1
|
Koutsogiannaki S, Limratana P, Bu W, Maisat W, McKinstry-Wu A, Han X, Ohto U, Eckenhoff RG, Soriano SG, Yuki K. Dexmedetomidine directly binds to and inhibits Toll-like receptor 4. Int Immunopharmacol 2024; 141:112975. [PMID: 39163686 PMCID: PMC11408083 DOI: 10.1016/j.intimp.2024.112975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND While a number of anesthetics has been shown potentially associated with neurotoxicity in the developing brain, dexmedetomidine, a drug that was rather recently introduced into the perioperative setting, is considered beneficial from neurological wellbeing. However, the underlying mechanism of how dexmedetomidine affects brain health remains to be determined. Based on our recent study, we hypothesized that dexmedetomidine would directly bind to and inhibit Toll-like receptor 4 (TLR4), a critical receptor largely expressed in microglia and responsible for neurological insult. METHODS We used TLR4 reporter assays to test if dexmedetomidine attenuates TLR4 activation. Furthermore, a direct binding of dexmedetomidine on TLR4 was tested using photoactivatable medetomidine. Lastly, the effect of dexmedetomidine on ketamine (anesthetic)-induced neurotoxicity was tested in rat pups (P7). RESULTS We showed that dexmedetomidine attenuated TLR4 activation using reporter assay (IC50 = 5.8 µg/mL). Photoactivatable dexmedetomidine delineated its direct binding sites on TLR4. We also showed that dexmedetomidine attenuated microglia activation both in vitro and in vivo. DISCUSSION We proposed a novel mechanism of dexmedetomidine-mediated neuroprotection.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA; Department of Immunology, Harvard Medical School, Boston, USA
| | - Panop Limratana
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA; Department of Immunology, Harvard Medical School, Boston, USA; Department of Anesthesiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Weiming Bu
- Department of Anesthesia and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Wiriya Maisat
- Department of Anesthesiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Andrew McKinstry-Wu
- Department of Anesthesia and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Xiaohui Han
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Roderic G Eckenhoff
- Department of Anesthesia and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Sulpicio G Soriano
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA; Department of Immunology, Harvard Medical School, Boston, USA.
| |
Collapse
|
2
|
Joe YE, Jun JH, Oh JE, Lee JR. Damage-associated molecular patterns as a mechanism of sevoflurane-induced neuroinflammation in neonatal rodents. Korean J Anesthesiol 2024; 77:468-479. [PMID: 38556956 PMCID: PMC11294876 DOI: 10.4097/kja.23796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND General anesthesia is inevitable for pediatric patients undergoing surgery, though volatile anesthetic agents may cause neuroinflammation and neurodevelopmental impairment; however, the underlying pathophysiology remains unclear. We aimed to investigate the neuroinflammation mechanism in developing rat brains associated with sevoflurane exposure time, by identifying the specific damage-associated molecular patterns (DAMPs) pathway and evaluating the effects of non-steroidal anti-inflammatory drugs (NSAIDs) in alleviating neuroinflammation. METHODS A three-step experiment was conducted to investigate neuroinflammation induced by sevoflurane. First, the exposure time required for sevoflurane to cause neuroinflammation was determined. Next, the specific pathways of DAMPs involved in neuroinflammation by sevoflurane were identified. Finally, the effects of NSAIDs on sevoflurane-induced neuroinflammation were investigated. The expression of various molecules in the rat brain were assessed using immunohistochemistry, immunofluorescence, quantitative real-time polymerase chain reaction, western blot analysis, and enzyme-linked immunosorbent assay. RESULTS In total, 112 rats (aged 7 days) were used, of which six rats expired during the experiment (mortality rate, 5.3%). Expression of CD68, HMGB-1, galectin-3, TLR4, TLR9, and phosphorylated NF-κB was significantly increased upon 6 h of sevoflurane exposure. Conversely, transcriptional levels of TNF-α and IL-6 significantly increased and IFN-γ significantly decreased after 6 h of sevoflurane exposure. Co-administration of NSAIDs with sevoflurane anesthesia significantly attenuated TNF-α and IL-6 levels and restored IFN-γ levels. CONCLUSIONS In conclusion, 6 h of sevoflurane exposure induces neuroinflammation through the DAMPs pathway, HMGB-1, and galectin-3. Co-administration of ibuprofen reduced sevoflurane-induced neuroinflammation.
