1
|
Lee SC, Lee WJ, Son YB, Jin YB, Lee HJ, Bok E, Lee S, Lee SY, Jo CH, Kim TS, Hong CY, Kang SY, Rho GJ, Choe YH, Lee SL. Trichostatin A-Induced Epigenetic Modifications and Their Influence on the Development of Porcine Cloned Embryos Derived from Bone Marrow-Mesenchymal Stem Cells. Int J Mol Sci 2025; 26:2359. [PMID: 40076980 PMCID: PMC11900109 DOI: 10.3390/ijms26052359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Abnormal epigenetic reprogramming of nuclear-transferred (NT) embryos leads to the limited efficiency of producing cloned animals. Trichostatin A (TSA), a histone deacetylase inhibitor, improves NT embryo development, but its role in histone acetylation in porcine embryos cloned with mesenchymal stem cells (MSCs) is not fully understood. This study aimed to compare the effects of TSA on embryo development, histone acetylation patterns, and key epigenetic-related genes between in vitro fertilization (IVF), NT-MSC, and 40 nM TSA-treated NT-MSC (T-NT-MSC). The results demonstrated an increase in the blastocyst rate from 13.7% to 32.5% in the T-NT-MSC, and the transcription levels of CDX2, NANOG, and IGF2R were significantly elevated in T-NT-MSC compared to NT-MSC. TSA treatment also led to increased fluorescence intensity of acH3K9 and acH3K18 during early embryo development but did not differ in acH4K12 levels. The expression of epigenetic-related genes (HDAC1, HDAC2, CBP, p300, DNMT3a, and DNMT1) in early pre-implantation embryos followed a pattern similar to IVF embryos. In conclusion, TSA treatment improves the in vitro development of porcine embryos cloned with MSCs by increasing histone acetylation, modifying chromatin structure, and enhancing the expression of key genes, resulting in profiles similar to those of IVF embryos.
Collapse
Affiliation(s)
- Seung-Chan Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Central Research Center, Apures, Inc., Hansan-gil, Pyeongtaek-si 17792, Republic of Korea
| | - Won-Jae Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Bum Son
- Department of Obstetrics, College of Veterinary Medicine, Chonnam National University, 300 Yonbongdong, Buk-gu, Gwangju 61186, Republic of Korea
| | - Yeung Bae Jin
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeon-Jeong Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Eunyeong Bok
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sangyeob Lee
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sang-Yun Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chan-Hee Jo
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae-Seok Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chae-Yeon Hong
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seo-Yoon Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yong-Ho Choe
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Rupasinghe M, Bersaglieri C, Leslie Pedrioli DM, Pedrioli PG, Panatta M, Hottiger MO, Cinelli P, Santoro R. PRAMEL7 and CUL2 decrease NuRD stability to establish ground-state pluripotency. EMBO Rep 2024; 25:1453-1468. [PMID: 38332149 PMCID: PMC10933316 DOI: 10.1038/s44319-024-00083-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Pluripotency is established in E4.5 preimplantation epiblast. Embryonic stem cells (ESCs) represent the immortalization of pluripotency, however, their gene expression signature only partially resembles that of developmental ground-state. Induced PRAMEL7 expression, a protein highly expressed in the ICM but lowly expressed in ESCs, reprograms developmentally advanced ESC+serum into ground-state pluripotency by inducing a gene expression signature close to developmental ground-state. However, how PRAMEL7 reprograms gene expression remains elusive. Here we show that PRAMEL7 associates with Cullin2 (CUL2) and this interaction is required to establish ground-state gene expression. PRAMEL7 recruits CUL2 to chromatin and targets regulators of repressive chromatin, including the NuRD complex, for proteasomal degradation. PRAMEL7 antagonizes NuRD-mediated repression of genes implicated in pluripotency by decreasing NuRD stability and promoter association in a CUL2-dependent manner. Our data link proteasome degradation pathways to ground-state gene expression, offering insights to generate in vitro models to reproduce the in vivo ground-state pluripotency.
Collapse
Affiliation(s)
- Meneka Rupasinghe
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland
- Molecular Life Science Program, Life Science Zurich Graduate School, University of Zurich, 8057, Zurich, Switzerland
| | - Cristiana Bersaglieri
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland
| | - Deena M Leslie Pedrioli
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland
| | - Patrick Ga Pedrioli
- Department of Health Sciences and Technology, ETH Zurich, 8093, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Martina Panatta
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland
- RNA Biology Program, Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland
| | - Paolo Cinelli
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Raffaella Santoro
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Fang S, Wang J, Liu G, Qu B, Chunyu J, Xu W, Xiang J, Li X. DPPA2/4 Promote the Pluripotency and Proliferation of Bovine Extended Pluripotent Stem Cells by Upregulating the PI3K/AKT/GSK3β/β-Catenin Signaling Pathway. Cells 2024; 13:382. [PMID: 38474345 PMCID: PMC10930381 DOI: 10.3390/cells13050382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Developmental pluripotency-associated 2 (DPPA2) and DPPA4 are crucial transcription factors involved in maintaining pluripotency in humans and mice. However, the role of DPPA2/4 in bovine extended pluripotent stem cells (bEPSCs) has not been investigated. In this study, a subset of bEPSC-related differentially expressed genes (DEGs), including DPPA2 and DPPA4, was identified based on multiomics data (ATAC-seq and RNA-seq). Subsequent investigations revealed that double overexpression of DPPA2/4 facilitates the reprogramming of bovine fetal fibroblasts (BFFs) into bEPSCs, whereas knockout of DPPA2/4 in BFFs leads to inefficient reprogramming. DPPA2/4 overexpression and knockdown experiments revealed that the pluripotency and proliferation capability of bEPSCs were maintained by promoting the transition from the G1 phase to the S phase of the cell cycle. By activating the PI3K/AKT/GSK3β/β-catenin pathway in bEPSCs, DPPA2/4 can increase the nuclear accumulation of β-catenin, which further upregulates lymphoid enhancer binding factor 1 (LEF1) transcription factor activity. Moreover, DPPA2/4 can also regulate the expression of LEF1 by directly binding to its promoter region. Overall, our results demonstrate that DPPA2/4 promote the reprogramming of BFFs into bEPSCs while also maintaining the pluripotency and proliferation capability of bEPSCs by regulating the PI3K/AKT/GSK3β/β-catenin pathway and subsequently activating LEF1. These findings expand our understanding of the gene regulatory network involved in bEPSC pluripotency.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinzhu Xiang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (S.F.); (J.W.); (G.L.); (B.Q.); (J.C.); (W.X.)
| | - Xueling Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (S.F.); (J.W.); (G.L.); (B.Q.); (J.C.); (W.X.)
| |
Collapse
|
4
|
Fatima N, Saif Ur Rahman M, Qasim M, Ali Ashfaq U, Ahmed U, Masoud MS. Transcriptional Factors Mediated Reprogramming to Pluripotency. Curr Stem Cell Res Ther 2024; 19:367-388. [PMID: 37073151 DOI: 10.2174/1574888x18666230417084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 04/20/2023]
Abstract
A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.
Collapse
Affiliation(s)
- Nazira Fatima
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Muhammad Saif Ur Rahman
- Institute of Advanced Studies, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Uzair Ahmed
- EMBL Partnership Institute for Genome Editing Technologies, Vilnius University, Vilnius, 10257, Lithuania
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
5
|
Goissis MD, Cibelli JB. Early Cell Specification in Mammalian Fertilized and Somatic Cell Nuclear Transfer Embryos. Methods Mol Biol 2023; 2647:59-81. [PMID: 37041329 DOI: 10.1007/978-1-0716-3064-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Early cell specification in mammalian preimplantation embryos is an intricate cellular process that leads to coordinated spatial and temporal expression of specific genes. Proper segregation into the first two cell lineages, the inner cell mass (ICM) and the trophectoderm (TE), is imperative for developing the embryo proper and the placenta, respectively. Somatic cell nuclear transfer (SCNT) allows the formation of a blastocyst containing both ICM and TE from a differentiated cell nucleus, which means that this differentiated genome must be reprogrammed to a totipotent state. Although blastocysts can be generated efficiently through SCNT, the full-term development of SCNT embryos is impaired mostly due to placental defects. In this review, we examine the early cell fate decisions in fertilized embryos and compare them to observations in SCNT-derived embryos, in order to understand if these processes are affected by SCNT and could be responsible for the low success of reproductive cloning.
Collapse
Affiliation(s)
- Marcelo D Goissis
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil.
| | - Jose B Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Moura MT. Cloning by SCNT: Integrating Technical and Biology-Driven Advances. Methods Mol Biol 2023; 2647:1-35. [PMID: 37041327 DOI: 10.1007/978-1-0716-3064-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) into enucleated oocytes initiates nuclear reprogramming of lineage-committed cells to totipotency. Pioneer SCNT work culminated with cloned amphibians from tadpoles, while technical and biology-driven advances led to cloned mammals from adult animals. Cloning technology has been addressing fundamental questions in biology, propagating desired genomes, and contributing to the generation of transgenic animals or patient-specific stem cells. Nonetheless, SCNT remains technically complex and cloning efficiency relatively low. Genome-wide technologies revealed barriers to nuclear reprogramming, such as persistent epigenetic marks of somatic origin and reprogramming resistant regions of the genome. To decipher the rare reprogramming events that are compatible with full-term cloned development, it will likely require technical advances for large-scale production of SCNT embryos alongside extensive profiling by single-cell multi-omics. Altogether, cloning by SCNT remains a versatile technology, while further advances should continuously refresh the excitement of its applications.
