1
|
Shi W, Yi X, Ruan H, Wang D, Wu D, Jiang P, Luo L, Ma X, Jiang F, Li C, Wu W, Luo L, Li L, Wang G, Qiu J, Huang H. An animal model recapitulates human hepatic diseases associated with GATA6 mutations. Proc Natl Acad Sci U S A 2025; 122:e2317801121. [PMID: 39739787 PMCID: PMC11725858 DOI: 10.1073/pnas.2317801121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2024] [Indexed: 01/02/2025] Open
Abstract
Heterozygotic GATA6 mutations are responsible for various congenital diseases in the heart, pancreas, liver, and other organs in humans. However, there is lack of an animal that can comprehensively model these diseases since GATA6 is essential for early embryogenesis. Here, we report the establishment of a gata6 knockout zebrafish which recapitulates most of the symptoms in patients with GATA6 mutations, including cardiac outflow tract defects, pancreatic hypoplasia/agenesis, gallbladder agenesis, and various liver diseases. Particularly in the liver, the zebrafish gata6 model exhibits the paucity of intrahepatic bile ducts, disrupted bile canaliculi, cholestasis, resembling the liver diseases associated with GATA6 mutations. Moreover, an unreported phenotype, hepatic cysts, has been also revealed in the model. Mechanistically, Gata6 interacts with Hhex and binds lrh-1 promoter to synergistically activate its expression, thereby enhancing the Lrh-1-mediated β-catenin signaling which is essential for liver development. This transcriptional activation of lrh-1 is tightly controlled by the negative feedback, in which Lrh1 interacts with Gata6 to weaken its transactivation ability. Moreover, Gata6 level is regulated by Hhex-mediated proteasomal degradation. The orchestration by these three transcription factors precisely modulates Gata6 activity, ensuring β-catenin signaling output and proper liver development in zebrafish. Importantly, the molecular mechanism identified in zebrafish is conserved in human cells. GATA6 mutant variants associated with hepatobiliary malformations in humans interact aberrantly with HHEX, resulting in subsequent impairments of LRH-1 activation. Conclusively, the disease model established here provides both phenotypic and mechanism insights into the human hepatic diseases associated with GATA6 mutations.
Collapse
Affiliation(s)
- Wenpeng Shi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing400044, China
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Xiaogui Yi
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
| | - Hua Ruan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Donglei Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Dan Wu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Pengfei Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Lisha Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Xirui Ma
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Faming Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Cairui Li
- Dali Bai Autonomous Prefecture People’s Hospital, The Third Affiliated Hospital of Dali University, Dali671000, China
| | - Weinan Wu
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang524001, China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Li Li
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing400044, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing400044, China
| | - Honghui Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
2
|
Hu Y, Luo Z, Wang M, Wu Z, Liu Y, Cheng Z, Sun Y, Xiong JW, Tong X, Zhu Z, Zhang B. Prox1a promotes liver growth and differentiation by repressing cdx1b expression and intestinal fate transition in zebrafish. J Genet Genomics 2025; 52:66-77. [PMID: 39343095 DOI: 10.1016/j.jgg.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The liver is a key endoderm-derived multifunctional organ within the digestive system. Prospero homeobox 1 (Prox1) is an essential transcription factor for liver development, but its specific function is not well understood. Here, we show that hepatic development, including the formation of intrahepatic biliary and vascular networks, is severely disrupted in prox1a mutant zebrafish. We find that Prox1a is essential for liver growth and proper differentiation but not required for early hepatic cell fate specification. Intriguingly, prox1a depletion leads to ectopic initiation of a Cdx1b-mediated intestinal program and the formation of intestinal lumen-like structures within the liver. Morpholino knockdown of cdx1b alleviates liver defects in the prox1a mutant zebrafish. Finally, chromatin immunoprecipitation analysis reveals that Prox1a binds directly to the promoter region of cdx1b, thereby repressing its expression. Overall, our findings indicate that Prox1a is required to promote and protect hepatic development by repression of Cdx1b-mediated intestinal cell fate in zebrafish.
Collapse
Affiliation(s)
- Yingying Hu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhou Luo
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Meiwen Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zekai Wu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yunxing Liu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Shenzhen, Guangdong 518055, China
| | - Zhenchao Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuhan Sun
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Qian ST, Chen LM, He MF, Li HJ. Zebrafish Larvae as a Predictive Model for the Risk of Chemical-Induced Cholestasis: Phenotypic Evaluation and Nomogram Formation. Chem Res Toxicol 2024; 37:1976-1988. [PMID: 39566033 DOI: 10.1021/acs.chemrestox.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Chemical-induced cholestasis (CIC) has become a concern in chemical safety risk assessment in pharmaceutical, food, cosmetic, and industrial manufacturing. Currently, known animal and in vitro liver models are unsuitable as high-throughput screening tools due to their high cost, time-consuming, or poor screening accuracy. Herein, a cohort of chemicals validated as cholestatic hepatotoxic in humans, rodents, and in vitro liver models was established for testing. The accuracy and reliability of the detection of CIC in zebrafish larvae were assessed by liver phenotype, bile flow inhibition rate, bile acid distribution, biochemical indices, and RT-qPCR. In addition, the nomogram prediction model was constructed using binomial logistic regression analysis. The model was constructed with three variables: aspartate aminotransferase (AST.FC) level, total bile acid (TBA.FC) level, and fold change in the number of bile acid nodes per unit of bile ducts in the zebrafish liver (NPL.FC), which showed high predictive power (areas under the ROC curve: 0.983). Furthermore, this study demonstrated that zebrafish larvae have some model specificity for CIC risk assessment of estrogen endocrine disruptors and that testing after 10 dpf provides more scientific results. Overall, combining zebrafish larval phenotyping and nomograms is an efficient and powerful tool for CIC risk monitoring of chemicals.
Collapse
Affiliation(s)
- Si-Tong Qian
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Liang-Min Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Ming-Fang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| |
Collapse
|
4
|
Hong T, Park J, Min N, Bae SM, An G, Lee H, Song G, Jeong W, Lim W. Propanil impairs organ development in zebrafish by inducing apoptosis and inhibiting mitochondrial respiration. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136364. [PMID: 39486319 DOI: 10.1016/j.jhazmat.2024.136364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Propanil, an anilide herbicide, has frequently been detected in surface waters in Europe and the United States, largely due to its use in paddy cultivation areas. Particularly in specific regions like Sri Lanka, propanil is considered a potential cause of certain diseases and toxicities due to its high environmental runoff; however, there has been little research on its developmental toxicity. In the present study, we confirmed the developmental toxicity of propanil in zebrafish embryos exposed to 0, 2, 5, and 6 mg/L based on the LC50 value. Propanil exposure in embryos induced morphological changes, including decreased body length and eye size, and increased the heart and yolk sac edema. It increased the number of apoptotic cells in the brains and eyes of zebrafish larvae by 214 % and 184 %, respectively. Propanil-treated embryos exhibited altered mitochondrial metabolism, reducing basal respiration by 28 %, maximal respiration by 24 %, and ATP production by 38 %. These alterations induced organ defects in transgenic zebrafish models (cmlc2:DsRed, flk1:EGFP, olig2:DsRed, lfabp:DsRed;elastase:EGFP, and insulin:EGFP). It induced cardiovascular toxicity, as confirmed by the reduced atrial area, cerebrovascular intensity, and intersegmental vessels. Additionally, propanil decreased the fluorescence intensity of neurons, liver, and pancreas. Collectively, this study indicates that propanil causes early developmental toxicity through apoptosis and mitochondrial dysfunction. It presents a new perspective on how mitochondrial dysfunction, previously unreported in toxicity studies of other anilide herbicides, may affect developmental toxicity.
Collapse
Affiliation(s)
- Taeyeon Hong
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Nayoung Min
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Min Bae
- Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Wooyoung Jeong
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung 25601, Republic of Korea; Research Center for Marine Bio-Food and Medicine, Catholic Kwandong University, Gangneung 25601, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
5
|
Chen L, Wang N, Zhang T, Zhang F, Zhang W, Meng H, Chen J, Liao Z, Xu X, Ma Z, Xu T, Liu H. Directed differentiation of pancreatic δ cells from human pluripotent stem cells. Nat Commun 2024; 15:6344. [PMID: 39068220 PMCID: PMC11283558 DOI: 10.1038/s41467-024-50611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Dysfunction of pancreatic δ cells contributes to the etiology of diabetes. Despite their important role, human δ cells are scarce, limiting physiological studies and drug discovery targeting δ cells. To date, no directed δ-cell differentiation method has been established. Here, we demonstrate that fibroblast growth factor (FGF) 7 promotes pancreatic endoderm/progenitor differentiation, whereas FGF2 biases cells towards the pancreatic δ-cell lineage via FGF receptor 1. We develop a differentiation method to generate δ cells from human stem cells by combining FGF2 with FGF7, which synergistically directs pancreatic lineage differentiation and modulates the expression of transcription factors and SST activators during endoderm/endocrine precursor induction. These δ cells display mature RNA profiles and fine secretory granules, secrete somatostatin in response to various stimuli, and suppress insulin secretion from in vitro co-cultured β cells and mouse β cells upon transplantation. The generation of human pancreatic δ cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation studies in diabetes.
Collapse
Affiliation(s)
- Lihua Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Nannan Wang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongran Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Wei Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Hao Meng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Jingyi Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
| | - Zhiying Liao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Xiaopeng Xu
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Zhuo Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, China.
| | - Huisheng Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, China.
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Lee S, Memon A, Chae SC, Shin D, Choi TY. Epcam regulates intrahepatic bile duct reconstruction in zebrafish, providing a potential model for primary cholangitis model. Biochem Biophys Res Commun 2024; 696:149512. [PMID: 38224664 DOI: 10.1016/j.bbrc.2024.149512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Epithelial cell adhesion molecules (EpCAMs) have been identified as surface markers of proliferating ductal cells, which are referred to as liver progenitor cells (LPCs), during liver regeneration and correspond to malignancies. These cells can differentiate into hepatocytes and biliary epithelial cells (BECs) in vitro. EpCAM-positive LPCs are involved in liver regeneration following severe liver injury; however, the in vivo function of EpCAMs in the regenerating liver remains unclear. In the present study, we used a zebrafish model of LPC-driven liver regeneration to elucidate the function of EpCAMs in the regenerating liver in vivo. Proliferating ductal cells were observed after severe hepatocyte loss in the zebrafish model. Analyses of the liver size as well as hepatocyte and BEC markers revealed successful conversion of LPCs to hepatocytes and BECs in epcam mutants. Notably, epcam mutants exhibited severe defects in intrahepatic duct maturation and bile acid secretion in regenerating hepatocytes, suggesting that epcam plays a critical role in intrahepatic duct reconstruction during LPC-driven liver regeneration. Our findings provide insights into human diseases involving non-parenchymal cells, such as primary biliary cholangitis, by highlighting the regulatory effect of epcam on intrahepatic duct reconstruction.
