1
|
Gray PC, Boss E, Bourdin G, Lehahn Y. Emergent patterns of patchiness differ between physical and planktonic properties in the ocean. Nat Commun 2025; 16:1808. [PMID: 39979274 PMCID: PMC11842825 DOI: 10.1038/s41467-025-56794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/31/2025] [Indexed: 02/22/2025] Open
Abstract
While a rich history of patchiness research has explored spatial structure in the ocean, there is no consensus over the controls on biological patchiness and how physical-ecological-biogeochemical processes and patchiness relate. The prevailing thought is that physics structures biology, but this has not been tested at basin scale with consistent in situ measurements. Here we use the slope of the relationship between variance vs spatial scale to quantify patchiness and ~650,000 nearly continuous (dx ~ 200 m) measurements - representing the Atlantic, Pacific, and Southern Oceans - and find that patchiness of biological parameters and physical parameters are uncorrelated. We show variance slope is an emergent property with unique patterns in biogeochemical properties distinct from physical tracers, yet correlated with other biological tracers. These results provide context for decades of observations with different interpretations, suggest the use of spatial tests of biogeochemical model parameterizations, and open the way for studies into processes regulating the observed patterns.
Collapse
Affiliation(s)
- Patrick Clifton Gray
- School of Marine Sciences, University of Maine, Orono, ME, USA.
- Department of Marine Geosciences, Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | | | - Yoav Lehahn
- Department of Marine Geosciences, Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
2
|
Verma A, Amnebrink D, Lee CC, Wai SN, Sandblad L, Pinhassi J, Wikner J. Prokaryotic morphological features and maintenance activities governed by seasonal productivity conditions. FEMS Microbiol Ecol 2024; 100:fiae121. [PMID: 39264060 PMCID: PMC11556340 DOI: 10.1093/femsec/fiae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024] Open
Abstract
Prokaryotic maintenance respiration and associated metabolic activities constitute a considerable proportion of the total respiration of carbon to CO2 in the ocean's mixed layer. However, seasonal influences on prokaryotic maintenance activities in terms of morphological and metabolic adaptations at low (winter) and high productivity (summer) are still unclear. To address this, we examined the natural prokaryotic communities at the mesocosm scale to analyse the differences in their morphological features and gene expression at low and high maintenance respiration, experimentally manipulated with the specific growth rate. Here, we showed that morphological features including membrane blebbing, membrane vesicles, and cell‒cell connections occurred under high productivity. Metabolic adaptations associated with maintenance activities were observed under low productivity. Several Kyoto Encyclopedia of Genes and Genomes categories related to signal transduction, energy metabolism, and translational machinery supported maintenance activities under simulated winter conditions. Differential abundances of genes related to transporters, osmoregulation, nitrogen metabolism, ribosome biogenesis, and cold stress were observed. Our results demonstrate how specific growth rate in different seasons can influence resource allocation at the levels of morphological features and metabolic adaptations. This motivates further study of morphological features and their ecological role during high productivity, while investigations of metabolic adaptations during low productivity can advance our knowledge about maintenance activities.
Collapse
Affiliation(s)
- Ashish Verma
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
- Umeå Marine Sciences Centre, Norrbyn 557, SE-905 71 Hörnefors, Sweden
| | - Dennis Amnebrink
- Centre for Ecology and Evolution in Microbial Model Systems – EEMiS, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Cheng Choo Lee
- Umeå Centre for Electron Microscopy, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Linda Sandblad
- Umeå Centre for Electron Microscopy, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems – EEMiS, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Johan Wikner
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
- Umeå Marine Sciences Centre, Norrbyn 557, SE-905 71 Hörnefors, Sweden
| |
Collapse
|
3
|
Whitney TJ, Mitchell KA. Ballistic to diffusive transition for swimmers in a periodic vortex array. Phys Rev E 2024; 110:034203. [PMID: 39425404 DOI: 10.1103/physreve.110.034203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/13/2024] [Indexed: 10/21/2024]
Abstract
We study the transport of rigid ellipsoidal swimmers in a periodic vortex array via numerical simulation and dynamical systems analysis. Via ensemble simulations, we show the counterintuitive result that slower swimming speeds can generate fast ballistic transport, while faster swimming speeds generate chaotic and diffusive transport, which is inherently slower in the long run. To explain this, we use the symmetry of the flow to construct a time-reversible Poincaré return map on a two-dimensional surface of section in phase space. For sufficiently small swimming speeds, we find stable periodic orbits on the surface of section surrounded by invariant tori, similar to Kolmogorov-Arnold-Moser curves. Trajectories within these tori are ballistic. As the swimming speed is increased, the periodic orbits undergo a sequence of period-doubling bifurcations that destroys the ballistic tori. These bifurcations exactly match the ballistic to diffusive transition from the ensemble simulations. Additional ensemble simulations are used to test the robustness of these results to noise. The ballistic behavior is destroyed as the strength of rotational diffusion increases. However, we estimate that the ballistic tori might still be seen in experiments.
Collapse
|
4
|
Hildebrand L, Derville S, Hildebrand I, Torres LG. Exploring indirect effects of a classic trophic cascade between urchins and kelp on zooplankton and whales. Sci Rep 2024; 14:9815. [PMID: 38684814 PMCID: PMC11059377 DOI: 10.1038/s41598-024-59964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Kelp forest trophic cascades have been extensively researched, yet indirect effects to the zooplankton prey base and gray whales have not been explored. We investigate the correlative patterns of a trophic cascade between bull kelp and purple sea urchins on gray whales and zooplankton in Oregon, USA. Using generalized additive models (GAMs), we assess (1) temporal dynamics of the four species across 8 years, and (2) possible trophic paths from urchins to kelp, kelp as habitat to zooplankton, and kelp and zooplankton to gray whales. Temporal GAMs revealed an increase in urchin coverage, with simultaneous decline in kelp condition, zooplankton abundance and gray whale foraging time. Trophic path GAMs, which tested for correlations between species, demonstrated that urchins and kelp were negatively correlated, while kelp and zooplankton were positively correlated. Gray whales showed nuanced and site-specific correlations with zooplankton in one site, and positive correlations with kelp condition in both sites. The negative correlation between the kelp-urchin trophic cascade and zooplankton resulted in a reduced prey base for gray whales. This research provides a new perspective on the vital role kelp forests may play across multiple trophic levels and interspecies linkages.
Collapse
Affiliation(s)
- Lisa Hildebrand
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA.
| | - Solène Derville
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA
- UMR ENTROPIE (IRD-Université de La Réunion-CNRS-Laboratoire d'excellence LabEx-CORAIL), Nouméa, New Caledonia
| | - Ines Hildebrand
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - Leigh G Torres
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA
| |
Collapse
|
5
|
Picoche C, Young WR, Barraquand F. Local intraspecific aggregation in phytoplankton model communities: spatial scales of occurrence and implications for coexistence. J Math Biol 2024; 88:68. [PMID: 38661851 DOI: 10.1007/s00285-024-02067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2023] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
The coexistence of multiple phytoplankton species despite their reliance on similar resources is often explained with mean-field models assuming mixed populations. In reality, observations of phytoplankton indicate spatial aggregation at all scales, including at the scale of a few individuals. Local spatial aggregation can hinder competitive exclusion since individuals then interact mostly with other individuals of their own species, rather than competitors from different species. To evaluate how microscale spatial aggregation might explain phytoplankton diversity maintenance, an individual-based, multispecies representation of cells in a hydrodynamic environment is required. We formulate a three-dimensional and multispecies individual-based model of phytoplankton population dynamics at the Kolmogorov scale. The model is studied through both simulations and the derivation of spatial moment equations, in connection with point process theory. The spatial moment equations show a good match between theory and simulations. We parameterized the model based on phytoplankters' ecological and physical characteristics, for both large and small phytoplankton. Defining a zone of potential interactions as the overlap between nutrient depletion volumes, we show that local species composition-within the range of possible interactions-depends on the size class of phytoplankton. In small phytoplankton, individuals remain in mostly monospecific clusters. Spatial structure therefore favours intra- over inter-specific interactions for small phytoplankton, contributing to coexistence. Large phytoplankton cell neighbourhoods appear more mixed. Although some small-scale self-organizing spatial structure remains and could influence coexistence mechanisms, other factors may need to be explored to explain diversity maintenance in large phytoplankton.
