1
|
Kanao-Kanda M, Luthe SK, Onodera Y, Sato I, Endo T, Kawamata T, Kanda H. Prevalence of HIV-related pain in Japan: a clinical survey. J Anesth 2025:10.1007/s00540-025-03493-y. [PMID: 40237886 DOI: 10.1007/s00540-025-03493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Although human immunodeficiency virus (HIV)-related peripheral neuropathies are among the most common neurological complications in patients with HIV infection, the prevalence and patient characteristics of HIV-related pain and peripheral neuropathic pain in Japan remain unclear. OBJECTIVES This study aims to investigate the prevalence and patient characteristics of HIV-related pain with a focus on peripheral neuropathic pain among Japanese patients. METHODS We conducted a survey among patients diagnosed with HIV infection and reviewed their medical records to collect the following information; age, sex, presence of pain or numbness, duration of pain or numbness, duration of HIV infection, clusters of differentiation 4 (CD4) T-cell count, ribonucleic acid (RNA) load, diagnosis and duration of acquired immune deficiency syndrome (AIDS), treatment status and duration of highly active antiretroviral therapy (HAART). The primary outcome of this study was the prevalence of HIV-related pain with a focus on peripheral neuropathic pain. RESULTS A survey was distributed to 474 patients, of whom 270 chose not to participate. Consequently, data from 204 patients were included in the analysis. The prevalence of HIV-related pain was 16% and patients with possible HIV-related peripheral neuropathic pain was 9.3%. Among these patients, age, presence of numbness, duration of numbness, and duration of AIDS were significantly higher than in patients without HIV-related pain. CONCLUSIONS In this prospective multi-center cross-sectional study, the prevalence of HIV-related pain was 16% among 204 Japanese patients with HIV in which they tended to have advanced age and longer duration of AIDS compared to patients without HIV-related pain.
Collapse
Affiliation(s)
- Megumi Kanao-Kanda
- Department of Anesthesiology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan
| | - Sarah Kyuragi Luthe
- Department of Anesthesiology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yoshiko Onodera
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan
| | - Izumi Sato
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan
| | - Tomoyuki Endo
- Department of Hematology, Hokkaido University, Kita 14-Nishi 5, Sapporo, Hokkaido, 060-8648, Japan
| | - Tomoyuki Kawamata
- Department of Anesthesiology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Hirotsugu Kanda
- Department of Anesthesiology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan.
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan.
| |
Collapse
|
2
|
Zhang X, Zhang W, Wang Y, Zhang Y, Zhang D, Qin G, Zhou J, Chen L. SIRT1-regulated ROS generation activates NMDAR2B phosphorylation to promote central sensitization and allodynia in a male chronic migraine rat model. Front Mol Neurosci 2024; 17:1387481. [PMID: 38840778 PMCID: PMC11150646 DOI: 10.3389/fnmol.2024.1387481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
Background Central sensitization is one of the pivotal pathological mechanisms in chronic migraine (CM). Silent information regulator 1 (SIRT1) was shown to be involved in CM, but its specific mechanism is unclear. Reactive oxygen species (ROS) are increasingly regarded as important signaling molecules in several models of pain. However, studies about the role of ROS in the central sensitization of CM model are rare. We thus explored the specific process of SIRT1 involvement in the central sensitization of CM, focusing on the ROS pathway. Methods Inflammatory soup was repeatedly administered to male Sprague-Dawley rats to establish a CM model. The SIRT1 expression level in trigeminal nucleus caudalis (TNC) tissues was assessed by qRT-PCR and Western blotting analysis. The levels of ROS were detected by a Tissue Reactive Oxygen Detection Kit, DHE staining, and the fluorescence signal intensity of 8-OHdG. A ROS scavenger (tempol), a SIRT1 activator (SRT1720), a SIRT1 inhibitor (EX527), and a mitochondrial fission inhibitor (Mdivi-1) were used to investigate the specific molecular mechanisms involved. NMDAR2B, CGRP, ERK, and mitochondrial fission-related protein were evaluated by Western blotting, and the CGRP level in frozen sections of the TNC was detected via immunofluorescence staining. Results After repeated inflammatory soup infusion and successful establishment of the CM rat model, SIRT1 expression was found to be significantly reduced, accompanied by elevated ROS levels. Treatment with Tempol, SRT1720, or Mdivi-1 alleviated allodynia and reduced the increase in NMDAR2B phosphorylation and CGRP and ERK phosphorylation in the CM rat. In contrast, EX527 had the opposite effect in CM rat. SRT1720 and EX527 decreased and increased ROS levels, respectively, in CM rats, and tempol reversed the aggravating effect of EX527 in CM rats. Furthermore, the regulatory effect of SIRT1 on ROS may include the involvement of the mitochondrial fission protein DRP1. Conclusion The results indicate the importance of SIRT1 in CM may be due to its role in regulating the production of ROS, which are involved in modulating central sensitization in CM. These findings could lead to new ideas for CM treatment with the use of SIRT1 agonists and antioxidants.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanyun Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Paradis S, Charles AL, Giannini M, Meyer A, Lejay A, Talha S, Laverny G, Charloux A, Geny B. Targeting Mitochondrial Dynamics during Lower-Limb Ischemia Reperfusion in Young and Old Mice: Effect of Mitochondrial Fission Inhibitor-1 (mDivi-1). Int J Mol Sci 2024; 25:4025. [PMID: 38612835 PMCID: PMC11012338 DOI: 10.3390/ijms25074025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Peripheral arterial disease (PAD) strikes more than 200 million people worldwide and has a severe prognosis by potentially leading to limb amputation and/or death, particularly in older patients. Skeletal muscle mitochondrial dysfunctions and oxidative stress play major roles in this disease in relation with ischemia-reperfusion (IR) cycles. Mitochondrial dynamics through impairment of fission-fusion balance may contribute to skeletal muscle pathophysiology, but no data were reported in the setting of lower-limb IR despite the need for new therapeutic options. We, therefore, investigated the potential protective effect of mitochondrial division inhibitor-1 (mDivi-1; 50 mg/kg) in young (23 weeks) and old (83 weeks) mice submitted to two-hour ischemia followed by two-hour reperfusion on systemic lactate, muscle mitochondrial respiration and calcium retention capacity, and on transcripts specific for oxidative stress and mitochondrial dynamics. At the systemic levels, an IR-related increase in circulating lactate was still major despite mDivi-1 use (+305.9% p < 0.0001, and +269.4% p < 0.0001 in young and old mice, respectively). Further, IR-induced skeletal muscle mitochondrial dysfunctions (more severely impaired mitochondrial respiration in old mice (OXPHOS CI state, -68.2% p < 0.0001 and -84.9% p < 0.0001 in 23- and 83-week mice) and reduced calcium retention capacity (-46.1% p < 0.001 and -48.2% p = 0.09, respectively) were not corrected by mDivi-1 preconditioning, whatever the age. Further, mDivi-1 treatment did not oppose superoxide anion production (+71.4% p < 0.0001 and +37.5% p < 0.05, respectively). At the transcript level, markers of antioxidant enzymes (SOD 1, SOD 2, catalase, and GPx) and fission markers (Drp1, Fis) remained unchanged or tended to be decreased in the ischemic leg. Fusion markers such as mitofusin 1 or 2 decreased significantly after IR in both groups. In conclusion, aging enhanced the deleterious effects or IR on muscle mitochondrial respiration, and in this setting of lower-limb IR, mDivi-1 failed to protect the skeletal muscle both in young and old mice.
