1
|
Kim YJ, Nho SJ, Lee SY, Yeo CY. Protein-O-fucosylation of coreceptors may be required for Nodal signaling in Xenopus. Mol Cells 2025; 48:100207. [PMID: 40043779 PMCID: PMC11964751 DOI: 10.1016/j.mocell.2025.100207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Nodal-related ligands of TGF-β family play pivotal roles for mesoderm induction and body axis formation during vertebrate early embryogenesis. Nodal ligands are distinct from most other TGF-β ligands family as they require EGF-CFC factors as coreceptors for signaling, in addition to their cognate type I and type II TGF-β receptors. In amphibian Xenopus laevis embryos, 5 Nodal-related genes (Xnr1/2/4/5/6) and 2 EGF-CFC genes (XCR1, XCR3) play roles in mesoderm induction and the accumulation of phosphorylated Smad2, while in mammalian embryos, 1 Nodal gene and 1 EGF-CFC gene (Cripto) play roles during mesoderm induction. Mammalian EGF-CFC factors are reported to be O-fucosylated at a conserved threonine residue of the EGF-like motif by protein-O-fucosyltransferase 1 (Pofut1), but this O-fucose modification is shown to be dispensable for Nodal signaling in mammalian embryos. In this study, we investigated the developmental roles of Xenopus laevis Pofut1 (XPofut1) and its potential function in Nodal signaling. We found that morpholino antisense-mediated knockdown of XPofut1 causes reduction of Smad2 phosphorylation in late blastula and axial truncation in neurula. We also found that the O-fucosyltransferase activity of XPofut1 is important in the marginal zone, but not in the vegetal pole region, of blastula. Interestingly, XPofut1 is necessary for Smad2 phosphorylation induced by Xnr1 or Xnr2, but not by Xnr5 or Xnr6. Among the Nodal signaling components, only EGF-CFC factors are known to be modified by Pofut1. Therefore, based on our current observation, we propose that XPofut1 regulates signaling of a subset of nodal ligands in pregastrulation embryos possibly through modulating the function of EGF-CFC factors.
Collapse
Affiliation(s)
- Yeon-Jin Kim
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul, Republic of Korea; ICM, Building 102 4th Floor, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Seung-Joo Nho
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul, Republic of Korea; Multitasking Macrophage Research Center, Ewha Womans University, Seoul, Republic of Korea
| | - Soo Young Lee
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul, Republic of Korea; Multitasking Macrophage Research Center, Ewha Womans University, Seoul, Republic of Korea.
| | - Chang-Yeol Yeo
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
3
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
4
|
Sampath K, Robertson EJ. Keeping a lid on nodal: transcriptional and translational repression of nodal signalling. Open Biol 2016; 6:150200. [PMID: 26791244 PMCID: PMC4736825 DOI: 10.1098/rsob.150200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nodal is an evolutionarily conserved member of the transforming growth factor-β (TGF-β) superfamily of secreted signalling factors. Nodal factors are known to play key roles in embryonic development and asymmetry in a variety of organisms ranging from hydra and sea urchins to fish, mice and humans. In addition to embryonic patterning, Nodal signalling is required for maintenance of human embryonic stem cell pluripotency and mis-regulated Nodal signalling has been found associated with tumour metastases. Therefore, precise and timely regulation of this pathway is essential. Here, we discuss recent evidence from sea urchins, frogs, fish, mice and humans that show a role for transcriptional and translational repression of Nodal signalling during early development.
Collapse
Affiliation(s)
- Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AJ, UK
| | | |
Collapse
|
5
|
Ectopic expression of Cripto-1 in transgenic mouse embryos causes hemorrhages, fatal cardiac defects and embryonic lethality. Sci Rep 2016; 6:34501. [PMID: 27687577 PMCID: PMC5043281 DOI: 10.1038/srep34501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/15/2016] [Indexed: 12/23/2022] Open
Abstract
Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5.