Collapse
Affiliation(s)
- Coralie Picoche
- Institute of Mathematics of Bordeaux, University of Bordeaux and CNRS, Talence, France
| | | | - Frédéric Barraquand
- Institute of Mathematics of Bordeaux, University of Bordeaux and CNRS, Talence, France.
| |
Collapse
|
6
|
Dyomin V, Davydova A, Kirillov N, Kondratova O, Morgalev Y, Morgalev S, Morgaleva T, Polovtsev I. Monitoring Bioindication of Plankton through the Analysis of the Fourier Spectra of the Underwater Digital Holographic Sensor Data. SENSORS (BASEL, SWITZERLAND) 2024; 24:2370. [PMID: 38610582 PMCID: PMC11014362 DOI: 10.3390/s24072370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
The study presents a bioindication complex and a technology of the experiment based on a submersible digital holographic camera with advanced monitoring capabilities for the study of plankton and its behavioral characteristics in situ. Additional mechanical and software options expand the capabilities of the digital holographic camera, thus making it possible to adapt the depth of the holographing scene to the parameters of the plankton habitat, perform automatic registration of the "zero" frame and automatic calibration, and carry out natural experiments with plankton photostimulation. The paper considers the results of a long-term digital holographic experiment on the biotesting of the water area in Arctic latitudes. It shows additional possibilities arising during the spectral processing of long time series of plankton parameters obtained during monitoring measurements by a submersible digital holographic camera. In particular, information on the rhythmic components of the ecosystem and behavioral characteristics of plankton, which can be used as a marker of the ecosystem well-being disturbance, is thus obtained.
Collapse
Affiliation(s)
- Victor Dyomin
- Laboratory for Radiophysical and Optical Methods of Environmental Research, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia; (V.D.); (N.K.); (I.P.)
| | - Alexandra Davydova
- Laboratory for Radiophysical and Optical Methods of Environmental Research, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia; (V.D.); (N.K.); (I.P.)
| | - Nikolay Kirillov
- Laboratory for Radiophysical and Optical Methods of Environmental Research, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia; (V.D.); (N.K.); (I.P.)
| | - Oksana Kondratova
- Center for Biotesting of Nanotechnologies and Nanomaterials Safety, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia; (O.K.); (Y.M.); (S.M.); (T.M.)
| | - Yuri Morgalev
- Center for Biotesting of Nanotechnologies and Nanomaterials Safety, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia; (O.K.); (Y.M.); (S.M.); (T.M.)
| | - Sergey Morgalev
- Center for Biotesting of Nanotechnologies and Nanomaterials Safety, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia; (O.K.); (Y.M.); (S.M.); (T.M.)
| | - Tamara Morgaleva
- Center for Biotesting of Nanotechnologies and Nanomaterials Safety, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia; (O.K.); (Y.M.); (S.M.); (T.M.)
| | - Igor Polovtsev
- Laboratory for Radiophysical and Optical Methods of Environmental Research, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia; (V.D.); (N.K.); (I.P.)
| |
Collapse
|
7
|
Baldry K, Johnson R, Strutton PG, Boyd PW. A biological ocean data reformatting effort. Sci Data 2024; 11:215. [PMID: 38365981 PMCID: PMC10873340 DOI: 10.1038/s41597-024-03038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
Biological ocean data collected from ships find reuse in aggregations of historical data. These data are heavily relied upon to document long term change, validate satellite algorithms for ocean biology and are useful in assessing the performance of autonomous platforms and biogeochemical models. Existing aggregate products have largely been restricted to the surface ocean, omit physical data or have limited biological data. We present the first version of a BIOlogical ocean data reforMATting Effort (BIO-MATE) to begin to fill a gap in subsurface bio-physical data aggregates in a reproducible way. BIO-MATE uses open-source R software that reformats openly sourced published datasets from oceanographic voyages. These reformatted biological and physical data from underway sensors, profiling sensors, pigments analysis and particulate organic carbon analysis are stored in an interoperable BIO-MATE data product for easy access and use. Specific QA/QC protocols can now be easily applied to the BIO-MATE data product to support a variety of surface and subsurface applications.
Collapse
Affiliation(s)
- Kimberlee Baldry
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.
| | - Robert Johnson
- Bureau National Operations Centre, Bureau of Meteorology, Hobart, Australia
| | - Peter G Strutton
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Australia
- Australian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Australia
| |
Collapse
|
8
|
Sanvicente-Añorve L, Alatorre-Mendieta M, Sánchez-Campos M, Ponce-Vélez G, Lemus-Santana E. Simulation of encounter rates between zooplankton organisms and microplastics in a tropical estuary. PLoS One 2023; 18:e0292462. [PMID: 37796862 PMCID: PMC10553305 DOI: 10.1371/journal.pone.0292462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
Coastal estuarine systems may hold a large number of microplastic particles, which predators often mistake for prey. This study estimated the encounter rates between microplastics (alleged prey) and zooplankton having different feeding modes, trophic positions, swimming velocities, and perception distances, under calm and turbulent conditions, and during two seasons. Surface water samples were taken at 10/12 sites of the Sontecomapan lagoon, southern Gulf of Mexico, to quantify microplastic concentration. Zooplankton organisms considered were copepods, chaetognaths, and luciferids, common organisms in the lagoon. In June, at surface waters and during calm conditions, mean encounter rates were 1.5, 2450, and 980 particles per individual per hour, that is, for copepods, chaetognaths, and luciferids, respectively. When the wind blows (0.8 m s-1) encounter rates were 1.2, 1.4, and 2.6 times higher than in calm conditions. In October, mean encounter rates under calm conditions were 0.2, 355, and 142 particles per individual per hour, for copepods, chaetognaths, and luciferids; these values increase 1.3, 1.6, and 3.3 times when the wind blows (1.12 m s-1). The major number of encounters in June was due to a higher concentration of microplastics, despite the lower turbulent velocity. Regarding their trophic position, we propose that secondary consumers (chaetognaths and luciferids) are more affected because they could eat microplastics via contaminated prey or accidentally ingest them owing to confusion in the motion signals, especially under turbulent conditions. Another consequence of encounters could be the entanglement of microplastics in the body of the animals, especially in those with complex morphology, such as crustaceans. Encounters between zooplankton and microplastics do not always result in ingestion or entanglement, but the encounters are the first step in the case of occurrence.
Collapse
Affiliation(s)
- Laura Sanvicente-Añorve
- Laboratorio de Ecología de Sistemas Pelágicos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel Alatorre-Mendieta
- Laboratorio de Oceanografía Física, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mitzi Sánchez-Campos
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guadalupe Ponce-Vélez
- Laboratorio de Contaminación Marina, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elia Lemus-Santana
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Loschi M, D'Alelio D, Camatti E, Bernardi Aubry F, Beran A, Libralato S. Planktonic ecological networks support quantification of changes in ecosystem health and functioning. Sci Rep 2023; 13:16683. [PMID: 37794097 PMCID: PMC10550973 DOI: 10.1038/s41598-023-43738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Plankton communities are the foundation of marine food webs and have a large effect on the dynamics of entire ecosystems. Changes in physicochemical factors strongly influence planktonic organisms and their turnover rates, making their communities useful for monitoring ecosystem health. We studied and compared the planktonic food webs of Palude della Rosa (Venice Lagoon, Italy) in 2005 and 2007. The food webs were developed using a novel approach based on the Monte Carlo random sampling of parameters within specific and realistic ranges to derive 1000 food webs for July of each year. The consumption flows involving Strombididae, Evadne spp. and Podon spp. were identified as the most important in splitting food webs of the July of the two years. Although functional nodes (FNs) differed both in presence and abundance in July of the two years, the whole system indicators showed very similar results. Sediment resuspension acted as a source of stress for the Venice Lagoon, being the most used resource by consumers while inhibiting primary producers by increasing water turbidity. Primary production in the water column was mainly generated by benthic FNs. Although the system was near an equilibrium point, it tended to increase its resilience at the expense of efficiency due to stress. This study highlights the role of plankton communities, which can serve to assess ecosystem health.
Collapse
Affiliation(s)
- Matteo Loschi
- Department of Life Sciences, University of Trieste, via Weiss 2, 34128, Trieste, Italy
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - Domenico D'Alelio
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Elisa Camatti
- Institute of Marine Science (CNR ISMAR), National Research Council, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy
| | - Fabrizio Bernardi Aubry
- Institute of Marine Science (CNR ISMAR), National Research Council, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy
| | - Alfred Beran
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - Simone Libralato
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy.
| |
Collapse
|
10
|
Countryman C, Steinberg D, Burd A. Modelling the effects of copepod diel vertical migration and community structure on ocean carbon flux using an agent-based model. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Strzepek RF, Nunn BL, Bach LT, Berges JA, Young EB, Boyd PW. The ongoing need for rates: can physiology and omics come together to co-design the measurements needed to understand complex ocean biogeochemistry? JOURNAL OF PLANKTON RESEARCH 2022; 44:485-495. [PMID: 35898813 PMCID: PMC9310281 DOI: 10.1093/plankt/fbac026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/05/2022] [Indexed: 05/16/2023]
Abstract
The necessity to understand the influence of global ocean change on biota has exposed wide-ranging gaps in our knowledge of the fundamental principles that underpin marine life. Concurrently, physiological research has stagnated, in part driven by the advent and rapid evolution of molecular biological techniques, such that they now influence all lines of enquiry in biological oceanography. This dominance has led to an implicit assumption that physiology is outmoded, and advocacy that ecological and biogeochemical models can be directly informed by omics. However, the main modeling currencies are biological rates and biogeochemical fluxes. Here, we ask: how do we translate the wealth of information on physiological potential from omics-based studies to quantifiable physiological rates and, ultimately, to biogeochemical fluxes? Based on the trajectory of the state-of-the-art in biomedical sciences, along with case-studies from ocean sciences, we conclude that it is unlikely that omics can provide such rates in the coming decade. Thus, while physiological rates will continue to be central to providing projections of global change biology, we must revisit the metrics we rely upon. We advocate for the co-design of a new generation of rate measurements that better link the benefits of omics and physiology.