Collapse
Affiliation(s)
- Marcelo Tigre Moura
- Chemical Biology Graduate Program, Federal University of São Paulo - UNIFESP, Campus Diadema, Diadema - SP, Brazil
| |
Collapse
|
7
|
da Silva CG, Martins CF. Stem Cells as Nuclear Donors for Mammalian Cloning. Methods Mol Biol 2023; 2647:105-119. [PMID: 37041331 DOI: 10.1007/978-1-0716-3064-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Mammals are routinely cloned by introducing somatic nuclei into enucleated oocytes. Cloning contributes to propagating desired animals, to germplasm conservation efforts, among other applications. A challenge to more broader use of this technology is the relatively low cloning efficiency, which inversely correlates with donor cell differentiation status. Emerging evidence suggests that adult multipotent stem cells improve cloning efficiency, while the greater potential of embryonic stem cells for cloning remains restricted to the mouse. The derivation of pluripotent or totipotent stem cells from livestock and wild species and their association with modulators of epigenetic marks in donor cells should increase cloning efficiency.
Collapse
Affiliation(s)
- Carolina Gonzales da Silva
- Federal Institute of Education, Science and Technology of Bahia, Campus Xique-Xique, Xique-Xique, Bahia, Brazil
| | - Carlos Frederico Martins
- Brazilian Agricultural Research Corporation (Embrapa Cerrados), Brasília, Federal District, Brazil.
| |
Collapse
|
8
|
Dynamic cytosolic foci of DPPA4 in human pluripotent stem cells. Tissue Cell 2022; 78:101893. [DOI: 10.1016/j.tice.2022.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022]
|
9
|
TSA Activates Pluripotency Factors in Porcine Recloned Embryos. Genes (Basel) 2022; 13:genes13040649. [PMID: 35456455 PMCID: PMC9029504 DOI: 10.3390/genes13040649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
Animal cloning is of great importance to the production of transgenic and genome-edited livestock. Especially for multiple gene-editing operations, recloning is one of the most feasible methods for livestock. In addition, a multiple-round cloning method is practically necessary for animal molecular breeding. However, cloning efficiency remains extremely low, especially for serial cloning, which seriously impedes the development of livestock breeding based on genome editing technology. The incomplete reprogramming and failure in oocyte activation of some pluripotent factors were deemed to be the main reason for the low efficiency of animal recloning. Here, to overcome this issue, which occurred frequently in the process of animal recloning, we established a reporter system in which fluorescent proteins were driven by pig OCT4 or SOX2 promoter to monitor the reprogramming process in cloned and recloned pig embryos. We studied the effect of different histone deacetylase (HDAC) inhibitors on incomplete reprogramming. Our results showed that Trichostatin A (TSA) could activate pluripotent factors and significantly enhance the development competence of recloned pig embryos, while the other two inhibitors, valproic acid (VPA) and Scriptaid, had little effect on that. Furthermore, we found no difference in OCT4 mRNA abundance between TSA-treated and untreated embryos. These findings suggest that TSA remarkably improves the reprogramming state of pig recloned embryos by restoring the expression of incompletely activated pluripotent genes OCT4 and SOX2.
Collapse
|
10
|
Modified Spirulina maxima Pectin Nanoparticles Improve the Developmental Competence of In Vitro Matured Porcine Oocytes. Animals (Basel) 2021; 11:ani11092483. [PMID: 34573449 PMCID: PMC8469918 DOI: 10.3390/ani11092483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Poor in vitro embryo development is a major obstacle in porcine assisted reproduction. In the current study, we utilized modified Spirulina maxima pectin nanoparticles as a supplement to improve porcine in vitro maturation medium. Results showed that modified Spirulina maxima pectin nanoparticles at 2.5 µg/mL improved oocyte maturation in form of first polar body extrusion, reduced oxidative stress, and increased the developmental competence of the oocytes after parthenogenetic activation and somatic cell nuclear transfer. Moreover, the relative transcripts quantification showed significant increase in the pluripotency-associated transcripts in the resultant cloned embryos after modified Spirulina maxima pectin nanoparticles supplementation. Therefore, we provide an optimum in vitro maturation condition to improve the in vitro embryo production in porcine. Abstract Molecular approaches have been used to determine metabolic substrates involved in the early embryonic processes to provide adequate culture conditions. To investigate the effect of modified Spirulina maxima pectin nanoparticles (MSmPNPs) on oocyte developmental competence, cumulus–oocyte complexes (COCs) retrieved from pig slaughterhouse ovaries were subjected to various concentrations of MSmPNPs (0, 2.5, 5.0, and 10 µg/mL) during in vitro maturation (IVM). In comparison to the control, MSmPNPs-5.0, and MSmPNPs-10 groups, oocytes treated with 2.5 µg/mL MSmPNPs had significantly increased glutathione (GSH) levels and lower levels of reactive oxygen species (ROS). Following parthenogenetic activation, the MSmPNPs-2.5 group had a considerably higher maturation and cleavage rates, blastocyst development, total cell number, and ratio of inner cell mass/trophectoderm (ICM:TE) cells, when compared with those in the control and all other treated groups. Furthermore, similar findings were reported for the developmental competence of somatic cell nuclear transfer (SCNT)-derived embryos. Additionally, the relative quantification of POU5F1, DPPA2, and NDP52 mRNA transcript levels were significantly higher in the MSmPNPs-2.5 group than in the control and other treated groups. Taken together, the current findings suggest that MSmPNP treatment alleviates oxidative stress and enhances the developmental competence of porcine in vitro matured oocytes after parthenogenetic activation and SCNT.
Collapse
|
11
|
Keeping your options open: insights from Dppa2/4 into how epigenetic priming factors promote cell plasticity. Biochem Soc Trans 2021; 48:2891-2902. [PMID: 33336687 PMCID: PMC7752079 DOI: 10.1042/bst20200873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
The concept of cellular plasticity is particularly apt in early embryonic development, where there is a tug-of-war between the stability and flexibility of cell identity. This balance is controlled in part through epigenetic mechanisms. Epigenetic plasticity dictates how malleable cells are to change by adjusting the potential to initiate new transcriptional programmes. The higher the plasticity of a cell, the more readily it can adapt and change its identity in response to external stimuli such as differentiation cues. Epigenetic plasticity is regulated in part through the action of epigenetic priming factors which establish this permissive epigenetic landscape at genomic regulatory elements to enable future transcriptional changes. Recent studies on the DNA binding proteins Developmental Pluripotency Associated 2 and 4 (Dppa2/4) support their roles as epigenetic priming factors in facilitating cell fate transitions. Here, using Dppa2/4 as a case study, the concept of epigenetic plasticity and molecular mechanism of epigenetic priming factors will be explored. Understanding how epigenetic priming factors function is key not only to improve our understanding of the tight control of development, but also to give insights into how this goes awry in diseases of cell identity, such as cancer.
Collapse
|
12
|
Wang J, Zhuang H, Zhang H, Li Q, Cao X, Lin Z, Lin T, Chen X, Ni X, Yang J, Zhao Y, Shen L, Wang H, Zhu J, Ye M, Jin X. SPOP suppresses testicular germ cell tumors progression through ubiquitination and degradation of DPPA2. Biochem Biophys Res Commun 2021; 557:55-61. [PMID: 33862460 DOI: 10.1016/j.bbrc.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Dysregulation of the ubiquitin-proteasome pathway is strongly associated with cancer initiation and progression. Speckle-type POZ(pox virus and zinc finger protein) protein(SPOP) is an adapter protein of CUL3-based E3 ubiquitin ligase complexes. Gene expression profiling from the Cancer Genome Atlas (TCGA) suggests that SPOP is downregulated in testicular germ cell tumors (TGCTs), but the specific contribution of this protein remains to be explored. In this study, we show that the germ line-specific factor DPPA2 was identified as a proteolytic substrate for the SPOP-CUL3-RBX1 E3 ubiquitin-ligase complex. SPOP specifically binds to a SPOP-binding consensus (SBC) degron located in DPPA2 and targets DPPA2 for degradation via the ubiquitin-proteasome pathway. SPOP downregulation increases the expression of pluripotency markers OCT4 and Nanog but decreases that of early differentiation marker gene Fst. This effect is partly dependent on its activity toward DPPA2. In addition, the dysregulation of SPOP-DPPA2 axis contributes to the malignant transformation phenotypes of TGCT cells.
Collapse
Affiliation(s)
- Jian Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Hui Zhuang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Hui Zhang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Qian Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Xinyi Cao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Zihan Lin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Ting Lin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Xiwei Chen
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Xiaoqi Ni
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Jianye Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Yiting Zhao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Liliang Shen
- Department of Urology, Yinzhou Renmin Hospital Affiliated to Medical School of Ningbo University, Ningbo, 315040, China
| | - Haibiao Wang
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Ningbo Medical Center of LiHuiLi Hospital of Medical School of Ningbo University, Ningbo, 315048, China
| | - Jie Zhu
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Ningbo Medical Center of LiHuiLi Hospital of Medical School of Ningbo University, Ningbo, 315048, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
13
|
Wang X, Zhao J, Zhu Z. Exogenous Expression of pou5f3 Facilitates the Development of Somatic Cell Nuclear Transfer Embryos in Zebrafish at the Early Stage. Cell Reprogram 2021; 23:191-197. [PMID: 34101505 DOI: 10.1089/cell.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Enucleated oocytes can reprogram differentiated nuclei to totipotency after somatic cell nuclear transfer (SCNT), which is valuable in understanding nuclear reprogramming and generating genetically modified animals. To date, reprogramming efficiency is low and the development of SCNT embryos is not going as well as anticipated. To further disclose the reprogramming mechanisms during SCNT zebrafish embryo development, we examined the expression patterns of transcription regulation factors and regulated them by mRNA and morpholino microinjection. In this study, we show that stem cell-related transcription factors are downregulated in zebrafish SCNT embryos at the blastula stage. Exogenous expression of pou5f3 at the single-cell stage improves SCNT embryo development from the blastula to the gastrula stage. We also found that exogenous expression of klf4 or sox2 decreases SCNT embryo development from the blastula to the gastrula stage, while expression of nanog is necessary for the development of SCNT embryos. Our results conclude that zebrafish pou5f3 facilitates the development of SCNT embryos from the blastula to gastrula stage.