Collapse
Affiliation(s)
- Siyeo Lee
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea; Department of Biomedical Science, Graduate School Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Azra Memon
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Soo-Cheon Chae
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tae-Young Choi
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea; Department of Biomedical Science, Graduate School Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
7
|
Li Q, Wu L, Wang G, Zheng F, Sun J, Zhang Y, Li Z, Li L, Sun B. Inhibitory Effects of Jiuzao Polysaccharides on Alcoholic Fatty Liver Formation in Zebrafish Larvae and Their Regulatory Impact on Intestinal Microbiota. Foods 2024; 13:276. [PMID: 38254577 PMCID: PMC10815347 DOI: 10.3390/foods13020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The liver is critical in alcohol metabolism, and excessive consumption heightens the risk of hepatic damage, potentially escalating to hepatitis and cirrhosis. Jiuzao, a by-product of Baijiu production, contains a rich concentration of naturally active polysaccharides known for their antioxidative properties. This study investigated the influence of Laowuzeng Jiuzao polysaccharide (LJP) on the development of ethanol-induced alcoholic fatty liver. Zebrafish larvae served as the model organisms for examining the LJPs hepatic impact via liver phenotypic and biochemical assays. Additionally, this study evaluated the LJPs effects on gene expression associated with alcoholic fatty liver and the composition of the intestinal microbiota through transcriptomic and 16 S rRNA gene sequencing analyses, respectively. Our findings revealed that LJP markedly mitigated morphological liver damage and reduced oxidative stress and lipid peroxidation in larvae. Transcriptome data indicated that LJP ameliorated hepatic fat accumulation and liver injury by enhancing gene expression involved in alcohol and lipid metabolism. Furthermore, LJP modulated the development of alcoholic fatty liver by altering the prevalence of intestinal Actinobacteriota and Firmicutes, specifically augmenting Acinetobacter while diminishing Chryseobacterium levels. Ultimately, LJP mitigated alcohol-induced hepatic injury by modulating gene expression related to ethanol metabolism, lipid metabolism, and inflammation and by orchestrating alterations in the intestinal microbiota.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Liling Wu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Guangnan Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Fuping Zheng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Yuhang Zhang
- Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui 053009, China (Z.L.)
| | - Zexia Li
- Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui 053009, China (Z.L.)
| | - Lianghao Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
8
|
Jin Q, Hu Y, Gao Y, Zheng J, Chen J, Gao C, Peng J. Hhex and Prox1a synergistically dictate the hepatoblast to hepatocyte differentiation in zebrafish. Biochem Biophys Res Commun 2023; 686:149182. [PMID: 37922575 DOI: 10.1016/j.bbrc.2023.149182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The specification of endoderm cells to prospective hepatoblasts is the starting point for hepatogenesis. However, how a prospective hepatoblast gains the hepatic fate remains elusive. Previous studies have shown that loss-of-function of either hhex or prox1a alone causes a small liver phenotype but without abolishing the hepatocyte differentiation, suggesting that absence of either Hhex or Prox1a alone is not sufficient to block the hepatoblast differentiation. Here, via genetic studies of the zebrafish two single (hhex-/- and prox1a-/-) and one double (hhex-/-prox1a-/-) mutants, we show that simultaneous loss-of-function of the hhex and prox1a two genes does not block the endoderm cells to gain the hepatoblast potency but abolishes the hepatic differentiation from the prospective hepatoblast. Consequently, the hhex-/-prox1a-/- double mutant displays a liverless phenotype that cannot be rescued by the injection of bmp2a mRNA. Taken together, we provide strong evidences showing that Hhex teams with Prox1a to act as a master control of the differentiation of the prospective hepatoblasts towards hepatocytes.
Collapse
Affiliation(s)
- Qingxia Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yuqing Hu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yuqi Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jiayi Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
9
|
Rizvi F, Lee YR, Diaz-Aragon R, Bawa PS, So J, Florentino RM, Wu S, Sarjoo A, Truong E, Smith AR, Wang F, Everton E, Ostrowska A, Jung K, Tam Y, Muramatsu H, Pardi N, Weissman D, Soto-Gutierrez A, Shin D, Gouon-Evans V. VEGFA mRNA-LNP promotes biliary epithelial cell-to-hepatocyte conversion in acute and chronic liver diseases and reverses steatosis and fibrosis. Cell Stem Cell 2023; 30:1640-1657.e8. [PMID: 38029740 PMCID: PMC10843608 DOI: 10.1016/j.stem.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial-cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via nonintegrative and safe nucleoside-modified mRNA encapsulated into lipid nanoparticles (mRNA-LNPs) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and elimination of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This work defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals unexpected therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases.
Collapse
Affiliation(s)
- Fatima Rizvi
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Yu-Ri Lee
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ricardo Diaz-Aragon
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pushpinder S Bawa
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Juhoon So
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Rodrigo M Florentino
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Susan Wu
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Arianna Sarjoo
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Emily Truong
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Anna R Smith
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Elissa Everton
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Alina Ostrowska
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kyounghwa Jung
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, Infectious Diseases Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 10104, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Donghun Shin
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Valerie Gouon-Evans
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
10
|
Hu Y, Hu X, Luo J, Huang J, Sun Y, Li H, Qiao Y, Wu H, Li J, Zhou L, Zheng S. Liver organoid culture methods. Cell Biosci 2023; 13:197. [PMID: 37915043 PMCID: PMC10619312 DOI: 10.1186/s13578-023-01136-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
Organoids, three-dimensional structures cultured in vitro, can recapitulate the microenvironment, complex architecture, and cellular functions of in vivo organs or tissues. In recent decades, liver organoids have been developed rapidly, and their applications in biomedicine, such as drug screening, disease modeling, and regenerative medicine, have been widely recognized. However, the lack of repeatability and consistency, including the lack of standardized culture conditions, has been a major obstacle to the development and clinical application of liver organoids. It is time-consuming for researchers to identify an appropriate medium component scheme, and the usage of some ingredients remains controversial. In this review, we summarized and compared different methods for liver organoid cultivation that have been published in recent years, focusing on controversial medium components and discussing their advantages and drawbacks. We aimed to provide an effective reference for the development and standardization of liver organoid cultivation.
Collapse
Affiliation(s)
- Yiqing Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Xiaoyi Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Jia Luo
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Jiacheng Huang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yaohan Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Haoyu Li
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yinbiao Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Hao Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Jianhui Li
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, 310015, China
- The Organ Repair and Regeneration Medicine Institute of Hangzhou, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, 310015, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| |
Collapse
|
11
|
Kim M, So J, Shin D. PPARα activation promotes liver progenitor cell-mediated liver regeneration by suppressing YAP signaling in zebrafish. Sci Rep 2023; 13:18312. [PMID: 37880271 PMCID: PMC10600117 DOI: 10.1038/s41598-023-44935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Despite the robust regenerative capacity of the liver, prolonged and severe liver damage impairs liver regeneration, leading to liver failure. Since the liver co-opts the differentiation of liver progenitor cells (LPCs) into hepatocytes to restore functional hepatocytes, augmenting LPC-mediated liver regeneration may be beneficial to patients with chronic liver diseases. However, the molecular mechanisms underlying LPC-to-hepatocyte differentiation have remained largely unknown. Using the zebrafish model of LPC-mediated liver regeneration, Tg(fabp10a:pt-β-catenin), we present that peroxisome proliferator-activated receptor-alpha (PPARα) activation augments LPC-to-hepatocyte differentiation. We found that treating Tg(fabp10a:pt-β-catenin) larvae with GW7647, a potent PPARα agonist, enhanced the expression of hepatocyte markers and simultaneously reduced the expression of biliary epithelial cell (BEC)/LPC markers in the regenerating livers, indicating enhanced LPC-to-hepatocyte differentiation. Mechanistically, PPARα activation augments the differentiation by suppressing YAP signaling. The differentiation phenotypes resulting from GW7647 treatment were rescued by expressing a constitutively active form of Yap1. Moreover, we found that suppression of YAP signaling was sufficient to promote LPC-to-hepatocyte differentiation. Treating Tg(fabp10a:pt-β-catenin) larvae with the TEAD inhibitor K-975, which suppresses YAP signaling, phenocopied the effect of GW7647 on LPC differentiation. Altogether, our findings provide insights into augmenting LPC-mediated liver regeneration as a regenerative therapy for chronic liver diseases.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, 3501 5th Ave. #5063, Pittsburgh, PA, 15260, USA
| | - Juhoon So
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, 3501 5th Ave. #5063, Pittsburgh, PA, 15260, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, 3501 5th Ave. #5063, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
12
|
Unterweger IA, Klepstad J, Hannezo E, Lundegaard PR, Trusina A, Ober EA. Lineage tracing identifies heterogeneous hepatoblast contribution to cell lineages and postembryonic organ growth dynamics. PLoS Biol 2023; 21:e3002315. [PMID: 37792696 PMCID: PMC10550115 DOI: 10.1371/journal.pbio.3002315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
To meet the physiological demands of the body, organs need to establish a functional tissue architecture and adequate size as the embryo develops to adulthood. In the liver, uni- and bipotent progenitor differentiation into hepatocytes and biliary epithelial cells (BECs), and their relative proportions, comprise the functional architecture. Yet, the contribution of individual liver progenitors at the organ level to both fates, and their specific proportion, is unresolved. Combining mathematical modelling with organ-wide, multispectral FRaeppli-NLS lineage tracing in zebrafish, we demonstrate that a precise BEC-to-hepatocyte ratio is established (i) fast, (ii) solely by heterogeneous lineage decisions from uni- and bipotent progenitors, and (iii) independent of subsequent cell type-specific proliferation. Extending lineage tracing to adulthood determined that embryonic cells undergo spatially heterogeneous three-dimensional growth associated with distinct environments. Strikingly, giant clusters comprising almost half a ventral lobe suggest lobe-specific dominant-like growth behaviours. We show substantial hepatocyte polyploidy in juveniles representing another hallmark of postembryonic liver growth. Our findings uncover heterogeneous progenitor contributions to tissue architecture-defining cell type proportions and postembryonic organ growth as key mechanisms forming the adult liver.
