine, University Hospital Copenhagen - Rigshospitalet, Copenhagen, Denmark.,Centre for Physical Activity Research, University Hospital Copenhagen - Rigshospitalet, Copenhagen, Denmark
| | - David C Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, USA
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| |
Collapse
|
9
|
The Novel Dehydroepiandrosterone Derivative Bnn27 Counteracts The Impairing Effects Of Anesthetic Ketamine On Rats’ Non-Spatial And Spatial Recognition Memory. Behav Brain Res 2022; 430:113937. [DOI: 10.1016/j.bbr.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022]
|
10
|
Neonatal Anesthesia and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11040787. [PMID: 35453473 PMCID: PMC9026345 DOI: 10.3390/antiox11040787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Neonatal anesthesia, while often essential for surgeries or imaging procedures, is accompanied by significant risks to redox balance in the brain due to the relatively weak antioxidant system in children. Oxidative stress is characterized by concentrations of reactive oxygen species (ROS) that are elevated beyond what can be accommodated by the antioxidant defense system. In neonatal anesthesia, this has been proposed to be a contributing factor to some of the negative consequences (e.g., learning deficits and behavioral abnormalities) that are associated with early anesthetic exposure. In order to assess the relationship between neonatal anesthesia and oxidative stress, we first review the mechanisms of action of common anesthetic agents, the key pathways that produce the majority of ROS, and the main antioxidants. We then explore the possible immediate, short-term, and long-term pathways of neonatal-anesthesia-induced oxidative stress. We review a large body of literature describing oxidative stress to be evident during and immediately following neonatal anesthesia. Moreover, our review suggests that the short-term pathway has a temporally limited effect on oxidative stress, while the long-term pathway can manifest years later due to the altered development of neurons and neurovascular interactions.
Collapse
|
11
|
A New Strategy to Preserve and Assess Oxygen Consumption in Murine Tissues. Int J Mol Sci 2021; 23:ijms23010109. [PMID: 35008535 PMCID: PMC8745047 DOI: 10.3390/ijms23010109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunctions are implicated in several pathologies, such as metabolic, cardiovascular, respiratory, and neurological diseases, as well as in cancer and aging. These metabolic alterations are usually assessed in human or murine samples by mitochondrial respiratory chain enzymatic assays, by measuring the oxygen consumption of intact mitochondria isolated from tissues, or from cells obtained after physical or enzymatic disruption of the tissues. However, these methodologies do not maintain tissue multicellular organization and cell-cell interactions, known to influence mitochondrial metabolism. Here, we develop an optimal model to measure mitochondrial oxygen consumption in heart and lung tissue samples using the XF24 Extracellular Flux Analyzer (Seahorse) and discuss the advantages and limitations of this technological approach. Our results demonstrate that tissue organization, as well as mitochondrial ultrastructure and respiratory function, are preserved in heart and lung tissues freshly processed or after overnight conservation at 4 °C. Using this method, we confirmed the repeatedly reported obesity-associated mitochondrial dysfunction in the heart and extended it to the lungs. We set up and validated a new strategy to optimally assess mitochondrial function in murine tissues. As such, this method is of great potential interest for monitoring mitochondrial function in cohort samples.
Collapse
|
12
|
Horvath B, Pfister KM, Rupp A, Kloesel B. MEGDEL Syndrome and Its Anesthetic Implications. Cureus 2021; 13:e17761. [PMID: 34540505 PMCID: PMC8423315 DOI: 10.7759/cureus.17761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 12/17/2022] Open
Abstract
MEGDEL syndrome gains its name for its following features: 3-methylglutaconic aciduria (MEG), deafness (D), encephalopathy (E), Leigh-like syndrome (L). This syndrome is caused by biallelic mutations in the serine active site-containing protein 1 (SERAC1 ) gene. When these patients present with hepatopathy (H) in addition to the above manifestations the syndrome is labeled as MEGD(H)EL. The pathology of the disease shares features with different types of inborn errors of metabolism. We present the anesthetic management of a neonate who was diagnosed with MEGD(H)EL syndrome and underwent diagnostic magnetic resonance imaging of the brain at 14 days of postnatal age. We describe the epidemiology and important features of this rare disease that are pertinent for the anesthesiologist.
Collapse
Affiliation(s)
- Balazs Horvath
- Anesthesiology, University of Minnesota School of Medicine, Minneapolis, USA
| | - Kathleen M Pfister
- Pediatrics and Neonatology, University of Minnesota School of Medicine, Minneapolis, USA
| | - Alexis Rupp
- Anesthesiology, M Health Fairview, Minneapolis, USA
| | - Benjamin Kloesel
- Anesthesiology, University of Minnesota School of Medicine, Minneapolis, USA
| |
Collapse
|
13
|
Emmerzaal TL, Nijkamp G, Veldic M, Rahman S, Andreazza AC, Morava E, Rodenburg RJ, Kozicz T. Effect of neuropsychiatric medications on mitochondrial function: For better or for worse. Neurosci Biobehav Rev 2021; 127:555-571. [PMID: 34000348 DOI: 10.1016/j.neubiorev.2021.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 01/22/2023]
Abstract
Individuals with mitochondrial disease often present with psychopathological comorbidity, and mitochondrial dysfunction has been proposed as the underlying pathobiology in various psychiatric disorders. Several studies have suggested that medications used to treat neuropsychiatric disorders could directly influence mitochondrial function. This review provides a comprehensive overview of the effect of these medications on mitochondrial function. We collected preclinical information on six major groups of antidepressants and other neuropsychiatric medications and found that the majority of these medications either positively influenced mitochondrial function or showed mixed effects. Only amitriptyline, escitalopram, and haloperidol were identified as having exclusively adverse effects on mitochondrial function. In the absence of formal clinical trials, and until such trials are completed, the data from preclinical studies reported and discussed here could inform medication prescribing practices for individuals with psychopathology and impaired mitochondrial function in the underlying pathology.
Collapse
Affiliation(s)
- Tim L Emmerzaal
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands; Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA
| | - Gerben Nijkamp
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands
| | - Marin Veldic
- Mayo Clinic, Department of Psychiatry, Rochester, MN, USA
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Ana Cristina Andreazza
- University of Toronto, Temerty Faculty of Medicine, Department of Pharmacology & Toxicology and Psychiatry, Toronto, Canada
| | - Eva Morava
- Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tamas Kozicz
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands; Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Biochemistry and Molecular Biology, Rochester, MN, USA.
| |
Collapse
|
14
|
A synthetic peptide rescues rat cortical neurons from anesthetic-induced cell death, perturbation of growth and synaptic assembly. Sci Rep 2021; 11:4567. [PMID: 33633281 PMCID: PMC7907385 DOI: 10.1038/s41598-021-84168-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Anesthetics are deemed necessary for all major surgical procedures. However, they have also been found to exert neurotoxic effects when tested on various experimental models, but the underlying mechanisms remain unknown. Earlier studies have implicated mitochondrial fragmentation as a potential target of anesthetic-induced toxicity, although clinical strategies to protect their structure and function remain sparse. Here, we sought to determine if preserving mitochondrial networks with a non-toxic, short-life synthetic peptide—P110, would protect cortical neurons against both inhalational and intravenous anesthetic-induced neurotoxicity. This study provides the first direct and comparative account of three key anesthetics (desflurane, propofol, and ketamine) when used under identical conditions, and demonstrates their impact on neonatal, rat cortical neuronal viability, neurite outgrowth and synaptic assembly. Furthermore, we discovered that inhibiting Fis1-mediated mitochondrial fission reverses anesthetic-induced aberrations in an agent-specific manner. This study underscores the importance of designing mitigation strategies invoking mitochondria-mediated protection from anesthetic-induced toxicity in both animals and humans.