Collapse
Affiliation(s)
- Young-Eun Joe
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, Seoul, Korea
| | - Ji Hae Jun
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Eun Oh
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong-Rim Lee
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Zhang P, Shi X, He D, Hu Y, Zhang Y, Zhao Y, Ma S, Cao S, Zhai M, Fan Z. Fer-1 Protects against Isoflurane-Induced Ferroptosis in Astrocytes and Cognitive Impairment in Neonatal Mice. Neurotox Res 2024; 42:27. [PMID: 38819761 DOI: 10.1007/s12640-024-00706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Early and prolonged exposure to anesthetic agents could cause neurodevelopmental disorders in children. Astrocytes, heavily outnumber neurons in the brain, are crucial regulators of synaptic formation and function during development. However, how general anesthetics act on astrocytes and the impact on cognition are still unclear. In this study, we investigated the role of ferroptosis and GPX4, a major hydroperoxide scavenger playing a pivotal role in suppressing the process of ferroptosis, and their underlying mechanism in isoflurane-induced cytotoxicity in astrocytes and cognitive impairment. Our results showed that early 6 h isoflurane anesthesia induced cognitive impairment in mice. Ferroptosis-relative genes and metabolic changes were involved in the pathological process of isoflurane-induced cytotoxicity in astrocytes. The level of GPX4 was decreased while the expression of 4-HNE and generation of ROS were elevated after isoflurane exposure. Selectively blocking ferroptosis with Fer-1 attenuated the abovementioned cytotoxicity in astrocytes, paralleling with the reverse of the changes in GPX4, ROS and 4-HNE secondary to isoflurane anesthesia. Fer-1 attenuated the cognitive impairment induced by prolonged isoflurane exposure. Thus, ferroptosis conduced towards isoflurane-induced cytotoxicity in astrocytes via suppressing GPX4 and promoting lipid peroxidation. Fer-1 was expected to be an underlying intervention for the neurotoxicity induced by isoflurane in the developing brain, and to alleviate cognitive impairment in neonates.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Anesthesiology, Air Force Hospital of Western Theater Command, PLA, Chengdu, 610011, China
| | - Xiaotong Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Danyi He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Hu
- Department of Anesthesiology, Air Force Hospital of Western Theater Command, PLA, Chengdu, 610011, China
| | - Yongchao Zhang
- Air Force Hospital of Western Theater Command, PLA, Chengdu, 610011, China
| | - Youyi Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Sanxing Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuhui Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Meiting Zhai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ze Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Faure F, Alison M, Francavilla M, Boizeau P, Guilmin Crepon S, Lim C, Planchette G, Prigent M, Frérot A, Tanter M, Demené C, Baud O, Biran V. Transfontanellar shear wave elastography of the neonatal brain for quantitative evaluation of white matter damage. Sci Rep 2024; 14:11827. [PMID: 38782968 PMCID: PMC11116529 DOI: 10.1038/s41598-024-60968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Cerebral white matter damage (WMD) is the most frequent brain lesion observed in infants surviving premature birth. Qualitative B-mode cranial ultrasound (cUS) is widely used to assess brain integrity at bedside. Its limitations include lower discriminatory power to predict long-term outcomes compared to magnetic resonance imaging (MRI). Shear wave elastography (SWE), a promising ultrasound imaging modality, might improve this limitation by detecting quantitative differences in tissue stiffness. The study enrolled 90 neonates (52% female, mean gestational age = 30.1 ± 4.5 weeks), including 78 preterm and 12 term controls. Preterm neonates underwent B-mode and SWE assessments in frontal white matter (WM), parietal WM, and thalami on day of life (DOL) 3, DOL8, DOL21, 40 weeks, and MRI at term equivalent age (TEA). Term infants were assessed on DOL3 only. Our data revealed that brain stiffness increased with gestational age in preterm infants but remained lower at TEA compared to the control group. In the frontal WM, elasticity values were lower in preterm infants with WMD detected on B-mode or MRI at TEA and show a good predictive value at DOL3. Thus, brain stiffness measurement using SWE could be a useful screening method for early identification of preterm infants at high WMD risk.Registration numbers: EudraCT number ID-RCB: 2012-A01530-43, ClinicalTrial.gov number NCT02042716.
Collapse
Affiliation(s)
- Flora Faure
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, 75015, Paris, France
| | - Marianne Alison
- Assistance Publique-Hôpitaux de Paris, Pediatric Radiology Department, Robert Debré University Hospital, 75019, Paris, France
| | | | - Priscilla Boizeau
- Assistance Publique-Hôpitaux de Paris, Unit of Clinical Epidemiology, Inserm U1123 and CIC-EC 1426, Robert Debré Children's Hospital, University of Paris Cité, Paris, France
| | - Sophie Guilmin Crepon
- Assistance Publique-Hôpitaux de Paris, Unit of Clinical Epidemiology, Inserm U1123 and CIC-EC 1426, Robert Debré Children's Hospital, University of Paris Cité, Paris, France
| | - Chung Lim
- Assistance Publique-Hôpitaux de Paris, Pediatric Radiology Department, Robert Debré University Hospital, 75019, Paris, France
| | - Gregory Planchette
- Assistance Publique-Hôpitaux de Paris, Pediatric Radiology Department, Robert Debré University Hospital, 75019, Paris, France
| | - Mickael Prigent
- Assistance Publique-Hôpitaux de Paris, Pediatric Radiology Department, Robert Debré University Hospital, 75019, Paris, France
| | - Alice Frérot
- Department of Neonatal Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children's Hospital, Paris, France
| | - Mickael Tanter
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, 75015, Paris, France
| | - Charlie Demené
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, 75015, Paris, France
| | - Olivier Baud
- Division of Neonatology and Paediatric Intensive Care, Children's University Hospital of Geneva and University of Geneva, Geneva, Switzerland
| | - Valérie Biran
- Department of Neonatal Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children's Hospital, Paris, France.