Collapse
Affiliation(s)
- Iris. A. Unterweger
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem), Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| | - Julie Klepstad
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Andalusian Center for Developmental Biology, CSIC, University Pablo de Olavide, Seville, Spain
| | - Edouard Hannezo
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Pia R. Lundegaard
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Elke A. Ober
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem), Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| |
Collapse
|
13
|
Shimizu N, Shiraishi H, Hanada T. Zebrafish as a Useful Model System for Human Liver Disease. Cells 2023; 12:2246. [PMID: 37759472 PMCID: PMC10526867 DOI: 10.3390/cells12182246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver diseases represent a significant global health challenge, thereby necessitating extensive research to understand their intricate complexities and to develop effective treatments. In this context, zebrafish (Danio rerio) have emerged as a valuable model organism for studying various aspects of liver disease. The zebrafish liver has striking similarities to the human liver in terms of structure, function, and regenerative capacity. Researchers have successfully induced liver damage in zebrafish using chemical toxins, genetic manipulation, and other methods, thereby allowing the study of disease mechanisms and the progression of liver disease. Zebrafish embryos or larvae, with their transparency and rapid development, provide a unique opportunity for high-throughput drug screening and the identification of potential therapeutics. This review highlights how research on zebrafish has provided valuable insights into the pathological mechanisms of human liver disease.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | | | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| |
Collapse
|
14
|
Ma J, Yang Z, Huang Z, Li L, Huang J, Chen J, Ni R, Luo L, He J. Rngtt governs biliary-derived liver regeneration initiation by transcriptional regulation of mTORC1 and Dnmt1 in zebrafish. Hepatology 2023; 78:167-178. [PMID: 36724876 DOI: 10.1097/hep.0000000000000186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 02/03/2023]
Abstract
In cases of end-stage liver diseases, the proliferation of existing hepatocytes is compromised, a feature of human chronic liver disease, in which most hepatocytes are dysfunctional. So far, liver transplantation represents the only curative therapeutic solution for advanced liver diseases, and the shortage of donor organs leads to high morbidity and mortality worldwide. The promising treatment is to prompt the biliary epithelial cells (BECs) transdifferentiation. However, the critical factors governing the initiation of BEC-derived liver regeneration are largely unknown. The zebrafish has advantages in large-scale genetic screens to identify the critical factors involved in liver regeneration. Here, we combined N-ethyl-N-nitrosourea screen, positional cloning, transgenic lines, antibody staining, and in situ hybridization methods and identified a liver regeneration defect mutant ( lrd ) using the zebrafish extensive liver injury model. Through positional cloning and genomic sequencing, we mapped the mutation site to rngtt . Loss of rngtt leads to the defects of BEC dedifferentiation, bipotential progenitor cell activation, and cell proliferation in the initiation stage of liver regeneration. The transdifferentiation from BECs to hepatocytes did not occur even at the late stage of liver regeneration. Mechanically, Rngtt transcriptionally regulates the attachment of mRNA cap to mTOR complex 1 (mTORC1) components and dnmt1 to maintain the activation of mTORC1 and DNA methylation in BECs after severe liver injury and prompt BEC to hepatocyte conversion. Furthermore, rptor and dnmt1 mutants displayed the same liver regeneration defects as rngtt mutation. In conclusion, our results suggest Rngtt is a new factor that initiates BEC-derived liver regeneration.
Collapse
Affiliation(s)
- Jianlong Ma
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhuolin Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhuofu Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Linke Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jingliang Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jingying Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- University of Chinese Academy of Sciences (Chongqing), Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Beibei, Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
15
|
Jackson JT, Nutt SL, McCormack MP. The Haematopoietically-expressed homeobox transcription factor: roles in development, physiology and disease. Front Immunol 2023; 14:1197490. [PMID: 37398663 PMCID: PMC10313424 DOI: 10.3389/fimmu.2023.1197490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Haematopoietically expressed homeobox transcription factor (Hhex) is a transcriptional repressor that is of fundamental importance across species, as evident by its evolutionary conservation spanning fish, amphibians, birds, mice and humans. Indeed, Hhex maintains its vital functions throughout the lifespan of the organism, beginning in the oocyte, through fundamental stages of embryogenesis in the foregut endoderm. The endodermal development driven by Hhex gives rise to endocrine organs such as the pancreas in a process which is likely linked to its role as a risk factor in diabetes and pancreatic disorders. Hhex is also required for the normal development of the bile duct and liver, the latter also importantly being the initial site of haematopoiesis. These haematopoietic origins are governed by Hhex, leading to its crucial later roles in definitive haematopoietic stem cell (HSC) self-renewal, lymphopoiesis and haematological malignancy. Hhex is also necessary for the developing forebrain and thyroid gland, with this reliance on Hhex evident in its role in endocrine disorders later in life including a potential role in Alzheimer's disease. Thus, the roles of Hhex in embryological development throughout evolution appear to be linked to its later roles in a variety of disease processes.
Collapse
Affiliation(s)
- Jacob T. Jackson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthew P. McCormack
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- iCamuno Biotherapeutics, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Rizvi F, Lee YR, Diaz-Aragon R, So J, Florentino RM, Smith AR, Everton E, Ostrowska A, Jung K, Tam Y, Muramatsu H, Pardi N, Weissman D, Soto-Gutierrez A, Shin D, Gouon-Evans V. VEGFA mRNA-LNP promotes biliary epithelial cell-to-hepatocyte conversion in acute and chronic liver diseases and reverses steatosis and fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537186. [PMID: 37131823 PMCID: PMC10153196 DOI: 10.1101/2023.04.17.537186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via non-integrative and safe nucleoside-modified mRNA encapsulated into lipid-nanoparticles (mRNA-LNP) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and reversion of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals novel therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases. Highlights Complementary mouse and zebrafish models of liver injury demonstrate the therapeutic impact of VEGFA-KDR axis activation to harness BEC-driven liver regeneration.VEGFA mRNA LNPs restore two key features of the chronic liver disease in humans such as steatosis and fibrosis.Identification in human cirrhotic ESLD livers of KDR-expressing BECs adjacent to clusters of KDR+ hepatocytes suggesting their BEC origin.KDR-expressing BECs may represent facultative adult progenitor cells, a unique BEC population that has yet been uncovered.
Collapse
|
17
|
Jin C, Yan K, Wang M, Song W, Kong X, Zhang Z. Identification, Characterization and Functional Analysis of Fibroblast Growth Factors in Black Rockfish ( Sebastes schlegelii). Int J Mol Sci 2023; 24:ijms24043626. [PMID: 36835037 PMCID: PMC9958866 DOI: 10.3390/ijms24043626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Fibroblast growth factors (FGFs) are short polypeptides that play essential roles in various cellular biological processes, including cell migration, proliferation, and differentiation, as well as tissue regeneration, immune response, and organogenesis. However, studies focusing on the characterization and function of FGF genes in teleost fishes are still limited. In this study, we identified and characterized expression patterns of 24 FGF genes in various tissues of embryonic and adult specimens of the black rockfish (Sebates schlegelii). Nine FGF genes were found to play essential roles in myoblast differentiation, as well as muscle development and recovery in juvelines of S. schlegelii. Moreover, sex-biased expression pattern of multiple FGF genes was recorded in the species' gonads during its development. Among them, expression of the FGF1 gene was recorded in interstitial and sertoli cells of testes, promoting germ-cell proliferation and differentiation. In sum, the obtained results enabled systematic and functional characterization of FGF genes in S. schlegelii, laying a foundation for further studies on FGF genes in other large teleost fishes.
Collapse
Affiliation(s)
- Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Kai Yan
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Weihao Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiangfu Kong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhengrui Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Correspondence:
| |
Collapse
|
18
|
Jin Q, Gao Y, Shuai S, Chen Y, Wang K, Chen J, Peng J, Gao C. Cdx1b protects intestinal cell fate by repressing signaling networks for liver specification. J Genet Genomics 2022; 49:1101-1113. [PMID: 36460297 DOI: 10.1016/j.jgg.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
In mammals, the expression of the homeobox family member Cdx2/CDX2 is restricted within the intestine. Conditional ablation of the mouse Cdx2 in the endodermal cells causes a homeotic transformation of the intestine towards the esophagus or gastric fate. In this report, we show that null mutants of zebrafish cdx1b, encoding the counterpart of mammalian CDX2, could survive more than 10 days post fertilization, a stage when the zebrafish digestive system has been well developed. Through RNA sequencing (RNA-seq) and single-cell sequencing (scRNA-seq) of the dissected intestine from the mutant embryos, we demonstrate that the loss-of-function of the zebrafish cdx1b yields hepatocyte-like intestinal cells, a phenotype never observed in the mouse model. Further RNA-seq data analysis, and genetic double mutants and signaling inhibitor studies reveal that Cdx1b functions to guard the intestinal fate by repressing, directly or indirectly, a range of transcriptional factors and signaling pathways for liver specification. Finally, we demonstrate that heat shock-induced overexpression of cdx1b in a transgenic fish abolishes the liver formation. Therefore, we demonstrate that Cdx1b is a key repressor of hepatic fate during the intestine specification in zebrafish.
Collapse
Affiliation(s)
- Qingxia Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuqi Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shimin Shuai
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yayue Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kaiyuan Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
19
|
Yang Y, Li Y, Fu J, Li Y, Li S, Ni R, Yang Q, Luo L. Intestinal precursors avoid being misinduced to liver cells by activating Cdx-Wnt inhibition cascade. Proc Natl Acad Sci U S A 2022; 119:e2205110119. [PMID: 36396123 PMCID: PMC9659337 DOI: 10.1073/pnas.2205110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
During coordinated development of two neighboring organs from the same germ layer, how precursors of one organ resist the inductive signals of the other to avoid being misinduced to wrong cell fate remains a general question in developmental biology. The liver and anterior intestinal precursors located in close proximity along the gut axis represent a typical example. Here we identify a zebrafish leberwurst (lbw) mutant with a unique hepatized intestine phenotype, exhibiting replacement of anterior intestinal cells by liver cells. lbw encodes the Cdx1b homeoprotein, which is specifically expressed in the intestine, and its precursor cells. Mechanistically, in the intestinal precursors, Cdx1b binds to genomic DNA at the regulatory region of secreted frizzled related protein 5 (sfrp5) to activate sfrp5 transcription. Sfrp5 blocks the mesoderm-derived, liver-inductive Wnt2bb signal, thus conferring intestinal precursor cells resistance to Wnt2bb. These results demonstrate that the intestinal precursors avoid being misinduced toward hepatic lineages through the activation of the Cdx1b-Sfrp5 cascade, implicating Cdx/Sfrp5 as a potential pharmacological target for the manipulation of intestinal-hepatic bifurcations, and shedding light on the general question of how precursor cells resist incorrect inductive signals during embryonic development.
Collapse
Affiliation(s)
- Yun Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Yuanyuan Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Jialong Fu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Yanfeng Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Shuang Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| |
Collapse
|
20
|
Gao Y, Jin Q, Gao C, Chen Y, Sun Z, Guo G, Peng J. Unraveling Differential Transcriptomes and Cell Types in Zebrafish Larvae Intestine and Liver. Cells 2022; 11:3290. [PMID: 36291156 PMCID: PMC9600436 DOI: 10.3390/cells11203290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2023] Open
Abstract
The zebrafish intestine and liver, as in other vertebrates, are derived from the endoderm. Great effort has been devoted to deciphering the molecular mechanisms controlling the specification and development of the zebrafish intestine and liver; however, genome-wide comparison of the transcriptomes between these two organs at the larval stage remains unexplored. There is a lack of extensive identification of feature genes marking specific cell types in the zebrafish intestine and liver at 5 days post-fertilization, when the larval fish starts food intake. In this report, through RNA sequencing and single-cell RNA sequencing of intestines and livers separately dissected from wild-type zebrafish larvae at 5 days post-fertilization, together with the experimental validation of 47 genes through RNA whole-mount in situ hybridization, we identified not only distinctive transcriptomes for the larval intestine and liver, but also a considerable number of feature genes for marking the intestinal bulb, mid-intestine and hindgut, and for marking hepatocytes and cholangiocytes. Meanwhile, we identified 135 intestine- and 97 liver-enriched transcription factor genes in zebrafish larvae at 5 days post-fertilization. Our findings provide rich molecular and cellular resources for studying cell patterning and specification during the early development of the zebrafish intestine and liver.