Collapse
|
15
|
Crocins, the Bioactive Components of Crocus sativus L., Counteract the Disrupting Effects of Anesthetic Ketamine on Memory in Rats. Molecules 2021; 26:molecules26030528. [PMID: 33498440 PMCID: PMC7864164 DOI: 10.3390/molecules26030528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 11/30/2022] Open
Abstract
Consistent experimental evidence suggests that anesthetic doses of the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine cause severe memory impairments in rodents. Crocins are among the various bioactive ingredients of the plant Crocus sativus L., and their implication in memory is well-documented. It has not yet been elucidated if crocins are able to attenuate the memory deficits produced by anesthetic ketamine. The present study was undertaken aiming to clarify this issue in the rat. For this aim, the object recognition, the object location and the habituation tests, reflecting non-spatial recognition memory, spatial recognition memory and associative memory, respectively, were utilized. A post-training challenge with crocins (15–30 mg/kg, intraperitoneally (i.p.), acutely) counteracted anesthetic ketamine (100 mg/kg, i.p.)-induced performance impairments in all the above-mentioned behavioral memory paradigms. The current findings suggest that crocins modulate anesthetic ketamine’s amnestic effects.
Collapse
|
16
|
Rodrigues GC, Rocha NN, Maia LDA, Melo I, Simões AC, Antunes MA, Bloise FF, Woyames J, da Silva WS, Capelozzi VL, Abela GP, Ball L, Pelosi P, Rocco PRM, Silva PL. Impact of experimental obesity on diaphragm structure, function, and bioenergetics. J Appl Physiol (1985) 2020; 129:1062-1074. [PMID: 32909923 DOI: 10.1152/japplphysiol.00262.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Obesity is associated with bioenergetic dysfunction of peripheral muscles; however, little is known regarding the impact of obesity on the diaphragm. We hypothesized that obesity would be associated with diaphragm dysfunction attributable to mitochondrial oxygen consumption and structural and ultrastructural changes. Wistar rat litters were culled to 3 pups to induce early postnatal overfeeding and consequent obesity. Control animals were obtained from unculled litters. From postnatal day 150, diaphragm ultrasound, computed tomography, high-resolution respirometry, immunohistochemical, biomolecular, and ultrastructural histological analyses were performed. The diaphragms of obese animals, compared with those of controls, presented changes in morphology as increased thickening fraction, diaphragm excursion, and diaphragm dome height, as well as increased mitochondrial respiratory capacity coupled to ATP synthesis and maximal respiratory capacity. Fatty acid synthase gene expression was also higher in obese animals, suggesting a source of energy for the respiratory chain. Myosin heavy chain-IIA was increased, indicating shift from glycolytic toward oxidative muscle fiber profile. Diaphragm tissue also exhibited ultrastructural changes, such as compact, round, and swollen mitochondria with fainter cristae and more lysosomal bodies. Dynamin-1 expression in the diaphragm was reduced in obese rats, suggesting decreased mitochondrial fission. Furthermore, gene expressions of peroxisome γ proliferator-activated receptor coactivator-1α and superoxide dismutase-2 were lower in obese animals than in controls, which may indicate a predisposition to oxidative injury. In conclusion, in the obesity model used herein, muscle fiber phenotype was altered in a manner likely associated with increased mitochondrial respiratory capability, suggesting respiratory adaptation to increased metabolic demand.NEW & NOTEWORTHY Obesity has been associated with peripheral muscle dysfunction; however, little is known about its impact on the diaphragm. In the current study, we found high oxygen consumption in diaphragm tissue and changes in muscle fiber phenotypes toward a more oxidative profile in experimental obesity.
Collapse
Affiliation(s)
- Gisele C Rodrigues
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth N Rocha
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Fluminense Federal University, Niteroi, Brazil
| | - Ligia de A Maia
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella Melo
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Simões
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana A Antunes
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia F Bloise
- Laboratory of Translational Endocrinology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Woyames
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - Wagner S da Silva
- Laboratory of Metabolic Adaptations, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera L Capelozzi
- Laboratory of Pulmonary Genomics, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Glenn Paul Abela
- Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Lorenzo Ball
- Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Pitsikas N. The nicotinic α7 receptor agonist GTS-21 but not the nicotinic α4β2 receptor agonist ABT-418 attenuate the disrupting effects of anesthetic ketamine on recognition memory in rats. Behav Brain Res 2020; 393:112778. [DOI: 10.1016/j.bbr.2020.112778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
|
18
|
De Vries MC, Brown DA, Allen ME, Bindoff L, Gorman GS, Karaa A, Keshavan N, Lamperti C, McFarland R, Ng YS, O'Callaghan M, Pitceathly RDS, Rahman S, Russel FGM, Varhaug KN, Schirris TJJ, Mancuso M. Safety of drug use in patients with a primary mitochondrial disease: An international Delphi-based consensus. J Inherit Metab Dis 2020; 43:800-818. [PMID: 32030781 PMCID: PMC7383489 DOI: 10.1002/jimd.12196] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/29/2022]
Abstract
Clinical guidance is often sought when prescribing drugs for patients with primary mitochondrial disease. Theoretical considerations concerning drug safety in patients with mitochondrial disease may lead to unnecessary withholding of a drug in a situation of clinical need. The aim of this study was to develop consensus on safe medication use in patients with a primary mitochondrial disease. A panel of 16 experts in mitochondrial medicine, pharmacology, and basic science from six different countries was established. A modified Delphi technique was used to allow the panellists to consider draft recommendations anonymously in two Delphi rounds with predetermined levels of agreement. This process was supported by a review of the available literature and a consensus conference that included the panellists and representatives of patient advocacy groups. A high level of consensus was reached regarding the safety of all 46 reviewed drugs, with the knowledge that the risk of adverse events is influenced both by individual patient risk factors and choice of drug or drug class. This paper details the consensus guidelines of an expert panel and provides an important update of previously established guidelines in safe medication use in patients with primary mitochondrial disease. Specific drugs, drug groups, and clinical or genetic conditions are described separately as they require special attention. It is important to emphasise that consensus-based information is useful to provide guidance, but that decisions related to drug prescribing should always be tailored to the specific needs and risks of each individual patient. We aim to present what is current knowledge and plan to update this regularly both to include new drugs and to review those currently included.