Collapse
Affiliation(s)
- Robert F Strzepek
- Australian Antarctic Program Partnership (AAPP), Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Hobart, TAS 7004, Australia
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Foege Building S113 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Lennart T Bach
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia
| | - John A Berges
- Department of Biological Sciences and School of Freshwater Sciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Avenue, Milwaukee, WI 53211, USA
| | - Erica B Young
- Department of Biological Sciences and School of Freshwater Sciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Avenue, Milwaukee, WI 53211, USA
| | - Philip W Boyd
- Australian Antarctic Program Partnership (AAPP), Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Hobart, TAS 7004, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia
| |
Collapse
|
12
|
Piontkovski SA, Melnik AV, Serikova IM, Evstigneev VP, Dobretsov S. Bioluminescence of the tropical Indian Ocean: a multiple-scale variation. LUMINESCENCE 2022; 37:1436-1445. [PMID: 35723681 DOI: 10.1002/bio.4315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
Abstract
Large-scale surveys represented by 5800 bathymetric casts in the western Indian Ocean (0-22o N, 54-58o E), elucidated the 10-fold variation of the bioluminescent potential (BP) in the upper mixed layer, during the winter (north-east) monsoon season. The mesoscale survey in February 2017 consisted of 26 drift stations (4o N-3o S, 65-68o E) on which 5-10 bathymetric casts were deployed down to 60 m. The maximal BP was associated with the periphery of a cyclonic eddy. The two-fold to three-fold variation of BP characterized the spatial heterogeneity modulated by a detected eddy. High-frequency casts on drift stations resembled the fine-scale heterogeneity in which the three-fold variation was observed within the BP maximum at a 37 ± 13 m depth. The latter one was located above the deep chlorophyll maximum at a 80 m depth. A general decline of the BP variance from the large scale through mesoscale to fine scale, fits that of the zooplankton biomass.
Collapse
Affiliation(s)
| | | | - Irina M Serikova
- A.O.Kovalevsky Institute of Biology of the Southern Seas, Russia
| | | | | |
Collapse
|
13
|
Robinson KL, Sponaugle S, Luo JY, Gleiber MR, Cowen RK. Big or small, patchy all: Resolution of marine plankton patch structure at micro- to submesoscales for 36 taxa. SCIENCE ADVANCES 2021; 7:eabk2904. [PMID: 34797707 PMCID: PMC8604402 DOI: 10.1126/sciadv.abk2904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/29/2021] [Indexed: 06/03/2023]
Abstract
Despite the ecological importance of microscale (0.01–1 meter) and fine-scale (1 to hundreds of meters) plankton patchiness, the dimensions and taxonomic identity of patches in the ocean are nearly unknown. We used underwater imaging to identify the position, horizontal length scale, and density of taxa-specific patches of 32 million organisms representing 36 taxa (200 micrometers to 20 centimeters) in the continental and oceanic environments of a subtropical, western boundary current. Patches were the most frequent in shallow, continental waters. For multiple taxa, patch count varied parabolically with background density. Taxa-specific patch length and organism size exhibited negative size scaling relationships. Organism size explained 21 to 30% of the variance in patch length. The dominant length scale was phylogenetically random and <100 meters for 64% of taxa. The predominance of micro- and fine-scale patches among a diverse suite of plankton suggests social and coactive processes may contribute to patch formation.
Collapse
Affiliation(s)
- Kelly L. Robinson
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Su Sponaugle
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Jessica Y. Luo
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton University Forrestal Campus, Princeton, NJ, USA
| | - Miram R. Gleiber
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Robert K. Cowen
- Hatfield Marine Science Center, Oregon State University, Newport, OR, USA
| |
Collapse
|
14
|
Xiao Y, Cheng Y, He P, Wu X, Li Z. New insights into external layers of cyanobacteria and microalgae based on multiscale analysis of AFM force-distance curves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145680. [PMID: 33607435 DOI: 10.1016/j.scitotenv.2021.145680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
External layers, the outermost structures around cells, perform essential eco-physiological functions to support cyanobacteria and microalgae in aquatic environments. These layers have been recognized as adaptations to turbulence, a ubiquitous and inherent physical process occurring in the environments of most cyanobacteria and microalgae. However, the underlying biophysical mechanism of these layers is still poorly understood. Force measurements were performed directly on the external layers of eight living cyanobacterial and green algal strains in situ using atomic force microscopy (AFM). We developed a wavelet analysis method based on a multiscale decomposition of derivative force-distance curves to quantify the elastic responses of various external layers upon mechanical deformation. Such analysis has the advantages of detecting singularities and distinguishing the biomechanical contributions of each external layer. The elastic modulus of the same type of external layer follows the same statistical distribution. However, the elastic response among different types of external layers is challenged by our method, indicating the heterogeneity of the mechanical properties of inner and outer layers in multilayer strains. This discrepancy was due to the thickness and texture of each external layer, especially the chemical presence of ribose, hydroxyproline and glutamic acid. This study highlights a new way to elucidate more precise information about external layers and provides a biophysical mechanistic explanation for the functioning of the various external layers to protect cyanobacterial and microalgal cells in a turbulent environment.
Collapse
Affiliation(s)
- Yan Xiao
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yuran Cheng
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Pan He
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinghua Wu
- China Three Gorges Corporation, Beijing 100038, China
| | - Zhe Li
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
15
|
Li SW, Lin PH, Ho TY, Hsieh CH, Sun CL. Change in rheotactic behavior patterns of dinoflagellates in response to different microfluidic environments. Sci Rep 2021; 11:11105. [PMID: 34045568 PMCID: PMC8160355 DOI: 10.1038/s41598-021-90622-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/12/2021] [Indexed: 11/15/2022] Open
Abstract
Plankton live in dynamic fluid environments. Their ability to change in response to different hydrodynamic cues is critical to their energy allocation and resource uptake. This study used a microfluidic device to evaluate the rheotactic behaviors of a model dinoflagellate species, Karlodinium veneficum, in different flow conditions. Although dinoflagellates experienced forced alignment in strong shear (i.e. “trapping”), fluid straining did not play a decisive role in their rheotactic movements. Moderate hydrodynamic magnitude (20 < |uf| < 40 µm s−1) was found to induce an orientation heading towards an oncoming current (positive rheotaxis), as dinoflagellates switched to cross-flow swimming when flow speed exceeded 50 µm s−1. Near the sidewalls of the main channel, the steric mechanism enabled dinoflagellates to adapt upstream orientation through vertical migration. Under oscillatory flow, however, positive rheotaxis dominated with occasional diversion. The varying flow facilitated upstream exploration with directional controlling, through which dinoflagellates exhibited avoidance of both large-amplitude perturbance and very stagnant zones. In the mixed layer where water is not steady, these rheotactic responses could lead to spatial heterogeneity of dinoflagellates. The outcome of this study helps clarify the interaction between swimming behaviors of dinoflagellates and the hydrodynamic environment they reside in.