Collapse
Affiliation(s)
- Yuqi Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Jin
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yayue Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoxiang Sun
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guoji Guo
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Yang D, Cho H, Tayyebi Z, Shukla A, Luo R, Dixon G, Ursu V, Stransky S, Tremmel DM, Sackett SD, Koche R, Kaplan SJ, Li QV, Park J, Zhu Z, Rosen BP, Pulecio J, Shi ZD, Bram Y, Schwartz RE, Odorico JS, Sidoli S, Wright CV, Leslie CS, Huangfu D. CRISPR screening uncovers a central requirement for HHEX in pancreatic lineage commitment and plasticity restriction. Nat Cell Biol 2022; 24:1064-1076. [PMID: 35787684 PMCID: PMC9283336 DOI: 10.1038/s41556-022-00946-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 05/25/2022] [Indexed: 01/07/2023]
Abstract
The pancreas and liver arise from a common pool of progenitors. However, the underlying mechanisms that drive their lineage diversification from the foregut endoderm are not fully understood. To tackle this question, we undertook a multifactorial approach that integrated human pluripotent-stem-cell-guided differentiation, genome-scale CRISPR-Cas9 screening, single-cell analysis, genomics and proteomics. We discovered that HHEX, a transcription factor (TF) widely recognized as a key regulator of liver development, acts as a gatekeeper of pancreatic lineage specification. HHEX deletion impaired pancreatic commitment and unleashed an unexpected degree of cellular plasticity towards the liver and duodenum fates. Mechanistically, HHEX cooperates with the pioneer TFs FOXA1, FOXA2 and GATA4, shared by both pancreas and liver differentiation programmes, to promote pancreas commitment, and this cooperation restrains the shared TFs from activating alternative lineages. These findings provide a generalizable model for how gatekeeper TFs like HHEX orchestrate lineage commitment and plasticity restriction in broad developmental contexts.
Collapse
Affiliation(s)
- Dapeng Yang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hyunwoo Cho
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Zakieh Tayyebi
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Abhijit Shukla
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Renhe Luo
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Gary Dixon
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA,Present address: Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Valeria Ursu
- Vanderbilt University Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37203, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Samuel J. Kaplan
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Qing V. Li
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jiwoon Park
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA,Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Zengrong Zhu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Bess P. Rosen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Julian Pulecio
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Zhong-Dong Shi
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Robert E. Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | | | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christopher V. Wright
- Vanderbilt University Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37203, USA
| | - Christina S. Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA,Correspondence to: (DH), (CSL)
| | - Danwei Huangfu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA,Correspondence to: (DH), (CSL)
| |
Collapse
|
22
|
DNA methylation maintenance at the p53 locus initiates biliary-mediated liver regeneration. NPJ Regen Med 2022; 7:21. [PMID: 35351894 PMCID: PMC8964678 DOI: 10.1038/s41536-022-00217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
In cases of extensive liver injury, biliary epithelial cells (BECs) dedifferentiate into bipotential progenitor cells (BPPCs), then redifferentiate into hepatocytes and BECs to accomplish liver regeneration. Whether epigenetic regulations, particularly DNA methylation maintenance enzymes, play a role in this biliary-mediated liver regeneration remains unknown. Here we show that in response to extensive hepatocyte damages, expression of dnmt1 is upregulated in BECs to methylate DNA at the p53 locus, which represses p53 transcription, and in turn, derepresses mTORC1 signaling to activate BEC dedifferentiation. After BEC dedifferentiation and BPPC formation, DNA methylation at the p53 locus maintains in BPPCs to continue blocking p53 transcription, which derepresses Bmp signaling to induce BPPC redifferentiation. Thus, this study reveals promotive roles and mechanisms of DNA methylation at the p53 locus in both dedifferentiation and redifferentiation stages of biliary-mediated liver regeneration, implicating DNA methylation and p53 as potential targets to stimulate regeneration after extensive liver injury.
Collapse
|
23
|
Quick RE, Buck LD, Parab S, Tolbert ZR, Matsuoka RL. Highly Efficient Synthetic CRISPR RNA/Cas9-Based Mutagenesis for Rapid Cardiovascular Phenotypic Screening in F0 Zebrafish. Front Cell Dev Biol 2021; 9:735598. [PMID: 34746131 PMCID: PMC8570140 DOI: 10.3389/fcell.2021.735598] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
The zebrafish is a valuable vertebrate model to study cardiovascular formation and function due to the facile visualization and rapid development of the circulatory system in its externally growing embryos. Despite having distinct advantages, zebrafish have paralogs of many important genes, making reverse genetics approaches inefficient since generating animals bearing multiple gene mutations requires substantial efforts. Here, we present a simple and robust synthetic CRISPR RNA/Cas9-based mutagenesis approach for generating biallelic F0 zebrafish knockouts. Using a dual-guide synthetic CRISPR RNA/Cas9 ribonucleoprotein (dgRNP) system, we compared the efficiency of biallelic gene disruptions following the injections of one, two, and three dgRNPs per gene into the cytoplasm or yolk. We show that simultaneous cytoplasmic injections of three distinct dgRNPs per gene into one-cell stage embryos resulted in the most efficient and consistent biallelic gene disruptions. Importantly, this triple dgRNP approach enables efficient inactivation of cell autonomous and cell non-autonomous gene function, likely due to the low mosaicism of biallelic disruptions. In support of this finding, we provide evidence that the F0 animals generated by this method fully phenocopied the endothelial and peri-vascular defects observed in corresponding stable mutant homozygotes. Moreover, this approach faithfully recapitulated the trunk vessel phenotypes resulting from the genetic interaction between two vegfr2 zebrafish paralogs. Mechanistically, investigation of genome editing and mRNA decay indicates that the combined mutagenic actions of three dgRNPs per gene lead to an increased probability of frameshift mutations, enabling efficient biallelic gene disruptions. Therefore, our approach offers a highly robust genetic platform to quickly assess novel and redundant gene function in F0 zebrafish.
Collapse
Affiliation(s)
- Rachael E Quick
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Luke D Buck
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Sweta Parab
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Zane R Tolbert
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ryota L Matsuoka
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
24
|
Li X, Song G, Zhao Y, Ren J, Li Q, Cui Z. Functions of SMC2 in the Development of Zebrafish Liver. Biomedicines 2021; 9:biomedicines9091240. [PMID: 34572426 PMCID: PMC8465584 DOI: 10.3390/biomedicines9091240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
SMC2 (structural maintenance of chromosomes 2) is the core subunit of condensins, which play a central role in chromosome organization and segregation. However, the functions of SMC2 in embryonic development remain poorly understood, due to the embryonic lethality of homozygous SMC2−/− mice. Herein, we explored the roles of SMC2 in the liver development of zebrafish. The depletion of SMC2, with the CRISPR/Cas9-dependent gene knockout approach, led to a small liver phenotype. The specification of hepatoblasts was unaffected. Mechanistically, extensive apoptosis occurred in the liver of SMC2 mutants, which was mainly associated with the activation of the p53-dependent apoptotic pathway. Moreover, an aberrant activation of a series of apoptotic pathways in SMC2 mutants was involved in the defective chromosome segregation and subsequent DNA damage. Therefore, our findings demonstrate that SMC2 is necessary for zebrafish liver development.
Collapse
Affiliation(s)
- Xixi Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.L.); (J.R.)
| | - Guili Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.S.); (Y.Z.); (Q.L.)
| | - Yasong Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.S.); (Y.Z.); (Q.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ren
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.L.); (J.R.)
| | - Qing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.S.); (Y.Z.); (Q.L.)
| | - Zongbin Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.L.); (J.R.)
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.S.); (Y.Z.); (Q.L.)
- Correspondence: ; Tel.: +86-020-87137656
| |
Collapse
|
25
|
Cheng YC, Wu TS, Huang YT, Chang Y, Yang JJ, Yu FY, Liu BH. Aflatoxin B1 interferes with embryonic liver development: Involvement of p53 signaling and apoptosis in zebrafish. Toxicology 2021; 458:152844. [PMID: 34214637 DOI: 10.1016/j.tox.2021.152844] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
Aflatoxin B1 (AFB1), a naturally occurring mycotoxin, is present in human placenta and cord blood. AFB1 at concentrations found in contaminated food commodities (0.25 and 0.5 μM) did not alter the spontaneous movement, heart rate, hatchability, or morphology of embryonic zebrafish. However, around 86 % of 0.25 μM AFB1-treated embryos had livers of reduced size, and AFB1 disrupted the hepatocyte structures, according to histological analysis. Additionally, AFB1 treatment that begins at any stage before 72 h post-fertilization (hpf) effectively reduced the size of embryonic livers. In hepatic areas, AFB1 suppressed the expression of Hhex and Prox1, which are two critical transcriptional factors for initiating hepatoblast specification. KEGG analysis based on transcriptome profiling indicated that p53 signaling and apoptosis are the only observed pathways in AFB1-treated embryos. AFB1 at 0.5 μM significantly activated the expression of tp53, mdm2, puma, noxa, pidd1, and gadd45aa genes that are related to the p53 pathway and also that of baxa, casp 8 and casp 3a in the apoptotic process. TUNEL staining demonstrated that AFB1 triggered the apoptosis of embryonic hepatocytes in a dose-dependent manner. These results indicate that the deficiency of both hhex and prox1 as well as hepatocyte apoptosis via the p53-Puma/Noxa-Bax axis may contribute to the embryonic liver shrinkage that is caused by AFB1.