Collapse
|
6
|
Zhang Y, Cooke A, Park S, Dewey CN, Wickens M, Sheets MD. Bicaudal-C spatially controls translation of vertebrate maternal mRNAs. RNA (NEW YORK, N.Y.) 2013; 19:1575-82. [PMID: 24062572 PMCID: PMC3851724 DOI: 10.1261/rna.041665.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The Xenopus Cripto-1 protein is confined to the cells of the animal hemisphere during early embryogenesis where it regulates the formation of anterior structures. Cripto-1 protein accumulates only in animal cells because cripto-1 mRNA in cells of the vegetal hemisphere is translationally repressed. Here, we show that the RNA binding protein, Bicaudal-C (Bic-C), functioned directly in this vegetal cell-specific repression. While Bic-C protein is normally confined to vegetal cells, ectopic expression of Bic-C in animal cells repressed a cripto-1 mRNA reporter and associated with endogenous cripto-1 mRNA. Repression by Bic-C required its N-terminal domain, comprised of multiple KH motifs, for specific binding to relevant control elements within the cripto-1 mRNA and a functionally separable C-terminal translation repression domain. Bic-C-mediated repression required the 5' CAP and translation initiation factors, but not a poly(A) tail or the conserved SAM domain within Bic-C. Bic-C-directed immunoprecipitation followed by deep sequencing of associated mRNAs identified multiple Bic-C-regulated mRNA targets, including cripto-1 mRNA, providing new insights and tools for understanding the role of Bic-C in vertebrate development.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Amy Cooke
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sookhee Park
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Colin N. Dewey
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael D. Sheets
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Corresponding authorE-mail
| |
Collapse
|
7
|
Narbonne P, Simpson DE, Gurdon JB. Deficient induction response in a Xenopus nucleocytoplasmic hybrid. PLoS Biol 2011; 9:e1001197. [PMID: 22131902 PMCID: PMC3217020 DOI: 10.1371/journal.pbio.1001197] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 10/06/2011] [Indexed: 11/29/2022] Open
Abstract
Defects in induction signaling and response underlie the nucleocytoplasmic incompatibility between two evolutionarily distant frog species, while specific treatments partially restore this response in explants and whole embryos. Incompatibilities between the nucleus and the cytoplasm of sufficiently distant species result in developmental arrest of hybrid and nucleocytoplasmic hybrid (cybrid) embryos. Several hypotheses have been proposed to explain their lethality, including problems in embryonic genome activation (EGA) and/or nucleo-mitochondrial interactions. However, conclusive identification of the causes underlying developmental defects of cybrid embryos is still lacking. We show here that while over 80% of both Xenopus laevis and Xenopus (Silurana) tropicalis same-species androgenetic haploids develop to the swimming tadpole stage, the androgenetic cybrids formed by the combination of X. laevis egg cytoplasm and X. tropicalis sperm nucleus invariably fail to gastrulate properly and never reach the swimming tadpole stage. In spite of this arrest, these cybrids show quantitatively normal EGA and energy levels at the stage where their initial gastrulation defects are manifested. The nucleocytoplasmic incompatibility between these two species instead results from a combination of factors, including a reduced emission of induction signal from the vegetal half, a decreased sensitivity of animal cells to induction signals, and differences in a key embryonic protein (Xbra) concentration between the two species, together leading to inefficient induction and defective convergence-extension during gastrulation. Indeed, increased exposure to induction signals and/or Xbra signalling partially rescues the induction response in animal explants and whole cybrid embryos. Altogether, our study demonstrates that the egg cytoplasm of one species may not support the development promoted by the nucleus of another species, even if this nucleus does not interfere with the cytoplasmic/maternal functions of the egg, while the egg cytoplasm is also capable of activating the genome of that nucleus. Instead, our results provide evidence that inefficient signalling and differences in the concentrations of key proteins between species lead to developmental defects in cybrids. Finally, they show that the incompatibilities of cybrids can be corrected by appropriate treatments. When two species evolve separately for several million years, their respective genomes accumulate many small changes that together are responsible for the differences in their characters. Some of these affect the way eggs are prepared inside the germline, and/or how embryos develop, such that the egg cytoplasm of a given species can only support development promoted by its own genome or nucleus. Thus, developmental incompatibility arises between the cytoplasm and the nucleus of distant species during evolution and we don't know its mechanism. We have studied this phenomenon in an advantageous system using two evolutionarily distant frog species (Xenopus laevis and Xenopus tropicalis). We found that hybrid frog embryos with X. laevis cytoplasm and X. tropicalis nuclei are always defective in an important process that is necessary to generate morphogenetic cell movements during development. Through a series of experiments in which we dissect out and/or recombine parts of such hybrid embryos and observe their behaviour in culture, we show that this phenomenon occurs because of malfunctions in the signalling cascade that is responsible for generating these cell movements. Thus, we postulate that inefficient molecular signalling contributes to the death of such hybrids.
Collapse
Affiliation(s)
- Patrick Narbonne
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - David E. Simpson
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | - John B. Gurdon
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Ravisankar V, Singh TP, Manoj N. Molecular evolution of the EGF-CFC protein family. Gene 2011; 482:43-50. [PMID: 21640172 DOI: 10.1016/j.gene.2011.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
The epidermal growth factor-Cripto-1/FRL-1/Cryptic (EGF-CFC) proteins, characterized by the highly conserved EGF and CFC domains, are extracellular membrane associated growth factor-like glycoproteins. These proteins are essential components of the Nodal signaling pathway during early vertebrate embryogenesis. Homologs of the EGF-CFC family have also been implicated in tumorigenesis in humans. Yet, little is known about the mode of molecular evolution in this family. Here we investigate the origin, extent of conservation and evolutionary relationships of EGF-CFC proteins across the metazoa. The results suggest that the first appearance of the EGF-CFC gene occurred in the ancestor of the deuterostomes. Phylogenetic analysis supports the classification of the family into distinct subfamilies that appear to have evolved through lineage-specific duplication and divergence. Site-specific analyses of evolutionary rate shifts between the two major mammalian paralogous subfamilies, Cripto and Cryptic, reveal critical amino acid sites that may account for the observed functional divergence. Furthermore, estimates of functional divergence suggest that rapid change of evolutionary rates at sites located mainly in the CFC domain may contribute towards distinct functional properties of the two paralogs.