Collapse
Affiliation(s)
- Si-Wei Li
- Department of Mechanical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Po-Hsu Lin
- Department of Mechanical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Tung-Yuan Ho
- Institute of Oceanography, National Taiwan University, Taipei, 10617, Taiwan.,Research Center for Environmental Changes, Academia Sinica, Taipei, 11529, Taiwan
| | - Chih-Hao Hsieh
- Institute of Oceanography, National Taiwan University, Taipei, 10617, Taiwan.,Research Center for Environmental Changes, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Ecology and Evolutionary Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan.,Mathematics Division, National Center for Theoretical Sciences, Taipei, 10617, Taiwan
| | - Chen-Li Sun
- Department of Mechanical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
16
|
Bandara K, Varpe Ø, Wijewardene L, Tverberg V, Eiane K. Two hundred years of zooplankton vertical migration research. Biol Rev Camb Philos Soc 2021; 96:1547-1589. [PMID: 33942990 DOI: 10.1111/brv.12715] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/01/2023]
Abstract
Vertical migration is a geographically and taxonomically widespread behaviour among zooplankton that spans across diel and seasonal timescales. The shorter-term diel vertical migration (DVM) has a periodicity of up to 1 day and was first described by the French naturalist Georges Cuvier in 1817. In 1888, the German marine biologist Carl Chun described the longer-term seasonal vertical migration (SVM), which has a periodicity of ca. 1 year. The proximate control and adaptive significance of DVM have been extensively studied and are well understood. DVM is generally a behaviour controlled by ambient irradiance, which allows herbivorous zooplankton to feed in food-rich shallower waters during the night when light-dependent (visual) predation risk is minimal and take refuge in deeper, darker waters during daytime. However, DVMs of herbivorous zooplankton are followed by their predators, producing complex predator-prey patterns that may be traced across multiple trophic levels. In contrast to DVM, SVM research is relatively young and its causes and consequences are less well understood. During periods of seasonal environmental deterioration, SVM allows zooplankton to evacuate shallower waters seasonally and take refuge in deeper waters often in a state of dormancy. Both DVM and SVM play a significant role in the vertical transport of organic carbon to deeper waters (biological carbon sequestration), and hence in the buffering of global climate change. Although many animal migrations are expected to change under future climate scenarios, little is known about the potential implications of global climate change on zooplankton vertical migrations and its impact on the biological carbon sequestration process. Further, the combined influence of DVM and SVM in determining zooplankton fitness and maintenance of their horizontal (geographic) distributions is not well understood. The contrasting spatial (deep versus shallow) and temporal (diel versus seasonal) scales over which these two migrations occur lead to challenges in studying them at higher spatial, temporal and biological resolution and coverage. Extending the largely population-based vertical migration knowledge base to individual-based studies will be an important way forward. While tracking individual zooplankton in their natural habitats remains a major challenge, conducting trophic-scale, high-resolution, year-round studies that utilise emerging field sampling and observation techniques, molecular genetic tools and computational hardware and software will be the best solution to improve our understanding of zooplankton vertical migrations.
Collapse
Affiliation(s)
- Kanchana Bandara
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway.,Department of Arctic and Marine Biology, Faculty of Fisheries, Biosciences and Economics, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Øystein Varpe
- Department of Biological Sciences, University of Bergen, 5020, Bergen, Norway.,Norwegian Institute for Nature Research, 5006, Bergen, Norway
| | - Lishani Wijewardene
- Department of Hydrology and Water Resources Management, Institute of Natural Resource Conservation, Kiel University, 24118, Kiel, Germany
| | - Vigdis Tverberg
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Ketil Eiane
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| |
Collapse
|
17
|
Manning T, Thilagaraj AV, Mouradov D, Piola R, Grandison C, Gordon M, Shimeta J, Mouradov A. Diversity of dinoflagellate assemblages in coastal temperate and offshore tropical waters of Australia. BMC Ecol Evol 2021; 21:27. [PMID: 33588746 PMCID: PMC7885227 DOI: 10.1186/s12862-021-01745-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dinoflagellates are a ubiquitous and ecologically important component of marine phytoplankton communities, with particularly notable species including those associated with harmful algal blooms (HABs) and those that bioluminesce. High-throughput sequencing offers a novel approach compared to traditional microscopy for determining species assemblages and distributions of dinoflagellates, which are poorly known especially in Australian waters. RESULTS We assessed the composition of dinoflagellate assemblages in two Australian locations: coastal temperate Port Phillip Bay and offshore tropical waters of Davies Reef (Great Barrier Reef). These locations differ in certain environmental parameters reflecting latitude as well as possible anthropogenic influences. Molecular taxonomic assessment revealed more species than traditional microscopy, and it showed statistically significant differences in dinoflagellate assemblages between locations. Bioluminescent species and known associates of HABs were present at both sites. Dinoflagellates in both areas were mainly represented by the order Gymnodiniales (66%-82% of total sequence reads). In the warm waters of Davies Reef, Gymnodiniales were equally represented by the two superclades, Gymnodiniales sensu stricto (33%) and Gyrodinium (34%). In contrast, in cooler waters of Port Phillip Bay, Gymnodiniales was mainly represented by Gyrodinium (82%). In both locations, bioluminescent dinoflagellates represented up to 0.24% of the total sequence reads, with Protoperidinium the most abundant genus. HAB-related species, mainly represented by Gyrodinium, were more abundant in Port Phillip Bay (up to 47%) than at Davies Reef (28%), potentially reflecting anthropogenic influence from highly populated and industrial areas surrounding the bay. The entire assemblage of dinoflagellates, as well as the subsets of HAB and bioluminescent species, were strongly correlated with water quality parameters (R2 = 0.56-0.92). Significant predictors differed between the subsets: HAB assemblages were explained by salinity, temperature, dissolved oxygen, and total dissolved solids; whereas, bioluminescent assemblages were explained only by salinity and dissolved oxygen, and had greater variability. CONCLUSION High-throughput sequencing and genotyping revealed greater diversity of dinoflagellate assemblages than previously known in both subtropical and temperate Australian waters. Significant correlations of assemblage structure with environmental variables suggest the potential for explaining the distribution and composition of both HAB species and bioluminescent species.
Collapse
Affiliation(s)
- Tahnee Manning
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | | | - Dmitri Mouradov
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Richard Piola
- Maritime Division, Defence Science & Technology Group, Fishermans Bend, Canberra, VIC, Australia
| | - Clare Grandison
- Maritime Division, Defence Science & Technology Group, Fishermans Bend, Canberra, VIC, Australia
| | - Matthew Gordon
- Maritime Division, Defence Science & Technology Group, Fishermans Bend, Canberra, VIC, Australia
| | - Jeff Shimeta
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Aidyn Mouradov
- School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Ramond P, Siano R, Schmitt S, de Vargas C, Marié L, Memery L, Sourisseau M. Phytoplankton taxonomic and functional diversity patterns across a coastal tidal front. Sci Rep 2021; 11:2682. [PMID: 33514820 PMCID: PMC7846791 DOI: 10.1038/s41598-021-82071-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/26/2020] [Indexed: 01/30/2023] Open
Abstract
Oceanic physics at fine scale; e.g. eddies, fronts, filaments; are notoriously difficult to sample. However, an increasing number of theoretical approaches hypothesize that these processes affect phytoplankton diversity which have cascading effects on regional ecosystems. In 2015, we targeted the Iroise Sea (France) and evidenced the setting up of the Ushant tidal front from the beginning of spring to late summer. Seawater samples were taken during three sampling cruises and DNA-barcoding allowed us to investigate patterns of eukaryotic phytoplankton diversity across this front. First focusing on patterns of taxonomic richness, we evidenced that the front harbored a hotspot of eukaryotic phytoplankton diversity sustained throughout summer. We then detail the ecological processes leading to the formation of this hotspot by studying shifts in community composition across the Iroise Sea. Physical mixing mingled the communities surrounding the front, allowing the formation of a local ecotone, but it was cycles of disturbances and nutrient inputs over the front that allowed a decrease in competitive exclusion, which maintained a higher diversity of rare phytoplankton taxa. These processes did not select a specific ecological strategy as inferred by a trait approach coupled to our taxonomic approach. Instead the front favored higher richness within widespread strategies, resulting in functional redundancy. We detail how fine-scale ocean physics affect phytoplankton diversity and suppose that this interplay is a major control on regional ecosystems.
Collapse
Affiliation(s)
- Pierre Ramond
- grid.464101.60000 0001 2203 0006Sorbonne Université, CNRS-UMR7144-Station Biologique de Roscoff, Place Georges Teissier, 29688 Roscoff, France ,Ifremer-Centre de Brest, DYNECO/Pelagos, Technopôle Brest Iroise, 29280 Plouzané, France ,grid.10914.3d0000 0001 2227 4609Department of Marine Microbiology and Biogeochemistry, NIOZ-Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, The Netherlands
| | - Raffaele Siano
- Ifremer-Centre de Brest, DYNECO/Pelagos, Technopôle Brest Iroise, 29280 Plouzané, France
| | - Sophie Schmitt
- Ifremer-Centre de Brest, DYNECO/Pelagos, Technopôle Brest Iroise, 29280 Plouzané, France
| | - Colomban de Vargas
- grid.464101.60000 0001 2203 0006Sorbonne Université, CNRS-UMR7144-Station Biologique de Roscoff, Place Georges Teissier, 29688 Roscoff, France ,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Louis Marié
- grid.503286.aLaboratoire d’Océanographie Physique et Spatiale (LOPS), UMR 6523 Univ. Brest, CNRS, IFREMER, IRD, Plouzané, France
| | - Laurent Memery
- grid.463763.30000 0004 0638 0577Laboratoire des Sciences de l’Environnement MARin (LEMAR), UMR 6539 Univ. Brest, CNRS, IFREMER, IRD, Plouzané, France
| | - Marc Sourisseau
- Ifremer-Centre de Brest, DYNECO/Pelagos, Technopôle Brest Iroise, 29280 Plouzané, France
| |
Collapse
|
19
|
Zhou J, Han X, Qin B, Zhu G. Responses of alkaline phosphatase activity to wind-driven waves in a large, shallow lake: Implications for phosphorus availability and algal blooms. J Environ Sci (China) 2021; 99:143-150. [PMID: 33183691 DOI: 10.1016/j.jes.2020.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Phosphorus is a vital nutrient for algal growth, thus, a better understanding of phosphorus availability is essential to mitigate harmful algal blooms in lakes. Wind waves are a ubiquitous characteristic of lake ecosystems. However, its effects on the cycling of organic phosphorus and its usage by phytoplankton remain poorly elucidated in shallow eutrophic lakes. A mesocosm experiment was carried out to investigate the responses of alkaline phosphatase activity fractions to wind waves in large, shallow, eutrophic Lake Taihu. Results showed that wind-driven waves induced the release of alkaline phosphatase and phosphorus from the sediment, and dramatically enhanced phytoplanktonic alkaline phosphatase activity. However, compared to the calm conditions, bacterial and dissolved alkaline phosphatase activity decreased in wind-wave conditions. Consistently, the gene copies of Microcystis phoX increased but bacterial phoX decreased under wind-wave conditions. The ecological effects of these waves on phosphorus and phytoplankton likely accelerated the biogeochemical cycling of phosphorus and promoted phytoplankton production in Lake Taihu. This study provides an improved current understanding of phosphorus availability and the phosphorus strategies of plankton in shallow, eutrophic lakes.