Collapse
Affiliation(s)
- Ya-Chih Cheng
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Shuan Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jiann-Jou Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
26
|
Vandernoot I, Haerlingen B, Gillotay P, Trubiroha A, Janssens V, Opitz R, Costagliola S. Enhanced Canonical Wnt Signaling During Early Zebrafish Development Perturbs the Interaction of Cardiac Mesoderm and Pharyngeal Endoderm and Causes Thyroid Specification Defects. Thyroid 2021; 31:420-438. [PMID: 32777984 DOI: 10.1089/thy.2019.0828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: Congenital hypothyroidism due to thyroid dysgenesis is a frequent congenital endocrine disorder for which the molecular mechanisms remain unresolved in the majority of cases. This situation reflects, in part, our still limited knowledge about the mechanisms involved in the early steps of thyroid specification from the endoderm, in particular the extrinsic signaling cues that regulate foregut endoderm patterning. In this study, we used small molecules and genetic zebrafish models to characterize the role of various signaling pathways in thyroid specification. Methods: We treated zebrafish embryos during different developmental periods with small-molecule compounds known to manipulate the activity of Wnt signaling pathway and observed effects in thyroid, endoderm, and cardiovascular development using whole-mount in situ hybridization and transgenic fluorescent reporter models. We used the antisense morpholino (MO) technique to create a zebrafish acardiac model. For thyroid rescue experiments, bone morphogenetic protein (BMP) pathway induction in zebrafish embryos was obtained by manipulation of heat-shock inducible transgenic lines. Results: Combined analyses of thyroid and cardiovascular development revealed that overactivation of Wnt signaling during early development leads to impaired thyroid specification concurrent with severe defects in the cardiac specification. When using a model of MO-induced blockage of cardiomyocyte differentiation, a similar correlation was observed, suggesting that defective signaling between cardiac mesoderm and endodermal thyroid precursors contributes to thyroid specification impairment. Rescue experiments through transient overactivation of BMP signaling could partially restore thyroid specification in models with defective cardiac development. Conclusion: Collectively, our results indicate that BMP signaling is critically required for thyroid cell specification and identify cardiac mesoderm as a likely source of BMP signals.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Bone Morphogenetic Protein 2/genetics
- Bone Morphogenetic Protein 2/metabolism
- Bone Morphogenetic Protein 4/genetics
- Bone Morphogenetic Protein 4/metabolism
- Congenital Hypothyroidism/genetics
- Congenital Hypothyroidism/metabolism
- Congenital Hypothyroidism/pathology
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Disease Models, Animal
- Embryonic Development
- Endoderm/abnormalities
- Endoderm/metabolism
- Gene Expression Regulation, Developmental
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Mesoderm/abnormalities
- Mesoderm/metabolism
- Morpholinos/genetics
- Morpholinos/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Thyroid Dysgenesis/genetics
- Thyroid Dysgenesis/metabolism
- Thyroid Dysgenesis/pathology
- Thyroid Gland/abnormalities
- Thyroid Gland/metabolism
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt Signaling Pathway
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Isabelle Vandernoot
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Benoît Haerlingen
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Gillotay
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Achim Trubiroha
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
- Department Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Véronique Janssens
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Opitz
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
27
|
Aravalli RN. Generating liver using blastocyst complementation: Opportunities and challenges. Xenotransplantation 2020; 28:e12668. [PMID: 33372360 DOI: 10.1111/xen.12668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/05/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Orthotopic liver transplantation (OLT) is the only definitive treatment option for many patients with end-stage liver disease. Current supply of donor livers for OLT is not keeping up with the growing demand. To overcome this problem, a number of experimental strategies have been developed either to provide a bridge to transplant for patients on the waiting list or to bioengineer whole livers for OLT by replenishing them with fresh supplies of hepatic cells. In recent years, blastocyst complementation has emerged as the most promising approach for generating whole organs and, in combination with gene editing technology, it has revolutionized regenerative medicine. This methodology was successful in producing xenogeneic organs in animal hosts. Blastocyst complementation has the potential to produce whole livers in large animals that could be xenotransplanted in humans, thereby reducing the shortage of livers for OLT. However, significant experimental and ethical barriers remain for the production of human livers in domestic animals, such as the pig. This review summarizes the current knowledge and provides future perspectives for liver xenotransplantation in humans.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
28
|
Garcia PE, Scales MK, Allen BL, Pasca di Magliano M. Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells 2020; 9:E2464. [PMID: 33198201 PMCID: PMC7698149 DOI: 10.3390/cells9112464] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extensive fibroinflammatory microenvironment that accumulates from the onset of disease progression. Cancer-associated fibroblasts (CAFs) are a prominent cellular component of the stroma, but their role during carcinogenesis remains controversial, with both tumor-supporting and tumor-restraining functions reported in different studies. One explanation for these contradictory findings is the heterogeneous nature of the fibroblast populations, and the different roles each subset might play in carcinogenesis. Here, we review the current literature on the origin and function of pancreatic fibroblasts, from the developing organ to the healthy adult pancreas, and throughout the initiation and progression of PDA. We also discuss clinical approaches to targeting fibroblasts in PDA.
Collapse
Affiliation(s)
- Paloma E. Garcia
- Program in Molecular and Cellular Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Chaturantabut S, Shwartz A, Garnaas MK, LaBella K, Li CC, Carroll KJ, Cutting CC, Budrow N, Palaria A, Gorelick DA, Tremblay KD, North TE, Goessling W. Estrogen Acts Through Estrogen Receptor 2b to Regulate Hepatobiliary Fate During Vertebrate Development. Hepatology 2020; 72:1786-1799. [PMID: 32060934 PMCID: PMC8290048 DOI: 10.1002/hep.31184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS During liver development, bipotent progenitor cells differentiate into hepatocytes and biliary epithelial cells to ensure a functional liver required to maintain organismal homeostasis. The developmental cues controlling the differentiation of committed progenitors into these cell types, however, are incompletely understood. Here, we discover an essential role for estrogenic regulation in vertebrate liver development to affect hepatobiliary fate decisions. APPROACH AND RESULTS Exposure of zebrafish embryos to 17β-estradiol (E2) during liver development significantly decreased hepatocyte-specific gene expression, liver size, and hepatocyte number. In contrast, pharmacological blockade of estrogen synthesis or nuclear estrogen receptor (ESR) signaling enhanced liver size and hepatocyte marker expression. Transgenic reporter fish demonstrated nuclear ESR activity in the developing liver. Chemical inhibition and morpholino knockdown of nuclear estrogen receptor 2b (esr2b) increased hepatocyte gene expression and blocked the effects of E2 exposure. esr2b-/- mutant zebrafish exhibited significantly increased expression of hepatocyte markers with no impact on liver progenitors, other endodermal lineages, or vasculature. Significantly, E2-stimulated Esr2b activity promoted biliary epithelial differentiation at the expense of hepatocyte fate, whereas loss of esr2b impaired biliary lineage commitment. Chemical and genetic epistasis studies identified bone morphogenetic protein (BMP) signaling as a mediator of the estrogen effects. The divergent impact of estrogen on hepatobiliary fate was confirmed in a human hepatoblast cell line, indicating the relevance of this pathway for human liver development. CONCLUSIONS Our studies identify E2, esr2b, and downstream BMP activity as important regulators of hepatobiliary fate decisions during vertebrate liver development. These results have significant clinical implications for liver development in infants exposed to abnormal estrogen levels or estrogenic compounds during pregnancy.
Collapse
Affiliation(s)
| | - Arkadi Shwartz
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Maija K. Garnaas
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kyle LaBella
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chia-Cheng Li
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelli J. Carroll
- Stem Cell Program, Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Claire C. Cutting
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nadine Budrow
- Stem Cell Program, Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Amrita Palaria
- Department of Animal and Veterinary Sciences, University of Massachusetts, Amherst, MA, USA
| | - Daniel A. Gorelick
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Kimberly D. Tremblay
- Department of Animal and Veterinary Sciences, University of Massachusetts, Amherst, MA, USA
| | - Trista E. North
- Stem Cell Program, Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Wolfram Goessling
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
30
|
Freeburg SH, Goessling W. Hepatobiliary Differentiation: Principles from Embryonic Liver Development. Semin Liver Dis 2020; 40:365-372. [PMID: 32526786 DOI: 10.1055/s-0040-1709679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hepatocytes and biliary epithelial cells (BECs), the two endodermal cell types of the liver, originate from progenitor cells called hepatoblasts. Based principally on in vitro data, hepatoblasts are thought to be bipotent stem cells with the potential to produce both hepatocytes and BECs. However, robust in vivo evidence for this model has only recently emerged. We examine the molecular mechanisms that stimulate hepatoblast differentiation into hepatocytes or BECs. In the absence of extrinsic cues, the default fate of hepatoblasts is hepatocyte differentiation. Inductive cues from the hepatic portal vein, however, initiate transcription factor expression in hepatoblasts, driving biliary specification. Defining the mechanisms of hepatobiliary differentiation provides important insights into congenital disorders, such as Alagille syndrome, and may help to better characterize the poorly understood hepatic lineage relationships observed during regeneration from liver injury.
Collapse
Affiliation(s)
- Scott H Freeburg
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Harvard Stem Cell Institute, Cambridge, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
31
|
Quan FB, Desban L, Mirat O, Kermarquer M, Roussel J, Koëth F, Marnas H, Djenoune L, Lejeune FX, Tostivint H, Wyart C. Somatostatin 1.1 contributes to the innate exploration of zebrafish larva. Sci Rep 2020; 10:15235. [PMID: 32943676 PMCID: PMC7499426 DOI: 10.1038/s41598-020-72039-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Pharmacological experiments indicate that neuropeptides can effectively tune neuronal activity and modulate locomotor output patterns. However, their functions in shaping innate locomotion often remain elusive. For example, somatostatin has been previously shown to induce locomotion when injected in the brain ventricles but to inhibit fictive locomotion when bath-applied in the spinal cord in vitro. Here, we investigated the role of somatostatin in innate locomotion through a genetic approach by knocking out somatostatin 1.1 (sst1.1) in zebrafish. We automated and carefully analyzed the kinematics of locomotion over a hundred of thousand bouts from hundreds of mutant and control sibling larvae. We found that the deletion of sst1.1 did not impact acousto-vestibular escape responses but led to abnormal exploration. sst1.1 mutant larvae swam over larger distance, at higher speed and performed larger tail bends, indicating that Somatostatin 1.1 inhibits spontaneous locomotion. Altogether our study demonstrates that Somatostatin 1.1 innately contributes to slowing down spontaneous locomotion.
Collapse
Affiliation(s)
- Feng B Quan
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
- Muséum National d'Histoire Naturelle (MNHN), CNRS UMR 7221, Paris, France
| | - Laura Desban
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Olivier Mirat
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Maxime Kermarquer
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Julian Roussel
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Fanny Koëth
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Hugo Marnas
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Lydia Djenoune
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - François-Xavier Lejeune
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle (MNHN), CNRS UMR 7221, Paris, France
| | - Claire Wyart
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
32
|
Hu L, Li H, Chi Z, He J. Loss of the RNA-binding protein Rbm15 disrupts liver maturation in zebrafish. J Biol Chem 2020; 295:11466-11472. [PMID: 32518161 PMCID: PMC7450140 DOI: 10.1074/jbc.ra120.014080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Liver organogenesis begins with hepatic precursors in the foregut endoderm, followed by hepatoblast specification, differentiation, outgrowth, and maturation for the formation of functional hepatocytes. Although several signaling pathways and critical factors that regulate liver specification, differentiation, and proliferation have been identified, little is known about how liver maturation is regulated. Here, we used a screen for mutations affecting liver development in zebrafish and identified a cq96 mutant that exhibits a specific defect in liver maturation. Results from positional cloning revealed that cq96 encodes an RNA-binding protein, Rbm15, which is an evolutionarily conserved Spen family protein and known to play a crucial role in RNA m6A modification, nuclear export, and alternative splicing. However, a function of Rbm15 in embryonic liver development has not been reported. We found that Rbm15 is specifically expressed in the liver after its differentiation. CRISPR/Cas9-mediated loss of rbm15 repressed hepatic maturation, but did not affect hepatoblast specification, differentiation, and hepatocyte proliferation and apoptosis. Additional experiments disclosed that the mTOR complex 1 (mTORC1) pathway is highly activated in rbm15-deficient hepatocytes. Moreover, rapamycin treatment partially restored normal hepatic gene expression as well as the nuclear location of the transcription factor Hnf4a. Taken together, these results reveal an unexpected role of Rbm15 in liver maturation.