Collapse
Affiliation(s)
- Maaike C. De Vries
- Radboudumc Amalia Children's HospitalRadboud Center for Mitochondrial MedicineNijmegenThe Netherlands
| | - David A. Brown
- Department of Human Nutrition, Foods, and Exercise and the Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginia
| | - Mitchell E. Allen
- Department of Human Nutrition, Foods, and Exercise and the Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginia
| | - Laurence Bindoff
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of NeurologyHaukeland University HospitalBergenNorway
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Amel Karaa
- Genetics Unit, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusetts
| | - Nandaki Keshavan
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital NHS Foundation TrustLondonUK
| | - Costanza Lamperti
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Mar O'Callaghan
- Department of Neurology, Metabolic UnitHospital Sant Joan de DéuBarcelonaSpain
- CIBERERInstituto de Salud Carlos IIIBarcelonaSpain
| | - Robert D. S. Pitceathly
- Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryLondonUK
| | - Shamima Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital NHS Foundation TrustLondonUK
| | - Frans G. M. Russel
- Department of Pharmacology and ToxicologyRadboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, RadboudumcNijmegenThe Netherlands
| | - Kristin N. Varhaug
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of NeurologyHaukeland University HospitalBergenNorway
| | - Tom J. J. Schirris
- Department of Pharmacology and ToxicologyRadboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, RadboudumcNijmegenThe Netherlands
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological InstituteUniversity of PisaPisaItaly
| |
Collapse
|
19
|
A Metabolic Mechanism for Anaesthetic Suppression of Cortical Synaptic Function in Mouse Brain Slices-A Pilot Investigation. Int J Mol Sci 2020; 21:ijms21134703. [PMID: 32630300 PMCID: PMC7370287 DOI: 10.3390/ijms21134703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Regulation of synaptically located ionotropic receptors is thought to be the main mechanism by which anaesthetics cause unconsciousness. An alternative explanation, which has received much less attention, is that of primary anaesthetic disruption of brain metabolism via suppression of mitochondrial proteins. In this pilot study in mouse cortical slices, we investigated the effect of disrupting cellular metabolism on tissue oxygen handling and cortical population seizure-like event (SLE) activity, using the mitochondrial complex I inhibitor rotenone, and compared this to the effects of the general anaesthetics sevoflurane, propofol and ketamine. Rotenone caused an increase in tissue oxygen (98 mmHg to 157 mmHg (p < 0.01)) before any measurable change in SLE activity. Thereafter, tissue oxygen continued to increase and was accompanied by a significant and prolonged reduction in SLE root mean square (RMS) activity (baseline RMS of 1.7 to 0.7 µV, p < 0.001) and SLE frequency (baseline 4.2 to 0.4 events/min, p = 0.001). This temporal sequence of effects was replicated by all three anaesthetic drugs. In conclusion, anaesthetics with differing synaptic receptor mechanisms all effect changes in tissue oxygen handling and cortical network activity, consistent with a common inhibitory effect on mitochondrial function. The temporal sequence suggests that the observed synaptic depression—as seen in anaesthesia—may be secondary to a reduction in cellular metabolic capacity.
Collapse
|
20
|
Czerniczyniec A, Karadayian AG, Bustamante J, Lores-Arnaiz S. Ketamine treatment affects hippocampal but not cortical mitochondrial function in prepubertal rats. Int J Dev Neurosci 2020; 80:175-187. [PMID: 32053738 DOI: 10.1002/jdn.10015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Previous reports have shown that ketamine triggered apoptosis in immature developing brain involving mitochondrial-mediated pathways. However, no data for ketamine effects on hippocampal and cortical mitochondrial function are available in prepubertal rats. Twenty-one-day-old Sprague-Dawley rats received ketamine (40 mg/kg i.p.) for 3 days and were killed 24 hr after the last injection. Hippocampal mitochondria from ketamine-treated rats showed decreased malate-glutamate state 4 and 3 respiratory rates and an inhibition in complex I and IV activities. Hippocampal mitochondrial membrane depolarization and mitochondrial permeability transition induction were observed. This was not reflected in an increment of H2 O2 production probably due to increased Mn-SOD and catalase activities, 24 hr after treatment. Interestingly, increased H2 O2 production rates and cardiolipin oxidation were found in hippocampal mitochondria shortly after ketamine treatment (45 min). Unlike the hippocampus, ketamine did not affect mitochondrial parameters in the brain cortex, being the area less vulnerable to suffer ketamine-induced oxidative damage. Results provide evidences that exposure of prepubertal rats to ketamine leads to an induction of mitochondrial ROS generation at early stages of treatment that was normalized by the triggering of antioxidant systems. Although hippocampal mitochondria from prepubertal rats were capable of responding to the oxidative stress, they remain partially dysfunctional.
Collapse
Affiliation(s)
- Analía Czerniczyniec
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía G Karadayian
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juanita Bustamante
- Centro de Altos Estudios en Ciencias de la Salud, Universidad Abierta Interamericana, Buenos Aires, Argentina
| | - Silvia Lores-Arnaiz
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Energization by multiple substrates and calcium challenge reveal dysfunctions in brain mitochondria in a model related to acute psychosis. J Bioenerg Biomembr 2019; 52:1-15. [PMID: 31853754 DOI: 10.1007/s10863-019-09816-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/26/2019] [Indexed: 12/23/2022]
Abstract
Schizophrenia etiology is unknown, nevertheless imbalances occurring in an acute psychotic episode are important to its development, such as alterations in cellular energetic state, REDOX homeostasis and intracellular Ca2+ management, all of which are controlled primarily by mitochondria. However, mitochondrial function was always evaluated singularly, in the presence of specific respiratory substrates, without considering the plurality of the electron transport system. In this study, mitochondrial function was analyzed under conditions of isolated or multiple respiratory substrates using brain mitochondria isolated from MK-801-exposed mice. Results showed a high H2O2 production in the presence of pyruvate/malate, with no change in oxygen consumption. In the condition of multiple substrates, however, this effect is lost. The analysis of Ca2+ retention capacity revealed a significant change in the uptake kinetics of this ion by mitochondria in MK-801-exposed animals. Futhermore, when mitochondria were exposed to calcium, a total loss of oxidative phosphorylation and an impressive increase in H2O2 production were observed in the condition of multiple substrates. There was no alteration in the activity of the antioxidant enzymes analyzed. The data demonstrate for the first time, in an animal model of psychosis, two important aspects (1) mitochondria may compensate deficiencies in a single mitochondrial complex when they oxidize several substrates simultaneously, (2) Ca2+ handling is compromised in MK-801-exposed mice, resulting in a loss of phosphorylative capacity and an increase in H2O2 production. These data favor the hypothesis that disruption of key physiological roles of mitochondria may be a trigger in acute psychosis and, consequently, schizophrenia.
Collapse
|
22
|
Wu C, Wang Y, He Y, Wu S, Xie Z, Zhang J, Shen J, Wang Z, He L. Sub-anesthetic and anesthetic ketamine produce different long-lasting behavioral phenotypes (24 h post-treatment) via inducing different brain-derived neurotrophic factor (BDNF) expression level in the hippocampus. Neurobiol Learn Mem 2019; 167:107136. [PMID: 31812581 DOI: 10.1016/j.nlm.2019.107136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/16/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Clinical and preclinical researches have shown that sub-anesthetic ketamine elicits sustained antidepressant effects for up to 1-2 weeks. Pharmacokinetics studies (t1/2 = 23 min) in mice showed no ketamine residue at 24 h after sub-anesthetic or anesthetic ketamine administration. Therefore, this study aims to reveal the mechanism underlying these different biological functions at 24 h after sub-anesthetic and anesthetic ketamine treatment. First, at the animal behavioral level, we found that sub-anesthetic ketamine induced antidepressant and anxiolytic effects while anesthetic ketamine induced depressive-like phenotypes and cognitive impairment. Second, we examined the correlation between behavior phenotype and protein expression, and found that the Brain-derived neurotrophic factor (BDNF) level is oppositely regulated by sub-anesthetic and anesthetic ketamine. Sub-anesthetic ketamine significantly increased the BDNF level, correlating to antidepressant effects; whereas anesthetic dose reduced BDNF expression in the hippocampus, correlating to depressive-like behaviors, anxiety-like behaviors and cognitive impairment. Third, the antidepressant effects of sub-anesthetic ketamine were prevented by pre-treatment of ANA-12, a Tropomyosin receptor kinase B (TrkB) inhibitor. Thus, we conclude that BDNF may be the key factor underlying antidepressant and anxiolytic effects of sub-anesthetic ketamine at 24 h after treatment. These results may shed light on future studies and the development of long-lasting anti-depressant drugs and therapies.