Collapse
Affiliation(s)
- Xuegeng Wang
- College of Life Sciences, Peking University, Beijing, P.R. China.,Institute of Modern Aquaculture Science and Engineering, College of Life Sciences, South China Normal University, Guangzhou, P.R. China
| | - Jue Zhao
- College of Life Sciences, Peking University, Beijing, P.R. China
| | - Zuoyan Zhu
- College of Life Sciences, Peking University, Beijing, P.R. China
| |
Collapse
|
14
|
The Potential of Induced Pluripotent Stem Cells to Treat and Model Alzheimer's Disease. Stem Cells Int 2021; 2021:5511630. [PMID: 34122554 PMCID: PMC8172295 DOI: 10.1155/2021/5511630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
An estimated 6.2 million Americans aged 65 or older are currently living with Alzheimer's disease (AD), a neurodegenerative disease that disrupts an individual's ability to function independently through the degeneration of key regions in the brain, including but not limited to the hippocampus, the prefrontal cortex, and the motor cortex. The cause of this degeneration is not known, but research has found two proteins that undergo posttranslational modifications: tau, a protein concentrated in the axons of neurons, and amyloid precursor protein (APP), a protein concentrated near the synapse. Through mechanisms that have yet to be elucidated, the accumulation of these two proteins in their abnormal aggregate forms leads to the neurodegeneration that is characteristic of AD. Until the invention of induced pluripotent stem cells (iPSCs) in 2006, the bulk of research was carried out using transgenic animal models that offered little promise in their ability to translate well from benchtop to bedside, creating a bottleneck in the development of therapeutics. However, with iPSC, patient-specific cell cultures can be utilized to create models based on human cells. These human cells have the potential to avoid issues in translatability that have plagued animal models by providing researchers with a model that closely resembles and mimics the neurons found in humans. By using human iPSC technology, researchers can create more accurate models of AD ex vivo while also focusing on regenerative medicine using iPSC in vivo. The following review focuses on the current uses of iPSC and how they have the potential to regenerate damaged neuronal tissue, in the hopes that these technologies can assist in getting through the bottleneck of AD therapeutic research.
Collapse
|
15
|
Kern CH, Yang M, Liu WS. The PRAME family of cancer testis antigens is essential for germline development and gametogenesis†. Biol Reprod 2021; 105:290-304. [PMID: 33880503 DOI: 10.1093/biolre/ioab074] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/26/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Preferentially expressed antigen in melanoma (PRAME) belongs to a group of cancer/testis antigens that are predominately expressed in the testis and a variety of tumors, and are involved in immunity and reproduction. Much of the attention on PRAME has centered on cancer biology as PRAME is a prognostic biomarker for a wide range of cancers and a potential immunotherapeutic target. Less information is available about the PRAME family's function (s) during gametogenesis and in the overall reproduction process. Here, we review the current knowledge of the PRAME gene family and its function in germline development and gametogenesis. Members of the PRAME family are leucine rich repeat proteins, localized in nucleus and cytoplasm, with multifaceted roles in germ cells. As transcriptional regulators, the PRAME family proteins are involved in germline development, particularly in the maintenance of embryonic stem cell pluripotency, development of primordial germ cells, and differentiation/proliferation of spermatogenic and oogenic cells. The PRAME family proteins are also enriched in cytoplasmic organelles, such as rough endoplasmic reticulum, Golgi vesicle, germinal granules, centrioles, and play a role in the formation of the acrosome and sperm tail during spermiogenesis. The PRAME gene family remains transcriptionally active in the germline throughout the entire life cycle and is essential for gametogenesis, with some members specific to either male or female germ cells, while others are involved in both male and female gametogenesis. A potential molecular mechanism that underlies the function of PRAME, and is shared by gametogenesis and oncogenesis is also discussed.
Collapse
Affiliation(s)
- Chandlar H Kern
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Mingyao Yang
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
16
|
Wang X, Qu J, Li J, He H, Liu Z, Huan Y. Epigenetic Reprogramming During Somatic Cell Nuclear Transfer: Recent Progress and Future Directions. Front Genet 2020; 11:205. [PMID: 32256519 PMCID: PMC7093498 DOI: 10.3389/fgene.2020.00205] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) has broad applications but is limited by low cloning efficiency. In this review, we mainly focus on SCNT-mediated epigenetic reprogramming in livestock and also describe mice data for reference. This review presents the factors contributing to low cloning efficiency, demonstrates that incomplete epigenetic reprogramming leads to the low developmental potential of cloned embryos, and further describes the regulation of epigenetic reprogramming by long non-coding RNAs, which is a new research perspective in the field of SCNT-mediated epigenetic reprogramming. In conclusion, this review provides new insights into the epigenetic regulatory mechanism during SCNT-mediated nuclear reprogramming, which could have great implications for improving cloning efficiency.
Collapse
Affiliation(s)
- Xiangyu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jiadan Qu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Department of Cadre Health Care, Qingdao Municipal Hospital, Qingdao, China
| | - Hongbin He
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhonghua Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
17
|
Cai L, Jeong YW, Jin YX, Lee JY, Jeong YI, Hwang KC, Hyun SH, Hwang WS. Effects of human recombinant granulocyte-colony stimulating factor treatment during in vitro culture on porcine pre-implantation embryos. PLoS One 2020; 15:e0230247. [PMID: 32182268 PMCID: PMC7077850 DOI: 10.1371/journal.pone.0230247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/25/2020] [Indexed: 11/22/2022] Open
Abstract
Granulocyte-colony stimulating factor (G-CSF), a pleiotropic cytokine, belongs to the hematopoietic growth factor family. Recent studies have reported that G-CSF is a predictive biomarker of oocyte and embryo developmental competence in humans. The aim of our study was to determine whether CSF3 and its receptor (CSF3R) were expressed in porcine maternal reproductive tissues (oviduct and uterus), cumulus cells, and embryos and to investigate the effects of human recombinant G-CSF (hrG-CSF) supplementation during in vitro culture (IVC) on the developmental competence of pre-implantation embryos. To do this, we first performed reverse-transcription polymerase chain reaction (RT-PCR). Second, we performed parthenogenetic activation (PA), in vitro fertilization (IVF), and somatic cell nuclear transfer (SCNT) to evaluate the embryonic developmental potential after hrG-CSF supplementation based on various concentrations (0 ng/mL, 10 ng/mL, 50 ng/mL, and 100 ng/mL) and durations (Un-treated, Days 0–3, Days 4–7, and Days 0–7) of IVC. Finally, we examined transcriptional levels of several marker genes in blastocysts. The results of our study showed that CSF3 transcript was present in all samples we assessed. CSF3-R was also detected, except in cumulus cells and blastocysts from PA. Furthermore, 10 ng/mL and Days 0–7 were the optimal concentration and duration for the viability of in vitro embryonic development, especially for SCNT-derived embryos. The rate of blastocyst formation and the total cell number of blastocysts were significantly enhanced, while the number and index of apoptotic nuclei were significantly decreased in optimal condition groups compared to others. Moreover, the transcriptional levels of anti-apoptotis- (BCL2), proliferation- (PCNA), and pluripotency- (POU5F1) related genes were dramatically upregulated. In conclusion, for the first time, we demonstrated that CSF3 and CSF3R were expressed in porcine reproductive organs, cells, and embryos. Additionally, we determined that hrG-CSF treatment improved porcine embryonic development capacity in vitro.
Collapse
Affiliation(s)
- Lian Cai
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Yeon-woo Jeong
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
| | - Yong-xun Jin
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- College of Animal Science, Jilin University, Changchun, China
| | - Jong-yun Lee
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
| | - Yeon-ik Jeong
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
| | - Kyu-chan Hwang
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
| | - Sang-hwan Hyun
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- * E-mail: (WSH); (SHH)
| | - Woo-suk Hwang
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
- * E-mail: (WSH); (SHH)
| |
Collapse
|
18
|
Wang Z, Xu X, Li JL, Palmer C, Maric D, Dean J. Sertoli cell-only phenotype and scRNA-seq define PRAMEF12 as a factor essential for spermatogenesis in mice. Nat Commun 2019; 10:5196. [PMID: 31729367 PMCID: PMC6858368 DOI: 10.1038/s41467-019-13193-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/22/2019] [Indexed: 01/14/2023] Open
Abstract
Spermatogonial stem cells (SSCs) have the dual capacity to self-renew and differentiate into progenitor spermatogonia that develop into mature spermatozoa. Here, we document that preferentially expressed antigen of melanoma family member 12 (PRAMEF12) plays a key role in maintenance of the spermatogenic lineage. In male mice, genetic ablation of Pramef12 arrests spermatogenesis and results in sterility which can be rescued by transgenic expression of Pramef12. Pramef12 deficiency globally decreases expression of spermatogenic-related genes, and single-cell transcriptional analysis of post-natal male germline cells identifies four spermatogonial states. In the absence of Pramef12 expression, there are fewer spermatogonial stem cells which exhibit lower expression of SSC maintenance-related genes and are defective in their ability to differentiate. The disruption of the first wave of spermatogenesis in juvenile mice results in agametic seminiferous tubules. These observations mimic a Sertoli cell-only syndrome in humans and may have translational implications for reproductive medicine.