Collapse
Affiliation(s)
- Jian Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoxia Han
- Laboratory and Analytical Testing Center, Jiangsu Academy of Environmental Sciences Environmental Technology Co., Ltd, Nanjing 210036, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.; School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China..
| | - Guangwei Zhu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
20
|
Choo LQ, Bal TMP, Goetze E, Peijnenburg KTCA. Oceanic dispersal barriers in a holoplanktonic gastropod. J Evol Biol 2021; 34:224-240. [PMID: 33150701 PMCID: PMC7894488 DOI: 10.1111/jeb.13735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Pteropods, a group of holoplanktonic gastropods, are regarded as bioindicators of the effects of ocean acidification on open ocean ecosystems, because their thin aragonitic shells are susceptible to dissolution. While there have been recent efforts to address their capacity for physiological acclimation, it is also important to gain predictive understanding of their ability to adapt to future ocean conditions. However, little is known about the levels of genetic variation and large-scale population structuring of pteropods, key characteristics enabling local adaptation. We examined the spatial distribution of genetic diversity in the mitochondrial cytochrome c oxidase I (COI) and nuclear 28S gene fragments, as well as shell shape variation, across a latitudinal transect in the Atlantic Ocean (35°N-36°S) for the pteropod Limacina bulimoides. We observed high levels of genetic variability (COI π = 0.034, 28S π = 0.0021) and strong spatial structuring (COI ΦST = 0.230, 28S ΦST = 0.255) across this transect. Based on the congruence of mitochondrial and nuclear differentiation, as well as differences in shell shape, we identified a primary dispersal barrier in the southern Atlantic subtropical gyre (15-18°S). This barrier is maintained despite the presence of expatriates, a gyral current system, and in the absence of any distinct oceanographic gradients in this region, suggesting that reproductive isolation between these populations must be strong. A secondary dispersal barrier supported only by 28S pairwise ΦST comparisons was identified in the equatorial upwelling region (between 15°N and 4°S), which is concordant with barriers observed in other zooplankton species. Both oceanic dispersal barriers were congruent with regions of low abundance reported for a similar basin-scale transect that was sampled 2 years later. Our finding supports the hypothesis that low abundance indicates areas of suboptimal habitat that result in barriers to gene flow in widely distributed zooplankton species. Such species may in fact consist of several populations or (sub)species that are adapted to local environmental conditions, limiting their potential for adaptive responses to ocean changes. Future analyses of genome-wide diversity in pteropods could provide further insight into the strength, formation and maintenance of oceanic dispersal barriers.
Collapse
Affiliation(s)
- Le Qin Choo
- Plankton Diversity and EvolutionNaturalis Biodiversity CenterLeidenThe Netherlands
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Thijs M. P. Bal
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Erica Goetze
- Department of OceanographyUniversity of Hawaiʻi at MānoaHonoluluUSA
| | - Katja T. C. A. Peijnenburg
- Plankton Diversity and EvolutionNaturalis Biodiversity CenterLeidenThe Netherlands
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
21
|
Chen H, Zhu Y, Zhang Y, Chen X, Wang R, Zhu W. Cyanobacterial bloom expansion caused by typhoon disturbance in Lake Taihu China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42294-42303. [PMID: 32424759 DOI: 10.1007/s11356-020-09292-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
It remains unclear why the area of a cyanobacterial bloom increases in a shallow lake after a typhoon passes. In this study, the mechanisms of cyanobacterial bloom expansion were investigated by studying meteorological factors, water quality, algal biomass, and bloom area in Lake Taihu before and after typhoons (2007-2016). Our results showed that typhoon-induced sediment resuspension caused a short-term increase in nutrients, but nutrients returned to pre-typhoon levels after the typhoon passages. The short-term nutrient release during a typhoon did not result in an obvious increase in Microcystis cell density in two bays of Lake Taihu (Gonghu and Meiliang). Under strong winds, Microcystis aggregates were uniformly distributed in the water column downwind and then dispersed into different directions by wind-driven currents. In particular, Microcystis in the surface water were transported to the center of Lake Taihu. After a typhoon, dispersed Microcystis refloated and formed blooms. Thus, the bloom area was enlarged compared with before a typhoon. Several days after a typhoon, the bloom area gradually reduced as a result of a steady breeze on the horizontal accumulation of Microcystis.
Collapse
Affiliation(s)
- Huaimin Chen
- College of Environment, Hohai University, No. 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Yuyang Zhu
- School of Civil Engineering, Advanced Engineering Building, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Yong Zhang
- Jiangsu Environmental Monitoring Center, No. 100 Zhonghe Road, Nanjing, 210019, People's Republic of China
| | - Xuqing Chen
- Wuxi Blue Algae Treatment Office, No. 288 Yunhe East Road, Wuxi, 214071, People's Republic of China
| | - Ruochen Wang
- College of Environment, Hohai University, No. 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Wei Zhu
- College of Environment, Hohai University, No. 1 Xikang Road, Nanjing, 210098, People's Republic of China.
| |
Collapse
|
22
|
Lin Z, Chen B, Zhao L. Fluorescence-based bioassays with dose-response curve and relative potency in measuring algicidal virulence of Bacillus sp. B1 exudates against Heterosigma akashiwo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:137691. [PMID: 32247969 DOI: 10.1016/j.scitotenv.2020.137691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
This study demonstrated a Bacillus strain, B1, which was isolated from Pearl river estuary, China, and extracted extracellular algicidal compounds (EACs), exhibited algicidal effects against H. akashiwo upon fertilization experiments (>90% growth inhibition when exposed to 10% volume concentration of EACs within 96 h). Here we evaluated the feasibility of fluorescence-based bioassays (auto or stained fluorescence detected from on PAM fluorometry and flow cytometry) in quantifying algicidal potency of EACs released from Bacillus sp. B1 on H. akashiwo. Esterase activity and maximum photosystem II quantum yield (Fv/Fm) inhibition were used as sensitive endpoints in the bioassays. Logarithmic dose-response curve (DRC) based on three-parameters log-logistic model was applied to derived effective EACs concentrations (ECy, y being typically 10%, 50% or 90% of maximal effect) and relative potency (RP) was used to compare esterase activity and Fv/Fm inhibition sensitivities in dose-dependent manner. Esterase activity inhibition was more sensitive when exposed to low-dose EACs (RP10, fv/fm = 0.57 ± 0.01 < 1), conversely, Fv/Fm inhibition was accepted as a sensitive parameter when H. akashiwo exposed to higher-EACs doses. The fluorescence-based bioassays with dose-response curve and relative potency will help to assess bacterial virulence against H. akashiwo and its physiological mechanistic studies, and may be applicable for further insights into the role and influence of bacteria producing bioactive compounds in harmful algae blooms and shaping marine ecosystems.