Collapse
Affiliation(s)
- Liang Hu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Hongyan Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhiping Chi
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
33
|
Macchi F, Sadler KC. Unraveling the Epigenetic Basis of Liver Development, Regeneration and Disease. Trends Genet 2020; 36:587-597. [PMID: 32487496 DOI: 10.1016/j.tig.2020.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
Abstract
A wealth of studies over several decades has revealed an epigenetic prepattern that determines the competence of cellular differentiation in the developing liver. More recently, studies focused on the impact of epigenetic factors during liver regeneration suggest that an epigenetic code in the quiescent liver may establish its regenerative potential. We review work on the pioneer factors and other chromatin remodelers that impact the gene expression patterns instructing hepatocyte and biliary cell specification and differentiation, along with the requirement of epigenetic regulatory factors for hepatic outgrowth. We then explore recent studies involving the role of epigenetic regulators, Arid1a and Uhrf1, in efficient activation of proregenerative genes during liver regeneration, thus highlighting the epigenetic mechanisms of liver disease and tumor development.
Collapse
Affiliation(s)
- Filippo Macchi
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
34
|
Durel JF, Nerurkar NL. Mechanobiology of vertebrate gut morphogenesis. Curr Opin Genet Dev 2020; 63:45-52. [PMID: 32413823 DOI: 10.1016/j.gde.2020.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 01/15/2023]
Abstract
Approximately a century after D'Arcy Thompson's On Growth and Form, there continues to be widespread interest in the biophysical and mathematical basis of morphogenesis. Particularly over the past 20 years, this interest has led to great advances in our understanding of a broad range of processes in embryonic development through a quantitative, mechanically driven framework. Nowhere in vertebrate development is this more apparent than the development of endodermally derived organs. Here, we discuss recent advances in the study of gut development that have emerged primarily from mechanobiology-motivated approaches that span from gut tube morphogenesis and later organogenesis of the respiratory and gastrointestinal systems.
Collapse
Affiliation(s)
- John F Durel
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, United States.
| |
Collapse
|
35
|
Heat-shock-induced tyrosinase gene ablation with CRISPR in zebrafish. Mol Genet Genomics 2020; 295:911-922. [PMID: 32367255 DOI: 10.1007/s00438-020-01681-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/23/2020] [Indexed: 01/05/2023]
Abstract
Tyrosinase (TYR) converts L-tyrosine into 3,4-dihydroxyphenylalanine (L-DOPA) and L-DOPA into L-dopaquinone, which can produce melanin pigment. The abrogation of the functional activity of TYR can result in albino skin and eye diseases because of a deficiency in melanin pigment production. In this study, we developed and characterized an inducible knockout TYR platform comprising the heat-inducible heat-shock-promoter-70-driving CRISPR/Cas9 system and a zU6-promoter-driving tyr single guide RNA (sgRNA) system to investigate the temporal expression of TYR genes. To overcome the difficulty of identifying zebrafish germline integrations and facilitate the observation of Cas9 expression, heart-specific cmlc2:enhanced green fluorescent protein (EGFP; used to confirm tyr sgRNA expression) and two selectable markers (P2A-mCherry and internal ribosomal entry site-EGFP) were applied in our system. Heat shock treatment administered to Cas9 transgenic embryos induced mCherry or EGFP fluorescence expression throughout the embryos' bodies, and Cas9 protein was detected 1 h after heat shock treatment. Mutations were created by direct injection and line crossing, which led to mosaic and complete depigmentation phenotypes in approximately 50% and 100% of the embryos, respectively. Using our system, conditional TYR knockout in zebrafish was achieved efficiently and simply.
Collapse
|
36
|
Germline Stem Cells Drive Ovary Regeneration in Zebrafish. Cell Rep 2020; 26:1709-1717.e3. [PMID: 30759383 DOI: 10.1016/j.celrep.2019.01.061] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Germline stem cells (GSCs) sustain gametogenesis during the organismal life cycle. Although evidence suggests that GSCs are consistently present in the zebrafish ovary and support oogenesis, whether GSCs are involved in zebrafish ovary regeneration is poorly understood. Here, we found that nanos2, a conserved vertebrate GSC marker, is required for maintaining GSCs in zebrafish. We applied genetic ablation and tissue resection techniques to delineate the function of GSCs in zebrafish ovary regeneration. After GSC ablation, ovaries fail to regenerate and are converted to sterile testes. Amputated ovarian tissues completely regenerate as a result of the proliferation of residual GSCs, but nanos2 mutant ovaries fail to regenerate after amputation due to a lack of GSCs. The repression of Wnt signaling leads to reduced numbers of GSCs and delayed ovary regeneration. Our results provide insight into the key role of GSCs in driving ovary regeneration.
Collapse
|
37
|
Huang W, Chen F, Ma Q, Xin J, Li J, Chen J, Zhou B, Chen M, Li J, Peng J. Ribosome biogenesis gene DEF/UTP25 is essential for liver homeostasis and regeneration. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1651-1664. [PMID: 32303961 DOI: 10.1007/s11427-019-1635-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
Hepatocytes are responsible for diverse metabolic activities in a liver. Proper ribosome biogenesis is essential to sustain the function of hepatocytes. There are approximately 200 factors involved in ribosome biogenesis; however, few studies have focused on the role of these factors in maintaining liver homeostasis. The digestive organ expansion factor (def) gene encodes a nucleolar protein Def that participates in ribosome biogenesis. In addition, Def forms a complex with cysteine protease Calpain3 (Capn3) and recruits Capn3 to the nucleolus to cleave protein targets. However, the function of Def has not been characterized in the mammalian digestive organs. In this report, we show that conditional knockout of the mouse def gene in hepatocytes causes cell morphology abnormality and constant infiltration of inflammatory cells in the liver. As age increases, the def conditional knockout liver displays multiple tissue damage foci and biliary hyperplasia. Moreover, partial hepatectomy leads to sudden acute death to the def conditional knockout mice and this phenotype is rescued by intragastric injection of the anti-inflammation drug dexamethasone one day before hepatectomy. Our results demonstrate that Def is essential for maintaining the liver homeostasis and liver regeneration capacity in mammals.
Collapse
Affiliation(s)
- Weidong Huang
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feng Chen
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Quanxin Ma
- Academy of Chinese Medicine/Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiaqi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Minli Chen
- Academy of Chinese Medicine/Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Jinrong Peng
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
38
|
Wu J, Lu C, Ge S, Mei J, Li X, Guo W. Igf2bp1 is required for hepatic outgrowth during early liver development in zebrafish. Gene 2020; 744:144632. [PMID: 32240777 DOI: 10.1016/j.gene.2020.144632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/09/2023]
Abstract
IGF2BPs, a subclass of RNA-binding proteins, regulate cellular differentiation, proliferation and migration during multiple organs development, but their functions in liver development still remain unclear. Here, in this study, whole-mount in situ hybridization showed that igf2bp1 was constantly and stably expressed at early stages of embryo development in zebrafish. Both the morpholino-induced knockdown and CRISPR/Cas9-mediated knockout of igf2bp1 led to a reduced-size liver phenotype. Further analysis revealed that igf2bp1 is required for hepatic outgrowth, but not for hepatoblast specification and budding. Deficiency of igf2bp1 resulted in reduced cell proliferation, but had no effect on apoptosis. Therefore, we concluded that igf2bp1 is a critical factor to regulate hepatic outgrowth via cell proliferation during early liver development in zebrafish.
Collapse
Affiliation(s)
- Junjie Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Yunnan Institute of Fisheries Sciences, Kunming 650111, China
| | - Chang Lu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Si Ge
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohui Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenjie Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
39
|
Huang Y, Huang CX, Wang WF, Liu H, Wang HL. Zebrafish miR-462-731 is required for digestive organ development. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100679. [PMID: 32200130 DOI: 10.1016/j.cbd.2020.100679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs), as important regulators of post-transcriptional gene expression, play important roles in the occurrence and function of organs. In this study, morpholino (MO) knockdown of miR-462/miR-731 was used to investigate the potential mechanisms of the miR-462-731 cluster during zebrafish liver development. The results showed significant reduction of digestive organs, especially liver and exocrine pancreas after the miR-462/miR-731 knockdown, and those phenotypes could be partially rescued by corresponding miRNA duplex. Acinar cells of the exocrine pancreas were also severely affected with pancreatic insufficiency. In particular, knockdown of miR-462 caused pancreas morphogenesis abnormity with specific bilateral exocrine pancreas. Additionally, it was found that miR-731 played a role in liver and exocrine pancreas development by directly targeting dkk3b, instead of the down-regulation of Wnt/β-catenin signaling. These findings contribute significantly to our understanding of molecular mechanisms of miR-462-731 cluster in development of digestive organs.
Collapse
Affiliation(s)
- Yan Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Chun-Xiao Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Wei-Feng Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| |
Collapse
|
40
|
Gong T, Zhang C, Ni X, Li X, Li J, Liu M, Zhan D, Xia X, Song L, Zhou Q, Ding C, Qin J, Wang Y. A time-resolved multi-omic atlas of the developing mouse liver. Genome Res 2020; 30:263-275. [PMID: 32051188 PMCID: PMC7050524 DOI: 10.1101/gr.253328.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
Liver organogenesis and development are composed of a series of complex, well-orchestrated events. Identifying key factors and pathways governing liver development will help elucidate the physiological and pathological processes including those of cancer. We conducted multidimensional omics measurements including protein, mRNA, and transcription factor (TF) DNA-binding activity for mouse liver tissues collected from embryonic day 12.5 (E12.5) to postnatal week 8 (W8), encompassing major developmental stages. These data sets reveal dynamic changes of core liver functions and canonical signaling pathways governing development at both mRNA and protein levels. The TF DNA-binding activity data set highlights the importance of TF activity in early embryonic development. A comparison between mouse liver development and human hepatocellular carcinoma (HCC) proteomic profiles reveal that more aggressive tumors are characterized with the activation of early embryonic development pathways, whereas less aggressive ones maintain liver function-related pathways that are elevated in the mature liver. This work offers a panoramic view of mouse liver development and provides a rich resource to explore in-depth functional characterization.