Collapse
Affiliation(s)
- Zhengpin Wang
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Xiaojiang Xu
- Integrative Bioinformatics, NIEHS, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics, NIEHS, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Cameron Palmer
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dragan Maric
- NINDS Flow Cytometry Core Facility, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Taweechaipaisankul A, Kim GA, Jin JX, Lee S, Qasim M, Kim EH, Lee BC. Enhancement of epigenetic reprogramming status of porcine cloned embryos with zebularine, a DNA methyltransferase inhibitor. Mol Reprod Dev 2019; 86:1013-1022. [PMID: 31166644 DOI: 10.1002/mrd.23178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023]
Abstract
Aberrant epigenetic reprogramming is known to be a major cause of inefficient somatic cell nuclear transfer (SCNT) in pigs, and use of epigenetic modification agents, such as DNA methyltransferase inhibitors (DNMTis), is a promising approach for enhancing SCNT efficacy. Here, we attempted to find the optimal condition of zebularine (Zb), a DNMTi, treatment on porcine SCNT embryos during in vitro culture (IVC). As results, treatment with 5 nM Zb for 24 hr showed the highest rate of embryo development to blastocyst compared to other groups (p < .05). Also, the relative intensities of global DNA methylation levels of anti-5-methylcytosine in pseudo-pronuclear (PNC), 2-cell and 4-cell stages were significantly lower in the Zb-treated group (p < .05), however, changes in methylation levels of centromeric satellite repeat were noted only in PNC and blastocyst stages. In addition, significant positive alterations in the relative expression of genes related to pluripotency (OCT4 and SOX2), histone acetylation (HAT1, HDAC1, HDAC2, and HDAC3) and DNA methylation (DNMT1 and DNMT3a) were observed compared to the control (p < .05). In conclusion, we found that Zb could modify DNA methylation levels in the early stages of porcine SCNT embryos and promote their developmental competence.
Collapse
Affiliation(s)
- Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Heilongjiang, Harbin, China
| | - Sanghoon Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Cheongju, Republic of Korea
| | - Muhammad Qasim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Xu M, Qian J, Si L, Qu X, Li J. The Effect of Epigenetic Changes on the Extrusion of the First Polar Body in Pig Oocytes During In Vitro Maturation. Cell Reprogram 2019; 21:129-140. [PMID: 31084435 DOI: 10.1089/cell.2018.0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The present study was designed to investigate the comprehensive function of maternal factors of primordial germ cell 7 (PGC7) and POU5F1-POU class 5 homeobox 1 (OCT4), as well as the epigenetic modification roles on the mitosis for the extrusion of first polar body (PB1) in pig maturated oocytes. First, the common distribution of histone modifications, including H3K4me2, H3K27me3, H3K9me2, and H4K12ac and DNA methylation, were detected at the high level in the nucleus. However, only one part of the chromosome was higher methylated or acetylated when the mitosis happened to extrude the PB1. When the mitosis was inhibited by the cytochalasin B (CB) treatment, the expression of PGC7, OCT4, DNA methyltransferase1 (DNMT1), DNA methyltransferase3b (DNMT3b), tet methylcytosine dioxygenase 1 (TET1), tet methylcytosine dioxygenase 2 (TET2), and tet methylcytosine dioxygenase 3 (TET3) could be inhibited (p < 0.01), and no concentrated expression of the PGC7 and OCT4 was observed on the chromosome, but the levels of H3K9me2 and H4K12ac were higher. In addition, when the trichostatin A was performed on the in vitro maturation, the extrusion of the PB1 was inhibited too. And the histone methylation (H3K9me2 and H3K27me3) could be detected all the time with relative higher level and no demethylation could be observed. However, the expression of PGC7 and OCT4 was lower in the chromosome. It might indicate that the maternal factor of PGC7 and histone modification that included H4K12ac and H3K9me2 could regulate the extrusion of the PB1 and play an important role in the maturation of pig oocytes.
Collapse
Affiliation(s)
- Mingzhu Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Jialing Qian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Linan Si
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Xiao Qu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
21
|
Yan YL, Zhang C, Hao J, Wang XL, Ming J, Mi L, Na J, Hu X, Wang Y. DPPA2/4 and SUMO E3 ligase PIAS4 opposingly regulate zygotic transcriptional program. PLoS Biol 2019; 17:e3000324. [PMID: 31226106 PMCID: PMC6608977 DOI: 10.1371/journal.pbio.3000324] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/03/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanism controlling the zygotic genome activation (ZGA) in mammals remains poorly understood. The 2-cell (2C)-like cells spontaneously emerging from cultures of mouse embryonic stem cells (ESCs) share some key transcriptional and epigenetic programs with 2C-stage embryos. By studying the transition of ESCs into 2C-like cells, we identified developmental pluripotency associated 2 and 4 (Dppa2/4) as important regulators controlling zygotic transcriptional program through directly up-regulating the expression of double homeobox (Dux). In addition, we found that DPPA2 protein is sumoylated and its activity is negatively regulated by small ubiquitin-like modifier (Sumo) E3 ligase protein inhibitor of activated STAT 4 (PIAS4). PIAS4 is down-regulated during ZGA process and during transitioning of ESCs into 2C-like cells. Depleting Pias4 or overexpressing Dppa2/4 is sufficient to activate 2C-like transcriptional program, whereas depleting Dppa2/4 or forced expression of Pias4 or Sumo2-Dppa2 inhibits 2C-like transcriptional program. Furthermore, ectopic expression of Pias4 or Sumo2-Dppa2 impairs early mouse embryo development. In summary, our study identifies key molecular rivals consisting of transcription factors and a Sumo2 E3 ligase that regulate zygotic transcriptional program upstream of Dux.
Collapse
Affiliation(s)
- Yao-Long Yan
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chao Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jing Hao
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xue-Lian Wang
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jia Ming
- School of Medicine, Tsinghua University, Beijing, China
| | - Li Mi
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jie Na
- School of Medicine, Tsinghua University, Beijing, China
| | - Xinli Hu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yangming Wang
- Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
22
|
Abu-Dawud R, Graffmann N, Ferber S, Wruck W, Adjaye J. Pluripotent stem cells: induction and self-renewal. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0213. [PMID: 29786549 DOI: 10.1098/rstb.2017.0213] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cells (PSCs) lie at the heart of modern regenerative medicine due to their properties of unlimited self-renewal in vitro and their ability to differentiate into cell types representative of the three embryonic germ layers-mesoderm, ectoderm and endoderm. The derivation of induced PSCs bypasses ethical concerns associated with the use of human embryonic stem cells and also enables personalized cell-based therapies. To exploit their regenerative potential, it is essential to have a firm understanding of the molecular processes associated with their induction from somatic cells. This understanding serves two purposes: first, to enable efficient, reliable and cost-effective production of excellent quality induced PSCs and, second, to enable the derivation of safe, good manufacturing practice-grade transplantable donor cells. Here, we review the reprogramming process of somatic cells into induced PSCs and associated mechanisms with emphasis on self-renewal, epigenetic control, mitochondrial bioenergetics, sub-states of pluripotency, naive ground state, naive and primed. A meta-analysis identified genes expressed exclusively in the inner cell mass and in the naive but not in the primed pluripotent state. We propose these as additional biomarkers defining naive PSCs.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- R Abu-Dawud
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Zahrawi Street, Riyadh 11211, Saudi Arabia
| | - N Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - S Ferber
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - W Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - J Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
23
|
De Iaco A, Coudray A, Duc J, Trono D. DPPA2 and DPPA4 are necessary to establish a 2C-like state in mouse embryonic stem cells. EMBO Rep 2019; 20:embr.201847382. [PMID: 30948459 PMCID: PMC6500978 DOI: 10.15252/embr.201847382] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 11/30/2022] Open
Abstract
After fertilization of the transcriptionally silent oocyte, expression from both parental chromosomes is launched through zygotic genome activation (ZGA), occurring in the mouse at the 2‐cell (2C) stage. Among the first elements to be transcribed are the Dux gene, the product of which induces a wide array of ZGA genes, and a subset of evolutionary recent LINE‐1 retrotransposons that regulate chromatin accessibility in the early embryo. The maternally inherited factors that activate Dux and LINE‐1 transcription have so far remained unknown. Mouse embryonic stem cells (mESCs) recapitulate some aspects of ZGA in culture, owing to their ability to cycle through a 2C‐like stage when Dux, its target genes, and LINE‐1 integrants are expressed. Here, we identify the paralog proteins DPPA2 and DPPA4 as necessary for the activation of Dux and LINE‐1 expression in mESCs. Since their encoding RNAs are maternally transmitted to the zygote, it is likely that these factors are important upstream mediators of murine ZGA.
Collapse
Affiliation(s)
- Alberto De Iaco
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Coudray
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
24
|
Fang X, Xia W, Cao H, Guo Y, Wang H, Zhang X, Wan P, Liu C, Wei Q, Sun S, Tian S, Li J, Wang Z. Effect of supplemetation of Zebularine and Scriptaid on efficiency of in vitro developmental competence of ovine somatic cell nuclear transferred embryos. Anim Biotechnol 2019; 31:155-163. [PMID: 30734624 DOI: 10.1080/10495398.2018.1559846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Somatic cell nuclear transfer (SCNT) technology has been applied in the construction of disease model, production of transgenic animals, therapeutic cloning, and other fields. However, the cloning efficiency remains limited. In our study, to improve SCNT efficiency, brilliant cresyl blue (BCB) staining were chosen to select recipient oocytes. In addition, DNA methyltransferase inhibitor Zebularine (5 nmol/L) and histone deacetylase inhibitor Scriptaid (0.2 μmol/L) were jointly used to treat sheep donor cumulus cells and reconstructed embryo. Moreover, the expression levels of embryonic development-related genes (OCT4, SOX2, H19, IGF2 and Dnmt1) of reconstructed embryo were also detected. Using BCB + oocytes as recipient cell, donor cumulus cells and reconstructed embryos were treated with 5 nmol/L Zebularine and 0.2 μmol/L Scriptaid, the blastocyst rate in Zeb + SCR-SCNT group (28.25%) was significantly higher than SCNT (21.16%) (p < 0.05). Furthermore, results showed that expression levels of OCT4, SOX2, H19, IGF2 and Dnmt1 genes in Zeb + SCR-SCNT embryos were more similar to IVF embryos. Our study proved that 5 nmol/L Zebularine and 0.2 μmol/L Scriptaid treating with sheep donor cumulus cells and reconstructed embryos improved SCNT blastocyst rate and relieve the abnormal expression of embryonic developmental related genes.