Collapse
Affiliation(s)
- Stéphanie Paradis
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Anne-Laure Charles
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
| | - Margherita Giannini
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Alain Meyer
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Anne Lejay
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Vascular Surgery Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Samy Talha
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Gilles Laverny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
| | - Anne Charloux
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Bernard Geny
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
4
|
Shrestha J, Santerre M, Allen CN, Arjona SP, Hooper R, Mukerjee R, Kaul M, Shcherbik N, Soboloff J, Sawaya BE. HIV-1 gp120 protein promotes HAND through the calcineurin pathway activation. Mitochondrion 2023; 70:31-40. [PMID: 36925028 PMCID: PMC10484070 DOI: 10.1016/j.mito.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
For over two decades, highly active antiretroviral therapy (HAART) was able to help prolong the life expectancy of people living with HIV-1 (PLWH) and eliminate the virus to an undetectable level. However, an increased prevalence of HIV- associated neurocognitive disorders (HAND) was observed. These symptoms range from neuronal dysfunction to cell death. Among the markers of neuronal deregulation, we cite the alteration of synaptic plasticity and neuronal communications. Clinically, these dysfunctions led to neurocognitive disorders such as learning alteration and loss of spatial memory, which promote premature brain aging even in HAART-treated patients. In support of these observations, we showed that the gp120 protein deregulates miR-499-5p and its downstream target, the calcineurin (CaN) protein. The gp120 protein also promotes the accumulation of calcium (Ca2+) and reactive oxygen species (ROS) inside the neurons leading to the activation of CaN and the inhibition of miR-499-5p. gp120 protein also caused mitochondrial fragmentation and changes in shape and size. The use of mimic miR-499 restored mitochondrial functions, appearance, and size. These results demonstrated the additional effect of the gp120 protein on neurons through the miR-499-5p/calcineurin pathway.
Collapse
Affiliation(s)
- Jenny Shrestha
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Charles N Allen
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Sterling P Arjona
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Robert Hooper
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Ruma Mukerjee
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Psychiatry, UCSD, San Diego, CA, USA; Division of Biomedical Sciences, School of Medicine, UCR, Riverside, CA, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Jonathan Soboloff
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| |
Collapse
|
5
|
Hayashi K, Yi H, Zhu X, Liu S, Gu J, Takahashi K, Kashiwagi Y, Pardo M, Kanda H, Li H, Levitt RC, Hao S. Role of Tumor Necrosis Factor Receptor 1-Reactive Oxygen Species-Caspase 11 Pathway in Neuropathic Pain Mediated by HIV gp120 With Morphine in Rats. Anesth Analg 2023; 136:789-801. [PMID: 36662639 DOI: 10.1213/ane.0000000000006335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Recent clinical research suggests that repeated use of opioid pain medications can increase neuropathic pain in people living with human immunodeficiency virus (HIV; PLWH). Therefore, it is significant to elucidate the exact mechanisms of HIV-related chronic pain. HIV infection and chronic morphine induce proinflammatory factors, such as tumor necrosis factor (TNF)α acting through tumor necrosis factor receptor I (TNFRI). HIV coat proteins and/or chronic morphine increase mitochondrial superoxide in the spinal cord dorsal horn (SCDH). Recently, emerging cytoplasmic caspase-11 is defined as a noncanonical inflammasome and can be activated by reactive oxygen species (ROS). Here, we tested our hypothesis that HIV coat glycoprotein gp120 with chronic morphine activates a TNFRI-mtROS-caspase-11 pathway in rats, which increases neuroinflammation and neuropathic pain. METHODS Neuropathic pain was induced by repeated administration of recombinant gp120 with morphine (gp120/M) in rats. Mechanical allodynia was assessed using von Frey filaments, and thermal latency using hotplate test. Protein expression of spinal TNFRI and cleaved caspase-11 was examined using western blots. The image of spinal mitochondrial superoxide was examined using MitoSox Red (mitochondrial superoxide indicator) image assay. Immunohistochemistry was used to examine the location of TNFRI and caspase-11 in the SCDH. Intrathecal administration of antisense oligodeoxynucleotide (AS-ODN) against TNFRI, caspase-11 siRNA, or a scavenger of mitochondrial superoxide was given for antinociceptive effects. Statistical tests were done using analysis of variance (1- or 2-way), or 2-tailed t test. RESULTS Intrathecal gp120/M induced mechanical allodynia and thermal hyperalgesia lasting for 3 weeks ( P < .001). Gp120/M increased the expression of spinal TNFRI, mitochondrial superoxide, and cleaved caspase-11. Immunohistochemistry showed that TNFRI and caspase-11 were mainly expressed in the neurons of the SCDH. Intrathecal administration of antisense oligonucleotides against TNFRI, Mito-Tempol (a scavenger of mitochondrial superoxide), or caspase-11 siRNA reduced mechanical allodynia and thermal hyperalgesia in the gp120/M neuropathic pain model. Spinal knockdown of TNFRI reduced MitoSox profile cell number in the SCDH; intrathecal Mito-T decreased spinal caspase-11 expression in gp120/M rats. In the cultured B35 neurons treated with TNFα, pretreatment with Mito-Tempol reduced active caspase-11 in the neurons. CONCLUSIONS These results suggest that spinal TNFRI-mtROS-caspase 11 signal pathway plays a critical role in the HIV-associated neuropathic pain state, providing a novel approach to treating chronic pain in PLWH with opioids.
Collapse
Affiliation(s)
- Kentaro Hayashi
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
- Department of Anesthesiology, Asahikawa Medical University, Ashikawa, Japan
| | - Hyun Yi
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
| | - Xun Zhu
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
- Department of Anesthesiology, the 6th Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Shue Liu
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
| | - Jun Gu
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
| | - Keiya Takahashi
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
- Department of Anesthesiology, Asahikawa Medical University, Ashikawa, Japan
| | - Yuta Kashiwagi
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
| | - Marta Pardo
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
| | - Hirotsugu Kanda
- Department of Anesthesiology, Asahikawa Medical University, Ashikawa, Japan
| | - Heng Li
- Department of Anesthesiology, the 6th Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Roy C Levitt
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
- John T. MacDonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Shuanglin Hao
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
6
|
Huang J, Lin F, Hu Y, Bloe CB, Wang D, Zhang W. From Initiation to Maintenance: HIV-1 Gp120-induced Neuropathic Pain Exhibits Different Molecular Mechanisms in the Mouse Spinal Cord Via Bioinformatics Analysis Based on RNA Sequencing. J Neuroimmune Pharmacol 2022; 17:553-575. [PMID: 35059976 DOI: 10.1007/s11481-021-10044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus (HIV), which causes acquired immunodeficiency syndrome (AIDS), remains one of the most diverse crucial health and development challenges around the world. People infected with HIV constitute a large patient population, and a significant number of them experience neuropathic pain. To study the key mechanisms that mediate HIV-induced neuropathic pain (HNP), we established an HNP mouse model via intrathecal injection of the HIV-1 envelope glycoprotein gp120. The L3~L5 spinal cord was isolated on postoperative days 1/12 (POD1/12), 1 (POD1), and 14 (POD14) for RNA sequencing to investigate the gene expression profiles of the initiation, transition, and maintenance stages of HNP. A total of 1682, 430, and 413 differentially expressed genes were obtained in POD1/12, POD1, and POD14, respectively, and their similarity was low. Bioinformatics analysis confirmed that POD1/12, POD1, and POD14 exhibited different biological processes and signaling pathways. Inflammation, oxidative damage, apoptosis, and inflammation-related signaling pathways were enriched on POD1/12. Inflammation, chemokine activity, and downstream signaling regulated by proinflammatory cytokines, such as the MTOR signaling pathway, were enriched on POD1, while downregulation of ion channel activity, mitochondrial damage, endocytosis, MAPK and neurotrophic signaling pathways developed on POD14. Additionally, we screened key genes and candidate genes, which were verified at the transcriptional and translational levels. Our results suggest that the initiation and maintenance of HNP are regulated by different molecular mechanisms. Therefore, our research may yield a fresh and deeper understanding of the mechanisms underlying HNP, providing accurate molecular targets for HNP therapy.