Collapse
Affiliation(s)
- Chunhui Wu
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai 201203, China
| | - Yu Wang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Yang He
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Song Wu
- Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai 201203, China
| | - Zhifei Xie
- Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai 201203, China
| | - Jian Zhang
- Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai 201203, China
| | - Jingshan Shen
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Zhen Wang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China.
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
23
|
Abstract
Reactive oxygen species (ROS) are essential for cellular signaling and physiological function. An imbalance between ROS production and antioxidant protection results in a state of oxidative stress (OS), which is associated with perturbations in reduction/oxidation (redox) regulation, cellular dysfunction, organ failure, and disease. The pathophysiology of OS is closely interlinked with inflammation, mitochondrial dysfunction, and, in the case of surgery, ischemia/reperfusion injury (IRI). Perioperative OS is a complex response that involves patient, surgical, and anesthetic factors. The magnitude of tissue injury inflicted by the surgery affects the degree of OS, and both duration and nature of the anesthetic procedure applied can modify this. Moreover, the interindividual susceptibility to the impact of OS is likely to be highly variable and potentially linked to underlying comorbidities. The pathological link between OS and postoperative complications remains unclear, in part due to the complexities of measuring ROS- and OS-mediated damage. Exogenous antioxidant use and exercise have been shown to modulate OS and may have potential as countermeasures to improve postoperative recovery. A better understanding of the underlying mechanisms of OS, redox signaling, and regulation can provide an opportunity for patient-specific phenotyping and development of targeted interventions to reduce the disruption that surgery can cause to our physiology. Anesthesiologists are in a unique position to deliver countermeasures to OS and improve physiological resilience. To shy away from a process so fundamental to the welfare of these patients would be foolhardy and negligent, thus calling for an improved understanding of this complex facet of human biology.
Collapse
Affiliation(s)
- Jia L Stevens
- From the Division of Surgery and Interventional Science, Royal Free Hospital, University College London, London, United Kingdom
- Royal Free Perioperative Research Group, Department of Anaesthesia, Royal Free Hospital, London, United Kingdom
| | - Martin Feelisch
- Clinical and Experimental Sciences and Integrative Physiology and Critical Illness Group, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Daniel S Martin
- From the Division of Surgery and Interventional Science, Royal Free Hospital, University College London, London, United Kingdom
- Royal Free Perioperative Research Group, Department of Anaesthesia, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
24
|
Holper L, Ben-Shachar D, Mann JJ. Psychotropic and neurological medication effects on mitochondrial complex I and IV in rodent models. Eur Neuropsychopharmacol 2019; 29:986-1002. [PMID: 31320210 DOI: 10.1016/j.euroneuro.2019.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/29/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH-dehydrogenase) and complex IV (cytochrome-c-oxidase) are reported to be affected by drugs used to treat psychiatric or neurodegenerative diseases, including antidepressants, antipsychotics, anxiolytics, mood stabilizers, stimulants, antidementia, and antiparkinsonian drugs. We conducted meta-analyses examining the effects of each drug category on complex I and IV. The electronic databases Pubmed, EMBASE, CENTRAL, and Google Scholar were searched for studies published between 1970 and 2018. Of 3105 screened studies, 68 articles covering 53 drugs were included in the meta-analyses. All studies assessed complex I and IV in rodent brain at the level of enzyme activity. Results revealed that selected antidepressants increase or decrease complex I and IV, antipsychotics and stimulants decrease complex I but increase complex IV, whereas anxiolytics, mood stabilizers, antidementia, and antiparkinsonian drugs preserve or even enhance both complex I and IV. Potential contributions to the drug effects were found to be related to the drugs' neurotransmitter receptor profiles with adrenergic (α1B), dopaminergic (D1/2), glutaminergic (NMDA1,3), histaminergic (H1), muscarinic (M1,3), opioid (OP1-3), serotonergic (5-HT2A, 5-HT2C, 5-HT3A) and sigma (σ1) receptors having the greatest effects. The findings are discussed in relation to pharmacological mechanisms of action that might have relevance for clinical and research applications.
Collapse
Affiliation(s)
- L Holper
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, 8032 Zurich, Switzerland.
| | - D Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion IIT, Haifa, Israel
| | - J J Mann
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, USA
| |
Collapse
|
25
|
Rutkai I, Merdzo I, Wunnava SV, Curtin GT, Katakam PVG, Busija DW. Cerebrovascular function and mitochondrial bioenergetics after ischemia-reperfusion in male rats. J Cereb Blood Flow Metab 2019; 39:1056-1068. [PMID: 29215305 PMCID: PMC6547195 DOI: 10.1177/0271678x17745028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
The underlying factors promoting increased mitochondrial proteins, mtDNA, and dilation to mitochondrial-specific agents in male rats following tMCAO are not fully elucidated. Our goal was to determine the morphological and functional effects of ischemia/reperfusion (I/R) on mitochondria using electron microscopy, Western blot, mitochondrial oxygen consumption rate (OCR), and Ca2+ sparks activity measurements in middle cerebral arteries (MCAs) from male Sprague Dawley rats (Naïve, tMCAO, Sham). We found a greatly increased OCR in ipsilateral MCAs (IPSI) compared with contralateral (CONTRA), Sham, and Naïve MCAs. Consistent with our earlier findings, the expression of Mitofusin-2 and OPA-1 was significantly decreased in IPSI arteries compared with Sham and Naïve. Mitochondrial morphology was disrupted in vascular smooth muscle, but morphology with normal and perhaps greater numbers of mitochondria were observed in IPSI compared with CONTRA MCAs. Consistently, there were significantly fewer baseline Ca2+ events in IPSI MCAs compared with CONTRA, Sham, and Naïve. Mitochondrial depolarization significantly increased Ca2+ sparks activity in the IPSI, Sham, Naïve, but not in the CONTRA group. Our data indicate that altered mitochondrial structure and function occur in MCAs exposed to I/R and that these changes impact not only OCR but Ca2+ sparks activity in both IPSI and CONTRA MCAs.