Collapse
Affiliation(s)
- Zehong Lin
- School of Environment, Jinan University, Panyu Campus, Guangzhou, Guangdong 511443, China
| | - Binbin Chen
- School of Environment, Jinan University, Panyu Campus, Guangzhou, Guangdong 511443, China
| | - Ling Zhao
- School of Environment, Jinan University, Panyu Campus, Guangzhou, Guangdong 511443, China.
| |
Collapse
|
23
|
Torres G, Giménez L. Temperature modulates compensatory responses to food limitation at metamorphosis in a marine invertebrate. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gabriela Torres
- Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchMarine Station of Helgoland Helgoland Germany
| | - Luis Giménez
- Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchMarine Station of Helgoland Helgoland Germany
- School of Ocean Sciences Bangor University Menai Bridge UK
| |
Collapse
|
24
|
Woodward JR, Pitchford JW, Bees MA. Physical flow effects can dictate plankton population dynamics. J R Soc Interface 2019; 16:20190247. [PMID: 31387480 PMCID: PMC6731511 DOI: 10.1098/rsif.2019.0247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Oceanic flows do not necessarily mix planktonic species. Differences in individual organisms’ physical and hydrodynamic properties can cause changes in drift normal to the mean flow, leading to segregation between species. This physically driven heterogeneity may have important consequences at the scale of population dynamics. Here, we describe how one form of physical forcing, circulating flows with different inertia effects between phytoplankton and zooplankton, can dramatically alter excitable plankton bloom dynamics. This may impact our understanding of the initiation and development of harmful algal blooms (HABs), which have significant negative ecological and socio-economic consequences. We study this system in detail, providing spatio-temporal dynamics for particular scenarios and summarizing large-scale behaviour via spatially averaged bifurcation diagrams. The key message is that, across a large range of parameter values, fluid flow can induce plankton blooms and mean-field population dynamics that are distinct from those predicted for well-mixed systems. The implications for oceanic population dynamic studies are manifest: we argue that the formation of HABs will depend strongly on the physical and biological state of the ecosystem, and that local increases in zooplankton heterogeneity are likely to precede phytoplankton blooms.
Collapse
Affiliation(s)
- J R Woodward
- Department of Mathematics, University of York, York, UK
| | | | - M A Bees
- Department of Mathematics, University of York, York, UK
| |
Collapse
|
25
|
Spear A, Duffy-Anderson J, Kimmel D, Napp J, Randall J, Stabeno P. Physical and biological drivers of zooplankton communities in the Chukchi Sea. Polar Biol 2019. [DOI: 10.1007/s00300-019-02498-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
An Improved Logistic Model Illustrating Microcystis aeruginosa Growth Under Different Turbulent Mixing Conditions. WATER 2019. [DOI: 10.3390/w11040669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To overcome the limitations of the normal logistic equation, we aimed to improve the logistic model under hydrodynamic conditions for the examination of the responses of cyanobacterium, coupled turbulence mixing, and growth of cyanobacterium in population dynamics models. Selecting Microcystis aeruginosa and experimenting with the ideal conditions in a laboratory beaker, the chlorophyll-a concentration reached the corresponding maximum under each turbulent condition compared with the control. According to the experiment results, the theory of mass transfer, turbulence mixing, and the logistic equation are organically combined. The improved logistic growth model of Microcystis aeruginosa and competition growth model in the symbiont Scenedesmus quadricauda under turbulent conditions were established. Using the MATLAB multi-parameter surface fitting device, both models produced good fitting effects, with R > 0.95, proving that the results fit the models, and demonstrating the relationship of the unity of nutrient transfer and algae growth affected by turbulence mixing. With continuous increases in turbulent mixing, the fitted curve became smoother and steadier. Algae stimulated by turbulence accelerate reproduction and fission to achieve population dominance. The improved logistic model quantitatively explains the Microcystis aeruginosa response to turbulence and provides a basis to represent ecological and biogeochemical processes in enclosed eutrophic water bodies.
Collapse
|
27
|
Abstract
Competition between biological species in marine environments is affected by the motion of the surrounding fluid. An effective 2D compressibility can arise, for example, from the convergence and divergence of water masses at the depth at which passively traveling photosynthetic organisms are restricted to live. In this report, we seek to quantitatively study genetics under flow. To this end, we couple an off-lattice agent-based simulation of two populations in 1D to a weakly compressible velocity field-first a sine wave and then a shell model of turbulence. We find for both cases that even in a regime where the overall population structure is approximately unaltered, the flow can significantly diminish the effect of a selective advantage on fixation probabilities. We understand this effect in terms of the enhanced survival of organisms born at sources in the flow and the influence of Fisher genetic waves.
Collapse
|
28
|
Emergence of phytoplankton patchiness at small scales in mild turbulence. Proc Natl Acad Sci U S A 2018; 115:12112-12117. [PMID: 30409800 DOI: 10.1073/pnas.1808711115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytoplankton often encounter turbulence in their habitat. As most toxic phytoplankton species are motile, resolving the interplay of motility and turbulence has fundamental repercussions on our understanding of their own ecology and of the entire ecosystems they inhabit. The spatial distribution of motile phytoplankton cells exhibits patchiness at distances of decimeter to millimeter scales for numerous species with different motility strategies. The explanation of this general phenomenon remains challenging. Furthermore, hydrodynamic cell-cell interactions, which grow more relevant as the density in the patches increases, have been so far ignored. Here, we combine particle simulations and continuum theory to study the emergence of patchiness in motile microorganisms in three dimensions. By addressing the combined effects of motility, cell-cell interaction, and turbulent flow conditions, we uncover a general mechanism: The coupling of cell-cell interactions to the turbulent dynamics favors the formation of dense patches. Identification of the important length and time scales, independent from the motility mode, allows us to elucidate a general physical mechanism underpinning the emergence of patchiness. Our results shed light on the dynamical characteristics necessary for the formation of patchiness and complement current efforts to unravel planktonic ecological interactions.
Collapse
|
29
|
Ummenhofer CC, Meehl GA. Extreme weather and climate events with ecological relevance: a review. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0135. [PMID: 28483866 DOI: 10.1098/rstb.2016.0135] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 11/12/2022] Open
Abstract
Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.
Collapse
Affiliation(s)
- Caroline C Ummenhofer
- Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Gerald A Meehl
- NCAR Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80307-3000, USA
| |
Collapse
|
30
|
Troussellier M, Escalas A, Bouvier T, Mouillot D. Sustaining Rare Marine Microorganisms: Macroorganisms As Repositories and Dispersal Agents of Microbial Diversity. Front Microbiol 2017; 8:947. [PMID: 28611749 PMCID: PMC5447324 DOI: 10.3389/fmicb.2017.00947] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/11/2017] [Indexed: 12/14/2022] Open
Abstract
Recent analyses revealed that most of the biodiversity observed in marine microbial communities is represented by organisms with low abundance but, nonetheless essential for ecosystem dynamics and processes across both temporal and spatial scales. Surprisingly, few studies have considered the effect of macroorganism–microbe interactions on the ecology and distribution dynamics of rare microbial taxa. In this review, we synthesize several lines of evidence that these relationships cannot be neglected any longer. First, we provide empirical support that the microbiota of macroorganisms represents a significant part of marine bacterial biodiversity and that host-microbe interactions benefit to certain microbial populations which are part of the rare biosphere (i.e., opportunistic copiotrophic organisms). Second, we reveal the major role that macroorganisms may have on the dispersal and the geographic distribution of microbes. Third, we introduce an innovative and integrated view of the interactions between microbes and macroorganisms, namely sustaining the rares, which suggests that macroorganisms favor the maintenance of marine microbial diversity and are involved in the regulation of its richness and dynamics. Finally, we show how this hypothesis complements existing theories in microbial ecology and offers new perspectives about the importance of macroorganisms for the microbial biosphere, particularly the rare members.
Collapse
Affiliation(s)
- Marc Troussellier
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France
| | - Arthur Escalas
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, NormanOK, United States
| | - Thierry Bouvier
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France
| | - David Mouillot
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, TownsvilleQLD, Australia
| |
Collapse
|
31
|
Dell'Aquila G, Ferrante MI, Gherardi M, Cosentino Lagomarsino M, Ribera d'Alcalà M, Iudicone D, Amato A. Nutrient consumption and chain tuning in diatoms exposed to storm-like turbulence. Sci Rep 2017; 7:1828. [PMID: 28500335 PMCID: PMC5431809 DOI: 10.1038/s41598-017-02084-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 04/07/2017] [Indexed: 11/09/2022] Open
Abstract
Current information on the response of phytoplankton to turbulence is linked to cell size and nutrient availability. Diatoms are considered to be favored by mixing as dissolved nutrients are more easily accessible for non-motile cells. We investigated how diatoms exploit microscale turbulence under nutrient repletion and depletion conditions. Here, we show that the chain-forming diatom Chaetoceros decipiens, continues to take up phosphorus and carbon even when silicon is depleted during turbulence. Our findings indicate that upon silica depletion, during turbulence, chain spectra of C. decipiens remained unchanged. We show here that longer chains are maintained during turbulence upon silica depletion whereas under still conditions, shorter chains are enriched. We interpret this as a sign of good physiological state leading to a delay of culture senescence. Our results show that C. decipiens senses and responds to turbulence both in nutrient repletion and depletion. This response is noteworthy due to the small size of the species. The coupling between turbulence and biological response that we depict here may have significant ecological implications. Considering the predicted increase of storms in Northern latitudes this response might modify community structure and succession. Our results partly corroborate Margalef's mandala and provide additional explanations for that conceptualization.