Collapse
Affiliation(s)
- Jian Huang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Fei Lin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yanling Hu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Chris Bloe Bloe
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Siddiqui A, He C, Lee G, Figueroa A, Slaughter A, Robinson-Papp J. Neuropathogenesis of HIV and emerging therapeutic targets. Expert Opin Ther Targets 2022; 26:603-615. [PMID: 35815686 PMCID: PMC9887458 DOI: 10.1080/14728222.2022.2100253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION HIV infection causes a wide range of neurological complications, many of which are among the most common complications of chronic HIV infection in the era of combined antiretroviral therapy. These neurological conditions arise due to complex interactions between HIV viral proteins and neuronal and glial cells that lead to the activation of various inflammatory and neurotoxic pathways across the nervous system. AREAS COVERED This review summarizes the current literature on the pathogenesis and clinical manifestations of neurological injuries associated with HIV in the brain, spinal cord, and peripheral nervous system. Molecular pathways relevant for possible therapeutic targets or advancements are emphasized. Gaps in knowledge and current challenges in therapeutic design are also discussed. EXPERT OPINION Several challenges exist in the development of therapeutic targets for HIV-associated cognitive impairments. However, recent developments in drug delivery systems and treatment strategies are encouraging. Treatments for HIV-associated pain and peripheral sensory neuropathies currently consist of symptomatic management, but a greater understanding of their pathogenesis can lead to the development of targeted molecular therapies and disease-modifying therapies. HIV-associated autonomic dysfunction may affect the course of systemic disease via disrupted neuro-immune interactions; however, more research is needed to facilitate our understanding of how these processes present clinically.
Collapse
Affiliation(s)
- Alina Siddiqui
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Celestine He
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Gina Lee
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Alex Figueroa
- University of Texas at Southwestern Medical School, Dallas, TX, 75390 USA
| | - Alexander Slaughter
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Jessica Robinson-Papp
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| |
Collapse
|
8
|
Zhang KL, Li SJ, Pu XY, Wu FF, Liu H, Wang RQ, Liu BZ, Li Z, Li KF, Qian NS, Yang YL, Yuan H, Wang YY. Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission. Redox Biol 2021; 49:102216. [PMID: 34954498 PMCID: PMC8718665 DOI: 10.1016/j.redox.2021.102216] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Mitochondria play an essential role in pathophysiology of both inflammatory and neuropathic pain (NP), but the mechanisms are not yet clear. Dynamin-related protein 1 (Drp1) is broadly expressed in the central nervous system and plays a role in the induction of mitochondrial fission process. Spared nerve injury (SNI), due to the dysfunction of the neurons within the spinal dorsal horn (SDH), is the most common NP model. We explored the neuroprotective role of Drp1 within SDH in SNI. SNI mice showed pain behavior and anxiety-like behavior, which was associated with elevation of Drp1, as well as increased density of mitochondria in SDH. Ultrastructural analysis showed SNI induced damaged mitochondria into smaller perimeter and area, tending to be circular. Characteristics of vacuole in the mitochondria further showed SNI induced the increased number of vacuole, widened vac-perimeter and vac-area. Stable overexpression of Drp1 via AAV under the control of the Drp1 promoter by intraspinal injection (Drp1 OE) attenuated abnormal gait and alleviated pain hypersensitivity of SNI mice. Mitochondrial ultrastructure analysis showed that the increased density of mitochondria induced by SNI was recovered by Drp1 OE which, however, did not change mitochondrial morphology and vacuole parameters within SDH. Contrary to Drp1 OE, down-regulation of Drp1 in the SDH by AAV-Drp1 shRNA (Drp1 RNAi) did not alter painful behavior induced by SNI. Ultrastructural analysis showed the treatment by combination of SNI and Drp1 RNAi (SNI + Drp1 RNAi) amplified the damages of mitochondria with the decreased distribution density, increased perimeter and area, as well as larger circularity tending to be more circular. Vacuole data showed SNI + Drp1 RNAi increased vacuole density, perimeter and area within the SDH mitochondria. Our results illustrate that mitochondria within the SDH are sensitive to NP, and targeted mitochondrial Drp1 overexpression attenuates pain hypersensitivity. Drp1 offers a novel therapeutic target for pain treatment.
Collapse
Affiliation(s)
- Kun-Long Zhang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China; Department of Rehabilitation Medicine, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shu-Jiao Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xue-Yin Pu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fei-Fei Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Liu
- Department of Human Anatomy, Yan-An University, Yan'an, 716000, China
| | - Rui-Qing Wang
- Department of Human Anatomy, Yan-An University, Yan'an, 716000, China
| | - Bo-Zhi Liu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ze Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kai-Feng Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Nian-Song Qian
- Department of Oncology, First Medical Center, The General Hospital of the People's Liberation Army, Beijing, 100000, China
| | - Yan-Ling Yang
- Department of Liver and Gallbladder Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Ya-Yun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China; State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Abstract
The evolution of therapeutics for and management of human immunodeficiency virus-1 (HIV-1) infection has shifted it from predominately manifesting as a severe, acute disease with high mortality to a chronic, controlled infection with a near typical life expectancy. However, despite extensive use of highly active antiretroviral therapy, the prevalence of chronic widespread pain in people with HIV remains high even in those with a low viral load and high CD4 count. Chronic widespread pain is a common comorbidity of HIV infection and is associated with decreased quality of life and a high rate of disability. Chronic pain in people with HIV is multifactorial and influenced by HIV-induced peripheral neuropathy, drug-induced peripheral neuropathy, and chronic inflammation. The specific mechanisms underlying these three broad categories that contribute to chronic widespread pain are not well understood, hindering the development and application of pharmacological and nonpharmacological approaches to mitigate chronic widespread pain. The consequent insufficiencies in clinical approaches to alleviation of chronic pain in people with HIV contribute to an overreliance on opioids and alarming rise in active addiction and overdose. This article reviews the current understanding of the pathogenesis of chronic widespread pain in people with HIV and identifies potential biomarkers and therapeutic targets to mitigate it.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer J DeBerry
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
10
|
Sun W, Gao H, Luo Y, Zheng H, Liao X, Xiong D, Xiao L. Management of Immunity Alteration-Induced Chronic Pain During the Coronavirus Disease-2019 (COVID-19) Pandemic. Front Microbiol 2020; 11:572318. [PMID: 33072033 PMCID: PMC7541845 DOI: 10.3389/fmicb.2020.572318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,National Key Clinical Pain Medicine of China, Shenzhen, China
| | - Hong Gao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,National Key Clinical Pain Medicine of China, Shenzhen, China
| | - Yuhui Luo
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,National Key Clinical Pain Medicine of China, Shenzhen, China
| | - Hushan Zheng
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,National Key Clinical Pain Medicine of China, Shenzhen, China
| | - Xiang Liao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,National Key Clinical Pain Medicine of China, Shenzhen, China
| | - Donglin Xiong
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,National Key Clinical Pain Medicine of China, Shenzhen, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,National Key Clinical Pain Medicine of China, Shenzhen, China
| |
Collapse
|
11
|
Huang J, Bloe CB, Zhou X, Wu S, Zhang W. The Role of the Spinal Wnt Signaling Pathway in HIV-Related Neuropathic Pain. Cell Mol Neurobiol 2020; 40:1075-1085. [PMID: 32100186 PMCID: PMC11448846 DOI: 10.1007/s10571-020-00805-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/28/2020] [Indexed: 12/29/2022]
Abstract
Human immunodeficiency virus (HIV)-related neuropathic pain includes HIV-induced neuropathic pain (HNP) and antiretroviral therapy-induced neuropathic pain (ART-NP). A significant amount of evidence from the past few years has shown that the development of HIV-related neuropathic pain is closely related to the activation of the Wnt signaling pathway in the spinal cord. This review summarizes the function of the spinal Wnt signaling pathway in HIV-induced neuropathic pain, focusing on the role of the spinal Wnt signaling pathway in HNP, and provides a theoretical basis for further studies and the exploration of new target drugs.