Collapse
Affiliation(s)
- V Ravisankar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | | |
Collapse
|
9
|
Abstract
The xCR1 protein is a maternal determinant and cofactor for nodal signaling in vertebrate embryos. The xCR1 protein accumulates specifically in the animal cells of Xenopus embryos, but maternal xCR1 mRNA is distributed equally throughout all embryonic cells. Here, we show that vegetal cell-specific translational repression of xCR1 mRNA contributes to this spatially restricted accumulation of the xCR1 protein in Xenopus embryos. xCR1 mRNA was associated with polyribosomes in animal cells but not vegetal cells. A 351-nucleotide region of xCR1 mRNA's 3' untranslated region was sufficient to confer a spatially restricted pattern of translation to a luciferase reporter mRNA by repressing translation in vegetal cells. Repression depended upon the mRNA's 5' cap but not its 3' poly(A) tail. Furthermore, the region of xCR1 mRNA sufficient to confer vegetal cell-specific repression contained both Pumilio binding elements (PBEs) and binding sites for the CUG-BP1 protein. The PBEs and the CUG-BP1 sites were necessary but not sufficient for translation repression. Our studies of xCR1 mRNA document the first example of spatially regulated translation in controlling the asymmetric distribution of a maternal determinant in vertebrates.
Collapse
|
10
|
Neuner R, Cousin H, McCusker C, Coyne M, Alfandari D. Xenopus ADAM19 is involved in neural, neural crest and muscle development. Mech Dev 2009; 126:240-55. [PMID: 19027850 PMCID: PMC2754070 DOI: 10.1016/j.mod.2008.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 10/27/2008] [Accepted: 10/28/2008] [Indexed: 11/25/2022]
Abstract
ADAM19 is a member of the meltrin subfamily of ADAM metalloproteases. In Xenopus, ADAM19 is present as a maternal transcript. Zygotic expression starts during gastrulation and is apparent in the dorsal blastopore lip. ADAM19 expression through neurulation and tailbud formation becomes enriched in dorsal structures such as the neural tube, the notochord and the somites. Using morpholino knock-down, we show that a reduction of ADAM19 protein in gastrula stage embryos results in a decrease of Brachyury expression in the notochord concomitant with an increase in the dorsal markers, Goosecoid and Chordin. These changes in gene expression are accompanied by a decrease in phosphorylated AKT, a downstream target of the EGF signaling pathway, and occur while the blastopore closes at the same rate as the control embryos. During neurulation and tailbud formation, ADAM19 knock-down induces a reduction of the neural markers N-tubulin and NRP1 but not Sox2. In the somitic mesoderm, the expression of MLC is also decreased while MyoD is not. ADAM19 knockdown also reduces neural crest markers prior to cell migration. Neural crest induction is also decreased in embryos treated with an EGF receptor inhibitor suggesting that this pathway is necessary for neural crest cell induction. Using targeted knock-down of ADAM19 we show that the reduction of neural and neural crest markers is cell autonomous and that the migration if the cranial neural crest is perturbed. We further show that ADAM19 protein reduction affects somite organization, reduces 12-101 expression and perturbs fibronectin localization at the intersomitic boundary.
Collapse
Affiliation(s)
| | | | - Catherine McCusker
- Department of Veterinary and Animal Sciences, University of Massachusetts, Paige Laboratory, Room 203, 161 Holdsworth Way, Amherst 01003, USA
| | - Michael Coyne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Paige Laboratory, Room 203, 161 Holdsworth Way, Amherst 01003, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Paige Laboratory, Room 203, 161 Holdsworth Way, Amherst 01003, USA
| |
Collapse
|
11
|
Abstract
The Dickkopf (Dkk) family is composed of four main members (Dkk1-4), which typically regulate Wnt/beta-catenin signaling. An exception is Dkk3, which does not affect Wnt/beta-catenin signaling and whose function is poorly characterized. Here, we describe the Xenopus dkk3 homolog and characterize its expression and function during embryogenesis. Dkk3 is maternally expressed and zygotically in the cement gland, head mesenchyme, and heart. We show that depletion of Dkk3 in Xenopus embryos by Morpholino antisense oligonucleotides induces axial defects as a result of Spemann organizer and mesoderm inhibition. Dkk3 depletion leads to down-regulation of Activin/Nodal signaling by reducing levels of Smad4 protein. Dkk3 overexpression can rescue phenotypic effects resulting from overexpression of the Smad4 ubiquitin ligase Ectodermin. Furthermore, depletion of Dkk3 up-regulates FGF signaling, while Dkk3 overexpression reduces it. These results indicate that Dkk3 modulates FGF and Activin/Nodal signaling to regulate mesoderm induction during early Xenopus development.