Collapse
Affiliation(s)
- Ibolya Rutkai
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - Ivan Merdzo
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
- Department of Pharmacology, University
of Mostar School of Medicine, Mostar, Bosnia and Herzegovina
| | - Sanjay V Wunnava
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - Genevieve T Curtin
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - Prasad VG Katakam
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - David W Busija
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| |
Collapse
|
26
|
Robinson B, Gu Q, Ali SF, Dumas M, Kanungo J. Ketamine-induced attenuation of reactive oxygen species in zebrafish is prevented by acetyl l-carnitine in vivo. Neurosci Lett 2019; 706:36-42. [PMID: 31078678 DOI: 10.1016/j.neulet.2019.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/01/2023]
Abstract
Ketamine, an anesthetic, is a non-competitive antagonist of the calcium-permeable N-methyl-d-aspartate (NMDA) receptor. High concentrations of ketamine have been implicated in cardiotoxicity and neurotoxicity. Often, these toxicities are thought to be mediated by reactive oxygen species (ROS). However, findings to the contrary showing ketamine reducing ROS in mammalian cells and neurons in vitro, are emerging. Here, we determined the effects of ketamine on ROS levels in zebrafish larvae in vivo. Based on our earlier studies demonstrating reduction in ATP levels by ketamine, we hypothesized that as a calcium antagonist, ketamine would also prevent ROS generation, which is a by-product of ATP synthesis. To confirm that the detected ROS in a whole organism, such as the zebrafish larva, is specific, we used diphenyleneiodonium (DPI) that blocks ROS production by inhibiting the NADPH Oxidases (NOX). Upon 20 h exposure, DPI (5 and 10 μM) and ketamine at (1 and 2 mM) reduced ROS in the zebrafish larvae in vivo. Using acetyl l-carnitine (ALCAR), a dietary supplement, that induces mitochondrial ATP synthesis, we show elevated ROS generation with increasing ALCAR concentrations. Combined, ketamine and ALCAR counter-balanced ROS generation in the larvae suggesting that ketamine and ALCAR have opposing effects on mitochondrial metabolism, which may be key to maintaining ROS homeostasis in the larvae and affords ALCAR the ability to prevent ketamine toxicity. These results for the first time show ketamine's antioxidative and ALCAR's prooxidative effects in a live vertebrate.
Collapse
Affiliation(s)
- Bonnie Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Melanie Dumas
- The Bionetics Corporation, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|
27
|
Spohr L, Soares MSP, Oliveira PS, da Silveira de Mattos B, Bona NP, Pedra NS, Teixeira FC, do Couto CAT, Chaves VC, Reginatto FH, Lisboa MT, Ribeiro AS, Lencina CL, Stefanello FM, Spanevello RM. Combined actions of blueberry extract and lithium on neurochemical changes observed in an experimental model of mania: exploiting possible synergistic effects. Metab Brain Dis 2019; 34:605-619. [PMID: 30535659 DOI: 10.1007/s11011-018-0353-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Bipolar disorder is a psychiatric disease characterized by recurrent episodes of mania and depression. Blueberries contain bioactive compounds with important pharmacological effects such as neuroprotective and antioxidant actions. The aim of this study was to investigate the effects of blueberry extract and/or lithium on oxidative stress, and acetylcholinesterase (AChE) and Na+, K+-ATPase activity in an experimental ketamine-induced model of mania. Male Wistar rats were pretreated with vehicle, blueberry extract (200 mg/kg), and/or lithium (45 mg/kg or 22.5 mg/kg twice daily) for 14 days. Between the 8th and 14th days, the animals also received an injection of ketamine (25 mg/kg) or vehicle. On the 15th day the animals received a single injection of ketamine; after 30 min, the locomotor activity was evaluated in an open field test. Ketamine administration induced an increase in locomotor activity. In the cerebral cortex, hippocampus and striatum, ketamine also induced an increase in reactive oxygen species, lipid peroxidation and nitrite levels, as well a decrease in antioxidant enzyme activity. Pretreatment with blueberry extract or lithium was able to prevent this change. Ketamine increased the AChE and Na+, K+-ATPase activity in brain structures, while the blueberry extract partially prevented these alterations. In addition, our results showed that the neuroprotective effect was not potentiated when lithium and blueberry extract treatment were given together. In conclusion, our findings suggest that blueberry extract has a neuroprotective effect against an experimental model of mania. However, more studies should be performed to evaluate its effects as an adjuvant therapy.
Collapse
Affiliation(s)
- Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Pathise Souto Oliveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bruna da Silveira de Mattos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fernanda Cardoso Teixeira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Carlus Augustu Tavares do Couto
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vitor Clasen Chaves
- Programa de Pós-Graduação em Biotecnologia e Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Flávio Henrique Reginatto
- Programa de Pós-Graduação em Biotecnologia e Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Meibel Teixeira Lisboa
- Programa de Pós-Graduação em Química, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Laboratório de Metrologia Química, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Anderson Schwingel Ribeiro
- Programa de Pós-Graduação em Química, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Laboratório de Metrologia Química, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Claiton Leoneti Lencina
- Curso de Farmácia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
28
|
Pitsikas N, Georgiadou G, Delis F, Antoniou K. Effects of Anesthetic Ketamine on Anxiety-Like Behaviour in Rats. Neurochem Res 2019; 44:829-838. [PMID: 30656595 DOI: 10.1007/s11064-018-02715-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022]
Abstract
There is scarce information regarding the effects of anesthetic doses of the non-competitive N-methyl-D-aspartate receptor antagonist ketamine on anxiety. The current study evaluated the acute effects of intraperitoneally (i.p.) administered anesthetic ketamine (100 mg/kg) i.p. on anxiety in rats. For this purpose, the light/dark and the open field tests were utilized. The effects of anesthetic ketamine on motility were also examined using a motility cage. In the light/dark test, anesthetic ketamine, administered 24 h before testing reduced the number of transitions between the light and dark compartments and the time spent in the light compartment in the rats compared with their control cohorts. In addition, ketamine was found to exert a depressive effect on rats' motility. In the open field test, animals treated with anesthetic ketamine 24 h before testing spent essentially no time in the central area of the apparatus, decreased horizontal ambulatory activity, and preserved to a certain extent their exploratory behaviour compared to their control counterparts. The results suggest that, in spite of its hypokinetic effect, a single anesthetic ketamine administration apparently induces an anxiety-like state, while largely preserving exploratory behaviour in the rat. These effects were time-dependent they since they were extinguished when testing was carried out 48 h after anesthetic ketamine administration.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 41500, Larissa, Greece.
| | - Georgia Georgiadou
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 41500, Larissa, Greece
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| |
Collapse
|
29
|
Chen JT, Wei L, Chen TL, Huang CJ, Chen RM. Regulation of cytochrome P450 gene expression by ketamine: a review. Expert Opin Drug Metab Toxicol 2018; 14:709-720. [PMID: 29888644 DOI: 10.1080/17425255.2018.1487397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Although used as an anesthetic drug for decades, ketamine appears to have garnered renewed interest due to its potential therapeutic uses in pain therapy, neurology, and psychiatry. Ketamine undergoes extensive oxidative metabolism by cytochrome P450 (CYP) enzymes. Considerable efforts have been expended to elucidate the ketamine-induced regulation of CYP gene expression. The safety profile of chronic ketamine administration is still unclear. Understanding how ketamine regulates CYP gene expression is clinically meaningful. Areas covered: In this article, the authors provide a brief review of clinical applications of ketamine and its metabolism by CYP enzymes. We discuss the effects of ketamine on the regulation of CYP gene expression, exploring aspects of cytoskeletal remodeling, mitochondrial functions, and calcium homeostasis. Expert opinion: Ketamine may inhibit CYP gene expression through inhibiting calcium signaling, decreasing ATP levels, producing excessive reactive oxygen species, and subsequently perturbing cytoskeletal dynamics. Further research is still needed to avoid possible ketamine-drug interactions during long-term use in the clinic.