- Inserm U1141, University of Paris Cité, Paris, France.
| |
Collapse
|
5
|
Xu LL, Xie JQ, Shen JJ, Ying MD, Chen XZ. Neuron-derived exosomes mediate sevoflurane-induced neurotoxicity in neonatal mice via transferring lncRNA Gas5 and promoting M1 polarization of microglia. Acta Pharmacol Sin 2024; 45:298-311. [PMID: 37803140 PMCID: PMC10789735 DOI: 10.1038/s41401-023-01173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023]
Abstract
Sevoflurane exposure during rapid brain development induces neuronal apoptosis and causes memory and cognitive deficits in neonatal mice. Exosomes that transfer genetic materials including long non-coding RNAs (lncRNAs) between cells play a critical role in intercellular communication. However, the lncRNAs found in exosomes derived from neurons treated with sevoflurane and their potential role in promoting neurotoxicity remain unknown. In this study, we investigated the role of cross-talk of newborn mouse neurons with microglial cells in sevoflurane-induced neurotoxicity. Mouse hippocampal neuronal HT22 cells were exposed to sevoflurane, and then co-cultured with BV2 microglial cells. We showed that sevoflurane treatment markedly increased the expression of the lncRNA growth arrest-specific 5 (Gas5) in neuron-derived extracellular vesicles, which inhibited neuronal proliferation and induced neuronal apoptosis by promoting M1 polarization of microglia and the release of inflammatory cytokines. We further revealed that the exosomal lncRNA Gas5 significantly upregulated Foxo3 as a competitive endogenous RNA of miR-212-3p in BV2 cells, and activated the NF-κB pathway to promote M1 microglial polarization and the secretion of inflammatory cytokines, thereby exacerbating neuronal damage. In neonatal mice, intracranial injection of the exosomes derived from sevoflurane-treated neurons into the bilateral hippocampi significantly increased the proportion of M1 microglia, inhibited neuronal proliferation and promoted apoptosis, ultimately leading to neurotoxicity. Similar results were observed in vitro in BV2 cells treated with the CM from HT22 cells after sevoflurane exposure. We conclude that sevoflurane induces the transfer of lncRNA Gas5-containing exosomes from neurons, which in turn regulates the M1 polarization of microglia and contributes to neurotoxicity. Thus, modulating the expression of lncRNA Gas5 or the secretion of exosomes could be a strategy for addressing sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Li-Li Xu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Jia-Qian Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jian-Jun Shen
- Department of Anesthesia, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Mei-Dan Ying
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Xin-Zhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
6
|
Salaün JP, Chagnot A, Cachia A, Poirel N, Datin-Dorrière V, Dujarrier C, Lemarchand E, Rolland M, Delalande L, Gressens P, Guillois B, Houdé O, Levard D, Gakuba C, Moyon M, Naveau M, Orliac F, Orliaguet G, Hanouz JL, Agin V, Borst G, Vivien D. Consequences of General Anesthesia in Infancy on Behavior and Brain Structure. Anesth Analg 2023; 136:240-250. [PMID: 36638508 DOI: 10.1213/ane.0000000000006233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND One in 7 children will need general anesthesia (GA) before the age of 3. Brain toxicity of anesthetics is controversial. Our objective was to clarify whether exposure of GA to the developing brain could lead to lasting behavioral and structural brain changes. METHODS A first study was performed in mice. The behaviors (fear conditioning, Y-maze, and actimetry) and brain anatomy (high-resolution magnetic resonance imaging) of 6- to 8-week-old Swiss mice exposed or not exposed to GA from 4 to 10 days old were evaluated. A second study was a complementary analysis from the preexisting APprentissages EXécutifs et cerveau chez les enfants d'âge scolaire (APEX) cohort to assess the replicability of our data in humans. The behaviors (behavior rating inventory of executive function, emotional control, and working memory score, Backward Digit Span, and Raven 36) and brain anatomy (high-resolution magnetic resonance imaging) were compared in 102 children 9 to 10 years of age exposed or not exposed to a single GA (surgery) during infancy. RESULTS The animal study revealed chronic exacerbated fear behavior in the adult mice (95% confidence interval [CI], 4-80; P = .03) exposed to postnatal GA; this was associated with an 11% (95% CI, 7.5-14.5) reduction of the periaqueductal gray matter (P = .046). The study in humans suggested lower emotional control (95% CI, 0.33-9.10; P = .06) and a 6.1% (95% CI, 4.3-7.8) reduction in the posterior part of the right inferior frontal gyrus (P = .019) in the children who had been exposed to a single GA procedure. CONCLUSIONS The preclinical and clinical findings of these independent studies suggest lasting effects of early life exposure to anesthetics on later emotional control behaviors and brain structures.