Collapse
Affiliation(s)
- Sonia Pinho
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | | |
Collapse
|
12
|
Westmoreland JJ, Takahashi S, Wright CVE. Xenopus Lefty requires proprotein cleavage but not N-linked glycosylation to inhibit nodal signaling. Dev Dyn 2007; 236:2050-61. [PMID: 17584861 DOI: 10.1002/dvdy.21210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Nodal and Nodal-related morphogens are utilized for the specification of distinct cellular identity throughout development by activating discrete target genes in a concentration-dependant manner. Lefty is a principal extracellular antagonist involved in the spatiotemporal regulation of the Nodal morphogen gradient during mesendoderm induction. The Xenopus Lefty proprotein contains a single N-linked glycosylation motif in the mature domain and two potential cleavage sites that would be expected to produce long (Xlefty(L)) and short (Xlefty(S)) isoforms. Here we demonstrate that both isoforms were secreted from Xenopus oocytes, but that Xlefty(L) is the only isoform detected when embryonic tissue was analyzed. In mesoderm induction assays, Xlefty(L) is the functional blocker of Xnr signaling. When secreted from oocytes, vertebrate Lefty molecules were N-linked glycosylated. However, glycan addition was not required to inhibit Xnr signaling and did not influence its movement through the extracellular space. These findings demonstrate that Lefty molecules undergo post-translational modifications and that some of these modifications are required for the Nodal inhibitory function.
Collapse
Affiliation(s)
- Joby J Westmoreland
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
13
|
Ware SM, Harutyunyan KG, Belmont JW. Heart defects in X-linked heterotaxy: evidence for a genetic interaction of Zic3 with the nodal signaling pathway. Dev Dyn 2007; 235:1631-7. [PMID: 16496285 DOI: 10.1002/dvdy.20719] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complex cardiac defects that occur in heterotaxy result from abnormal left-right patterning. Mutations in the zinc finger transcription factor ZIC3 cause X-linked heterotaxy, HTX1. We previously have generated a targeted deletion of the murine Zic3 locus and demonstrated that these knockout mice correctly model HTX1. Fifty percent of Zic3 null embryos have cardiac looping anomalies at embryonic day 10.5 to 14.5, with ventral looping and sinistral looping as the predominant phenotypes. The penetrance of these phenotypes is increased in mice that are also haploinsufficient for Nodal. Zic3(+/-); Nodal (+/-) compound heterozygous mice are born in significantly reduced numbers (P=0.0001), indicating a genetic interaction between the loci. Furthermore, an upstream Nodal enhancer is responsive to Zic3 in both Xenopus and mouse. These studies provide evidence that Zic3 interacts genetically with Nodal in left-right patterning and subsequent cardiac development and delineate a critical Zic3-responsive enhancer required for mediating Nodal expression at the node.
Collapse
Affiliation(s)
- Stephanie M Ware
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
14
|
Abstract
Members of the Zic family of zinc finger transcription factors play critical roles in a variety of developmental processes. They are involved in development of neural tissues and the neural crest, in left-right axis patterning, in somite development, and in formation of the cerebellum. In addition to their roles in cell-fate specification, zic genes also promote cell proliferation. Further, they are expressed in postmitotic cells of the cerebellum and in retinal ganglion cells. Efforts to determine the role of individual zic genes within an array of developmental and cellular processes are complicated by overlapping patterns of zic gene expression and strong sequence conservation within this gene family. Nevertheless, substantial progress has been made. This review summarizes our knowledge of the molecular events that govern the activities of zic family members, including emerging relationships between upstream signaling pathways and zic genes. In addition, advancements in our understanding of the molecular events downstream of Zic transcription factors are reviewed. Despite significant progress, however, much remains to be learned regarding the mechanisms through which zic genes exert their function in a variety of different contexts.
Collapse
Affiliation(s)
- Christa S Merzdorf
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana.
| |
Collapse
|
15
|
Sugimoto K, Okabayashi K, Sedohara A, Hayata T, Asashima M. The role of XBtg2 in Xenopus neural development. Dev Neurosci 2006; 29:468-79. [PMID: 17119321 DOI: 10.1159/000097320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 08/17/2006] [Indexed: 11/19/2022] Open
Abstract
In early neural development, active cell proliferation and apoptosis take place concurrent with cell differentiation, but how these processes are coordinated remains unclear. In this study, we characterized the role of XBtg2 in Xenopus neural development. XBtg2 transcripts were detected at the edge of the anterolateral neural plate and the neural crest region at the midneurula stage, and in eyes and in part of the neural tube at the tailbud stage. Translational inhibition of XBtg2 affected anterior neural development and impaired eye formation. XBtg2 depletion altered the expression patterns of the early neural genes, Zic3 and SoxD, at the midneurula stage, but not at the early neurula stage. At the midneurula stage, XBtg2-depleted embryos exhibited a marked decrease in the expression of anterior neural genes, En2, Otx2, and Rx1, without any changes in neural crest genes, Slug and Snail, or an epidermal gene, XK81. These results suggest that XBtg2 is required for the differentiation of the anterior neural plate from the midneurula stage, but not for the specification of the fate and patterning of the neural plate. XBtg2-depleted embryos also exhibited an increase in both proliferation and apoptosis in the anterior neural plate; however, the altered expression patterns of neural markers were not reversed by inhibition of either the cell cycle or apoptosis. Based on these data, we propose that XBtg2 plays an essential role in the anterior neural development, by regulating neural cell differentiation, and, independently, cell proliferation and survival.