Collapse
Affiliation(s)
- Gianluca Dell'Aquila
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, 80121, Naples, Italy.,Zellbiologie Philipps-Universität Marburg, Karl-von-Frisch Str., 8 35043, Marburg, Germany
| | - Maria I Ferrante
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, 80121, Naples, Italy
| | - Marco Gherardi
- Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133, Milan, Italy.,UMR 7238 CNRS Computational and Quantitative Biology, University Pierre et Marie Curie, 15, rue de l'Ecole de Médecine, 75006, Paris, France
| | - Marco Cosentino Lagomarsino
- UMR 7238 CNRS Computational and Quantitative Biology, University Pierre et Marie Curie, 15, rue de l'Ecole de Médecine, 75006, Paris, France
| | - Maurizio Ribera d'Alcalà
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, 80121, Naples, Italy
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, 80121, Naples, Italy.
| | - Alberto Amato
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, 80121, Naples, Italy. .,Laboratoire de Physiologie Cellulaire et Végétale, UMR5168 CNRS-CEA-INRA-Université de Grenoble Alpes, Institut de Recherche en Science et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cédex 9, France.
| |
Collapse
|
32
|
Xiao Y, Li Z, Li C, Zhang Z, Guo J. Effect of Small-Scale Turbulence on the Physiology and Morphology of Two Bloom-Forming Cyanobacteria. PLoS One 2016; 11:e0168925. [PMID: 28036368 PMCID: PMC5201306 DOI: 10.1371/journal.pone.0168925] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/08/2016] [Indexed: 11/22/2022] Open
Abstract
The main goal of the present work is to test the hypothesis that small-scale turbulence affected physiological activities and the morphology of cyanobacteria in high turbulence environments. Using quantified turbulence in a stirring device, we conducted one set of experiments on cultures of two strains of cyanobacteria with different phenotypes; i.e., unicellular Microcystis flos-aquae and colonial Anabaena flos-aquae. The effect of small-scale turbulence examined varied from 0 to 8.01×10−2 m2s-3, covering the range of turbulence intensities experienced by cyanobacteria in the field. The results of photosynthesis activity and the cellular chlorophyll a in both strains did not change significantly among the turbulence levels, indicating that the potential indirect effects of a light regime under the gradient of turbulent mixing could be ignored. However, the experiments demonstrated that small-scale turbulence significantly modulated algal nutrient uptake and growth in comparison to the stagnant control. Cellular N and C of the two stains showed approximately the same responses, resulting in a similar pattern of C/N ratios. Moreover, the change in the phosphate uptake rate was similar to that of growth in two strains, which implied that growth characteristic responses to turbulence may be dependent on the P strategy, which was correlated with accumulation of polyphosphate. Additionally, our results also showed the filament length of A. flos-aquae decreased in response to high turbulence, which could favor enhancement of the nutrient uptake. These findings suggested that both M. flos-aquae and A. flos-aquae adjust their growth rates in response to turbulence levels in the ways of asynchronous cellular stoichiometry of C, N, and P, especially the phosphorus strategy, to improve the nutrient application efficiency. The fact that adaptation strategies of cyanobacteria diversely to turbulence depending on their physiological conditions presents a good example to understand the direct cause—effect relationship between hydrodynamic forces and algae.
Collapse
Affiliation(s)
- Yan Xiao
- CAS Key Laboratory on Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Zhe Li
- CAS Key Laboratory on Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- * E-mail:
| | - Chao Li
- State Key Laboratory of Bioreactor Engineering, College of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zhen Zhang
- CAS Key Laboratory on Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Jinsong Guo
- CAS Key Laboratory on Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
33
|
Defriez EJ, Sheppard LW, Reid PC, Reuman DC. Climate change-related regime shifts have altered spatial synchrony of plankton dynamics in the North Sea. GLOBAL CHANGE BIOLOGY 2016; 22:2069-2080. [PMID: 26810148 DOI: 10.1111/gcb.13229] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 05/29/2023]
Abstract
During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959-1980 and 1989-2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized.
Collapse
Affiliation(s)
- Emma J Defriez
- Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Lawrence W Sheppard
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence, KS, 66047, USA
| | - Philip C Reid
- The Laboratory, Sir Alister Hardy Foundation for Ocean Science, Citadel Hill, Plymouth, PL1 2PB, UK
- Marine Institute, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
- The Laboratory, Marine Biological Association of the UK, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Daniel C Reuman
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence, KS, 66047, USA
- Laboratory of Populations, Rockefeller University, 1230 York Ave, New York, NY, 10065, USA
| |
Collapse
|
34
|
Zhou J, Qin B, Han X, Zhu L. Turbulence increases the risk of microcystin exposure in a eutrophic lake (Lake Taihu) during cyanobacterial bloom periods. HARMFUL ALGAE 2016; 55:213-220. [PMID: 28073534 DOI: 10.1016/j.hal.2016.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/12/2016] [Accepted: 03/15/2016] [Indexed: 06/06/2023]
Abstract
Toxic cyanobacterial harmful algal blooms (CyanoHABs) have posed serious water use and public health threats because of the toxins they produce, such as the microcystins (MCs). The direct physical effects of turbulence on MCs, however, have not yet been addressed and is still poorly elucidated. In this study, a 6-day mesocosm experiment was carried out to evaluate the effects of wind wave turbulence on the competition of toxic Microcystis and MCs production in highly eutrophicated and turbulent Lake Taihu, China. Under turbulent conditions, MCs concentrations (both total and extracellular) significantly increased and reached a maximum level 3.4 times higher than in calm water. Specifically, short term (∼3 days) turbulence favored the growth of toxic Microcystis species, allowing for the accumulation of biomass which also triggered the increase in MCs toxicity. Moreover, intense turbulence raises the shear stress and could cause cell mechanical damage or cellular lysis resulting in cell breakage and leakage of intracellular materials including the toxins. The results indicate that short term (∼3 days) turbulence is beneficial for MCs production and release, which increase the potential exposure of aquatic organisms and humans. This study suggests that the importance of water turbulence in the competition of toxic Microcystis and MCs production, and provides new perspectives for control of toxin in CyanoHABs-infested lakes.
Collapse
Affiliation(s)
- Jian Zhou
- Taihu Lake Laboratory Ecosystem Station, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Boqiang Qin
- Taihu Lake Laboratory Ecosystem Station, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China.
| | - Xiaoxia Han
- Taihu Lake Laboratory Ecosystem Station, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Lin Zhu
- Taihu Lake Laboratory Ecosystem Station, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| |
Collapse
|
35
|
Dunn DC, Maxwell SM, Boustany AM, Halpin PN. Dynamic ocean management increases the efficiency and efficacy of fisheries management. Proc Natl Acad Sci U S A 2016; 113:668-73. [PMID: 26729885 PMCID: PMC4725467 DOI: 10.1073/pnas.1513626113] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In response to the inherent dynamic nature of the oceans and continuing difficulty in managing ecosystem impacts of fisheries, interest in the concept of dynamic ocean management, or real-time management of ocean resources, has accelerated in the last several years. However, scientists have yet to quantitatively assess the efficiency of dynamic management over static management. Of particular interest is how scale influences effectiveness, both in terms of how it reflects underlying ecological processes and how this relates to potential efficiency gains. Here, we address the empirical evidence gap and further the ecological theory underpinning dynamic management. We illustrate, through the simulation of closures across a range of spatiotemporal scales, that dynamic ocean management can address previously intractable problems at scales associated with coactive and social patterns (e.g., competition, predation, niche partitioning, parasitism, and social aggregations). Furthermore, it can significantly improve the efficiency of management: as the resolution of the closures used increases (i.e., as the closures become more targeted), the percentage of target catch forgone or displaced decreases, the reduction ratio (bycatch/catch) increases, and the total time-area required to achieve the desired bycatch reduction decreases. In the scenario examined, coarser scale management measures (annual time-area closures and monthly full-fishery closures) would displace up to four to five times the target catch and require 100-200 times more square kilometer-days of closure than dynamic measures (grid-based closures and move-on rules). To achieve similar reductions in juvenile bycatch, the fishery would forgo or displace between USD 15-52 million in landings using a static approach over a dynamic management approach.
Collapse
Affiliation(s)
- Daniel C Dunn
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Durham, NC 27708;
| | - Sara M Maxwell
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529
| | - Andre M Boustany
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Patrick N Halpin
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Durham, NC 27708
| |
Collapse
|
36
|
Adhikari D, Gemmell BJ, Hallberg MP, Longmire EK, Buskey EJ. Simultaneous measurement of 3D zooplankton trajectories and surrounding fluid velocity field in complex flows. J Exp Biol 2015; 218:3534-40. [PMID: 26486364 DOI: 10.1242/jeb.121707] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/23/2015] [Indexed: 11/20/2022]
Abstract
We describe an automated, volumetric particle image velocimetry (PIV) and tracking method that measures time-resolved, 3D zooplankton trajectories and surrounding volumetric fluid velocity fields simultaneously and non-intrusively. The method is demonstrated for groups of copepods flowing past a wall-mounted cylinder. We show that copepods execute escape responses when subjected to a strain rate threshold upstream of a cylinder, but the same threshold range elicits no escape responses in the turbulent wake downstream. The method was also used to document the instantaneous slip velocity of zooplankton and the resulting differences in trajectory between zooplankton and non-inertial fluid particles in the unsteady wake flow, showing the method's capability to quantify drift for both passive and motile organisms in turbulent environments. Applications of the method extend to any group of organisms interacting with the surrounding fluid environment, where organism location, larger-scale eddies and smaller-scale fluid deformation rates can all be tracked and analyzed.