Collapse
Affiliation(s)
- Tongqing Gong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Chunchao Zhang
- Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiaotian Ni
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China.,Department of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xianju Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Jin'e Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China.,Department of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xia Xia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Quan Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China.,State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China.,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
41
|
Li X, Sun B, Zhao X, An J, Zhang Y, Gu Q, Zhao N, Wang Y, Liu F. Function of BMP4 in the Formation of Vasculogenic Mimicry in Hepatocellular Carcinoma. J Cancer 2020; 11:2560-2571. [PMID: 32201526 PMCID: PMC7066000 DOI: 10.7150/jca.40558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/21/2020] [Indexed: 01/18/2023] Open
Abstract
Vasculogenic mimicry (VM) is linked to vascular invasion of human hepatocellular carcinoma (HCC). BMP4, one BMP family member, is upregulated in several cancers. The purpose of this report is to identify the function of BMP4 in the formation of VM in HCC and the mechanism underling this regulation. In our report, BMP4 up-regulation resulted in an increase in migration, invasion and channel-like structure formation as well as induced epithelial-mesenchymal transition (EMT) process and stem cell-associated proteins OCT4 and SOX2 expression in HCC cells. In addition, The VM-associated proteins, including EphA2, VE-cadherin and MMP2, also could be effectively enhanced by the overexpression of BMP4. Furthermore, according to the TCGA database, higher expression of BMP4 is seen in HCC in contrast to normal liver samples. Immunohistochemistry revealed that BMP4 was positively associated with VM formation, age, histological differentiation, HCC stage, and shorter survival duration. These data demonstrated that BMP4 could promote VM network formation in HCC through induction of stemness in EMT and modulating the EphA2/VE-cadherin/MMP2 signaling pathway.
Collapse
Affiliation(s)
- Xiao Li
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Baocun Sun
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiulan Zhao
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Jindan An
- Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Qiang Gu
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Nan Zhao
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Yong Wang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Fang Liu
- Department Of Pathology, General Hospital Of Tianjin Medical University, Tianjin, 300052, China.,Department Of Pathology, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
42
|
Huang S, Wang Y, Luo L, Li X, Jin X, Li S, Yu X, Yang M, Guo Z. BMP2 Is Related to Hirschsprung's Disease and Required for Enteric Nervous System Development. Front Cell Neurosci 2019; 13:523. [PMID: 31849612 PMCID: PMC6901830 DOI: 10.3389/fncel.2019.00523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/07/2019] [Indexed: 01/20/2023] Open
Abstract
The enteric nervous system (ENS) is derived from neural crest cells (NCCs). Defects in ENS NCCs colonizing in the intestines lead to an absence of enteric ganglia in the colon and results in Hirschsprung’s disease (HSCR). Bone morphogenetic proteins (BMPs) play diverse roles in the proliferation, migration and survival of ENS NCCs; however, whether BMPs are involved in HSCR and the underlying mechanism remains largely unknown. In this study, we found that BMP2 expression is significantly decreased in HSCR patients. Further experiments demonstrated that BMP2 is involved in the regulation of NCC proliferation, migration and differentiation. In a detailed analysis of the role of BMP2 in HSCR development in vivo, we demonstrated that BMP2b regulates the proliferation, migration and differentiation of vagal NCCs in zebrafish and that BMP2b is required for intestinal smooth muscle development. In addition, we showed that BMP2b is involved in regulating the expression of glial cell line-derived neurotrophic factor (GDNF) in the intestine, which mediates the regulation of ENS development by BMP2b in zebrafish. These results highlight a central role of the BMP-GDNF cascade in intestinal patterning and ENS development. Our results further demonstrate the key role of BMP2 in the etiology of HSCR in vitro and in vivo.
Collapse
Affiliation(s)
- Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China
| | - Yi Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lingfei Luo
- Key Laboratory of Aquatic Organism Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.,Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.,Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaoqing Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xianqing Jin
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shuangshuang Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoping Yu
- Department of Public Health, Chengdu Medical College, Chengdu, China
| | - Min Yang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Zhenhua Guo
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
43
|
Ang LT, Tan AKY, Autio MI, Goh SH, Choo SH, Lee KL, Tan J, Pan B, Lee JJH, Lum JJ, Lim CYY, Yeo IKX, Wong CJY, Liu M, Oh JLL, Chia CPL, Loh CH, Chen A, Chen Q, Weissman IL, Loh KM, Lim B. A Roadmap for Human Liver Differentiation from Pluripotent Stem Cells. Cell Rep 2019; 22:2190-2205. [PMID: 29466743 PMCID: PMC5854481 DOI: 10.1016/j.celrep.2018.01.087] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
How are closely related lineages, including liver, pancreas, and intestines, diversified from a common endodermal origin? Here, we apply principles learned from developmental biology to rapidly reconstitute liver progenitors from human pluripotent stem cells (hPSCs). Mapping the formation of multiple endodermal lineages revealed how alternate endodermal fates (e.g., pancreas and intestines) are restricted during liver commitment. Human liver fate was encoded by combinations of inductive and repressive extracellular signals at different doses. However, these signaling combinations were temporally re-interpreted: cellular competence to respond to retinoid, WNT, TGF-β, and other signals sharply changed within 24 hr. Consequently, temporally dynamic manipulation of extracellular signals was imperative to suppress the production of unwanted cell fates across six consecutive developmental junctures. This efficiently generated 94.1% ± 7.35% TBX3+HNF4A+ human liver bud progenitors and 81.5% ± 3.2% FAH+ hepatocyte-like cells by days 6 and 18 of hPSC differentiation, respectively; the latter improved short-term survival in the Fah-/-Rag2-/-Il2rg-/- mouse model of liver failure.
Collapse
Affiliation(s)
- Lay Teng Ang
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore.
| | - Antson Kiat Yee Tan
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Matias I Autio
- Human Genetics Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Singapore 117599, Singapore
| | - Su Hua Goh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Siew Hua Choo
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Kian Leong Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jianmin Tan
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Bangfen Pan
- Human Genetics Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Singapore 117599, Singapore
| | - Jane Jia Hui Lee
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jen Jen Lum
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Christina Ying Yan Lim
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Isabelle Kai Xin Yeo
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Chloe Jin Yee Wong
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Min Liu
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Jueween Ling Li Oh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Cheryl Pei Lynn Chia
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Chet Hong Loh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Angela Chen
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qingfeng Chen
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Microbiology, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Irving L Weissman
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bing Lim
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore.
| |
Collapse
|
44
|
Russell JO, Ko S, Monga SP, Shin D. Notch Inhibition Promotes Differentiation of Liver Progenitor Cells into Hepatocytes via sox9b Repression in Zebrafish. Stem Cells Int 2019; 2019:8451282. [PMID: 30992706 PMCID: PMC6434270 DOI: 10.1155/2019/8451282] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/12/2019] [Indexed: 02/08/2023] Open
Abstract
Liver regeneration after most forms of injury is mediated through the proliferation of hepatocytes. However, when hepatocyte proliferation is impaired, such as during chronic liver disease, liver progenitor cells (LPCs) arising from the biliary epithelial cell (BEC) compartment can give rise to hepatocytes to mediate hepatic repair. Promotion of LPC-to-hepatocyte differentiation in patients with chronic liver disease could serve as a potentially new therapeutic option, but first requires the identification of the molecular mechanisms driving this process. Notch signaling has been identified as an important signaling pathway promoting the BEC fate during development and has also been implicated in regulating LPC differentiation during regeneration. SRY-related HMG box transcription factor 9 (Sox9) is a direct target of Notch signaling in the liver, and Sox9 has also been shown to promote the BEC fate during development. We have recently shown in a zebrafish model of LPC-driven liver regeneration that inhibition of Hdac1 activity through MS-275 treatment enhances sox9b expression in LPCs and impairs LPC-to-hepatocyte differentiation. Therefore, we hypothesized that inhibition of Notch signaling would promote LPC-to-hepatocyte differentiation by repressing sox9b expression in zebrafish. We ablated the hepatocytes of Tg(fabp10a:CFP-NTR) larvae and blocked Notch activation during liver regeneration through treatment with γ-secretase inhibitor LY411575 and demonstrated enhanced induction of Hnf4a in LPCs. Alternatively, enhancing Notch signaling via Notch3 intracellular domain (N3ICD) overexpression impaired Hnf4a induction. Hepatocyte ablation in sox9b heterozygous mutant embryos enhanced Hnf4a induction, while BEC-specific Sox9b overexpression impaired LPC-to-hepatocyte differentiation. Our results establish the Notch-Sox9b signaling axis as inhibitory to LPC-to-hepatocyte differentiation in a well-established in vivo LPC-driven liver regeneration model.
Collapse
Affiliation(s)
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh, Pittsburgh, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, USA
| | - Satdarshan P. Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
45
|
FGF signal is not required for hepatoblast differentiation of human iPS cells. Sci Rep 2019; 9:3713. [PMID: 30842525 PMCID: PMC6403225 DOI: 10.1038/s41598-019-40305-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/13/2019] [Indexed: 01/08/2023] Open
Abstract
Human induced pluripotent stem cell-derived hepatocyte-like cells are expected to be utilized in pharmaceutical research and regenerative medicine. In general, human induced pluripotent stem (iPS) cells are differentiated into hepatocyte-like cells through definitive endoderm cells and hepatoblast-like cells using various growth factors that are essential for liver development. Although recombinant bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs) are widely used in the hepatoblast differentiation, hepatoblast differentiation process has not been fully modified. In this study, we examined the roles of BMPs and FGFs in the hepatoblast differentiation from human iPS cells. Surprisingly, the gene expression levels of hepatoblast markers were upregulated by the removal of FGFs. In addition, the percentages of hepatoblast markers-positive cells were increased by the removal of FGFs. Furthermore, the hepatocyte differentiation potency was also significantly increased by the removal of FGFs. To examine whether FGF signals are completely unnecessary for the hepatoblast differentiation, the expression levels of endogenous FGF ligands and receptors were examined. The definitive endoderm cells highly expressed the FGF ligand, FGF2, and the FGF receptor, FGFR1. To examine the role of endogenous FGF signals, an FGFR inhibitor was treated during the hepatoblast differentiation. The hepatoblast differentiation was promoted by using FGFR inhibitor, suggesting that endogenous FGF signals are also unnecessary for the hepatoblast differentiation. In conclusion, we found that FGF signals are not essential for hepatoblast differentiation. We believe that our finding will be useful for generating functional hepatocyte-like cells for medical applications.