Collapse
Affiliation(s)
- Xiaohuan Fang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Wei Xia
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Hui Cao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Yanhua Guo
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Han Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Xiaosheng Zhang
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin, China
| | - Pengcheng Wan
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Chuang Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Qiaoli Wei
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Shuchun Sun
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| | - Shujun Tian
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| | - Zhigang Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| |
Collapse
|
25
|
Eckersley-Maslin M, Alda-Catalinas C, Blotenburg M, Kreibich E, Krueger C, Reik W. Dppa2 and Dppa4 directly regulate the Dux-driven zygotic transcriptional program. Genes Dev 2019; 33:194-208. [PMID: 30692203 PMCID: PMC6362816 DOI: 10.1101/gad.321174.118] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/20/2018] [Indexed: 01/05/2023]
Abstract
In this study, Eckersley-Maslin et al. investigated the upstream maternal factors that initiate zygotic genome activation (ZGA) in either a Dux-dependent (a transcription factor expressed in the minor wave of ZGA) or Dux-independent manner. They performed a candidate-based overexpression screen, identifying developmental pluripotency-associated 2 (Dppa2) and Dppa4 as positive regulators of 2C-like cells and transcription of ZGA genes, and their results suggest that Dppa2/4 binding to the Dux promoter leads to Dux up-regulation and activation of the 2C-like transcriptional program, which is subsequently reinforced by Zscan4c. The molecular regulation of zygotic genome activation (ZGA) in mammals remains an exciting area of research. Primed mouse embryonic stem cells contain a rare subset of “2C-like” cells that are epigenetically and transcriptionally similar to the two-cell embryo and thus represent an in vitro approximation for studying ZGA transcription regulation. Recently, the transcription factor Dux, expressed in the minor wave of ZGA, was described to activate many downstream ZGA transcripts. However, it remains unknown what upstream maternal factors initiate ZGA in either a Dux-dependent or Dux-independent manner. Here we performed a candidate-based overexpression screen, identifying, among others, developmental pluripotency-associated 2 (Dppa2) and Dppa4 as positive regulators of 2C-like cells and transcription of ZGA genes. In the germline, promoter DNA demethylation coincides with expression of Dppa2 and Dppa4, which remain expressed until embryonic day 7.5 (E7.5), when their promoters are remethylated. Furthermore, Dppa2 and Dppa4 are also expressed during induced pluripotent stem cell (iPSC) reprogramming at the time that 2C-like transcription transiently peaks. Through a combination of overexpression, knockdown, knockout, and rescue experiments together with transcriptional analyses, we show that Dppa2 and Dppa4 directly regulate the 2C-like cell population and associated transcripts, including Dux and the Zscan4 cluster. Importantly, we teased apart the molecular hierarchy in which the 2C-like transcriptional program is initiated and stabilized. Dppa2 and Dppa4 require Dux to initiate 2C-like transcription, suggesting that they act upstream by directly regulating Dux. Supporting this, ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) analysis revealed that Dppa2 and Dppa4 bind to the Dux promoter and gene body and drive its expression. Zscan4c is also able to induce 2C-like cells in wild-type cells but, in contrast to Dux, can no longer do so in Dppa2/4 double-knockout cells, suggesting that it may act to stabilize rather than drive the transcriptional network. Our findings suggest a model in which Dppa2/4 binding to the Dux promoter leads to Dux up-regulation and activation of the 2C-like transcriptional program, which is subsequently reinforced by Zscan4c.
Collapse
Affiliation(s)
| | | | - Marloes Blotenburg
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Elisa Kreibich
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Christel Krueger
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom.,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
26
|
Pennings S, Revuelta A, McLaughlin KA, Abd Hadi NA, Petchreing P, Ottaviano R, Meehan RR. Dynamics and Mechanisms of DNA Methylation Reprogramming. EPIGENETICS AND REGENERATION 2019:19-45. [DOI: 10.1016/b978-0-12-814879-2.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
27
|
Can Reprogramming of Overall Epigenetic Memory and Specific Parental Genomic Imprinting Memory within Donor Cell-Inherited Nuclear Genome be a Major Hindrance for the Somatic Cell Cloning of Mammals? – A Review. ANNALS OF ANIMAL SCIENCE 2018. [DOI: 10.2478/aoas-2018-0015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Successful cloning of animals by somatic cell nuclear transfer (SCNT) requires epigenetic transcriptional reprogramming of the differentiated state of the donor cell nucleus to a totipotent embryonic ground state. It means that the donor nuclei must cease its own program of gene expression and restore a particular program of the embryonic genome expression regulation that is necessary for normal development. Transcriptional activity of somatic cell-derived nuclear genome during embryo pre- and postimplantation development as well as foetogenesis is correlated with the frequencies for spatial remodeling of chromatin architecture and reprogramming of cellular epigenetic memory. This former and this latter process include such covalent modifications as demethylation/re-methylation of DNA cytosine residues and acetylation/deacetylation as well as demethylation/re-methylation of lysine residues of nucleosomal core-derived histones H3 and H4. The main cause of low SCNT efficiency in mammals turns out to be an incomplete reprogramming of transcriptional activity for donor cell-descended genes. It has been ascertained that somatic cell nuclei should undergo the wide DNA cytosine residue demethylation changes throughout the early development of cloned embryos to reset their own overall epigenetic and parental genomic imprinting memories that have been established by re-methylation of the nuclear donor cell-inherited genome during specific pathways of somatic and germ cell lineage differentiation. A more extensive understanding of the molecular mechanisms and recognition of determinants for epigenetic transcriptional reprogrammability of somatic cell nuclear genome will be helpful to solve the problems resulting from unsatisfactory SCNT effectiveness and open new possibilities for common application of this technology in transgenic research focused on human biomedicine.
Collapse
|
28
|
Simões R, Rodrigues Santos A. Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer. Organogenesis 2018; 13:156-178. [PMID: 29020571 DOI: 10.1080/15476278.2017.1389367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Somatic cell nuclear transfer is a technique to create an embryo using an enucleated oocyte and a donor nucleus. Nucleus of somatic cells must be reprogrammed in order to participate in normal development within an enucleated egg. Reprogramming refers to the erasing and remodeling of cellular epigenetic marks to a lower differentiation state. Somatic nuclei must be reprogrammed by factors in the oocyte cytoplasm to a rather totipotent state since the reconstructed embryo must initiate embryo development from the one cell stage to term. In embryos reconstructed by nuclear transfer, the donor genetic material must respond to the cytoplasmic environment of the cytoplast and recapitulate this normal developmental process. Enucleation is critically important for cloning efficiency because may affect the ultrastructure of the remaining cytoplast, thus resulting in a decline or destruction of its cellular compartments. Nonetheless, the effects of in vitro culturing are yet to be fully understood. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this review we discuss some factors that could impact cell differentiation in embryo generated by nuclear transfer.
Collapse
Affiliation(s)
- Renata Simões
- a Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , SP , Brazil
| | | |
Collapse
|
29
|
Han C, Deng R, Mao T, Luo Y, Wei B, Meng P, Zhao L, Zhang Q, Quan F, Liu J, Zhang Y. Overexpression of Tet3 in donor cells enhances goat somatic cell nuclear transfer efficiency. FEBS J 2018; 285:2708-2723. [PMID: 29791079 DOI: 10.1111/febs.14515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/31/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022]
Abstract
Ten-eleven translocation 3 (TET3) mediates active DNA demethylation of paternal genomes during mouse embryonic development. However, the mechanism of DNA demethylation in goat embryos remains unknown. In addition, aberrant DNA methylation reprogramming prevalently occurs in embryos cloned by somatic cell nuclear transfer (SCNT). In this study, we reported that TET3 is a key factor in DNA demethylation in goat pre-implantation embryos. Knockdown of Tet3 hindered DNA demethylation at the two- to four-cell stage in goat embryos and decreased Nanog expression in blastocysts. Overexpression of Tet3 in somatic cells can initiate DNA demethylation, reduce 5-methylcytosine level, increase 5-hydroxymethylcytosine level and promote the expression of key pluripotency genes. After SCNT, overexpression of Tet3 in donor cells corrected abnormal DNA hypermethylation of cloned embryos and significantly enhanced in vitro and in vivo developmental rate (P < 0.05). We conclude that overexpression of Tet3 in donor cells significantly improves goat SCNT efficiency.
Collapse
Affiliation(s)
- Chengquan Han
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ruizhi Deng
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Tingchao Mao
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yan Luo
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Biao Wei
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Peng Meng
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Lu Zhao
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Qing Zhang
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Jun Liu
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Song X, Liu Z, He H, Wang J, Li H, Li J, Li F, Jiang Z, Huan Y. Dnmt1s in donor cells is a barrier to SCNT-mediated DNA methylation reprogramming in pigs. Oncotarget 2018; 8:34980-34991. [PMID: 28380421 PMCID: PMC5471028 DOI: 10.18632/oncotarget.16507] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/09/2017] [Indexed: 01/27/2023] Open
Abstract
Low development of somatic cell nuclear transfer embryos could be due to the incomplete DNA methylation reprogramming, and Dnmt1s existing in donor cells may be one cause of this disrupted DNA methylation reprogramming. However, the reprogramming pattern of Dnmt1s and its effect on DNA methylation reprogramming in cloned embryos remain poorly understood. Here, we displayed that along with the significantly higher Dnmt1 expression at the zygotic gene activation stage of cloned embryos, genomic methylation level was markedly upregulated, and the arrested rate was significantly higher compared with their in vitro fertilization counterparts. Then, we demonstrated that Dnmt1s, not Dnmt1o, methylation and expression levels in cloned embryos were significantly higher from the 1-cell to 4-cell stage but markedly lower at the blastocyst stage. When Dnmt1s in donor cells was appropriately removed, more cloned embryos passed through the zygotic gene activation stage and the blastocyst rate significantly increased. Furthermore, Dnmt1s knockdown significantly improved itself and genomic methylation reconstruction in cloned embryos. Finally, we found that Dnmt1s removal significantly promoted the demethylation and expression of pluripotent genes in cloned embryos. Taken together, these data suggest that Dnmt1s in donor cells is a critical barrier to somatic cell nuclear transfer mediated DNA methylation reprogramming, impairing the development of cloned embryos.