Collapse
Affiliation(s)
- Kaoru Sugimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
16
|
Okabayashi K, Asashima M. In Vitro organogenesis using amphibian pluripotent cells. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2006; 82:197-207. [PMID: 25792783 PMCID: PMC4343058 DOI: 10.2183/pjab.82.197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 09/12/2006] [Indexed: 06/04/2023]
Abstract
Mesoderm induction as a result of the interaction between endoderm and ectoderm is one of the most crucial events in vertebrate development. We identified activin as a strong mesoderm-inducing factor in an animal cap assay, an in vitro assay system using amphibian pluripotential cell mass. Activin induces mesodermal tisswes including most dorsal mesodermal tissue, notochord (which has important roles in neural induction, somite segmentation, and endodermal organogenesis), and its effects are concentration-dependent. Animal cap cells treated with high concentrations of activin differentiate into anterior endoderm, which can act as an organizer, or center of body patterning. We have established an in vitro induction system for 22 different organs and tissues using animal cap cells, and have isolated many organ-specific genes. With these useful methods, and analysis of newly isolated tissue- and organ-specific genes, the molecular biological "road map" for organogenesis is being established.
Collapse
Affiliation(s)
- Koji Okabayashi
- ICORP, Japan Science and Technology Agency (JST), The University of Tokyo, Tokyo,
Japan
| | - Makoto Asashima
- ICORP, Japan Science and Technology Agency (JST), The University of Tokyo, Tokyo,
Japan
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Tokyo,
Japan
- Recipient of Imperial Prize and Japan Academy Prize in 2001
| |
Collapse
|
17
|
Nitta KR, Takahashi S, Haramoto Y, Fukuda M, Onuma Y, Asashima M. Expression of Sox1 during Xenopus early embryogenesis. Biochem Biophys Res Commun 2006; 351:287-93. [PMID: 17056008 DOI: 10.1016/j.bbrc.2006.10.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 10/06/2006] [Indexed: 10/24/2022]
Abstract
Sox B1 group genes, Sox1, Sox2, and Sox3 (Sox1-3), are involved in neurogenesis in various species. Here, we identified the Xenopus homolog of Sox1, and investigated its expression patterns and neural inducing activity. Sox1 was initially expressed in the anterior neural plate of Xenopus embryos, with expression restricted to the brain and optic vesicle by the tailbud stage. Expression subsequently decreased in the eye region by the tadpole stage. Sox1 expression in animal cap explants was induced by inhibition of BMP signaling in the same manner as Sox2, Sox3, and SoxD. In addition, overexpression of Sox1 induced neural markers in ventral ectoderm and in animal caps. These results implicate Xenopus Sox1 in neurogenesis, especially brain and eye development.
Collapse
Affiliation(s)
- Kazuhiro R Nitta
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Dorey K, Hill CS. A novel Cripto-related protein reveals an essential role for EGF-CFCs in Nodal signalling in Xenopus embryos. Dev Biol 2006; 292:303-16. [PMID: 16497290 DOI: 10.1016/j.ydbio.2006.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 12/28/2005] [Accepted: 01/02/2006] [Indexed: 10/25/2022]
Abstract
The location, timing and intensity of Nodal signalling are all critical for proper patterning of the vertebrate embryo. Genetic evidence from mouse and zebrafish indicates that EGF-CFC family members are essential for Nodal ligands to signal. However, the Xenopus EGF-CFC, FRL1, has been implicated in Wnt signalling and in activation of Erk MAP kinase. Here, we identify two additional Xenopus EGF-CFCs, XCR2 and XCR3. We have focused on the role of XCR1/FRL1 and XCR3, which are both expressed at gastrula stages when Nodal signalling is active. We demonstrate spatial and temporal regulation of XCR1 protein expression, whereas XCR3 appears to be expressed ubiquitously. Using gain and loss of function approaches, we show that XCR1 and XCR3 are required for Nodal-related ligands to signal during early Xenopus development. Moreover, different Nodal-related ligands require different XCRs to signal. When both XCR1 and XCR3 are knocked down, activation of the Nodal intracellular signal transducer, Smad2, is severely inhibited and neither gastrulation nor mesendoderm formation occurs. Together our results indicate that the XCRs are important for modulation of the timing and intensity of Nodal signalling in Xenopus embryos.
Collapse
Affiliation(s)
- Karel Dorey
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, WC2A 3PX London, UK
| | | |
Collapse
|
19
|
Vonica A, Brivanlou AH. An obligatory caravanserai stop on the silk road to neural induction: Inhibition of BMP/GDF signaling. Semin Cell Dev Biol 2006; 17:117-32. [PMID: 16516504 DOI: 10.1016/j.semcdb.2005.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Work in Xenopus laevis produced the first molecular explanation for neural specification, the default model, where inactivation of the BMP pathway in ectodermal cells changes fates from epidermal to neural. This review covers the present status of our understanding of neural specification, with emphasis on Xenopus, but including relevant facts in other model systems. While recent experiments have increased the complexity of the molecular picture, they have also provided additional support for the default model and the central position of the BMP pathway. We conclude that synergy between accumulated knowledge and technical progress will maintain Xenopus at the forefront of research in neural development.