Collapse
|
46
|
Heslop JA, Duncan SA. The Use of Human Pluripotent Stem Cells for Modeling Liver Development and Disease. Hepatology 2019; 69:1306-1316. [PMID: 30251414 DOI: 10.1002/hep.30288] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022]
Abstract
The use of pluripotent stem cells (PSCs) has transformed the investigation of liver development and disease. Clinical observations and animal models have provided the foundations of our understanding in these fields. While animal models remain essential research tools, long experimental lead times and low throughput limit the scope of investigations. The ability of PSCs to produce large numbers of human hepatocyte-like cells, with a given or modified genetic background, allows investigators to use previously incompatible experimental techniques, such as high-throughput screens, to enhance our understanding of liver development and disease. In this review, we explore how PSCs have expedited our understanding of developmental mechanisms and have been used to identify new therapeutic options for numerous hepatic diseases. We discuss the future directions of the field, including how to further unlock the potential of the PSC model to make it amenable for use with a broader range of assays and a greater repertoire of diseases. Furthermore, we evaluate the current weaknesses of the PSC model and the directions open to researchers to address these limitations. Conclusion: The use of PSCs to model human liver disease and development has and will continue to have substantial impact, which is likely to further expand as protocols used to generate hepatic cells are improved.
Collapse
Affiliation(s)
- James A Heslop
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
47
|
Krishnan J, Rohner N. Sweet fish: Fish models for the study of hyperglycemia and diabetes. J Diabetes 2019; 11:193-203. [PMID: 30264455 DOI: 10.1111/1753-0407.12860] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/01/2018] [Accepted: 09/09/2018] [Indexed: 01/15/2023] Open
Abstract
Fish are good for your health in more ways than you may expect. For one, eating fish is a common dietary recommendation for a healthy diet. However, fish have much more to provide than omega-3 fatty acids to your circulatory system. Some fish species now serve as important and innovative model systems for diabetes research, providing novel and unique advantages compared with classical research models. Not surprisingly, the largest share of diabetes research in fish occurs in the laboratory workhorse among fish, the zebrafish (Danio rerio). Established as a genetic model system to study development, these small cyprinid fish have eventually conquered almost every scientific discipline and, over the past decade, have emerged as an important model system for metabolic diseases, including diabetes mellitus. In this review we highlight the practicability of using zebrafish to study diabetes and hyperglycemia, and summarize some of the recent research and breakthroughs made using this model. Equally exciting is the appearance of another emerging discipline, one that is taking advantage of evolution by studying cases of naturally occurring insulin resistance in fish species. We briefly discuss two such models in this review, namely the rainbow trout (Oncorhynchus mykiss) and the cavefish (Astyanax mexicanus).
Collapse
Affiliation(s)
- Jaya Krishnan
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
- Department of Molecular and Integrative Physiology, KU Medical Center, Kansas City, Missouri, USA
| |
Collapse
|
48
|
Ko S, Russell JO, Tian J, Gao C, Kobayashi M, Feng R, Yuan X, Shao C, Ding H, Poddar M, Singh S, Locker J, Weng HL, Monga SP, Shin D. Hdac1 Regulates Differentiation of Bipotent Liver Progenitor Cells During Regeneration via Sox9b and Cdk8. Gastroenterology 2019; 156:187-202.e14. [PMID: 30267710 PMCID: PMC6309465 DOI: 10.1053/j.gastro.2018.09.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Upon liver injury in which hepatocyte proliferation is compromised, liver progenitor cells (LPCs), derived from biliary epithelial cells (BECs), differentiate into hepatocytes. Little is known about the mechanisms of LPC differentiation. We used zebrafish and mouse models of liver injury to study the mechanisms. METHODS We used transgenic zebrafish, Tg(fabp10a:CFP-NTR), to study the effects of compounds that alter epigenetic factors on BEC-mediated liver regeneration. We analyzed zebrafish with disruptions of the histone deacetylase 1 gene (hdac1) or exposed to MS-275 (an inhibitor of Hdac1, Hdac2, and Hdac3). We also analyzed zebrafish with mutations in sox9b, fbxw7, kdm1a, and notch3. Zebrafish larvae were collected and analyzed by whole-mount immunostaining and in situ hybridization; their liver tissues were collected for quantitative reverse transcription polymerase chain reaction. We studied mice in which hepatocyte-specific deletion of β-catenin (Ctnnb1flox/flox mice injected with Adeno-associated virus serotype 8 [AAV8]-TBG-Cre) induces differentiation of LPCs into hepatocytes after a choline-deficient, ethionine-supplemented (CDE) diet. Liver tissues were collected and analyzed by immunohistochemistry and immunoblots. We performed immunohistochemical analyses of liver tissues from patients with compensated or decompensated cirrhosis or acute on chronic liver failure (n = 15). RESULTS Loss of Hdac1 activity in zebrafish blocked differentiation of LPCs into hepatocytes by increasing levels of sox9b mRNA and reduced differentiation of LPCs into BECs by increasing levels of cdk8 mRNA, which encodes a negative regulator gene of Notch signaling. We identified Notch3 as the receptor that regulates differentiation of LPCs into BECs. Loss of activity of Kdm1a, a lysine demethylase that forms repressive complexes with Hdac1, produced the same defects in differentiation of LPCs into hepatocytes and BECs as observed in zebrafish with loss of Hdac1 activity. Administration of MS-275 to mice with hepatocyte-specific loss of β-catenin impaired differentiation of LPCs into hepatocytes after the CDE diet. HDAC1 was expressed in reactive ducts and hepatocyte buds of liver tissues from patients with cirrhosis. CONCLUSIONS Hdac1 regulates differentiation of LPCs into hepatocytes via Sox9b and differentiation of LPCs into BECs via Cdk8, Fbxw7, and Notch3 in zebrafish with severe hepatocyte loss. HDAC1 activity was also required for differentiation of LPCs into hepatocytes in mice with liver injury after the CDE diet. These pathways might be manipulated to induce LPC differentiation for treatment of patients with advanced liver diseases.
Collapse
Affiliation(s)
- Sungjin Ko
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania; Department of Pathology, Pittsburgh, Pennsylvania.
| | | | - Jianmin Tian
- Department of Pathology, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania
| | - Ce Gao
- Ministry of Education Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Rilu Feng
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaodong Yuan
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Chen Shao
- Department of Pathology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | | | - Sucha Singh
- Department of Pathology, Pittsburgh, Pennsylvania
| | - Joseph Locker
- Department of Pathology, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania
| | - Hong-Lei Weng
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Satdarshan P Monga
- Department of Pathology, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
49
|
Kirchgeorg L, Felker A, van Oostrom M, Chiavacci E, Mosimann C. Cre/lox-controlled spatiotemporal perturbation of FGF signaling in zebrafish. Dev Dyn 2018; 247:1146-1159. [PMID: 30194800 DOI: 10.1002/dvdy.24668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Spatiotemporal perturbation of signaling pathways in vivo remains challenging and requires precise transgenic control of signaling effectors. Fibroblast growth factor (FGF) signaling guides multiple developmental processes, including body axis formation and cell fate patterning. In zebrafish, mutants and chemical perturbations affecting FGF signaling have uncovered key developmental processes; however, these approaches cause embryo-wide perturbations, rendering assessment of cell-autonomous vs. non-autonomous requirements for FGF signaling in individual processes difficult. RESULTS Here, we created the novel transgenic line fgfr1-dn-cargo, encoding dominant-negative Fgfr1a with fluorescent tag under combined Cre/lox and heatshock control to perturb FGF signaling spatiotemporally. Validating efficient perturbation of FGF signaling by fgfr1-dn-cargo primed with ubiquitous CreERT2, we established that primed, heatshock-induced fgfr1-dn-cargo behaves similarly to pulsed treatment with the FGFR inhibitor SU5402. Priming fgfr1-dn-cargo with CreERT2 in the lateral plate mesoderm triggered selective cardiac and pectoral fin phenotypes without drastic impact on overall embryo patterning. Harnessing lateral plate mesoderm-specific FGF inhibition, we recapitulated the cell-autonomous and temporal requirement for FGF signaling in pectoral fin outgrowth, as previously inferred from pan-embryonic FGF inhibition. CONCLUSIONS As a paradigm for rapid Cre/lox-mediated signaling perturbations, our results establish fgfr1-dn-cargo as a genetic tool to define the spatiotemporal requirements for FGF signaling in zebrafish. Developmental Dynamics 247:1146-1159, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucia Kirchgeorg
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Anastasia Felker
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Marek van Oostrom
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
50
|
Li H, Zhu L, Chen H, Li T, Han Q, Wang S, Yao X, Feng H, Fan L, Gao S, Boyd R, Cao X, Zhu P, Li J, Keating A, Su X, Zhao RC. Generation of Functional Hepatocytes from Human Adipose-Derived MYC + KLF4 + GMNN + Stem Cells Analyzed by Single-Cell RNA-Seq Profiling. Stem Cells Transl Med 2018; 7:792-805. [PMID: 30272835 PMCID: PMC6216430 DOI: 10.1002/sctm.17-0273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/20/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Cell transplantation holds considerable promise for end‐stage liver diseases but identifying a suitable, transplantable cell type has been problematic. Here, we describe a novel type of mesenchymal stem cells (MSCs) from human adipose tissue. These cells are different from previously reported MSCs, they are in the euchromatin state with epigenetic multipotency, and express pluripotent markers MYC, KLF4, and GMNN. Most of the genes associated with germ layer specification are modified by H3K4me3 or co‐modified by H3K4me3 and H3K27me3. We named this new type of MSCs as adult multipotent adipose‐derived stem cells (M‐ADSCs). Using a four‐step nonviral system, M‐ADSCs can be efficiently Induced into hepatocyte like cells with expression of hepatocyte markers, drug metabolizing enzymes and transporters, and the other basic functional properties including albumin (ALB) secretion, glycogen storage, detoxification, low‐density lipoprotein intake, and lipids accumulation. In vivo both M‐ADSCs‐derived hepatoblasts and hepatocytes could form vascularized liver‐like tissue, secrete ALB and express metabolic enzymes. Single‐cell RNA‐seq was used to investigate the important stages in this conversion. M‐ADSCs could be converted to a functionally multipotent state during the preinduction stage without undergoing reprogramming process. Our findings provide important insights into mechanisms underlying cell development and conversion. stem cells translational medicine2018;7:792–805
Collapse
Affiliation(s)
- Hongling Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No.BZO381), Beijing, People's Republic of China
| | - Li Zhu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No.BZO381), Beijing, People's Republic of China
| | - Huimin Chen
- Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Tangping Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No.BZO381), Beijing, People's Republic of China
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No.BZO381), Beijing, People's Republic of China
| | - Shihua Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No.BZO381), Beijing, People's Republic of China
| | - Xinglei Yao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No.BZO381), Beijing, People's Republic of China
| | - Hongli Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Linyuan Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No.BZO381), Beijing, People's Republic of China
| | - Shaorong Gao
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, People's Republic of China
| | - Richard Boyd
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Xu Cao
- Departments of Orthopaedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No.BZO381), Beijing, People's Republic of China
| | - Armand Keating
- Cell Therapy Program, Princess Margaret Hospital, Department of Medicine, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Xiaodong Su
- Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No.BZO381), Beijing, People's Republic of China
| |
Collapse
|