Collapse
Affiliation(s)
- Xuexiong Song
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Hongbin He
- College of Life Science, Shandong Normal University, Jinan, Shandong Province, China
| | - Jianyu Wang
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Huatao Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Jingyu Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Fangzheng Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhongling Jiang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yanjun Huan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
31
|
Huang X, Song L, Zhan Z, Gu H, Feng H, Li Y. Factors Affecting Mouse Somatic Cell Nuclear Reprogramming by Rabbit Ooplasms. Cell Reprogram 2017; 19:344-353. [PMID: 29135280 DOI: 10.1089/cell.2017.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Successful development of interspecies somatic cell nuclear transfer (iSCNT) embryos depends on compatibilities between ooplasmic and nuclear components. However, the mechanisms by which the compatibilities are regulated are still unknown. In this study, using mouse Oct4-green fluorescent protein (GFP) cells as donors and rabbit oocytes as recipients, we show that Oct4 and other pluripotency related genes were reactivated in some of mouse-rabbit iSCNT embryos, which could also activate Oct4 promoter-driven GFP reporter gene expression. Series nuclear transfer improved the efficiency of Oct4 reactivation. DNA demethylation of Oct4 promoter was detected in GFP positive iSCNT blastocysts, whereas GFP negative iSCNT embryos showed a low efficiency. Our results demonstrate that Oct4-GFP can well label the embryos with epigenetic remodeling and reactivation of pluripotent gene expression. Abundant rabbit mitochondria specific DNAs were identified in reconstructed mouse-rabbit embryos throughout preimplantation stages. Our data demonstrate that epigenetic remodeling and the complete mitochondrial match are not necessary for successful iSCNT embryo development before implantation.
Collapse
Affiliation(s)
- Xia Huang
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Lili Song
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Zhiyan Zhan
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Haihui Gu
- 2 Department of Transfusion Medicine, Shanghai Changhai Hospital , Shanghai, China
| | - Haizhong Feng
- 3 State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Yanxin Li
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
32
|
Treatment donor cells with UNC0638 modify the abnormal histone H3K9 dimethylation and gene expression in cloned goat embryos. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Abstract
Cross-species comparisons of genomes, transcriptomes and gene regulation are now feasible at unprecedented resolution and throughput, enabling the comparison of human and mouse biology at the molecular level. Insights have been gained into the degree of conservation between human and mouse at the level of not only gene expression but also epigenetics and inter-individual variation. However, a number of limitations exist, including incomplete transcriptome characterization and difficulties in identifying orthologous phenotypes and cell types, which are beginning to be addressed by emerging technologies. Ultimately, these comparisons will help to identify the conditions under which the mouse is a suitable model of human physiology and disease, and optimize the use of animal models.
Collapse
Affiliation(s)
- Alessandra Breschi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Thomas R Gingeras
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11742, USA
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| |
Collapse
|
34
|
Kumar D, Sarkhel BC. Differential expression pattern of key regulatory developmental genes in pre-implant zona free cloned vs in vitro fertilized goat embryos. Gene Expr Patterns 2017; 25-26:118-123. [PMID: 28669682 DOI: 10.1016/j.gep.2017.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/28/2017] [Indexed: 01/27/2023]
Abstract
The success of Somatic cell nuclear transfer (SCNT) primarily depends on the extent of reprogramming of donor cells genome. The error of reprogramming may lead to inappropriate expression of embryonic genes at any stage of development. Under the present study the relative expression of different genes related to pluripotency (Oct-4 and Nanog), growth factors (IGF-2 and IGF-2R) and DNA methyltransferase gene (Dnmt-1) was evaluated in SCNT embryos at 8-16 cells, morula and blastocyst stages as compared to IVF group. In SCNT, significantly higher degree of relative expression was observed for Oct-4 in morula (1.41) and blastocysts (1.14) as compared to 8-16 cells (referral stage) whereas in IVF, a lower expression was observed at morula (0.82) stage. The expression of Nanog in SCNT embryos was increased significantly in morula (2.23) and decreased subsequently in blastocyst (0.56), whereas it was increased significantly from 8 to 16 cells to morula (1.62) and blastocyst (4.5) of IVF group. The IGF-2 and IGF-2R showed significantly higher expression rates in morula and blastocysts of SCNT (6.56, 5.90 and 1.11, 1.4) and IVF (8.69, 8.25 and 2.96, 3.91) embryos, respectively as compared to referral stage. The expression of Dnmt-1 was significantly higher in SCNT morula (1.29) and blastocyst (1.15) however in IVF, it was similar in 8-16 cells stage and morula but, higher in blastocyst (1.58). The dissimilar pattern of gene expression of SCNT might be a consequence of incomplete reprogramming of donor nucleus which resulted into lower blastocyst rate of SCNT as compared to IVF embryos.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Biotechnology Centre, Nanaji Deshmukh Veterinary Science University, Jabalpur, M.P., India
| | - Bikash Chandra Sarkhel
- Animal Biotechnology Centre, Nanaji Deshmukh Veterinary Science University, Jabalpur, M.P., India.
| |
Collapse
|
35
|
Graf U, Casanova EA, Wyck S, Dalcher D, Gatti M, Vollenweider E, Okoniewski M, Weber FA, Patel SS, Schmid MW, Li J, Sharif J, Wanner G, Koseki H, Wong J, Pelczar P, Penengo L, Santoro R, Cinelli P. Pramel7 mediates ground-state pluripotency through proteasomal–epigenetic combined pathways. Nat Cell Biol 2017; 19:763-773. [DOI: 10.1038/ncb3554] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/11/2017] [Indexed: 12/16/2022]
|
36
|
Qu P, Qing S, Liu R, Qin H, Wang W, Qiao F, Ge H, Liu J, Zhang Y, Cui W, Wang Y. Effects of embryo-derived exosomes on the development of bovine cloned embryos. PLoS One 2017; 12:e0174535. [PMID: 28350875 PMCID: PMC5370134 DOI: 10.1371/journal.pone.0174535] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/11/2017] [Indexed: 01/21/2023] Open
Abstract
The developmental competence of in vitro cultured (IVC) embryos is markedly lower than that of their in vivo counterparts, suggesting the need for optimization of IVC protocols. Embryo culture medium is routinely replaced three days after initial culture in bovine, however, whether this protocol is superior to continuous nonrenewal culture method under current conditions remains unclear. Using bovine somatic cell nuclear transfer (SCNT) embryos as the model, our results showed that compared with routine renewal treatment, nonrenewal culture system significantly improved blastocyst formation, blastocyst quality (increased total cell number, decreased stress and apoptosis, enhanced Oct-4 expression and ratio of ICM/TE), as well as following development to term. Existence and function of SCNT embryo-derived exosomes were then investigated to reveal the cause of impaired development induced by culture medium replacement. Exosomes were successfully isolated through differential centrifugation and identified by both electron microscopy and immunostaining against exosomal membrane marker CD9. Supplementation of extracted exosomes into freshly renewed medium significantly rescued not only blastocyst formation and quality (in vitro development), but also following growth to term (in vivo development). Notably, ratio of ICM/TE and calving rate were enhanced to a similar level as that in nonrenewal group. In conclusion, our results for the first time indicate that 1: bovine SCNT embryos can secrete exosomes into chemically defined culture medium during IVC; 2: secreted exosomes are essential for SCNT blastocyst formation, blastocyst quality, and following development to term; 3: removal of exosomes induced by culture medium replacement impairs SCNT embryo development, which can be avoided by nonrenewal culture procedure or markedly recovered by exosome supplementation.
Collapse
Affiliation(s)
- Pengxiang Qu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Suzhu Qing
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Ruiqi Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Hongyu Qin
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Weiwei Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Fang Qiao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Hui Ge
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
- * E-mail: (YZ); (WC); (YW)
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail: (YZ); (WC); (YW)
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, PR China
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail: (YZ); (WC); (YW)
| |
Collapse
|
37
|
Genomic instability during reprogramming by nuclear transfer is DNA replication dependent. Nat Cell Biol 2017; 19:282-291. [PMID: 28263958 DOI: 10.1038/ncb3485] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023]
Abstract
Somatic cells can be reprogrammed to a pluripotent state by nuclear transfer into oocytes, yet developmental arrest often occurs. While incomplete transcriptional reprogramming is known to cause developmental failure, reprogramming also involves concurrent changes in cell cycle progression and nuclear structure. Here we study cellular reprogramming events in human and mouse nuclear transfer embryos prior to embryonic genome activation. We show that genetic instability marked by frequent chromosome segregation errors and DNA damage arise prior to, and independent of, transcriptional activity. These errors occur following transition through DNA replication and are repaired by BRCA1. In the absence of mitotic nuclear remodelling, DNA replication is delayed and errors are exacerbated in subsequent mitosis. These results demonstrate that independent of gene expression, cell-type-specific features of cell cycle progression constitute a barrier sufficient to prevent the transition from one cell type to another during reprogramming.
Collapse
|
38
|
Morovic M, Murin M, Strejcek F, Benc M, Paál D, Østrup O, Niemann H, Pendovski L, Laurincik J. The Influence of Interspecies Somatic Cell Nuclear Transfer on Epigenetic Enzymes Transcription in Early Embryos. MACEDONIAN VETERINARY REVIEW 2016. [DOI: 10.1515/macvetrev-2016-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription in oocytes and early embryos of several species including bovine and porcine zygotes is species-dependent process and the incomplete DNA methylation correlates with the nuclear transfer failure rate in mammals. In this study the transcription of DNA methyltransferase 1 and 3a (DNMT1, DNMT3a) genes in early embryonic stages of interspecies (bovine, porcine) nuclear transfer embryos (iSCNT) by RT-PCR were analyzed. Coming out from the diverse timing of embryonic genome activation (EGA) in porcine and bovine preimplantation embryos, the intense effect of ooplasm on transferred somatic cell nucleus was expected. In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly influenced by the ooplasmic environment.