Collapse
Affiliation(s)
- Jui-Tai Chen
- a Department of Anesthesiology, School of Medicine, College of Medicine , Taipei Medical University , Taipei City , Taiwan.,b Department of Anesthesiology, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Li Wei
- c Department of Neurosurgery, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Ta-Liang Chen
- d Anesthesiology and Health Policy Research Center , Taipei Medical University Hospital , Taipei City , Taiwan
| | - Chun-Jen Huang
- a Department of Anesthesiology, School of Medicine, College of Medicine , Taipei Medical University , Taipei City , Taiwan.,b Department of Anesthesiology, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Ruei-Ming Chen
- d Anesthesiology and Health Policy Research Center , Taipei Medical University Hospital , Taipei City , Taiwan.,e Graduate Institute of Medical Sciences, College of Medicine , Taipei Medical University , Taipei City , Taiwan.,f Cellular Physiology and Molecular Image Research Center, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| |
Collapse
|
30
|
Félix LM, Vidal AM, Serafim C, Valentim AM, Antunes LM, Monteiro SM, Matos M, Coimbra AM. Ketamine induction of p53-dependent apoptosis and oxidative stress in zebrafish (Danio rerio) embryos. CHEMOSPHERE 2018; 201:730-739. [PMID: 29547861 DOI: 10.1016/j.chemosphere.2018.03.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Ketamine is a widely used pharmaceutical that has been detected in water sources worldwide. Zebrafish embryos were used in this study to investigate the oxidative stress and apoptotic signals following a 24h exposure to different ketamine concentrations (0, 50, 70 and 90 mg L-1). Early blastula embryos (∼2 h post fertilisation-hpf) were exposed for 24 h and analysed at 8 and 26 hpf. Reactive oxygen species and apoptotic cells were identified in vivo, at 26 hpf. Enzymatic activities (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), lactate dehydrogenase (LDH) and acetylcholinesterase (AChE)), glutathione levels (oxidised (GSSG) and reduced (GSH)), oxidative damage (lipid peroxidation (LPO) and protein carbonyls (CO)) as well as oxidative stress (gclc, gstp1, sod1 and cat), apoptosis (casp3a, casp6, casp8, casp9, aifm1 and tp53) and cell proliferation (pcna) related-genes were evaluated at 8 and 26 hpf. Caspase (3 and 9) activity was also determined at both time-points by colorimetric methods. Superoxide dismutase (SOD), catalase (CAT), glutathione levels (GSSG), caspase-9 and reactive oxygen species (ROS) were shown to be affected by ketamine exposure while in vivo analysis showed no difference in ROS. A significant up-regulation of superoxide dismutase (sod1) and catalase (cat) genes expression was also perceived. Ketamine-induced apoptosis was observed in vivo and confirmed by the apoptotic-related genes up-regulation. The overall results suggest that ketamine induced oxidative stress and apoptosis through the involvement of p53-dependent pathways in zebrafish embryos which could be important for the evaluation of the overall risk of ketamine in aquatic environments.
Collapse
Affiliation(s)
- Luís M Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Porto, Portugal; Laboratory Animal Science (LAS), Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto (UP), Porto, Portugal.
| | - Ana M Vidal
- Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Cindy Serafim
- Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Valentim
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Porto, Portugal; Laboratory Animal Science (LAS), Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto (UP), Porto, Portugal
| | - Luís M Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Porto, Portugal; Laboratory Animal Science (LAS), Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto (UP), Porto, Portugal; School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Manuela Matos
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal; Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
31
|
Duarte JMN, Xin L. Magnetic Resonance Spectroscopy in Schizophrenia: Evidence for Glutamatergic Dysfunction and Impaired Energy Metabolism. Neurochem Res 2018; 44:102-116. [PMID: 29616444 PMCID: PMC6345729 DOI: 10.1007/s11064-018-2521-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 01/03/2023]
Abstract
In the past couple of decades, major efforts were made to increase reliability of metabolic assessments by magnetic resonance methods. Magnetic resonance spectroscopy (MRS) has been valuable for providing in vivo evidence and investigating biomarkers in neuropsychiatric disorders, namely schizophrenia. Alterations of glutamate and glutamine levels in brains of schizophrenia patients relative to healthy subjects are generally interpreted as markers of glutamatergic dysfunction. However, only a small fraction of MRS-detectable glutamate is involved in neurotransmission. Here we review and discuss brain metabolic processes that involve glutamate and that are likely to be implicated in neuropsychiatric disorders.
Collapse
Affiliation(s)
- João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, BMC C11, Sölvegatan 19, 221 84, Lund, Sweden. .,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Robinson BL, Dumas M, Ali SF, Paule MG, Gu Q, Kanungo J. Mechanistic studies on ketamine-induced mitochondrial toxicity in zebrafish embryos. Neurotoxicol Teratol 2017; 69:63-72. [PMID: 29225006 DOI: 10.1016/j.ntt.2017.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022]
Abstract
Ketamine, a phencyclidine derivative, is an antagonist of the Ca2+-permeable N-methyl-d-aspartate (NMDA)-type glutamate receptors. It is a pediatric anesthetic and has been implicated in developmental neurotoxicity. Ketamine has also been shown to deplete ATP in mammalian cells. Our previous studies showed that acetyl l-carnitine (ALCAR) prevented ketamine-induced cardiotoxicity and neurotoxicity in zebrafish embryos. Based on our finding that ALCAR's protective effect was blunted by oligomycin A, an inhibitor of ATP synthase, we further investigated the effects of ketamine and ALCAR on ATP levels, mitochondria and ATP synthase in zebrafish embryos. The results demonstrated that ketamine reduced ATP levels in the embryos but not in the presence of ALCAR. Ketamine reduced total mitochondrial protein levels and mitochondrial potential, which were prevented with ALCAR co-treatment. To determine the cause of ketamine-induced ATP deficiency, we explored the status of ATP synthase. The results showed that a subunit of ATP synthase, atp5α1, was transcriptionally down-regulated by ketamine, but not in the presence of ALCAR, although ketamine caused a significant upregulation in another ATP synthase subunit, atp5β and total ATP synthase protein levels. Most of the ATP generated by heart mitochondria are utilized for its contraction and relaxation. Ketamine-treated embryos showed abnormal heart structure, which was abolished with ALCAR co-treatment. This study offers evidence for a potential mechanism by which ketamine could cause ATP deficiency mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Bonnie L Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Melanie Dumas
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
33
|
Gordon TR, Montandon RJ. Anesthetic Management of a Child With Unspecified Mitochondrial Disease in an Outpatient Dental Setting. Anesth Prog 2017; 64:33-38. [PMID: 28128656 DOI: 10.2344/anpr-63-03-08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial disease (MD) represents a category of metabolic disorders with a wide range of symptoms across a variety of organ systems. It occurs with an incidence of greater than 1:5000 and can be difficult to specifically diagnose because of the variety of clinical presentations and multiple genomic origins. Although phenotypically variable, MD symptoms often include hypotonia, cardiac defects, dysautonomia, and metabolic dysfunction. Mitochondrial disease presents a unique challenge in terms of anesthetic management, as many anesthetic drugs suppress mitochondrial function. Additional considerations may need to be made in order to evaluate the patient's metabolic compensation prior to surgery. This article presents an in-depth discussion of a case involving a nearly 10-year-old boy with a history of an unspecified form of MD, who presented for endodontic treatment of tooth No. 30 under deep sedation. The article also provides a thorough review of the current literature surrounding the anesthetic management of patients with MD.