Collapse
Affiliation(s)
- Jian Huang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chris Bloe Bloe
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xinxin Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shengjun Wu
- Clinical Laboratory of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
12
|
Dai CQ, Guo Y, Chu XY. Neuropathic Pain: the Dysfunction of Drp1, Mitochondria, and ROS Homeostasis. Neurotox Res 2020; 38:553-563. [PMID: 32696439 DOI: 10.1007/s12640-020-00257-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
Neuropathic pain affects the physical and mental health status of patients. Due to its complex pathogenesis and the adverse reactions to medicines, its treatment remains challenging. Among all the etiologies, increasing evidence has pointed to mitochondrial dysfunction. Dynamin-related protein 1 (Drp1)-mediated mitochondrial fragmentation leads to excess ROS generation, which is implicated in the pathogenesis of neuropathic pain. However, the exact mechanism remains unclear. Studies aiming to clarify the possible pathway and relationship between Drp1, mitochondria, ROS, and neuropathic pain may identify a good treatment for neuropathic pain in the clinic. As shown in this review, dysfunction of Drp1 and ROS homeostasis plays essential roles in neuropathic pain. We summarized a Drp1-mitochondrial fission-ROS cycle that potentially functions in neuropathic pain and is regulated by posttranslational modifications and Ca2+. Additionally, we further enumerated six Drp1 inhibitors, including Mdivi-1, P110, Drp1 antisense oligodeoxynucleotides, hyperbaric oxygen, melatonin, and β-hydroxybutyrate, as potential treatments, with the aim of providing guidance for novel molecules to be used in the clinic.
Collapse
Affiliation(s)
- Chun-Qiu Dai
- Third Medical District, Lintong Rehabilitation and Convalescent Centre, Xi'an, 710600, People's Republic of China
| | - Yu Guo
- Third Medical District, Lintong Rehabilitation and Convalescent Centre, Xi'an, 710600, People's Republic of China
| | - Xue-Yan Chu
- Third Medical District, Lintong Rehabilitation and Convalescent Centre, Xi'an, 710600, People's Republic of China.
| |
Collapse
|
13
|
Mitochondrial bioenergetics, glial reactivity, and pain-related behavior can be restored by dichloroacetate treatment in rodent pain models. Pain 2020; 161:2786-2797. [PMID: 32658145 DOI: 10.1097/j.pain.0000000000001992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glial reactivity in the dorsal horn of the spinal cord is a hallmark in most chronic pain conditions. Neuroinflammation-associated reactive glia, in particular astrocytes, have been shown to exhibit reduced mitochondrial respiratory function. Here, we studied the mitochondrial function at the lumbar spinal cord tissue from complete Freund's adjuvant-induced inflammatory pain rat and chronic constriction injury mouse models by high-resolution respirometry. A significant decrease in mitochondrial bioenergetic parameters at the injury-related spinal cord level coincided with highest astrocytosis. Oral administration of dichloroacetate (DCA) significantly increased mitochondrial respiratory function by inhibiting pyruvate dehydrogenase kinase and decreased glial fibrillary acidic protein and Iba-1 immunoreactivity in spinal cord. Importantly, DCA treatment significantly reduced the ipsilateral pain-related behavior without affecting contralateral sensitivity in both pain models. Our results indicate that mitochondrial metabolic modulation with DCA may offer an alternative therapeutic strategy to alleviate chronic and persistent inflammatory pain.
Collapse
|
14
|
Luo TT, Dai CQ, Wang JQ, Wang ZM, Yang Y, Zhang KL, Wu FF, Yang YL, Wang YY. Drp1 is widely, yet heterogeneously, distributed in the mouse central nervous system. Mol Brain 2020; 13:90. [PMID: 32522292 PMCID: PMC7288424 DOI: 10.1186/s13041-020-00628-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/28/2020] [Indexed: 02/08/2023] Open
Abstract
Objectives Drp1 is widely expressed in the mouse central nervous system and plays a role in inducing the mitochondrial fission process. Many diseases are associated with Drp1 and mitochondria. However, since the exact distribution of Drp1 has not been specifically observed, it is difficult to determine the impact of anti-Drp1 molecules on the human body. Clarifying the specific Drp1 distribution could be a good approach to targeted treatment or prognosis. Methods We visualized the distribution of Drp1 in different brain regions and explicated the relationship between Drp1 and mitochondria. GAD67-GFP knock-in mice were utilized to detect the expression patterns of Drp1 in GABAergic neurons. We also further analyzed Drp1 expression in human malignant glioma tissue. Results Drp1 was widely but heterogeneously distributed in the central nervous system. Further observation indicated that Drp1 was highly and heterogeneously expressed in inhibitory neurons. Under transmission electron microscopy, the distribution of Drp1 was higher in dendrites than other areas in neurons, and only a small amount of Drp1 was localized in mitochondria. In human malignant glioma, the fluorescence intensity of Drp1 increased from grade I-III, while grade IV showed a declining trend. Conclusion In this study, we observed a wide heterogeneous distribution of Drp1 in the central nervous system, which might be related to the occurrence and development of neurologic disease. We hope that the relationship between Drp1 and mitochondria may will to therapeutic guidance in the clinic.
Collapse
Affiliation(s)
- Ting-Ting Luo
- National Demonstration Center for Experimental Preclinical Medicine Education, Air Force Medical University (The Fourth Military Medical University), Xi'an, 710032, China.,Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Chun-Qiu Dai
- National Demonstration Center for Experimental Preclinical Medicine Education, Air Force Medical University (The Fourth Military Medical University), Xi'an, 710032, China.,Third Medical District, Lintong Rehabilitation and Convalescent Centre, Xi'an, 710600, China
| | - Jia-Qi Wang
- National Demonstration Center for Experimental Preclinical Medicine Education, Air Force Medical University (The Fourth Military Medical University), Xi'an, 710032, China
| | - Zheng-Mei Wang
- National Demonstration Center for Experimental Preclinical Medicine Education, Air Force Medical University (The Fourth Military Medical University), Xi'an, 710032, China.,Medical College of Yan'an University, Yan'an, 716000, China
| | - Yi Yang
- National Demonstration Center for Experimental Preclinical Medicine Education, Air Force Medical University (The Fourth Military Medical University), Xi'an, 710032, China.,Medical College of Yan'an University, Yan'an, 716000, China
| | - Kun-Long Zhang
- National Demonstration Center for Experimental Preclinical Medicine Education, Air Force Medical University (The Fourth Military Medical University), Xi'an, 710032, China.,Department of Rehabilitation Physiotherapy, Xi-Jing Hospital, Air Force Medical University (The Fourth Military Medical University), Xi'an, 710032, China
| | - Fei-Fei Wu
- National Demonstration Center for Experimental Preclinical Medicine Education, Air Force Medical University (The Fourth Military Medical University), Xi'an, 710032, China
| | - Yan-Ling Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Air Force Medical University (The Fourth Military Medical University), Xi'an, 710032, China.
| | - Ya-Yun Wang
- National Demonstration Center for Experimental Preclinical Medicine Education, Air Force Medical University (The Fourth Military Medical University), Xi'an, 710032, China.
| |
Collapse
|
15
|
Khuankaew C, Sawaddiruk P, Surinkaew P, Chattipakorn N, Chattipakorn SC. Possible roles of mitochondrial dysfunction in neuropathy. Int J Neurosci 2020; 131:1019-1041. [PMID: 32393100 DOI: 10.1080/00207454.2020.1765777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES The present review aims to present and discuss the consistent and inconsistent evidence regarding the associations between mitochondrial dysfunction and several neuropathic models, including trauma-induced, chemotherapy-induced, diabetes-induced and HIV-associated sensory neuropathy. METHODS The searching strategy and inclusion criteria for this review are all research articles in the PubMed database published before July 2019. We used the search terms 'mitochondria' and 'neuropathy' for the present review and non-English articles were excluded. RESULTS Damage to mitochondria via trauma, chemotherapy drugs, hyperglycaemia and HIV infection has been widely discussed to play an important role in the pathogenesis of neuropathy. Several mechanisms of mitochondrial damages have been proposed. CONCLUSION The damage of mitochondria results in cellular apoptosis, which appears to be one of the key factors in the pathogenesis of neuropathy. Novel therapeutic strategies targeting mitochondria could be a potential therapeutic target in neuropathy.