Collapse
Affiliation(s)
- Martin Morovic
- Constantine the Philosopher University in Nitra , Slovakia
| | - Matej Murin
- Constantine the Philosopher University in Nitra , Slovakia
| | | | - Michal Benc
- Constantine the Philosopher University in Nitra , Slovakia
| | - Dusan Paál
- Constantine the Philosopher University in Nitra , Slovakia
| | - Olga Østrup
- Department of Basic Animal and Veterinary Sciences, Faculty of Life Sciences , University of Copenhagen , Denmark
| | - Heiner Niemann
- Institute of Farm Animal Genetics (FLI) , Mariensee, Neustadt, Germany
| | - Lazo Pendovski
- Faculty of Veterinary Medicine , Ss. Cyril and Methodius University in Skopje , Macedonia (the former Yugoslav Republic of)
| | | |
Collapse
|
39
|
Li W, Xiong Y, Wang F, Liu X, Gao Y, Wang Y, Zhang Y, Jin Y. MicroRNA-145 Inhibitor Significantly Improves the Development of Bovine Somatic Cell Nuclear Transfer Embryos In Vitro. Cell Reprogram 2016; 18:230-6. [DOI: 10.1089/cell.2016.0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wenzhe Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yongjie Xiong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Fengyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yang Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
40
|
Sepulveda-Rincon LP, Solanas EDL, Serrano-Revuelta E, Ruddick L, Maalouf WE, Beaujean N. Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos. Theriogenology 2016; 86:91-8. [DOI: 10.1016/j.theriogenology.2016.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
|
41
|
Oliviero G, Munawar N, Watson A, Streubel G, Manning G, Bardwell V, Bracken AP, Cagney G. The variant Polycomb Repressor Complex 1 component PCGF1 interacts with a pluripotency sub-network that includes DPPA4, a regulator of embryogenesis. Sci Rep 2015. [DOI: https://doi.org/10.1038/srep18388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
42
|
Oliviero G, Munawar N, Watson A, Streubel G, Manning G, Bardwell V, Bracken AP, Cagney G. The variant Polycomb Repressor Complex 1 component PCGF1 interacts with a pluripotency sub-network that includes DPPA4, a regulator of embryogenesis. Sci Rep 2015; 5:18388. [PMID: 26687479 PMCID: PMC4685312 DOI: 10.1038/srep18388] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/06/2015] [Indexed: 01/21/2023] Open
Abstract
PCGF1 encodes one of six human Polycomb RING finger homologs that are linked to transcriptional repression and developmental gene regulation. Individual PCGF proteins define discrete Polycomb Repressor Complex 1 (PRC1) multi-protein complexes with diverse subunit composition whose functions are incompletely understood. PCGF1 is a component of a variant PRC1 complex that also contains the BCL6 co-repressor BCOR and the histone demethylase KDM2B. To further investigate the role of PCGF1, we mapped the physical interactions of the protein under endogenous conditions in a cell model of neuronal differentiation. Using stringent statistical cut-offs, 83 highly enriched interacting proteins were identified, including all previously reported members of the variant PRC1 complex containing PCGF1, as well as proteins linked to diverse cellular pathways such as chromatin and cell cycle regulation. Notably, a sub-network of proteins associated with the establishment and maintenance of pluripotency (NANOG, OCT4, PATZ1, and the developmental regulator DPPA4) were found to independently interact with PCGF1 in a subsequent round of physical interaction mapping experiments. Furthermore, knockdown of PCGF1 results in reduced expression of DPPA4 and other subunits of the variant PRC1 complex at both mRNA and protein levels. Thus, PCGF1 represents a physical and functional link between Polycomb function and pluripotency.
Collapse
Affiliation(s)
- Giorgio Oliviero
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, IRELAND
| | - Nayla Munawar
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, IRELAND
| | - Ariane Watson
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, IRELAND
| | - Gundula Streubel
- Department of Genetics, Trinity College Dublin, Dublin 2, IRELAND
| | - Gwendolyn Manning
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, IRELAND
| | - Vivian Bardwell
- Developmental Biology Center, Masonic Cancer Center, and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Adrian P Bracken
- Department of Genetics, Trinity College Dublin, Dublin 2, IRELAND
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, IRELAND
| |
Collapse
|
43
|
Differential developmental competence and gene expression patterns in buffalo (Bubalus bubalis) nuclear transfer embryos reconstructed with fetal fibroblasts and amnion mesenchymal stem cells. Cytotechnology 2015; 68:1827-48. [PMID: 26660476 DOI: 10.1007/s10616-015-9936-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/01/2015] [Indexed: 01/01/2023] Open
Abstract
The developmental ability and gene expression pattern at 8- to 16-cell and blastocyst stages of buffalo (Bubalus bubalis) nuclear transfer (NT) embryos from fetal fibroblasts (FFs), amnion mesenchymal stem cells (AMSCs) and in vitro fertilized (IVF) embryos were compared in the present studies. The in vitro expanded buffalo FFs showed a typical "S" shape growth curve with a doubling time of 41.4 h and stained positive for vimentin. The in vitro cultured undifferentiated AMSCs showed a doubling time of 39.5 h and stained positive for alkaline phosphatase, and these cells also showed expression of pluripotency markers (OCT 4, SOX 2, NANOG), and mesenchymal stem cell markers (CD29, CD44) and were negative for haematopoietic marker (CD34) genes at different passages. Further, when AMSCs were exposed to corresponding induction conditions, these cells differentiated into adipogenic, chondrogenic and osteogenic lineages which were confirmed through oil red O, alcian blue and alizarin staining, respectively. Donor cells at 3-4 passage were employed for NT. The cleavage rate was significantly (P < 0.05) higher in IVF than in FF-NT and AMSC-NT embryos (82.6 ± 8.2 vs. 64.6 ± 1.3 and 72.3 ± 2.2 %, respectively). However, blastocyst rates in IVF and AMSC-NT embryos (30.6 ± 2.7 and 28.9 ± 3.1 %) did not differ and were significantly (P < 0.05) higher than FF-NT (19.5 ± 1.8 %). Total cell number did not show significant (P > 0.05) differences between IVF and AMSC-NT embryos (186.7 ± 4.2, 171.2 ± 3.8, respectively) but were significantly (P < 0.05) higher than that from FF-NT (151.3 ± 4.1). Alterations in the expression pattern of genes implicated in transcription and pluripotency (OCT4, STAT3, NANOG), DNA methylation (DNMT1, DNMT3A), histone deacetylation (HDAC2), growth factor signaling and imprinting (IGF2, IGF2R), apoptosis (BAX, BCL2), metabolism (GLUT1) and oxidative stress (MnSOD) regulation were observed in cloned embryos. The transcripts or expression patterns in AMSC-NT embryos more closely followed that of the in vitro derived embryos compared with FF-NT embryos. The results demonstrate that multipotent amnion MSCs have a greater potential as donor cells than FFs in achieving enhanced production of cloned buffalo embryos.
Collapse
|
44
|
Routila J, Bilgen T, Saramäki O, Grénman R, Visakorpi T, Westermarck J, Ventelä S. Copy number increase of oncoprotein CIP2A is associated with poor patient survival in human head and neck squamous cell carcinoma. J Oral Pathol Med 2015; 45:329-37. [PMID: 26436875 DOI: 10.1111/jop.12372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND CIP2A, an inhibitor of PP2A tumour suppressor function, is a widely overexpressed biomarker of aggressive disease and poor therapy response in multiple human cancer types. METHODS CIP2A and DPPA4 copy number alterations and expression were analysed by fluorescence in situ hybridisation (FISH) and immunohistochemistry (IHC) in different cell lines and a tissue microarray of 52 HNSCC patients. Results were correlated with patient survival and other clinicopathological data. RESULTS CIP2A and DPPA4 copy number increase occurred at a relatively high frequency in human HNSCC patient samples. CIP2A but not DPPA4 FISH status was significantly associated with patient survival. CIP2A detection by combining IHC with FISH yielded superior resolution in the prognostication of HNSCC. CONCLUSIONS CIP2A copy number increase is associated with poor patient survival in human HNSCC. We suggest that the reliability and prognostic value of CIP2A detection can be improved by performing FISH analysis to CIP2A IHC positive tumours.
Collapse
Affiliation(s)
- Johannes Routila
- Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Türker Bilgen
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology-BioMediTech, University of Tampere, Tampere, Finland.,Research and Application Centre for Scientific and Technological Investigations (NABILTEM), Namik Kemal University, Tekirdag, Turkey
| | - Outi Saramäki
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology-BioMediTech, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology-BioMediTech, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Jukka Westermarck
- Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Pathology, University of Turku, Turku, Finland
| | - Sami Ventelä
- Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland
| |
Collapse
|
45
|
Transcriptomic Features of Bovine Blastocysts Derived by Somatic Cell Nuclear Transfer. G3-GENES GENOMES GENETICS 2015; 5:2527-38. [PMID: 26342001 PMCID: PMC4683625 DOI: 10.1534/g3.115.020016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reprogramming incompletely occurs in most somatic cell nuclear transfer (SCNT) embryos, which results in misregulation of developmentally important genes and subsequent embryonic malfunction and lethality. Here we examined transcriptome profiles in single bovine blastocysts derived by in vitro fertilization (IVF) and SCNT. Different types of donor cells, cumulus cell and ear-skin fibroblast, were used to derive cSCNT and fSCNT blastocysts, respectively. SCNT blastocysts expressed 13,606 genes on average, similar to IVF (13,542). Correlation analysis found that both cSCNT and fSCNT blastocyst groups had transcriptomic features distinctive from the IVF group, with the cSCNT transcriptomes closer to the IVF ones than the fSCNT. Gene expression analysis identified 56 underrepresented and 78 overrepresented differentially expressed genes in both SCNT groups. A 400-kb locus harboring zinc-finger protein family genes in chromosome 18 were found coordinately down-regulated in fSCNT blastocysts, showing a feature of reprogramming-resistant regions. Probing into different categories of genes important for blastocyst development revealed that genes involved in trophectoderm development frequently were underrepresented, and those encoding epigenetic modifiers tended to be overrepresented in SCNT blastocysts. Our effort to identify reprogramming-resistant, differentially expressed genes can help map reprogramming error-prone loci onto the genome and elucidate how to handle the stochastic events of reprogramming to improve cloning efficiency.