Collapse
Affiliation(s)
- Alin Vonica
- Laboratory of Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
20
|
Onuma Y, Yeo CY, Whitman M. XCR2, one of three Xenopus EGF-CFC genes, has a distinct role in the regulation of left-right patterning. Development 2005; 133:237-50. [PMID: 16339189 DOI: 10.1242/dev.02188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the EGF-CFC family facilitate signaling by a subset of TGFbeta superfamily ligands that includes the nodal-related factors and GDF1/VG1. Studies in mouse, zebrafish, and chick point to an essential role for EGF-CFC proteins in the action of nodal/GDF1 signals in the early establishment of the mesendoderm and later visceral left-right patterning. Antisense knockdown of the only known frog EGF-CFC factor (FRL1), however, has argued against an essential role for this factor in nodal/GDF1 signaling. To address this apparent paradox, we have identified two additional Xenopus EGF-CFC family members. The three Xenopus EGF-CFC factors show distinct patterns of expression. We have examined the role of XCR2, the only Xenopus EGF-CFC factor expressed in post-gastrula embryos, in embryogenesis. Antisense morpholino oligonucleotide-mediated depletion of XCR2 disrupts left-right asymmetry of the heart and gut. Although XCR2 is expressed bilaterally at neurula stage, XCR2 is required on the left side, but not the right side, for normal left-right patterning. Left-side expression of XNR1 in the lateral plate mesoderm depends on XCR2, whereas posterior bilateral expression of XNR1 does not, suggesting that distinct mechanisms maintain XNR1 expression in different regions of neurula-tailbud embryos. Ectopic XCR2 on the right side initiates premature right-side expression of XNR1 and XATV, and can reverse visceral patterning. This activity of XCR2 depends on its co-receptor function. These observations indicate that XCR2 has a crucial limiting role in maintaining a bistable asymmetry in nodal family signaling across the left-right axis.
Collapse
Affiliation(s)
- Yasuko Onuma
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
21
|
Chu J, Ding J, Jeays-Ward K, Price SM, Placzek M, Shen MM. Non-cell-autonomous role for Cripto in axial midline formation during vertebrate embryogenesis. Development 2005; 132:5539-51. [PMID: 16291788 DOI: 10.1242/dev.02157] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several membrane-associated proteins are known to modulate the activity and range of potent morphogenetic signals during development. In particular, members of the EGF-CFC family encode glycosyl-phosphatidylinositol (GPI)-linked proteins that are essential for activity of the transforming growth factor beta (TGFbeta) ligand Nodal, a factor that plays a central role in establishing the vertebrate body plan. Genetic and biochemical studies have indicated that EGF-CFC proteins function as cell-autonomous co-receptors for Nodal; by contrast, cell culture data have suggested that the mammalian EGF-CFC protein Cripto can act as a secreted signaling factor. Here we show that Cripto acts non-cell-autonomously during axial mesendoderm formation in the mouse embryo and may possess intercellular signaling activity in vivo. Phenotypic analysis of hypomorphic mutants demonstrates that Cripto is essential for formation of the notochordal plate, prechordal mesoderm and foregut endoderm during gastrulation. Remarkably, Cripto null mutant cells readily contribute to these tissues in chimeras, indicating non-cell-autonomy. Consistent with these loss-of-function analyses, gain-of-function experiments in chick embryos show that exposure of node/head process mesoderm to soluble Cripto protein results in alterations in cell fates toward anterior mesendoderm, in a manner that is dependent on Nodal signaling. Taken together, our findings support a model in which Cripto can function in trans as an intercellular mediator of Nodal signaling activity.
Collapse
Affiliation(s)
- Jianhua Chu
- Center for Advanced Biotechnology and Medicine and Departments of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
During neural induction, the embryonic neural plate is specified and set aside from other parts of the ectoderm. A popular molecular explanation is the 'default model' of neural induction, which proposes that ectodermal cells give rise to neural plate if they receive no signals at all, while BMP activity directs them to become epidermis. However, neural induction now appears to be more complex than once thought, and can no longer be fully explained by the default model alone. This review summarizes neural induction events in different species and highlights some unanswered questions about this important developmental process.
Collapse
Affiliation(s)
- Claudio D Stern
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
23
|
Tao Q, Yokota C, Puck H, Kofron M, Birsoy B, Yan D, Asashima M, Wylie CC, Lin X, Heasman J. Maternal Wnt11 Activates the Canonical Wnt Signaling Pathway Required for Axis Formation in Xenopus Embryos. Cell 2005; 120:857-71. [PMID: 15797385 DOI: 10.1016/j.cell.2005.01.013] [Citation(s) in RCA: 392] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 12/28/2004] [Accepted: 01/07/2005] [Indexed: 11/23/2022]
Abstract
Wnt signaling pathways play essential roles in patterning and proliferation of embryonic and adult tissues. In many organisms, this signaling pathway directs axis formation. Although the importance of intracellular components of the pathway, including beta-catenin and Tcf3, has been established, the mechanism of their activation is uncertain. In Xenopus, the initiating signal that localizes beta-catenin to dorsal nuclei has been suggested to be intracellular and Wnt independent. Here, we provide three lines of evidence that the pathway specifying the dorsal axis is activated extracellularly in Xenopus embryos. First, we identify Wnt11 as the initiating signal. Second, we show that activation requires the glycosyl transferase X.EXT1. Third, we find that the EGF-CFC protein, FRL1, is also essential and interacts with Wnt11 to activate canonical Wnt signaling.