Collapse
Affiliation(s)
- Chutikorn Khuankaew
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Department of Dentistry, Uttaradit Hospital, Uttaradit, Thailand
| | - Passakorn Sawaddiruk
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Poomarin Surinkaew
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Anesthesiology, Lamphun Hospital, Lamphun, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Hao M, Tang Q, Wang B, Li Y, Ding J, Li M, Xie M, Zhu H. Resveratrol suppresses bone cancer pain in rats by attenuating inflammatory responses through the AMPK/Drp1 signaling. Acta Biochim Biophys Sin (Shanghai) 2020; 52:231-240. [PMID: 32072182 DOI: 10.1093/abbs/gmz162] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Indexed: 12/11/2022] Open
Abstract
Bone cancer pain (BCP) is induced by primary bone cancer and secondary bone metastasis. During BCP pathogenesis, activated spinal astrocytes release proinflammatory cytokines, which participate in pain information transmission. In this study, we found that BCP rats showed disruption of trabecular bone structure, mechanical allodynia, and spinal inflammation. Moreover, reduced adenosine monophosphate-activated protein kinase (AMPK) activity, increased mitochondrial fission-associated protein Drp1 GTPase activity accompanied by the dysfunction of mitochondrial function, and abnormal BAX and Bcl-2 expression were found in the spinal cord of BCP rats. Notably, these alterations are reversed by resveratrol (Res) administration. Cell experiment results demonstrated that Res promotes mitochondrial function by activating AMPK, decreasing Drp1 activity, and inhibiting tumor necrosis factor-α-induced mitochondrial membrane potential reduction. Taken together, these results indicate that Res suppresses BCP in rats by attenuation of the inflammatory responses through the AMPK/Drp1 signaling pathway.
Collapse
Affiliation(s)
- Miaomiao Hao
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
| | - Qiong Tang
- Research Center of Basic Medical Sciences, Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Banghua Wang
- Research Center of Basic Medical Sciences, Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Yisheng Li
- Department of Radiology, Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, China
| | - Jieqiong Ding
- Research Center of Basic Medical Sciences, Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Mingyue Li
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
| | - Min Xie
- Research Center of Basic Medical Sciences, Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Haili Zhu
- Research Center of Basic Medical Sciences, Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
17
|
Godai K, Takahashi K, Kashiwagi Y, Liu CH, Yi H, Liu S, Dong C, Lubarsky DA, Hao S. Ryanodine Receptor to Mitochondrial Reactive Oxygen Species Pathway Plays an Important Role in Chronic Human Immunodeficiency Virus gp120MN-Induced Neuropathic Pain in Rats. Anesth Analg 2020; 129:276-286. [PMID: 30507840 DOI: 10.1213/ane.0000000000003916] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Chronic pain is one of the most common complaints in patients with human immunodeficiency virus (HIV)-associated sensory neuropathy. Ryanodine receptor (RyR) and mitochondrial oxidative stress are involved in neuropathic pain induced by nerve injury. Here, we investigated the role of RyR and mitochondrial superoxide in neuropathic pain induced by repeated intrathecal HIV glycoprotein 120 (gp120) injection. METHODS Recombinant HIV glycoprotein gp120MN was intrathecally administered to induce neuropathic pain. Mechanical threshold was tested using von Frey filaments. Peripheral nerve fiber was assessed by the quantification of the intraepidermal nerve fiber density in the skin of the hindpaw. The expression of spinal RyR was examined using Western blots. Colocalization of RyR with neuronal nuclei (NeuN; neuron marker), glial fibrillary acidic protein (GFAP; astrocyte marker), or ionizing calcium-binding adaptor molecule 1 (Iba1; microglia marker) in the spinal cord was examined using immunohistochemistry. MitoSox-positive profiles (a mitochondrial-targeted fluorescent superoxide indicator) were examined. The antiallodynic effects of intrathecal administration of RyR antagonist, dantrolene (a clinical drug for malignant hyperthermia management), or selective mitochondrial superoxide scavenger, Mito-Tempol, were evaluated in the model. RESULTS We found that repeated but not single intrathecal injection of recombinant protein gp120 induced persistent mechanical allodynia. Intraepidermal nerve fibers in repeated gp120 group was lower than that in sham at 2 weeks, and the difference in means (95% confidence interval) was 8.495 (4.79-12.20), P = .0014. Repeated gp120 increased expression of RyR, and the difference in means (95% confidence interval) was 1.50 (0.504-2.495), P = .007. Repeated gp120 also increased mitochondrial superoxide cell number in the spinal cord, and the difference in means (95% confidence interval) was 6.99 (5.99-8.00), P < .0001. Inhibition of spinal RyR or selective mitochondrial superoxide scavenger dose dependently reduced mechanical allodynia induced by repeated gp120 injection. RyR and mitochondrial superoxide were colocalized in the neuron, but not glia. Intrathecal injection of RyR inhibitor lowered mitochondrial superoxide in the spinal cord dorsal horn in the gp120 neuropathic pain model. CONCLUSIONS These data suggest that repeated intrathecal HIV gp120 injection induced an acute to chronic pain translation in rats, and that neuronal RyR and mitochondrial superoxide in the spinal cord dorsal horn played an important role in the HIV neuropathic pain model. The current results provide evidence for a novel approach to understanding the molecular mechanisms of HIV chronic pain and treating chronic pain in patients with HIV.
Collapse
Affiliation(s)
| | | | | | | | - Hyun Yi
- From the Departments of Anesthesiology
| | - Shue Liu
- From the Departments of Anesthesiology
| | - Chuanhui Dong
- Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | | | | |
Collapse
|
18
|
Analyzing chemotherapy-induced peripheral neuropathy in vivo using non-mammalian animal models. Exp Neurol 2019; 323:113090. [PMID: 31669484 DOI: 10.1016/j.expneurol.2019.113090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022]
Abstract
Non-mammalian models of CIPN remain relatively sparse, but the knowledge gained from the few published studies suggest that these species have great potential to serve as a discovery platform for new pathways and underlying genetic mechanisms of CIPN. These models permit large-scale genetic and pharmacological screening, and they are highly suitable for in vivo imaging. CIPN phenotypes described in rodents have been confirmed in those models, and conversely, genetic players leading to axon de- and regeneration under conditions of chemotherapy treatment identified in these non-mammalian species have been validated in rodents. Given the need for non-traditional approaches with which to identify new CIPN mechanisms, these models bear a strong potential due to the conservation of basic mechanisms by which chemotherapeutic agents induce neurotoxicity.
Collapse
|
19
|
Roda RH, Hoke A. Mitochondrial dysfunction in HIV-induced peripheral neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:67-82. [PMID: 31208527 DOI: 10.1016/bs.irn.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitochondria play an essential role in cellular energy production and calcium homeostasis. Abnormalities in mitochondrial homeostasis and function are seen in several acquired as well as genetic neuropathies, emphasizing their prominent role in neuronal cell activities. Chronic infection with HIV, even when appropriately treated, is a risk factor for developing peripheral neuropathy. In this chapter, we discuss the way in which HIV infection, the resultant toxic viral products that are generated, and some of the viral inhibitors used in its treatment may lead to abnormal mitochondrial function. Of importance are the effects on mitochondrial DNA replication and the neurotoxic effects of the viral gp120 protein. One aspect of mitochondrial dysfunction that remains unexplored is the role of the interaction between mitochondria and the endoplasmic reticulum as a possible target of disruption in HIV neuropathy.