Collapse
Affiliation(s)
- Taylor R Gordon
- Resident, Department of Dental Anesthesiology, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania
| | - Richard J Montandon
- Assistant Professor, Department of Dental Anesthesiology, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Hsieh VC, Krane EJ, Morgan PG. Mitochondrial Disease and Anesthesia. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817707770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Vincent C. Hsieh
- Department of Anesthesiology and Perioperative Medicine, University of Washington, Seattle, WA, USA
| | - Elliot J. Krane
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Philip G. Morgan
- Department of Anesthesiology and Perioperative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
35
|
Debom G, Gazal M, Soares MSP, do Couto CAT, Mattos B, Lencina C, Kaster MP, Ghisleni GC, Tavares R, Braganhol E, Chaves VC, Reginatto FH, Stefanello F, Spanevello RM. Preventive effects of blueberry extract on behavioral and biochemical dysfunctions in rats submitted to a model of manic behavior induced by ketamine. Brain Res Bull 2016; 127:260-269. [PMID: 27769874 DOI: 10.1016/j.brainresbull.2016.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022]
Abstract
The aim of the present study was to evaluate the protective effects of blueberry extract on oxidative stress and inflammatory parameters in a model of mania induced by ketamine administration in rats. Male rats were pretreated with blueberry extract (200mg/kg, once a day for 14days), lithium chloride (45mg/kg, mood stabilizer used as a positive control, twice a day for 14days), or vehicle. Between the 8th and 14th days, rats also received an injection of ketamine (25mg/kg) or vehicle. In the 15th day, thirty minutes after ketamine administration the hyperlocomotion of the animals was assessed in the open - field apparatus. Immediately after the behavioral analysis brain and blood were collected for biochemical determinations. ketamine treatment induced hyperlocomotion and oxidative damage in cerebral cortex, hippocampus and striatum such as an increase in lipid peroxidation and a decrease in the antioxidant enzymes activities (superoxide dismutase, catalase e glutatione peroxidase). Ketamine administration also increased the IL-6 levels in serum in rats. Pretreatment of rats with blueberry extract or lithium prevented the hyperlocomotion, pro - oxidant effects and inflammation induced by ketamine. Our findings suggest that blueberry consumption has a neuroprotective potential against behavioral and biochemical dysfunctions induced in a preclinical model that mimic some aspects of the manic behavior.
Collapse
Affiliation(s)
- Gabriela Debom
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Marta Gazal
- Programa de Pós Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Carlus Augustu Tavares do Couto
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Bruna Mattos
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Claiton Lencina
- Curso de Farmácia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Manuella Pinto Kaster
- Programa de Pós Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Rejane Tavares
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vitor Clasen Chaves
- Programa de Pós - Graduação em Biotecnologia e Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Flávio Henrique Reginatto
- Programa de Pós - Graduação em Biotecnologia e Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Francieli Stefanello
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|
36
|
Andrade F, Fonte P, Costa A, Reis CC, Nunes R, Almeida A, Ferreira D, Oliva M, Sarmento B. Pharmacological and toxicological assessment of innovative self-assembled polymeric micelles as powders for insulin pulmonary delivery. Nanomedicine (Lond) 2016; 11:2305-17. [DOI: 10.2217/nnm-2016-0045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: Explore the use of polymeric micelles in the development of powders intended for pulmonary delivery of biopharmaceuticals, using insulin as a model protein. Materials & methods: Formulations were assessed in vitro for aerosolization properties and in vivo for efficacy and safety using a streptozotocin-induced diabetic rat model. Results: Powders presented good aerosolization properties like fine particle fraction superior to 40% and a mass median aerodynamic diameter inferior of 6 μm. Endotracheally instilled powders have shown a faster onset of action than subcutaneous administration of insulin at a dose of 10 IU/kg, with pharmacological availabilities up to 32.5% of those achieved by subcutaneous route. Additionally, micelles improved the hypoglycemic effect of insulin. Bronchoalveolar lavage screening for toxicity markers (e.g., lactate dehydrogenase, cytokines) revealed no signs of lung inflammation and cytotoxicity 14 days postadministration. Conclusion: Developed powders showed promising safety and efficacy characteristics for the systemic delivery of insulin by pulmonary administration.
Collapse
Affiliation(s)
- Fernanda Andrade
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- IBEC, Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
- School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Pedro Fonte
- REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra PRD, Portugal
| | - Ana Costa
- INEB Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cassilda Cunha Reis
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra PRD, Portugal
| | - Rute Nunes
- INEB Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Andreia Almeida
- INEB Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Domingos Ferreira
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Mireia Oliva
- IBEC, Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
- School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- CIBER-BBN, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, 28029 Madrid, Spain
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra PRD, Portugal
- INEB Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
37
|
Adzic M, Brkic Z, Bulajic S, Mitic M, Radojcic MB. Antidepressant Action on Mitochondrial Dysfunction in Psychiatric Disorders. Drug Dev Res 2016; 77:400-406. [DOI: 10.1002/ddr.21332] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Miroslav Adzic
- Laboratory of Molecular Biology and Endocrinology; VINCA Institute of Nuclear Sciences, University of Belgrade; Serbia
| | - Zeljka Brkic
- Laboratory of Molecular Biology and Endocrinology; VINCA Institute of Nuclear Sciences, University of Belgrade; Serbia
| | - Sonja Bulajic
- School of Medicine; University of Pristina; Kosovska Mitrovica Serbia
| | - Milos Mitic
- Laboratory of Molecular Biology and Endocrinology; VINCA Institute of Nuclear Sciences, University of Belgrade; Serbia
| | - Marija B. Radojcic
- Laboratory of Molecular Biology and Endocrinology; VINCA Institute of Nuclear Sciences, University of Belgrade; Serbia
| |
Collapse
|
38
|
Affiliation(s)
- Teresa Summavielle
- Addiction Biology Group, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal Laboratory Animal Science, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal Laboratory Animal Science, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | |
Collapse
|
39
|
Affiliation(s)
- Philip G Morgan
- Department of Anesthesiology and Pain Medicine, Seattle Children's Research Institute, University of Washington, Seattle, Washington, Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington
| | | | | |
Collapse
|
40
|
Linking Mitochondria to Synapses: New Insights for Stress-Related Neuropsychiatric Disorders. Neural Plast 2016; 2016:3985063. [PMID: 26885402 PMCID: PMC4738951 DOI: 10.1155/2016/3985063] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
The brain evolved cellular mechanisms for adapting synaptic function to energy supply. This is particularly evident when homeostasis is challenged by stress. Signaling loops between the mitochondria and synapses scale neuronal connectivity with bioenergetics capacity. A biphasic “inverted U shape” response to the stress hormone glucocorticoids is demonstrated in mitochondria and at synapses, modulating neural plasticity and physiological responses. Low dose enhances neurotransmission, synaptic growth, mitochondrial functions, learning, and memory whereas chronic, higher doses produce inhibition of these functions. The range of physiological effects by stress and glucocorticoid depends on the dose, duration, and context at exposure. These criteria are met by neuronal activity and the circadian, stress-sensitive and ultradian, stress-insensitive modes of glucocorticoid secretion. A major hallmark of stress-related neuropsychiatric disorders is the disrupted glucocorticoid rhythms and tissue resistance to signaling with the glucocorticoid receptor (GR). GR resistance could result from the loss of context-dependent glucocorticoid signaling mediated by the downregulation of the activity-dependent neurotrophin BDNF. The coincidence of BDNF and GR signaling changes glucocorticoid signaling output with consequences on mitochondrial respiration efficiency, synaptic plasticity, and adaptive trajectories.