Collapse
Affiliation(s)
- Qinghua Tao
- Division of Developmental Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bianco C, Strizzi L, Normanno N, Khan N, Salomon DS. Cripto-1: an oncofetal gene with many faces. Curr Top Dev Biol 2005; 67:85-133. [PMID: 15949532 DOI: 10.1016/s0070-2153(05)67003-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human Cripto-1 (CR-1), a member of the epidermal growth factor (EGF)-CFC family, has been implicated in embryogenesis and in carcinogenesis. During early vertebrate development, CR-1 functions as a co-receptor for Nodal, a transforming growth factor beta (TGFbeta) family member and is essential for mesoderm and endoderm formation and anterior-posterior and left-right axis establishment. In adult tissues, CR-1 is expressed at a low level in all stages of mammary gland development and expression increases during pregnancy and lactation. Overexpression of CR-1 in mouse mammary epithelial cells leads to their transformation in vitro and, when injected into mammary glands, produces ductal hyperplasias. CR-1 can also enhance migration, invasion, branching morphogenesis and epithelial to mesenchymal transition (EMT) of several mouse mammary epithelial cell lines. Furthermore, transgenic mouse studies have shown that overexpression of a human CR-1 transgene in the mammary gland under the transcriptional control of the mouse mammary tumor virus (MMTV) promoter results in mammary hyperplasias and papillary adenocarcinomas. Finally, CR-1 is expressed at high levels in approximately 50 to 80% of different types of human carcinomas, including breast, cervix, colon, stomach, pancreas, lung, ovary, and testis. In conclusion, EGF-CFC proteins play dual roles as embryonic pattern formation genes and as oncogenes. While during embryogenesis EGF-CFC proteins perform specific and regulatory functions related to cell and tissue patterning, inappropriate expression of these molecules in adult tissues can lead to cellular proliferation and transformation and therefore may be important in the etiology and/or progression of cancer.
Collapse
Affiliation(s)
- Caterina Bianco
- Tumor Growth Factor Section, Mammary Biology & Tumorigenesis Laboratory Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Nitta KR, Tanegashima K, Takahashi S, Asashima M. XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling. Dev Biol 2004; 275:258-67. [PMID: 15464588 DOI: 10.1016/j.ydbio.2004.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 08/07/2004] [Accepted: 08/09/2004] [Indexed: 11/26/2022]
Abstract
Neural differentiation is induced by inhibition of BMP signaling. Secreted inhibitors of BMP such as Chordin from the Spemann organizer contribute to the initial step of neural induction. Xenopus Smad-interacting protein-1 gene (XSIP1) is expressed in neuroectoderm from the early gastrula stage through to the neurula stage. XSIP1 is able to inhibit BMP signaling and overexpression of XSIP1 induces neural differentiation. To clarify the function of XSIP1 in neural differentiation, we performed a loss-of-function study of XSIP1. Knockdown of XSIP1 inhibited SoxD expression and neural differentiation. These results indicate that XSIP1 is essential for neural induction. Furthermore, loss-of-function experiments showed that SoxD is essential for XSIP1 transcription and for neural differentiation. However, inhibition of XSIP1 translation prevented neural differentiation induced by SoxD; thus, SoxD was not sufficient to mediate neural differentiation. Expression of XSIP1 was also required for inhibition of BMP signaling. Together, these results suggest that XSIP1 and SoxD interdependently function to maintain neural differentiation.
Collapse
Affiliation(s)
- Kazuhiro R Nitta
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-8654, Japan
| | | | | | | |
Collapse
|
26
|
Abstract
The understanding of germ layer formation in vertebrates began with classical experimental embryology. Early in the 20th century, Spemann and Mangold (1924) identified a region of the early embryo capable of inducing an entire embryonic axis. Termed the dorsal organizer, the tissue and the activity have been shown to exist in all vertebrates examined. In mice, for example, the activity resides in a region of the gastrula embryo known as the node. Experiments by the Dutch embryologist Nieuwkoop (1967a, 1967b, 1973, 1977) showed that a signal derived from the vegetal half of the amphibian embryo is responsible for the formation of mesoderm. Nieuwkoop's results allowed the development of in vitro assays that led, in the late 1980s and early 1990s, to the identification of growth factors essential for germ layer formation. Through more recent genetic investigations in mice and zebrafish, we now know that one class of secreted growth factor, called Nodal because of its localized expression in the mouse node, is essential for formation of mesoderm and endoderm and for the morphological rearrangements that occur during gastrulation.