Collapse
Affiliation(s)
- Ricardo H Roda
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Ahmet Hoke
- Solomon H. Snyder Department of Neuroscience and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
SIRT1 activation by SRT1720 attenuates bone cancer pain via preventing Drp1-mediated mitochondrial fission. Biochim Biophys Acta Mol Basis Dis 2019; 1865:587-598. [DOI: 10.1016/j.bbadis.2018.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Accepted: 12/18/2018] [Indexed: 01/25/2023]
|
21
|
Meng W, Hao MM, Yu N, Li MY, Ding JQ, Wang BH, Zhu HL, Xie M. 2-Bromopalmitate attenuates bone cancer pain via reversing mitochondrial fusion and fission imbalance in spinal astrocytes. Mol Pain 2019; 15:1744806919871813. [PMID: 31394961 PMCID: PMC6710711 DOI: 10.1177/1744806919871813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Bone cancer pain is common in patients with advanced cancers as tumors metastasize to bone. Pathogenesis of bone cancer pain is complex and poorly understood which leads to inefficiency of clinical treatment. During pathological pain status, astrocytes are activated and release various inflammatory cytokines, which result in the development of peripheral and central sensitization. As energy factory, mitochondria undergo frequent fusion and fission and play essential role for astrocyte function. 2-bromopalmitate (2-BP) is an inhibitor of protein palmitoylation, and its function on bone cancer pain was unclear. In this article, we aimed to investigate the potential curative effects and mechanisms of 2-BP on bone cancer pain. Bone cancer pain rat model was established through intratibial inoculation of rat mammary gland carcinoma cells (MRMT-1) into the left tibia of Sprague–Dawley female rats. As a result, bone cancer pain rats exhibited bone destruction and sensitive nociceptive behavior. And increased leukocyte infiltration, activation of astrocytes, and imbalance of mitochondrial fission and fusion dynamics were observed in spinal cord of bone cancer pain rats. Intrathecal 2-BP administration significantly attenuated pain behavior of bone cancer pain rats. Meanwhile, 2-BP administration reduced spinal inflammation, reversed spinal mitochondrial fission and fusion dynamic imbalance, and further inhibited spinal mitochondrial apoptosis in bone cancer pain rats. In C6 cell level, 2-BP treatment decreased dynamin-related protein 1 expression and increased optic atrophy 1 expression in a dose-dependent manner and inhibited carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-induced mitochondrial membrane potential change. These data illustrated that 2-BP attenuated bone cancer pain by reversing mitochondrial fusion and fission dynamic imbalance in spinal astrocytes.
Collapse
Affiliation(s)
- Wei Meng
- Department of Physiology, School of Basic Medical Sciences, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Miao-Miao Hao
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Na Yu
- Department of Physiology, School of Basic Medical Sciences, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Ming-Yue Li
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Jie-Qiong Ding
- Department of Physiology, School of Basic Medical Sciences, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Bang-Hua Wang
- Department of Physiology, School of Basic Medical Sciences, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Hai-Li Zhu
- Department of Physiology, School of Basic Medical Sciences, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Min Xie
- Department of Physiology, School of Basic Medical Sciences, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
22
|
Kober KM, Olshen A, Conley YP, Schumacher M, Topp K, Smoot B, Mazor M, Chesney M, Hammer M, Paul SM, Levine JD, Miaskowski C. Expression of mitochondrial dysfunction-related genes and pathways in paclitaxel-induced peripheral neuropathy in breast cancer survivors. Mol Pain 2018; 14:1744806918816462. [PMID: 30426838 PMCID: PMC6293373 DOI: 10.1177/1744806918816462] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Paclitaxel is one of the most commonly used drugs to treat breast cancer. Its
major dose-limiting toxicity is paclitaxel-induced peripheral neuropathy
(PIPN). PIPN persists into survivorship and has a negative impact on
patient’s mood, functional status, and quality of life. No interventions are
available to treat PIPN. A critical barrier to the development of
efficacious interventions is the lack of understanding of the mechanisms
that underlie PIPN. Mitochondrial dysfunction has been evaluated in
preclinical studies as a hypothesized mechanism for PIPN, but clinical data
to support this hypothesis are limited. The purpose of this pilot study was
to evaluate for differential gene expression and perturbed pathways between
breast cancer survivors with and without PIPN. Methods Gene expression in peripheral blood was assayed using RNA-seq. Differentially
expressed genes (DEG) and pathways associated with mitochondrial dysfunction
were identified between survivors who received paclitaxel and did (n = 25)
and did not (n = 25) develop PIPN. Results Breast cancer survivors with PIPN were significantly older; more likely to be
unemployed; reported lower alcohol use; had a higher body mass index and
poorer functional status; and had a higher number of lower extremity sites
with loss of light touch, cold, and pain sensations and higher vibration
thresholds. No between-group differences were found in the cumulative dose
of paclitaxel received or in the percentage of patients who had a dose
reduction or delay due to PIPN. Five DEGs and nine perturbed pathways were
associated with mitochondrial dysfunction related to oxidative stress, iron
homeostasis, mitochondrial fission, apoptosis, and autophagy. Conclusions This study is the first to provide molecular evidence that a number of
mitochondrial dysfunction mechanisms identified in preclinical models of
various types of neuropathic pain including chemotherapy-induced peripheral
neuropathy are found in breast cancer survivors with persistent PIPN and
suggest genes for validation and as potential therapeutic targets.
Collapse
Affiliation(s)
- Kord M Kober
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Adam Olshen
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yvettte P Conley
- 3 School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Schumacher
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kimberly Topp
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Betty Smoot
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Melissa Mazor
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret Chesney
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Marilyn Hammer
- 4 Department of Nursing, Mount Sinai Medical Center, New York, NY, USA
| | - Steven M Paul
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Jon D Levine
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Christine Miaskowski
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Phosphorylated CCAAT/Enhancer Binding Protein β Contributes to Rat HIV-Related Neuropathic Pain: In Vitro and In Vivo Studies. J Neurosci 2017; 38:555-574. [PMID: 29196315 DOI: 10.1523/jneurosci.3647-16.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 11/01/2017] [Accepted: 11/13/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic pain is increasingly recognized as an important comorbidity of HIV-infected patients, however, the exact molecular mechanisms of HIV-related pain are still elusive. CCAAT/enhancer binding proteins (C/EBPs) are expressed in various tissues, including the CNS. C/EBPβ, one of the C/EBPs, is involved in the progression of HIV/AIDS, but the exact role of C/EBPβ and its upstream factors are not clear in HIV pain state. Here, we used a neuropathic pain model of perineural HIV envelope glycoprotein gp120 application onto the rat sciatic nerve to test the role of phosphorylated C/EBPβ (pC/EBPβ) and its upstream pathway in the spinal cord dorsal horn (SCDH). HIV gp120 induced overexpression of pC/EBPβ in the ipsilateral SCDH compared with contralateral SCDH. Inhibition of C/EBPβ using siRNA against C/EBPβ reduced mechanical allodynia. HIV gp120 also increased TNFα, TNFRI, mitochondrial superoxide (mtO2·-), and pCREB in the ipsilateral SCDH. ChIP-qPCR assay showed that pCREB enrichment on the C/EBPβ gene promoter regions in rats with gp120 was higher than that in sham rats. Intrathecal TNF soluble receptor I (functionally blocking TNFα bioactivity) or knockdown of TNFRI using antisense oligodeoxynucleotide against TNFRI reduced mechanical allodynia, and decreased mtO2·-, pCREB and pC/EBPβ. Intrathecal Mito-tempol (a mitochondria-targeted O2·-scavenger) reduced mechanical allodynia and decreased pCREB and pC/EBPβ. Knockdown of CREB with antisense oligodeoxynucleotide against CREB reduced mechanical allodynia and lowered pC/EBPβ. These results suggested that the pathway of TNFα/TNFRI-mtO2·--pCREB triggers pC/EBPβ in the HIV gp120-induced neuropathic pain state. Furthermore, we confirmed the pathway using both cultured neurons treated with recombinant TNFα in vitro and repeated intrathecal injection of recombinant TNFα in naive rats. This finding provides new insights in the understanding of the HIV neuropathic pain mechanisms and treatment.SIGNIFICANCE STATEMENT Painful HIV-associated sensory neuropathy is a neurological complication of HIV infection. Phosphorylated C/EBPβ (pC/EBPβ) influences AIDS progression, but it is still not clear about the exact role of pC/EBPβ and the detailed upstream factors of pC/EBPβ in HIV-related pain. In a neuropathic pain model of perineural HIV gp120 application onto the sciatic nerve, we found that pC/EBPβ was triggered by TNFα/TNFRI-mtO2·--pCREB signaling pathway. The pathway was confirmed by using cultured neurons treated with recombinant TNFα in vitro, and by repeated intrathecal injection of recombinant TNFα in naive rats. The present results revealed the functional significance of TNFα/TNFRI-mtO2·--pCREB-pC/EBPβ signaling in HIV neuropathic pain, and should help in the development of more specific treatments for neuropathic pain.