Collapse
Affiliation(s)
- Jean-Philippe Salaün
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France.,Department of Anesthesiology and Critical Care Medicine, CHU Caen, Caen University Hospital, Caen, France
| | - Audrey Chagnot
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Arnaud Cachia
- Université de Paris, LaPsyDé, CNRS, Paris, France.,Institut Universitaire de France, Paris, France
| | - Nicolas Poirel
- Université de Paris, LaPsyDé, CNRS, Paris, France.,Institut Universitaire de France, Paris, France.,GIP Cyceron, Caen, France
| | - Valérie Datin-Dorrière
- Université de Paris, LaPsyDé, CNRS, Paris, France.,GIP Cyceron, Caen, France.,Department of Neonatology, CHU Caen, Caen University Hospital, Caen, France
| | - Cléo Dujarrier
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Eloïse Lemarchand
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Marine Rolland
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France.,Department of Anesthesiology and Critical Care Medicine, CHU Caen, Caen University Hospital, Caen, France
| | | | | | | | - Olivier Houdé
- Université de Paris, LaPsyDé, CNRS, Paris, France.,Institut Universitaire de France, Paris, France.,GIP Cyceron, Caen, France
| | - Damien Levard
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Clément Gakuba
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France.,Department of Anesthesiology and Critical Care Medicine, CHU Caen, Caen University Hospital, Caen, France
| | - Marine Moyon
- Université de Paris, LaPsyDé, CNRS, Paris, France
| | - Mikael Naveau
- CNRS, GIP Cyceron, Normandie Université, Caen, France
| | - François Orliac
- Université de Paris, LaPsyDé, CNRS, Paris, France.,GIP Cyceron, Caen, France
| | - Gilles Orliaguet
- Department of Pediatric Anesthesia and Intensive Care, Necker-Enfants Malades University Hospital, AP-HP, Centre - Université de Paris, France, Université de Paris, Paris, France
| | - Jean-Luc Hanouz
- Department of Anesthesiology and Critical Care Medicine, CHU Caen, Caen University Hospital, Caen, France.,Caen Normandy University, Unicaen, Caen, France
| | - Véronique Agin
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Grégoire Borst
- Université de Paris, LaPsyDé, CNRS, Paris, France.,Institut Universitaire de France, Paris, France
| | - Denis Vivien
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France.,Department of Clinical Research, CHU Caen, Caen University Hospital, Caen, France
| |
Collapse
|
7
|
Zhang X, Wu W, Zheng Z, Li L, Chen J, Zhong J, Zhao L, Chen J, Wang Z, Meng F. Mast cell stabilizer disodium cromoglycate improves long-term cognitive impairment after general anesthesia exposure in neonatal mice. Front Neurosci 2022; 16:990333. [PMID: 36188474 PMCID: PMC9521828 DOI: 10.3389/fnins.2022.990333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Background Prolonged exposure to general anesthesia (GA) results in long-lasting cognitive impairment, especially during critical stages of brain development. An exaggerated neuroinflammation induced by anesthesia is generally considered to be a key cause of cognitive impairment. Materials and methods Postnatal day 7 (PND 7) mice were exposed to GA by isoflurane inhalation for 6 h or mock anesthesia. Disodium cromoglycate (DSCG) was intraperitoneally injected daily for 2 weeks, beginning from 30 min before anesthesia. The post-anesthesia evaluation included behavioral tests, toluidine blue staining, immunofluorescence and western blot. Results Our results demonstrated the long-term cognition were impaired after 6 h GA exposure in neonatal mice. DSCG treatment ameliorated early mast cells (MCs) degranulation and mast cell tryptase (MCT) expression, which helps to attenuate subsequent neuroinflammation, activation of microglia and astrocytes, and damage to oligodendrocytes and synapses to improve cognitive impairment. Conclusion Disodium cromoglycate could effectively improve long-term cognitive impairment after GA exposure in neonatal mice.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wensi Wu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhenzhen Zheng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Liang Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Junjun Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junying Zhong
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Le Zhao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiawei Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Zhi Wang,
| | - Fanqing Meng
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
- Fanqing Meng,
| |
Collapse
|
8
|
Ma LH, Yan J, Jiao XH, Zhou CH, Wu YQ. The Role of Epigenetic Modifications in Neurotoxicity Induced by Neonatal General Anesthesia. Front Mol Neurosci 2022; 15:877263. [PMID: 35571375 PMCID: PMC9097083 DOI: 10.3389/fnmol.2022.877263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
It has been widely demonstrated by numerous preclinical studies and clinical trials that the neonates receiving repeated or long-time general anesthesia (GA) could develop prolonged cognitive dysfunction. However, the definite mechanism remains largely unknown. Epigenetics, which is defined as heritable alterations in gene expression that are not a result of alteration of DNA sequence, includes DNA methylation, histone post-translational modifications, non-coding RNAs (ncRNAs), and RNA methylation. In recent years, the role of epigenetic modifications in neonatal GA-induced neurotoxicity has been widely explored and reported. In this review, we discuss and conclude the epigenetic mechanisms involving in the process of neonatal anesthesia-induced cognitive dysfunction. Also, we analyze the wide prospects of epigenetics in this field and its possibility to work as treatment target.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jing Yan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Cheng-Hua Zhou,
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Cheng-Hua Zhou,
| |
Collapse
|
9
|
Olutoye OA, Style C, Menchaca A. Neurocognitive Effects of Fetal Exposure to Anesthesia. Anesthesiol Clin 2021; 39:851-869. [PMID: 34776113 DOI: 10.1016/j.anclin.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surgery during pregnancy occurs when maternal or fetal needs outweigh the status quo, yet much uncertainty remains regarding the effects of anesthesia and surgery on fetal neurodevelopment. This article will review common maternal and fetal indications for invasive procedures, along with contemporary research on fetal neurodevelopment following anesthesia and surgery, focusing on future areas of investigation.