Collapse
Affiliation(s)
- Deepak Adhikari
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brad J Gemmell
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Michael P Hallberg
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ellen K Longmire
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Edward J Buskey
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
37
|
Zhou J, Qin B, Casenave C, Han X, Yang G, Wu T, Wu P, Ma J. Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:12737-12746. [PMID: 25913313 DOI: 10.1007/s11356-015-4535-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/12/2015] [Indexed: 06/04/2023]
Abstract
Wind waves are responsible for some of the spatio-temporal gradients observed in the biotic and abiotic variables in large shallow lakes. However, their effects on the phytoplankton community composition are still largely unexplored especially in freshwater systems such as lakes. In this paper, using field observations and mesocosm bioassay experiments, we investigated the impact of turbulence generated by wind waves on the phytoplankton community composition (especially on harmful cyanobacteria) in Lake Taihu, a large, shallow eutrophic lake in China. The composition of the phytoplankton community varied with the intensity of wind waves in the different areas of the lake. During summer, when wind waves were strong in the central lake, diatoms and green algae seemed to dominate while harmful cyanobacteria dominated in the weakly influenced Meiliang Bay. Turbulence bioassays also showed that diatoms and green algae were favoured by turbulent mixing. The critical time for the shift of the phytoplankton community composition was approximately 10 days under turbulent conditions. However, short-term (6 days) turbulence is rather beneficial for the dominance of cyanobacteria. This study suggests that the duration of wind events and their associated hydrodynamics are key factors to understanding the temporal and spatial changes of phytoplankton communities.
Collapse
Affiliation(s)
- Jian Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
López Abbate MC, Molinero JC, Guinder VA, Dutto MS, Barría de Cao MS, Ruiz Etcheverry LA, Pettigrosso RE, Carcedo MC, Hoffmeyer MS. Microplankton dynamics under heavy anthropogenic pressure. The case of the Bahía Blanca Estuary, southwestern Atlantic Ocean. MARINE POLLUTION BULLETIN 2015; 95:305-314. [PMID: 25837775 DOI: 10.1016/j.marpolbul.2015.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/09/2015] [Accepted: 03/15/2015] [Indexed: 06/04/2023]
Abstract
Quantifying biotic feedbacks in response to environmental signals is fundamental to assess ecosystem perturbation. We analyzed the joint effects of eutrophication, derived from sewage pollution, and climate at the base of the pelagic food web in the Bahía Blanca Estuary (SW Atlantic Ocean). A two-year survey of environmental conditions and microplankton communities was conducted in two sites affected by contrasting anthropogenic eutrophication conditions. Under severe eutrophication, we found higher phytoplankton abundance consistently dominated by smaller sized, non siliceous species, while microzooplankton abundance remained lower and nutrient stoichiometry showed conspicuous deviations from the Redfield ratio. Phytoplankton growth in such conditions appeared controlled by phosphorous. In turn, microplankton biomass and phytoplankton size ratio (<20μm:>20μm) displayed a saturation relationship with nutrients in the highly eutrophic area, although mean phytoplankton growth was similar in both eutrophic systems. The strength of links within the estuarine network, quantified through path analysis, showed enhanced relationships under larger anthropogenic eutrophication, which fostered the climate influence on microplankton communities. Our results show conspicuous effects of severe sewage pollution on the ecological stoichiometry, i.e., N and P excess with respect to Si, altering nutrient ratios for microplankton communities. This warns on wide consequences on food web dynamics and ultimately in ecosystem assets of coastal pelagic environments.
Collapse
Affiliation(s)
- M Celeste López Abbate
- Instituto Argentino de Oceanografía, IADO CONICET, Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina.
| | - Juan Carlos Molinero
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Ecology/Food Webs, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Valeria A Guinder
- Instituto Argentino de Oceanografía, IADO CONICET, Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina
| | - M Sofía Dutto
- Instituto Argentino de Oceanografía, IADO CONICET, Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina
| | - M Sonia Barría de Cao
- Instituto Argentino de Oceanografía, IADO CONICET, Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina
| | - Laura A Ruiz Etcheverry
- Departamento de Ciencias de la Atmósfera y los Océanos, FCEN UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Rosa E Pettigrosso
- Universidad Nacional del Sur, Laboratorio de Ecología Acuática, San Juan 670, 8000 Bahía Blanca, Argentina
| | - M Cecilia Carcedo
- Instituto Argentino de Oceanografía, IADO CONICET, Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina
| | - Mónica S Hoffmeyer
- Instituto Argentino de Oceanografía, IADO CONICET, Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina; Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, 11 de Abril 461, 8000 Bahía Blanca, Argentina
| |
Collapse
|
39
|
Rogato A, Amato A, Iudicone D, Chiurazzi M, Ferrante MI, d'Alcalà MR. The diatom molecular toolkit to handle nitrogen uptake. Mar Genomics 2015; 24 Pt 1:95-108. [PMID: 26055207 DOI: 10.1016/j.margen.2015.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 11/16/2022]
Abstract
Nutrient concentrations in the oceans display significant temporal and spatial variability, which strongly affects growth, distribution and survival of phytoplankton. Nitrogen (N) in particular is often considered a limiting resource for prominent marine microalgae, such as diatoms. Diatoms possess a suite of N-related transporters and enzymes and utilize a variety of inorganic (e.g., nitrate, NO3(-); ammonium, NH4(+)) and organic (e.g., urea; amino acids) N sources for growth. However, the molecular mechanisms allowing diatoms to cope efficiently with N oscillations by controlling uptake capacities and signaling pathways involved in the perception of external and internal clues remain largely unknown. Data reported in the literature suggest that the regulation and the characteristic of the genes, and their products, involved in N metabolism are often diatom-specific, which correlates with the peculiar physiology of these organisms for what N utilization concerns. Our study reveals that diatoms host a larger suite of N transporters than one would expected for a unicellular organism, which may warrant flexible responses to variable conditions, possibly also correlated to the phases of life cycle of the cells. All this makes N transporters a crucial key to reveal the balance between proximate and ultimate factors in diatom life.
Collapse
Affiliation(s)
- Alessandra Rogato
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy.
| | - Alberto Amato
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale 1, 80121 Naples, Italy
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale 1, 80121 Naples, Italy
| | - Maurizio Chiurazzi
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Maria Immacolata Ferrante
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale 1, 80121 Naples, Italy.
| | - Maurizio Ribera d'Alcalà
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale 1, 80121 Naples, Italy
| |
Collapse
|
40
|
Abstract
Dispersants provide a reliable large-scale response to catastrophic oil spills that can be used when the preferable option of recapturing the oil cannot be achieved. By allowing even mild wave action to disperse floating oil into tiny droplets (<70 μm) in the water column, seabirds, reptiles, and mammals are protected from lethal oiling at the surface, and microbial biodegradation is dramatically increased. Recent work has clarified how dramatic this increase is likely to be: beached oil has an environmental residence of years, whereas dispersed oil has a half-life of weeks. Oil spill response operations endorse the concept of net environmental benefit, that any environmental costs imposed by a response technique must be outweighed by the likely benefits. This critical review discusses the potential environmental debits and credits from dispersant use and concludes that, in most cases, the potential environmental costs of adding these chemicals to a polluted area are likely outweighed by the much shorter residence time, and hence integrated environmental impact, of the spilled oil in the environment.
Collapse
Affiliation(s)
- Roger C Prince
- ExxonMobil Biomedical Sciences, Inc., Annandale, New Jersey 08801 United States
| |
Collapse
|
41
|
Guadayol Ò, Silbiger NJ, Donahue MJ, Thomas FIM. Patterns in temporal variability of temperature, oxygen and pH along an environmental gradient in a coral reef. PLoS One 2014; 9:e85213. [PMID: 24416364 PMCID: PMC3885695 DOI: 10.1371/journal.pone.0085213] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 11/25/2013] [Indexed: 01/07/2023] Open
Abstract
Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ.
Collapse
Affiliation(s)
- Òscar Guadayol
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States of America
- * E-mail:
| | - Nyssa J. Silbiger
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States of America
- Department of Biology, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United States of America
| | - Megan J. Donahue
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States of America
| | - Florence I. M. Thomas
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States of America
| |
Collapse
|
42
|
Chengala A, Hondzo M, Mashek DG. Fluid motion mediates biochemical composition and physiological aspects in the green algaDunaliella primolectaButcher. ACTA ACUST UNITED AC 2013. [DOI: 10.1215/21573689-2326826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|