Collapse
|
24
|
Iida T, Yi H, Liu S, Ikegami D, Zheng W, Liu Q, Takahashi K, Kashiwagi Y, Goins WF, Glorioso JC, Hao S. MnSOD mediated by HSV vectors in the periaqueductal gray suppresses morphine withdrawal in rats. Gene Ther 2017; 24:314-324. [PMID: 28368370 PMCID: PMC9870211 DOI: 10.1038/gt.2017.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/11/2017] [Accepted: 03/13/2017] [Indexed: 01/26/2023]
Abstract
Morphine appears to be the most active metabolite of heroin; therefore, the effects of morphine are important in understanding the ramifications of heroin abuse. Opioid physical dependence (withdrawal response) may have very long-lasting effects on the motivation for reward, including the incubation of cue-induced drug-seeking behavior. However, the exact mechanisms of morphine withdrawal (MW) are not clear yet, and its treatment remains elusive. Periaqueductal gray (PAG) is one of the important sites in the pathogenesis of MW. Here, we used recombinant herpes simplex virus (HSV) vectors that encode the sod2 gene expressing manganese superoxide dismutase (MnSOD) to evaluate its therapeutic potential in MW. Microinjection of HSV vectors expressing MnSOD into the PAG reduced the MW syndrome. MnSOD vectors suppressed the upregulated mitochondrial superoxide, and endoplasmic reticulum stress markers (glucose-related protein 78 (GRP78) and activating transcription factor 6 alpha (ATF6α)) in the PAG induced by MW. Immunostaining showed that mitochondrial superoxide, GRP78 and ATF6α were colocalized with neuronal nuclei (a neuronal-specific marker), suggesting that they are located in the neurons in the PAG. These results suggest that overexpression of MnSOD by HSV vectors may relieve opioid dependence. This study may provide a novel therapeutic approach to morphine physical withdrawal response.
Collapse
Affiliation(s)
- Takafumi Iida
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Hyun Yi
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Shue Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Daigo Ikegami
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Wenwen Zheng
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Qiaofeng Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Keiya Takahashi
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Yuta Kashiwagi
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL33136
| | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219
| | - Joseph C. Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219
| | - Shuanglin Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL33136
| |
Collapse
|
25
|
Onodera Y, Kanao-Kanda M, Kanda H, Sasakawa T, Iwasaki H, Kunisawa T. Pregnancy suppresses neuropathic pain induced by chronic constriction injury in rats through the inhibition of TNF-α. J Pain Res 2017; 10:567-574. [PMID: 28331359 PMCID: PMC5349853 DOI: 10.2147/jpr.s121810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Pregnancy-induced analgesia develops during late pregnancy, but it is unclear whether this analgesia is effective against neuropathic pain. The detailed molecular mechanisms underlying pregnancy-induced analgesia have not been investigated. We examined the antinociceptive effect of pregnancy-induced analgesia in a neuropathic pain model and the expression of tumor necrosis factor (TNF)-α, glial fibrillary acidic protein (GFAP), Iba-1, and c-Fos in the spinal dorsal horn just before parturition. Materials and methods Female Sprague Dawley rats (200–250 g) were randomly assigned to one of four groups (pregnant + chronic constriction injury [CCI]; pregnant + sham injury; not pregnant + CCI; and not pregnant + sham injury). Separate groups were used for the behavioral and tissue analyses. CCI of the left sciatic nerve was surgically induced 3 days after confirming pregnancy in the pregnancy group or on day 3 in the not pregnant group. The spinal cord was extracted 18 days after CCI. TNF-α, GFAP, Iba-1, and c-Fos expression levels in the spinal dorsal horn were measured by Western blot analysis. Mechanical threshold was tested using von Frey filaments. Results The lowered mechanical threshold induced by CCI was significantly attenuated within 1 day before parturition and decreased after delivery. TNF-α expression in CCI rats was decreased within 1 day before parturition. Further, GFAP, Iba-1, and c-Fos expression in the spinal dorsal horn was reduced in the pregnant rats. Serum TNF-α in all groups was below measurable limits. Conclusion Our findings indicate that pregnancy-induced analgesia suppresses neuropathic pain through reducing spinal levels of TNF-α, GFAP, Iba-1, and c-Fos in a rat model of CCI.
Collapse
Affiliation(s)
- Yoshiko Onodera
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Hokkaido, Japan
| | - Megumi Kanao-Kanda
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Hokkaido, Japan
| | - Hirotsugu Kanda
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Hokkaido, Japan
| | - Tomoki Sasakawa
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Hokkaido, Japan
| | - Hiroshi Iwasaki
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Hokkaido, Japan
| | - Takayuki Kunisawa
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Hokkaido, Japan
| |
Collapse
|
26
|
Abnormal mitochondrial dynamics and impaired mitochondrial biogenesis in trigeminal ganglion neurons in a rat model of migraine. Neurosci Lett 2016; 636:127-133. [PMID: 27984195 DOI: 10.1016/j.neulet.2016.10.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/26/2022]
Abstract
Accumulating evidence has demonstrated a possible role of mitochondrial dysfunction in migraine pathophysiology. Migraine sufferers exhibit impaired metabolic capacity, with an increased formation of reactive oxygen species (ROS). Mitochondrial dynamics and mitochondrial biogenesis are key processes regulating mitochondrial homeostasis. The aim of this study was to explore the alterations of mitochondrial regulatory networks in a rat model of migraine induced by repeated dural stimulation with inflammatory soup (IS). Ultrastructural, protein, gene and mitochondrial DNA analysis were applied to assess mitochondrial dynamics and biogenesis in trigeminal ganglion (TG) neurons. Mitochondria in TG neurons exhibited small and fragmented morphology after repeated dural stimulation. Further investigations showed that mitochondrial fission protein dynamin-related protein 1 (Drp1) was increased while mitochondrial fusion protein Mitofusin1 (Mfn1) was reduced in TG neurons. In addition, our results also presented that mitochondrial DNA copy number in TG neurons was reduced significantly, accompanied by alterations in mRNA and protein levels of regulatory factors related to mitochondrial biogenesis including peroxisome proliferator-activated receptor-gamma coactivator-1a (PGC-1α) and its downstream regulators in TG neurons in the IS-induced migraine model. These findings suggest that the mitochondrial dynamic regulatory networks are maladjusted in TG neurons in a rat model of migraine. Regulation of mitochondrial dynamics and biogenesis signaling may indicate a new mitochondria-targeted therapeutic strategy for migraine.