Collapse
Affiliation(s)
- Olutoyin A Olutoye
- Department of Anesthesiology, Perioperative and Pain Medicine, Texas Children's Hospital, Baylor College of Medicine, 6621 Fannin Street, Suite A-3300, Houston, TX 77030, USA.
| | - Candace Style
- Abigail Wexner Research Institute, Center for Regenerative Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43205, USA
| | - Alicia Menchaca
- Abigail Wexner Research Institute, Center for Regenerative Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43205, USA
| |
Collapse
|
10
|
Penning DH, Cazacu S, Brodie A, Jevtovic-Todorovic V, Kalkanis SN, Lewis M, Brodie C. Neuron-Glia Crosstalk Plays a Major Role in the Neurotoxic Effects of Ketamine via Extracellular Vesicles. Front Cell Dev Biol 2021; 9:691648. [PMID: 34604212 PMCID: PMC8481868 DOI: 10.3389/fcell.2021.691648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/06/2021] [Indexed: 02/02/2023] Open
Abstract
Background: There is a compelling evidence from animal models that early exposure to clinically relevant general anesthetics (GAs) interferes with brain development, resulting in long-lasting cognitive impairments. Human studies have been inconclusive and are challenging due to numerous confounding factors. Here, we employed primary human neural cells to analyze ketamine neurotoxic effects focusing on the role of glial cells and their activation state. We also explored the roles of astrocyte-derived extracellular vesicles (EVs) and different components of the brain-derived neurotrophic factor (BDNF) pathway. Methods: Ketamine effects on cell death were analyzed using live/dead assay, caspase 3 activity and PARP-1 cleavage. Astrocytic and microglial cell differentiation was determined using RT-PCR, ELISA and phagocytosis assay. The impact of the neuron-glial cell interactions in the neurotoxic effects of ketamine was analyzed using transwell cultures. In addition, the role of isolated and secreted EVs in this cross-talk were studied. The expression and function of different components of the BDNF pathway were analyzed using ELISA, RT-PCR and gene silencing. Results: Ketamine induced neuronal and oligodendrocytic cell apoptosis and promoted pro-inflammatory astrocyte (A1) and microglia (M1) phenotypes. Astrocytes and microglia enhanced the neurotoxic effects of ketamine on neuronal cells, whereas neurons increased oligodendrocyte cell death. Ketamine modulated different components in the BDNF pathway: decreasing BDNF secretion in neurons and astrocytes while increasing the expression of p75 in neurons and that of BDNF-AS and pro-BDNF secretion in both neurons and astrocytes. We demonstrated an important role of EVs secreted by ketamine-treated astrocytes in neuronal cell death and a role for EV-associated BDNF-AS in this effect. Conclusions: Ketamine exerted a neurotoxic effect on neural cells by impacting both neuronal and non-neuronal cells. The BDNF pathway and astrocyte-derived EVs represent important mediators of ketamine effects. These results contribute to a better understanding of ketamine neurotoxic effects in humans and to the development of potential approaches to decrease its neurodevelopmental impact.
Collapse
Affiliation(s)
- Donald H Penning
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Simona Cazacu
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | | | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Steve N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Michael Lewis
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Chaya Brodie
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States.,Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
11
|
Wang L, Zhao J, Zhu B, Shen J, Ye Z, Peng Q, Zhang Y. Microglia polarization in heat-induced early neural injury. Arch Med Sci 2021; 20:1307-1313. [PMID: 39439680 PMCID: PMC11493046 DOI: 10.5114/aoms/116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/12/2020] [Indexed: 10/25/2024] Open
Abstract
Introduction In the occurrence and development of heat stroke (HS), factors such as hyperthermia, ischemia and hypoxia are essential to the central nervous system (CNS) inflammatory response, but the main mechanism underlying CNS inflammation remains unclear. The aim of the study was to observe the polarization of microglia in response to heat-induced early nerve injury and to explore its possible mechanism of action. Material and methods To establish a heatstroke animal model in Beagle dogs, 18 Beagle dogs were divided into control (group A) and experimental groups (group B, group C and group D) according to a random numbers table. The animals in the experimental groups were placed on an electric blanket of an animal body temperature maintaining apparatus. The temperature was set at 40 ±0.5°C, and the rectal temperature was monitored every 5 min until the target body temperature was reached. Once the target temperature was reached, the dogs were transferred to an environment of 26 ±0.5°C and 60 ±0.5% humidity. Western blot analysis was used to detect the expression of microglia-specific markers CD45, iNOS, arginase, and CD206 in normal and heat-damaged brain tissues at different time points (1 h, 6 h, 24 h). The expression of CD45 and arginase was further determined by co-localization with immunofluorescence. Results CD45 and iNOS protein expression was detected in group A. The two protein markers in group B were significantly higher than those in group A (p < 0.05), and the protein markers in group C were still higher than those in group A (p < 0.05). There was no statistically significant difference among the animals in group A (p > 0.05). Arginase and CD206 protein expression was also detected in group A. Levels of the two protein markers in group B were higher than those in group A (p < 0.05), and the protein marker levels in group C were even higher than those in group A (p < 0.05). Further analysis of the two groups of protein markers in group D showed significantly higher levels than those in group A (p < 0.001). Immunofluorescence co-localization of CD45 and arginase showed significantly increased fluorescence density at 6 h and 24 h after thermal injury (p < 0.001). Conclusions After heat-induced disease, microglia were found to be active in the brain tissues of dogs. The microglia activated in the early 1-6 h of CNS injury were mainly the M1 type, which were then converted to the M2 type after 6 h. The 24 h M2 type was dominant. The relationship between M1/M2 polarization trends and early brain injury in heat-induced disease may be a key to understanding CNS injury in heat-induced disease.