Collapse
|
46
|
Huan Y, Wu Z, Zhang J, Zhu J, Liu Z, Song X. Epigenetic Modification Agents Improve Gene-Specific Methylation Reprogramming in Porcine Cloned Embryos. PLoS One 2015; 10:e0129803. [PMID: 26068219 PMCID: PMC4465902 DOI: 10.1371/journal.pone.0129803] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022] Open
Abstract
Incomplete DNA methylation reprogramming in cloned embryos leads to poor cloning efficiency. Epigenetic modification agents can improve genomic methylation reprogramming and the development of cloned embryos, however, the effect of epigenetic modification agents on gene-specific methylation reprogramming remains poorly studied. Here, we investigated DNA methylation reprogramming of pluripotency (Oct4) and tissue specific (Thy1) genes during early embryo development in pigs. In this study, we found that compared with in vitro fertilized counterparts, cloned embryos displayed the disrupted patterns of Oct4 demethylation and Thy1 remethylation. When 5-aza-2'-deoxycytidine (5-aza-dC) or trichostatin A (TSA) enhanced the development of cloned embryos, the transcripts of DNA methyltransferases (Dnmt1 and Dnmt3a), histone acetyltransferase 1 (Hat1) and histone deacetylase 1 (Hdac1) and the methylation and expression patterns of Oct4 and Thy1 became similar to those detected in in vitro fertilized counterparts. Further studies showed that Dnmt1 knockdown in cloned embryos enhanced the methylation reprogramming of Oct4 and Thy1 and promoted the activation of Oct4 and the silence of Thy1. In conclusion, our results demonstrated that cloned embryos displayed incomplete gene-specific methylation reprogramming and disrupted expression patterns of pluripotency and tissue specific genes, and epigenetic modification agents improved gene-specific methylation reprogramming and expression pattern by regulating epigenetic modification related genes. This work would have important implications in improving cloning efficiency.
Collapse
Affiliation(s)
- Yanjun Huan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhanfeng Wu
- Shouguang City Hospital of Chinese Medicine, Weifang, Shandong Province, China
| | - Jiguang Zhang
- Shouguang City Hospital of Chinese Medicine, Weifang, Shandong Province, China
| | - Jiang Zhu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- * E-mail: (LZH); (SXX)
| | - Xuexiong Song
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
- * E-mail: (LZH); (SXX)
| |
Collapse
|
47
|
Engelen E, Brandsma JH, Moen MJ, Signorile L, Dekkers DHW, Demmers J, Kockx CEM, Ozgür Z, van IJcken WFJ, van den Berg DLC, Poot RA. Proteins that bind regulatory regions identified by histone modification chromatin immunoprecipitations and mass spectrometry. Nat Commun 2015; 6:7155. [PMID: 25990348 PMCID: PMC4455091 DOI: 10.1038/ncomms8155] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/13/2015] [Indexed: 12/27/2022] Open
Abstract
The locations of transcriptional enhancers and promoters were recently mapped in many mammalian cell types. Proteins that bind those regulatory regions can determine cell identity but have not been systematically identified. Here we purify native enhancers, promoters or heterochromatin from embryonic stem cells by chromatin immunoprecipitations (ChIP) for characteristic histone modifications and identify associated proteins using mass spectrometry (MS). 239 factors are identified and predicted to bind enhancers or promoters with different levels of activity, or heterochromatin. Published genome-wide data indicate a high accuracy of location prediction by ChIP-MS. A quarter of the identified factors are important for pluripotency and includes Oct4, Esrrb, Klf5, Mycn and Dppa2, factors that drive reprogramming to pluripotent stem cells. We determined the genome-wide binding sites of Dppa2 and find that Dppa2 operates outside the classical pluripotency network. Our ChIP-MS method provides a detailed read-out of the transcriptional landscape representative of the investigated cell type.
Collapse
Affiliation(s)
- Erik Engelen
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Johannes H Brandsma
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Maaike J Moen
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Luca Signorile
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Proteomics Center, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Jeroen Demmers
- Proteomics Center, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Christel E M Kockx
- Center for Biomics, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Zehila Ozgür
- Center for Biomics, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | | | - Debbie L C van den Berg
- 1] Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands [2] Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
48
|
Glazova MV, Pak ES, Murashov AK. Neurogenic potential of spinal cord organotypic culture. Neurosci Lett 2015; 594:60-5. [PMID: 25805458 DOI: 10.1016/j.neulet.2015.03.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/25/2022]
Abstract
There are several neurogenic niches in the adult mammalian central nervous system. In the central nervous system, neural stem cells (NSC) localize not only to the periventricular area, but are also diffusely distributed in the parenchyma. Here, we assessed neurogenic potential of organotypic cultures prepared from adult mouse spinal cord. Slices were placed on Millipore inserts for organotypic culture and incubated in neurobasal media supplemented with B27 and N2 for up to 9 weeks. After 3-4 weeks, the cell's aggregates formed in the slices. The aggregate's cells were BrdU-uptake, nestin and alkaline phosphatase positive. At the later stage of incubation, we observed Oct3/4 in the inner mass of the neurospheres as well as expression of Dppa1, which is an Oct-4 downstream target gene and a marker for pluripotency. To check differentiation, the formed neurospheres were isolated and cultured for several days in differentiation media. The obtained data demonstrated the cells from isolated neurospheres differentiate into astrocytes and MAP2-positive neurons. Immunostaining for HB9 and Lim2 revealed subsequent differentiation of MAP2-positive cells into motor neurons and interneurons, respectively. We hypothesized neuronal loss and/or long-term culturing of spinal cord slices may trigger a reset of the internal cell program and promote proliferation and further differentiation of NSC.
Collapse
Affiliation(s)
- Margarita V Glazova
- Departments of Physiology, The Brody School of Medicine, East Carolina University School of Medicine, Brody Building, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Elena S Pak
- Departments of Physiology, The Brody School of Medicine, East Carolina University School of Medicine, Brody Building, 600 Moye Boulevard, Greenville, NC 27834, USA
| | - Alexander K Murashov
- Departments of Physiology, The Brody School of Medicine, East Carolina University School of Medicine, Brody Building, 600 Moye Boulevard, Greenville, NC 27834, USA
| |
Collapse
|
49
|
Siriboon C, Tu CF, Kere M, Liu MS, Chang HJ, Ho LL, Tai ME, Fang WD, Lo NW, Tseng JK, Ju JC. Production of viable cloned miniature pigs by aggregation of handmade cloned embryos at the 4-cell stage. Reprod Fertil Dev 2015; 26:395-406. [PMID: 23544704 DOI: 10.1071/rd12243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/14/2013] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to improve the quality of handmade cloned porcine embryos by multiple embryo aggregations. Embryos derived from aggregation of three cloned embryos (3×) had a better blastocyst rate than cloned control (1×) embryos (73.6% vs 35.1%, respectively; P<0.05), but did not differ from those produced by aggregation of two cloned embryos (2×; 63.0%). Total cell numbers differed among treatments (P<0.05), with the greatest cell numbers (126) in the 3× group and the lowest (55) in the control group. The ratio of inner cell mass:total cell number was comparable in the 2× and 3× groups (25.1% vs 26.1%, respectively) and was significantly better than that in the control group (15.3%). The proportion of apoptotic cells in 2× and 3× groups was lower than that in the control group (2.7% and 2.2% vs 4.7%, respectively; P<0.05). Expression of Oct4 and Cdx2 was higher, whereas that of Bax was lower (P<0.05), in the 3× compared with non-aggregate group. Seven piglets were born to two surrogate mothers after embryo transfer of 3× aggregated blastocysts. In conclusion, aggregated embryos had greater total cell numbers and better pluripotency gene expression, with reduced expression of the pro-apoptosis gene Bax. Collectively, these improvement may be associated with the development of cloned embryos to term.
Collapse
Affiliation(s)
- Chawalit Siriboon
- Department of Animal Science, National Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan, ROC
| | - Ching-Fu Tu
- Animal Technology Institute Taiwan, 52 Kedung 2 Road, Ding-Pu LII, Chunan, Miaoli, Taiwan, ROC
| | - Michel Kere
- Department of Animal Science, National Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan, ROC
| | - Ming-Sing Liu
- Animal Technology Institute Taiwan, 52 Kedung 2 Road, Ding-Pu LII, Chunan, Miaoli, Taiwan, ROC
| | - Hui-Jung Chang
- Animal Technology Institute Taiwan, 52 Kedung 2 Road, Ding-Pu LII, Chunan, Miaoli, Taiwan, ROC
| | - Lin-Lin Ho
- Animal Technology Institute Taiwan, 52 Kedung 2 Road, Ding-Pu LII, Chunan, Miaoli, Taiwan, ROC
| | - Miao-En Tai
- Animal Technology Institute Taiwan, 52 Kedung 2 Road, Ding-Pu LII, Chunan, Miaoli, Taiwan, ROC
| | - Wen-Der Fang
- Animal Technology Institute Taiwan, 52 Kedung 2 Road, Ding-Pu LII, Chunan, Miaoli, Taiwan, ROC
| | - Neng-Wen Lo
- Department of Animal Science and Biotechnology, Tunghai University, 181, Sec. 3, Taichung Harbor Road, Taichung 407, Taiwan, ROC
| | - Jung-Kai Tseng
- School of Optometry, Chung Shan Medical University, 110 Chien-Kuo North Road, Taichung 402, Taiwan, ROC
| | - Jyh-Cherng Ju
- Department of Animal Science, National Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan, ROC
| |
Collapse
|
50
|
Diagnostic clinical relevance of developmental pluripotency-associated 2 (DPPA2) in colorectal cancer. Int J Surg 2015; 13:193-197. [DOI: 10.1016/j.ijsu.2014.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/22/2014] [Indexed: 12/17/2022]
|