Collapse
|
41
|
Landek-Salgado MA, Faust TE, Sawa A. Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry 2016; 21:10-28. [PMID: 26390828 PMCID: PMC4684728 DOI: 10.1038/mp.2015.141] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a devastating psychiatric condition affecting numerous brain systems. Recent studies have identified genetic factors that confer an increased risk of SZ and participate in the disease etiopathogenesis. In parallel to such bottom-up approaches, other studies have extensively reported biological changes in patients by brain imaging, neurochemical and pharmacological approaches. This review highlights the molecular substrates identified through studies with SZ patients, namely those using top-down approaches, while also referring to the fruitful outcomes of recent genetic studies. We have subclassified the molecular substrates by system, focusing on elements of neurotransmission, targets in white matter-associated connectivity, immune/inflammatory and oxidative stress-related substrates, and molecules in endocrine and metabolic cascades. We further touch on cross-talk among these systems and comment on the utility of animal models in charting the developmental progression and interaction of these substrates. Based on this comprehensive information, we propose a framework for SZ research based on the hypothesis of an imbalance in homeostatic signaling from immune/inflammatory, oxidative stress, endocrine and metabolic cascades that, at least in part, underlies deficits in neural connectivity relevant to SZ. Thus, this review aims to provide information that is translationally useful and complementary to pathogenic hypotheses that have emerged from genetic studies. Based on such advances in SZ research, it is highly expected that we will discover biomarkers that may help in the early intervention, diagnosis or treatment of SZ.
Collapse
Affiliation(s)
- M A Landek-Salgado
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - T E Faust
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Félix LM, Vidal AM, Serafim C, Valentim AM, Antunes LM, Campos S, Matos M, Monteiro SM, Coimbra AM. Ketamine-induced oxidative stress at different developmental stages of zebrafish (Danio rerio) embryos. RSC Adv 2016. [DOI: 10.1039/c6ra08298j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The changes induced by ketamine exposure were developmental stage-dependent, and related with the gradual development of the antioxidant defense system of the embryo, which is dependent on changes in energy-sensing pathways.
Collapse
Affiliation(s)
- Luís M. Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
- Laboratory Animal Science (LAS)
| | - Ana M. Vidal
- Life Sciences and Environment School (ECVA)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
| | - Cindy Serafim
- Life Sciences and Environment School (ECVA)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
| | - Ana M. Valentim
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
- Laboratory Animal Science (LAS)
| | - Luís M. Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
- Laboratory Animal Science (LAS)
| | - Sónia Campos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
- Laboratory Animal Science (LAS)
| | - Manuela Matos
- Biosystems & Integrative Sciences Institute (BioISI)
- Faculty of Sciences
- University of Lisboa
- Lisboa
- Portugal
| | - Sandra M. Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
| | - Ana M. Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
| |
Collapse
|
43
|
Region-specific effects of repeated ketamine administration on the presynaptic GABAergic neurochemistry in rat brain. Neurochem Int 2015; 91:13-25. [PMID: 26492822 DOI: 10.1016/j.neuint.2015.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022]
Abstract
A growing body of evidence indicates that clinical use of ketamine as a promising antidepressant can be accompanied by psychotic-like side effects. Although, the generation of such effects is thought to be attributed to dysfunction of prefrontal GABAergic interneurons, the mechanism underlying ketamine's propsychotic-like action is not fully understood. Due to wide spectrum of behavioral abnormalities, it is hypothesized that ketamine action is not limited to only cortical GABA metabolism but may also involve alterations in other functional brain areas. To test it, we treated rats with ketamine (30 mg/kg, i.p.) for 5 days, and next we analyzed GABA metabolizing enzymes in cortex, cerebellum, hippocampus and striatum. Our results demonstrated that diminished GAD67 expression in cortex, cerebellum (by ∼60%) and in hippocampus (by ∼40%) correlated with lowered protein level in these areas. The expression of GAD65 isoform decreased by ∼45% in striatum, but pronounced increase by ∼90% was observed in hippocampus. Consecutively, reduction in glutamate decarboxylase activity and GABA concentration were detected in cortex, cerebellum and striatum, but not in hippocampus. Ketamine administration decreased GABA transaminase protein in cortex and striatum (by ∼50% and 30%, respectively), which was reflected in diminished activity of the enzyme. Also, a significant drop in succinic semialdehyde dehydrogenase activity in cortex, cerebellum and striatum was present. These data suggest a reduced utilization of GABA for energetic purposes. In addition, we observed synaptic GABA release to be reduced by ∼30% from striatal terminals. It correlated with lowered KCl-induced Ca(2+) influx and decreased amount of L-type voltage-dependent calcium channel. Our results indicate that unique changes in GABA metabolism triggered by chronic ketamine treatment in functionally distinct brain regions may be involved in propsychotic-like effects of this drug.
Collapse
|
44
|
Kopp VJ, Koenig MW. A lowest oxygen level acceptable (LOLA) standard should apply to all ages. Br J Anaesth 2015; 115:803. [PMID: 26475817 DOI: 10.1093/bja/aev322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- V J Kopp
- Chapel Hill, North Carolina, USA
| | | |
Collapse
|
45
|
Ketamine causes mitochondrial dysfunction in human induced pluripotent stem cell-derived neurons. PLoS One 2015; 10:e0128445. [PMID: 26020236 PMCID: PMC4447382 DOI: 10.1371/journal.pone.0128445] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/27/2015] [Indexed: 02/06/2023] Open
Abstract
Purpose Ketamine toxicity has been demonstrated in nonhuman mammalian neurons. To study the toxic effect of ketamine on human neurons, an experimental model of cultured neurons from human induced pluripotent stem cells (iPSCs) was examined, and the mechanism of its toxicity was investigated. Methods Human iPSC-derived dopaminergic neurons were treated with 0, 20, 100 or 500 μM ketamine for 6 and 24 h. Ketamine toxicity was evaluated by quantification of caspase 3/7 activity, reactive oxygen species (ROS) production, mitochondrial membrane potential, ATP concentration, neurotransmitter reuptake activity and NADH/NAD+ ratio. Mitochondrial morphological change was analyzed by transmission electron microscopy and confocal microscopy. Results Twenty-four-hour exposure of iPSC-derived neurons to 500 μM ketamine resulted in a 40% increase in caspase 3/7 activity (P < 0.01), 14% increase in ROS production (P < 0.01), and 81% reduction in mitochondrial membrane potential (P < 0.01), compared with untreated cells. Lower concentration of ketamine (100 μM) decreased the ATP level (22%, P < 0.01) and increased the NADH/NAD+ ratio (46%, P < 0.05) without caspase activation. Transmission electron microscopy showed enhanced mitochondrial fission and autophagocytosis at the 100 μM ketamine concentration, which suggests that mitochondrial dysfunction preceded ROS generation and caspase activation. Conclusions We established an in vitro model for assessing the neurotoxicity of ketamine in iPSC-derived neurons. The present data indicate that the initial mitochondrial dysfunction and autophagy may be related to its inhibitory effect on the mitochondrial electron transport system, which underlies ketamine-induced neural toxicity. Higher ketamine concentration can induce ROS generation and apoptosis in human neurons.
Collapse
|
46
|
Preventive Effect of Cecropia pachystachya Against Ketamine-Induced Manic Behavior and Oxidative Stress in Rats. Neurochem Res 2015; 40:1421-30. [DOI: 10.1007/s11064-015-1610-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 05/07/2015] [Accepted: 05/09/2015] [Indexed: 01/06/2023]
|