Collapse
Affiliation(s)
- Lei Wang
- Department of Emergency Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Jing Zhao
- Department of Dermatology, Affiliated Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Baofeng Zhu
- Department of Emergency Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Junhua Shen
- Department of Emergency Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Zi Ye
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Qiang Peng
- Department of Emergency Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Yi Zhang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
12
|
Tra S, Ochsenbein-Kölble N, Stein P, Meuli M, Moehrlen U, Mazzone L, Kraehenmann F, Zimmermann R, Biro P. Association of uterine activity and maternal volatile anesthetic exposure during open fetal surgery for spina bifida: a retrospective analysis. Int J Obstet Anesth 2021; 46:102974. [PMID: 33780714 DOI: 10.1016/j.ijoa.2021.102974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/22/2020] [Accepted: 02/19/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Recent warnings postulate a possible damaging effect of volatile anesthetics on the fetus. In our archive of fetal surgeries, we found wide variation in dosing of volatile anesthetics during spina bifida surgeries. We hypothesized that there was an association between volatile anesthetic exposure and uterine activity. METHODS Sixty anesthesia records from spina bifida operations were assessed. We analyzed the course of the administered volatile anesthetic during surgery and calculated from each patient's anesthesia record the volatile anesthetic exposure expressed in vol%h. We divided the records into two post hoc groups of the 20 lowest exposure (Group L) versus the 20 highest exposure (Group H), and compared them for uterine activity and fetal heart rate. RESULTS The number of contractions per hour was significantly greater in Group H (mean 1.3, SD ± 1.2) compared with Group L (mean 0.5, SD ± 0.6, P=0.049). There was no difference between the groups for the administration of the tocolytic drug atosiban (P=0.29). The course of the mean arterial pressure did not significantly differ but group H needed significantly more vasoactive medication (P <0.05). CONCLUSIONS We found that a lower intra-operative volatile anesthetic exposure than recommended in the MOMS-trial (i.e. <2.0 minimum alveolar concentration [MAC]) was not associated with an increase in intra-operative uterine activity. This is an indication that during spina bifida surgery, 2.0 MAC may not be necessary to avoid potentially harmful uterine activity.
Collapse
Affiliation(s)
- S Tra
- Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland.
| | - N Ochsenbein-Kölble
- Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland; The Zurich Center for Fetal Diagnosis and Therapy, Zurich, Switzerland
| | - P Stein
- Institute of Anesthesiology, Emergency Medical Service, Perioperative Medicine, Pain Therapy, Cantonal Hospital Winterthur, Switzerland
| | - M Meuli
- Department of Surgery, University Childrens' Hospital Zurich, Zurich, Switzerland; The Zurich Center for Fetal Diagnosis and Therapy, Zurich, Switzerland
| | - U Moehrlen
- Department of Surgery, University Childrens' Hospital Zurich, Zurich, Switzerland; The Zurich Center for Fetal Diagnosis and Therapy, Zurich, Switzerland
| | - L Mazzone
- Department of Surgery, University Childrens' Hospital Zurich, Zurich, Switzerland; The Zurich Center for Fetal Diagnosis and Therapy, Zurich, Switzerland
| | - F Kraehenmann
- Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland; The Zurich Center for Fetal Diagnosis and Therapy, Zurich, Switzerland
| | - R Zimmermann
- Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland; The Zurich Center for Fetal Diagnosis and Therapy, Zurich, Switzerland
| | - P Biro
- Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland; The Zurich Center for Fetal Diagnosis and Therapy, Zurich, Switzerland
| |
Collapse
|
13
|
Vega-García A, Feria-Romero I, García-Juárez A, Munguia-Madera AC, Montes-Aparicio AV, Zequeida-Muñoz E, Garcia-Albavera E, Orozco-Suárez S. Cannabinoids: A New Perspective on Epileptogenesis and Seizure Treatment in Early Life in Basic and Clinical Studies. Front Behav Neurosci 2021; 14:610484. [PMID: 33510627 PMCID: PMC7835327 DOI: 10.3389/fnbeh.2020.610484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023] Open
Abstract
Neural hyperexcitability in the event of damage during early life, such as hyperthermia, hypoxia, traumatic brain injury, status epilepticus, or a pre-existing neuroinflammatory condition, can promote the process of epileptogenesis, which is defined as the sequence of events that converts a normal circuit into a hyperexcitable circuit and represents the time that occurs between the damaging event and the development of spontaneous seizure activity or the establishment of epilepsy. Epilepsy is the most common neurological disease in the world, characterized by the presence of seizures recurring without apparent provocation. Cannabidiol (CBD), a phytocannabinoid derived from the subspecies Cannabis sativa (CS), is the most studied active ingredient and is currently studied as a therapeutic strategy: it is an anticonvulsant mainly used in children with catastrophic epileptic syndromes and has also been reported to have anti-inflammatory and antioxidant effects, supporting it as a therapeutic strategy with neuroprotective potential. However, the mechanisms by which CBD exerts these effects are not entirely known, and the few studies on acute and chronic models in immature animals have provided contradictory results. Thus, it is difficult to evaluate the therapeutic profile of CBD, as well as the involvement of the endocannabinoid system in epileptogenesis in the immature brain. Therefore, this review focuses on the collection of scientific data in animal models, as well as information from clinical studies on the effects of cannabinoids on epileptogenesis and their anticonvulsant and adverse effects in early life.