Collapse
Affiliation(s)
- Wei Weng
- Vertebrate Development and Genetics (Team31), Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | | |
Collapse
|
27
|
Wessely O, Kim JI, Geissert D, Tran U, De Robertis EM. Analysis of Spemann organizer formation in Xenopus embryos by cDNA macroarrays. Dev Biol 2004; 269:552-66. [PMID: 15110719 DOI: 10.1016/j.ydbio.2004.01.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 01/08/2004] [Accepted: 01/08/2004] [Indexed: 11/27/2022]
Abstract
The understanding of vertebrate development has greatly benefited from the study of gastrulation in the Xenopus embryo. Over the years, the molecular dissection of the Spemann organizer has proven to be a very fruitful source for gene discovery. Here, we report a comprehensive screen of gene expression in the Xenopus gastrula using cDNA macroarrays. Nylon filters containing more than 72000 cDNAs from a gastrula stage library were hybridized with differential probes from embryos in which organizer induction had been inhibited by reducing Nodal-related or maternal beta-Catenin signaling. Combining the changes in gene expression levels caused by these two major signaling pathways in a single graph identified both known and novel dorsoventral regulated genes. The most highly enriched organizer-specific genes were the secreted molecules chordin and Xnr-3, followed by the transmembrane protein paraxial protocadherin (PAPC). Ventral-specific abundant cDNAs included S10-40-H5, members of the Hyaluronan synthase family, Xvent-2 and XFD2/FoxI1. A differential probe of dorsal and ventral lips identified many more organizer-specific cDNAs than the screens inhibiting Nodal-related and beta-Catenin signaling, suggesting that additional, as yet uncharacterized signaling pathways, contribute to organizer formation. Finally, extension of this approach to the blastula preorganizer signaling center identified the transcription factor pintallavis/FoxA2 as a new preorganizer component.
Collapse
Affiliation(s)
- Oliver Wessely
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
TGFss signals belonging to the Nodal family set up the embryonic axes, induce mesoderm and endoderm, pattern the nervous system, and determine left-right asymmetry in vertebrates. Nodal signaling activates a canonical TGFss pathway involving activin receptors, Smad2 transcription factors, and FoxH1 coactivators. In addition, Nodal signaling is dependent on coreceptors of the EGF-CFC family and antagonized by the Lefty and Cerberus families of secreted factors. Additional modulators of Nodal signaling include convertases that regulate the generation of the mature signal, and factors such as Arkadia and DRAP1 that regulate the cellular responses to the signal. Complex regulatory cascades and autoregulatory loops coordinate Nodal signaling during early development. Nodals have concentration-dependent roles and can act both locally and at a distance. These studies demonstrate that Nodal signaling is modulated at almost every level to precisely orchestrate tissue patterning during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Alexander F Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
29
|
Griffin KJP, Kimelman D. Interplay between FGF, one-eyed pinhead, and T-box transcription factors during zebrafish posterior development. Dev Biol 2003; 264:456-66. [PMID: 14651930 DOI: 10.1016/j.ydbio.2003.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The zebrafish T-box transcription factors spadetail (spt) and the brachyury ortholog no tail (ntl) are together essential for posterior mesoderm formation. In addition to being functionally redundant, spt and ntl also genetically interact with zygotic mutant alleles of one-eyed pinhead (Zoep), leading to synergistic mesodermal defects. Here we have used genetic and pharmacological assays to address the mechanism of these interactions. We show that Zoep and ntl are together required upstream of spt expression, accounting for the severity of the mesodermal defects in Zoep;ntl embryos. Since Xenopus brachyury is proposed to regulate fgf expression, and FGF signaling is required for spt expression, we analyzed the involvement of the FGF signaling pathway in these genetic interactions. Using a specific inhibitor of FGFR activity to indirectly assay the strength of FGF signaling in individual embryos, we found that spt and ntl mutant embryos were both hypersensitive to the FGFR inhibitor. This hypersensitivity is consistent with the possibility that Spt and Ntl function upstream of FGF signaling. Furthermore, we show that minor pharmacological or genetic perturbations in FGF signaling are sufficient to dramatically enhance the Zoep mutant phenotype, providing a plausible explanation for why Zoep genetically interacts with spt and ntl. Finally, we show that Zoep and ace/fgf8 function are essential for the formation of all posterior tissues, including spinal cord. Taken together, our data provide strong in vivo support for the regulation of FGF signaling by T-box transcription factors, and the cooperative activity of Oep and FGF signaling during the formation of posterior structures.
Collapse
Affiliation(s)
- Kevin J P Griffin
- Department of Biochemistry & Center for Developmental Biology, Box 357350, University of Washington, Seattle, WA 98195-7350, USA.
| | | |
Collapse
|
30
|
Kaneko T, Chan T, Satow R, Fujita T, Asashima M. The isolation and characterization of XC3H-3b: a CCCH zinc-finger protein required for pronephros development. Biochem Biophys Res Commun 2003; 308:566-72. [PMID: 12914788 DOI: 10.1016/s0006-291x(03)01419-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We describe the isolation and characterization of the RNA-binding protein XC3H-3b that is expressed during pronephros development. XC3H-3b is a member of the TTP/TIS family of CCCH tandem zinc-finger proteins, which are physiological stimulators of instability for the mRNA encoding tumor necrosis factor-alpha in certain cell types. XC3H-3b is localized primarily to the mesodermal tissues around the pronephros. Overexpression of XC3H-3b markedly and specifically inhibits kidney development. Morpholino-mediated knockdown of XC3H-3b also results in defects in nephrogenesis. In both cases, the expression of numerous pronephric marker genes, such as Xlim-1, Xpax-2, Xpax-8, Xwnt-4, and XWT1, is decreased and morphological development of the pronephric tubules is abrogated. We conclude that XC3H-3b plays an important role in the regulation of pronephros differentiation. This is the first report of a gene localized around the pronephros that regulates pronephros development.
Collapse
Affiliation(s)
- Tomoyo Kaneko
- Department of Nephrology and Endocrinology, Faculty of Medicine, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|