Collapse
|
27
|
Iida T, Yi H, Liu S, Huang W, Kanda H, Lubarsky DA, Hao S. Spinal CPEB-mtROS-CBP signaling pathway contributes to perineural HIV gp120 with ddC-related neuropathic pain in rats. Exp Neurol 2016; 281:17-27. [PMID: 27090160 DOI: 10.1016/j.expneurol.2016.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/03/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
Abstract
Human immunodeficiency virus (HIV) patients treated with nucleoside reverse transcriptase inhibitors (NRTIs), have been known to develop neuropathic pain. While there has been a major shift away from some neurotoxic NRTIs in current antiretroviral therapy, a large number of HIV patients alive today have previously received them, and many have developed painful peripheral neuropathy. The exact mechanisms by which HIV with NRTIs contribute to the development of neuropathic pain are not known. Previous studies suggest that cytoplasmic polyadenylation element-binding protein (CPEB), reactive oxygen species (ROS), and cAMP-response element-binding protein (CREB)-binding protein (CBP), are involved in the neuroimmunological diseases including inflammatory/neuropathic pain. In this study, we investigated the role of CPEB, mitochondrial ROS (mtROS), or CBP in neuropathic pain induced by HIV envelope protein gp120 combined with antiretroviral drug. The application of recombinant gp120 into the sciatic nerve plus systemic ddC (one of NRTIs) induced mechanical allodynia. Knockdown of CPEB or CBP using intrathecal antisense oligodeoxynucleotide (AS-ODN) reduced mechanical allodynia. Intrathecal mitochondrial superoxide scavenger mito-tempol (Mito-T) increased mechanical withdrawal threshold. Knockdown of CPEB using intrathecal AS-ODN, reduced the up-regulated mitochondrial superoxide in the spinal dorsal horn in rats with gp120 combined with ddC. Intrathecal Mito-T lowered the increased expression of CBP in the spinal dorsal horn. Immunostaining studies showed that neuronal CPEB positive cells were co-localized with MitoSox positive profiles, and that MitoSox positive profiles were co-localized with neuronal CBP. Our studies suggest that neuronal CPEB-mtROS-CBP pathway in the spinal dorsal horn, plays an important role in the gp120/ddC-induced neuropathic pain in rats.
Collapse
Affiliation(s)
- Takafumi Iida
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Department of Anesthesiology, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Hyun Yi
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Shue Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Wan Huang
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Hirotsugu Kanda
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Department of Anesthesiology, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - David A Lubarsky
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Shuanglin Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| |
Collapse
|
28
|
Rosdah AA, K Holien J, Delbridge LMD, Dusting GJ, Lim SY. Mitochondrial fission - a drug target for cytoprotection or cytodestruction? Pharmacol Res Perspect 2016; 4:e00235. [PMID: 27433345 PMCID: PMC4876145 DOI: 10.1002/prp2.235] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/24/2016] [Indexed: 01/18/2023] Open
Abstract
Mitochondria are morphologically dynamic organelles constantly undergoing processes of fission and fusion that maintain integrity and bioenergetics of the organelle: these processes are vital for cell survival. Disruption in the balance of mitochondrial fusion and fission is thought to play a role in several pathological conditions including ischemic heart disease. Proteins involved in regulating the processes of mitochondrial fusion and fission are therefore potential targets for pharmacological therapies. Mdivi‐1 is a small molecule inhibitor of the mitochondrial fission protein Drp1. Inhibiting mitochondrial fission with Mdivi‐1 has proven cytoprotective benefits in several cell types involved in a wide array of cardiovascular injury models. On the other hand, Mdivi‐1 can also exert antiproliferative and cytotoxic effects, particularly in hyperproliferative cells. In this review, we discuss these divergent effects of Mdivi‐1 on cell survival, as well as the potential and limitations of Mdivi‐1 as a therapeutic agent.
Collapse
Affiliation(s)
- Ayeshah A Rosdah
- O'Brien Institute Department St Vincent's Institute of Medical Research Victoria Australia; Department of Physiology University of Melbourne Victoria Australia; Faculty of Medicine Sriwijaya University Palembang Indonesia
| | - Jessica K Holien
- ACRF Rational Drug Discovery Centre St Vincent's Institute of Medical Research Victoria Australia
| | | | - Gregory J Dusting
- O'Brien Institute Department St Vincent's Institute of Medical Research Victoria Australia; Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Victoria Australia; Department of Surgery University of Melbourne Victoria Australia
| | - Shiang Y Lim
- O'Brien Institute Department St Vincent's Institute of Medical Research Victoria Australia; Department of Surgery University of Melbourne Victoria Australia
| |
Collapse
|
29
|
Fields JA, Serger E, Campos S, Divakaruni AS, Kim C, Smith K, Trejo M, Adame A, Spencer B, Rockenstein E, Murphy AN, Ellis RJ, Letendre S, Grant I, Masliah E. HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders. Neurobiol Dis 2016; 86:154-69. [PMID: 26611103 PMCID: PMC4713337 DOI: 10.1016/j.nbd.2015.11.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 11/23/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) still occur in approximately 50% of HIV patients, and therapies to combat HAND progression are urgently needed. HIV proteins are released from infected cells and cause neuronal damage, possibly through mitochondrial abnormalities. Altered mitochondrial fission and fusion is implicated in several neurodegenerative disorders. Here, we hypothesized that mitochondrial fission/fusion may be dysregulated in neurons during HAND. We have identified decreased mitochondrial fission protein (dynamin 1-like; DNM1L) in frontal cortex tissues of HAND donors, along with enlarged and elongated mitochondria localized to the soma of damaged neurons. Similar pathology was observed in the brains of GFAP-gp120 tg mice. In vitro, recombinant gp120 decreased total and active DNM1L levels, reduced the level of Mitotracker staining, and increased extracellular acidification rate (ECAR) in primary neurons. DNM1L knockdown enhanced the effects of gp120 as measured by reduced Mitotracker signal in the treated cells. Interestingly, overexpression of DNM1L increased the level of Mitotracker staining in primary rat neurons and reduced neuroinflammation and neurodegeneration in the GFAP-gp120-tg mice. These data suggest that mitochondrial biogenesis dynamics are shifted towards mitochondrial fusion in brains of HAND patients and this may be due to gp120-induced reduction in DNM1L activity. Promoting mitochondrial fission during HIV infection of the CNS may restore mitochondrial biogenesis and prevent neurodegeneration.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Elisabeth Serger
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Sofia Campos
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ajit S Divakaruni
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Changyoun Kim
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Kendall Smith
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Margarita Trejo
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Scott Letendre
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Igor Grant
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Pathology, University of California San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
30
|
Kanda H, Kanao M, Liu S, Yi H, Iida T, Levitt RC, Candiotti KA, Lubarsky DA, Hao S. HSV vector-mediated GAD67 suppresses neuropathic pain induced by perineural HIV gp120 in rats through inhibition of ROS and Wnt5a. Gene Ther 2016; 23:340-8. [PMID: 26752351 PMCID: PMC4824655 DOI: 10.1038/gt.2016.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/22/2015] [Accepted: 12/31/2015] [Indexed: 12/19/2022]
Abstract
Human immunodeficiency virus (HIV)-related neuropathic pain is a debilitating chronic condition that is severe and unrelenting. Despite the extensive research, the exact neuropathological mechanisms remain unknown, which hinders our ability to develop effective treatments. Loss of GABAergic tone may play an important role in the neuropathic pain state. Glutamic acid decarboxylase 67 (GAD67) is one of isoforms that catalyze GABA synthesis. Here, we used recombinant herpes simplex virus (HSV-1) vectors that encode gad1 gene to evaluate the therapeutic potential of GAD67 in peripheral HIV gp120-induced neuropathic pain in rats. We found that 1) subcutaneous inoculation of the HSV vectors expressing GAD67 attenuated mechanical allodynia in the model of HIV gp120-induced neuropathic pain, 2) the anti-allodynic effect of GAD67 was reduced by GABA-A and-B receptors antagonists, 3) HSV vectors expressing GAD67 reversed the lowered GABA-IR expression, and 4) the HSV vectors expressing GAD67 suppressed the upregulated mitochondrial superoxide and Wnt5a in the spinal dorsal horn. Taken together, our studies support the concept that recovering GABAergic tone by the HSV vectors may reverse HIV-associated neuropathic pain through suppressing mitochondrial superoxide and Wnt5a. Our studies provide validation of HSV-mediated GAD67 gene therapy in the treatment of HIV-related neuropathic pain.
Collapse
Affiliation(s)
- H Kanda
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Anesthesiology, Asahikawa Medical University, Asahikawa, Japan
| | - M Kanao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Anesthesiology, Asahikawa Medical University, Asahikawa, Japan
| | - S Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - H Yi
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - T Iida
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Anesthesiology, Asahikawa Medical University, Asahikawa, Japan
| | - R C Levitt
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA.,Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Veterans Affairs Medical Center, Miami, FL, USA
| | - K A Candiotti
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D A Lubarsky
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|