Collapse
Affiliation(s)
- Angélica Vega-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iris Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| | - Anais García-Juárez
- División de Ciencias Biológicas y Ambientales, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Ch Munguia-Madera
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| | - Alexia V Montes-Aparicio
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| | | | | | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| |
Collapse
|
14
|
Vaes JEG, Brandt MJV, Wanders N, Benders MJNL, de Theije CGM, Gressens P, Nijboer CH. The impact of trophic and immunomodulatory factors on oligodendrocyte maturation: Potential treatments for encephalopathy of prematurity. Glia 2020; 69:1311-1340. [PMID: 33595855 PMCID: PMC8246971 DOI: 10.1002/glia.23939] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Encephalopathy of prematurity (EoP) is a major cause of morbidity in preterm neonates, causing neurodevelopmental adversities that can lead to lifelong impairments. Preterm birth-related insults, such as cerebral oxygen fluctuations and perinatal inflammation, are believed to negatively impact brain development, leading to a range of brain abnormalities. Diffuse white matter injury is a major hallmark of EoP and characterized by widespread hypomyelination, the result of disturbances in oligodendrocyte lineage development. At present, there are no treatment options available, despite the enormous burden of EoP on patients, their families, and society. Over the years, research in the field of neonatal brain injury and other white matter pathologies has led to the identification of several promising trophic factors and cytokines that contribute to the survival and maturation of oligodendrocytes, and/or dampening neuroinflammation. In this review, we discuss the current literature on selected factors and their therapeutic potential to combat EoP, covering a wide range of in vitro, preclinical and clinical studies. Furthermore, we offer a future perspective on the translatability of these factors into clinical practice.
Collapse
Affiliation(s)
- Josine E G Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Myrna J V Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Nikki Wanders
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | | | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Giraud A, Chaux R, Allard MJ, Celle M, Teyssier G, Roche F, Chapelle C, Chabrier S, Sébire G, Patural H. Perinatal inflammation is associated with social and motor impairments in preterm children without severe neonatal brain injury. Eur J Paediatr Neurol 2020; 28:126-132. [PMID: 32758415 DOI: 10.1016/j.ejpn.2020.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/30/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To test the association between exposure to perinatal inflammation - i.e. clinical chorioamnionitis or early-onset neonatal infection - in preterm children without severe neonatal brain injury and neurodevelopmental outcome at 30 months of corrected age (CA). DESIGN Cross-sectional study from a French regional cohort of clinical follow-up (SEVE Network). PATIENTS One hundred sixty-four surviving neonates without severe brain injury - namely, grade III and IV cerebral hemorrhage and cystic periventricular leukomalacia - and without late-onset neonatal inflammation exposure - namely, late-onset neonatal infection and necrotizing enterocolitis -, born at less than 33 weeks of gestational age from November 2011 to June 2015 and enrolled in the SEVE Network. MAIN OUTCOME MEASURE Global developmental quotient (DQ) score of the revised Brunet-Lézine scale and its four indices measured by the same neuropsychologist at 30 months of CA. RESULTS After multivariate analysis, exposure to perinatal inflammation was not found significantly associated with a modification of the global DQ score (coefficient -1.7, 95% CI -4.8 to 1.3; p = 0.26). Exposure to perinatal inflammation was associated with a decrease of the gross motor function DQ score (coefficient -6.0, 95% CI -9.9 to -2.1; p < 0.01) and a decrease of the sociability DQ score (coefficient -5.1, 95% CI -9.2 to -0.9; p = 0.02). Language and visuospatial coordination DQ scores were not affected by exposure to perinatal inflammation. CONCLUSION Exposure to perinatal inflammation in preterm children without severe neonatal brain injury is independently associated with decreased motor and social abilities at 30 months of CA.
Collapse
Affiliation(s)
- Antoine Giraud
- Neonatal Intensive Care Unit, Department of Pediatrics, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France; EA 4607 SNA EPIS, Université de Lyon, Université Jean Monnet, Saint-Étienne, France.
| | - Robin Chaux
- Department of Clinical Research and Pharmacology, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France
| | - Marie-Julie Allard
- Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Magali Celle
- Coordination du Réseau SEVE, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France
| | - Georges Teyssier
- Coordination du Réseau SEVE, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France
| | - Frédéric Roche
- EA 4607 SNA EPIS, Université de Lyon, Université Jean Monnet, Saint-Étienne, France
| | - Céline Chapelle
- Department of Clinical Research and Pharmacology, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France
| | - Stéphane Chabrier
- Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC, Canada; INSERM, UMR 1059 Sainbiose, Université de Lyon, Université Jean Monnet, Saint-Étienne, France
| | - Guillaume Sébire
- Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Hugues Patural
- Neonatal Intensive Care Unit, Department of Pediatrics, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France; EA 4607 SNA EPIS, Université de Lyon, Université Jean Monnet, Saint-Étienne, France
| |
Collapse
|
16
|
Li D, Chen M, Meng T, Fei J. Hippocampal microglial activation triggers a neurotoxic-specific astrocyte response and mediates etomidate-induced long-term synaptic inhibition. J Neuroinflammation 2020; 17:109. [PMID: 32264970 PMCID: PMC7140340 DOI: 10.1186/s12974-020-01799-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
Background Accumulating evidence has highlighted the importance of microglial and astrocyte responses in the pathological development of postoperative cognitive dysfunction (POCD). However, the mechanisms involved are not well understood. Methods A perioperative neurocognitive disorders (PND) mouse model was generated by administering etomidate, and cognitive function was assessed using the Morris water maze and novel object recognition tests. Excitatory and inhibitory postsynaptic currents were recorded to analyze neuronal activity. In addition, microglia and astrocytes were isolated by magnetic-activated cell sorting, and genes that were activated in these cells were identified using quantitative polymerase chain reaction. Results We observed dramatic cognitive impairment at 1 and 3 weeks after etomidate was administered to 18 month-old mice. Microglia and astrocytes isolated from the hippocampus showed significant microglial activation during the early pathological stage (i.e., 1 week after etomidate injection) and an A1-specific astrocyte response during the late pathological stage (i.e., 3 weeks after etomidate injection). Furthermore, when microglia were eliminated before etomidate was injected, the A1-specific astrocyte activation response was significantly reduced, and cognitive function improved. However, when microglia were eliminated after etomidate application, astrocyte activation and cognitive function were not significantly altered. In addition, activating microglia immediately after a sedative dose of etomidate was injected markedly increased A1-specific astrocyte activation and cognitive dysfunction. Conclusions A1-specific astrocyte activation is triggered by activated microglia during the initial pathological stage of PND and induces long-term synaptic inhibition and cognitive deficiencies. These results improve our understanding of how PND develops and may suggest therapeutic targets.
Collapse
Affiliation(s)
- Dongliang Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Mingming Chen
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Tao Meng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Jianchun Fei
- Department of Anesthesiology, Qilu Hospital of Shandong University, Ji'nan, 250012, China.
| |
Collapse
|
17
|
Truttmann AC, Ginet V, Puyal J. Current Evidence on Cell Death in Preterm Brain Injury in Human and Preclinical Models. Front Cell Dev Biol 2020; 8:27. [PMID: 32133356 PMCID: PMC7039819 DOI: 10.3389/fcell.2020.00027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Despite tremendous advances in neonatal intensive care over the past 20 years, prematurity carries a high burden of neurological morbidity lasting lifelong. The term encephalopathy of prematurity (EoP) coined by Volpe in 2009 encompasses all aspects of the now known effects of prematurity on the immature brain, including altered and disturbed development as well as specific lesional hallmarks. Understanding the way cells are damaged is crucial to design brain protective strategies, and in this purpose, preclinical models largely contribute to improve the comprehension of the cell death mechanisms. While neuronal cell death has been deeply investigated and characterized in (hypoxic–ischemic) encephalopathy of the newborn at term, little is known about the types of cell death occurring in preterm brain injury. Three main different morphological cell death types are observed in the immature brain, specifically in models of hypoxic–ischemic encephalopathy, namely, necrotic, apoptotic, and autophagic cell death. Features of all three types may be present in the same dying neuron. In preterm brain injury, description of cell death types is sparse, and cell loss primarily concerns immature oligodendrocytes and, infrequently, neurons. In the present review, we first shortly discuss the different main severe preterm brain injury conditions that have been reported to involve cell death, including periventricular leucomalacia (PVL), diffuse white matter injury (dWMI), and intraventricular hemorrhages, as well as potentially harmful iatrogenic conditions linked to premature birth (anesthesia and caffeine therapy). Then, we present an overview of current evidence concerning cell death in both clinical human tissue data and preclinical models by focusing on studies investigating the presence of cell death allowing discriminating between the types of cell death involved. We conclude that, to improve brain protective strategies, not only apoptosis but also other cell death (such as regulated necrotic and autophagic) pathways now need to be investigated together in order to consider all cell death mechanisms involved in the pathogenesis of preterm brain damage.
Collapse
Affiliation(s)
- Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Vanessa Ginet
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
18
|
Luo A, Tang X, Zhao Y, Zhou Z, Yan J, Li S. General Anesthetic-Induced Neurotoxicity in the Immature Brain: Reevaluating the Confounding Factors in the Preclinical Studies. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7380172. [PMID: 31998797 PMCID: PMC6970503 DOI: 10.1155/2020/7380172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/17/2019] [Indexed: 01/30/2023]
Abstract
General anesthetic (GA) is used clinically to millions of young children each year to facilitate surgical procedures, relieve perioperative stress, and provide analgesia and amnesia. During recent years, there is a growing concern regarding a causal association between early life GA exposure and subsequently long-term neurocognitive abnormalities. To address the increasing concern, mounting preclinical studies and clinical trials have been undergoing. Until now, nearly all of the preclinical findings show that neonatal exposure to GA causally leads to acute neural cell injury and delayed cognitive impairment. Unexpectedly, several influential clinical findings suggest that early life GA exposure, especially brief and single exposure, does not cause adverse neurodevelopmental outcome, which is not fully in line with the experimental findings and data from several previous cohort trials. As the clinical data have been critically discussed in previous reviews, in the present review, we try to analyze the potential factors of the experimental studies that may overestimate the adverse effect of GA on the developing brain. Meanwhile, we briefly summarized the advance in experimental research. Generally, our purpose is to provide some useful suggestions for forthcoming preclinical studies and strengthen the powerfulness of preclinical data.
Collapse
Affiliation(s)
- Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Xiaole Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| |
Collapse
|
19
|
Nathan N. A Double-edged Sword. Anesth Analg 2019; 128:603. [DOI: 10.1213/ane.0000000000004097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Crosby G. To Changing Your Mind. Anesth Analg 2019; 128:615-616. [PMID: 30883413 DOI: 10.1213/ane.0000000000004078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gregory Crosby
- From the Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|