1
|
Ventx Family and Its Functional Similarities with Nanog: Involvement in Embryonic Development and Cancer Progression. Int J Mol Sci 2022; 23:ijms23052741. [PMID: 35269883 PMCID: PMC8911082 DOI: 10.3390/ijms23052741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022] Open
Abstract
The Ventx family is one of the subfamilies of the ANTP (antennapedia) superfamily and belongs to the NK-like (NKL) subclass. Ventx is a homeobox transcription factor and has a DNA-interacting domain that is evolutionarily conserved throughout vertebrates. It has been extensively studied in Xenopus, zebrafish, and humans. The Ventx family contains transcriptional repressors widely involved in embryonic development and tumorigenesis in vertebrates. Several studies have documented that the Ventx family inhibited dorsal mesodermal formation, neural induction, and head formation in Xenopus and zebrafish. Moreover, Ventx2.2 showed functional similarities to Nanog and Barx1, leading to pluripotency and neural-crest migration in vertebrates. Among them, Ventx protein is an orthologue of the Ventx family in humans. Studies have demonstrated that human Ventx was strongly associated with myeloid-cell differentiation and acute myeloid leukemia. The therapeutic potential of Ventx family inhibition in combating cancer progression in humans is discussed. Additionally, we briefly discuss genome evolution, gene duplication, pseudo-allotetraploidy, and the homeobox family in Xenopus.
Collapse
|
2
|
Chuyen A, Rulquin C, Daian F, Thomé V, Clément R, Kodjabachian L, Pasini A. The Scf/Kit pathway implements self-organized epithelial patterning. Dev Cell 2021; 56:795-810.e7. [PMID: 33756121 DOI: 10.1016/j.devcel.2021.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
How global patterns emerge from individual cell behaviors is poorly understood. In the Xenopus embryonic epidermis, multiciliated cells (MCCs) are born in a random pattern within an inner mesenchymal layer and subsequently intercalate at regular intervals into an outer epithelial layer. Using video microscopy and mathematical modeling, we found that regular pattern emergence involves mutual repulsion among motile immature MCCs and affinity toward outer-layer intercellular junctions. Consistently, Arp2/3-mediated actin remodeling is required for MCC patterning. Mechanistically, we show that the Kit tyrosine kinase receptor, expressed in MCCs, and its ligand Scf, expressed in outer-layer cells, are both required for regular MCC distribution. Membrane-associated Scf behaves as a potent adhesive cue for MCCs, while its soluble form promotes their mutual repulsion. Finally, Kit expression is sufficient to confer order to a disordered heterologous cell population. This work reveals how a single signaling system can implement self-organized large-scale patterning.
Collapse
|
3
|
Gentsch GE, Spruce T, Monteiro RS, Owens NDL, Martin SR, Smith JC. Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus. Dev Cell 2018; 44:597-610.e10. [PMID: 29478923 PMCID: PMC5861998 DOI: 10.1016/j.devcel.2018.01.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/21/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
Antisense morpholino oligomers (MOs) have been indispensable tools for developmental biologists to transiently knock down (KD) genes rather than to knock them out (KO). Here we report on the implications of genetic KO versus MO-mediated KD of the mesoderm-specifying Brachyury paralogs in the frog Xenopus tropicalis. While both KO and KD embryos fail to activate the same core gene regulatory network, resulting in virtually identical morphological defects, embryos injected with control or target MOs also show a systemic GC content-dependent immune response and many off-target splicing defects. Optimization of MO dosage and increasing incubation temperatures can mitigate, but not eliminate, these MO side effects, which are consistent with the high affinity measured between MO and off-target sequence in vitro. We conclude that while MOs can be useful to profile loss-of-function phenotypes at a molecular level, careful attention must be paid to their immunogenic and off-target side effects.
Collapse
Affiliation(s)
- George E Gentsch
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK.
| | - Thomas Spruce
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Rita S Monteiro
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Nick D L Owens
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Stephen R Martin
- The Francis Crick Institute, Structural Biology Science Technology Platform, 1 Midland Road, London NW1 1AT, UK
| | - James C Smith
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
4
|
Gentsch G, Owens N, Martin S, Piccinelli P, Faial T, Trotter M, Gilchrist M, Smith J. In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. Cell Rep 2013; 4:1185-96. [PMID: 24055059 PMCID: PMC3791401 DOI: 10.1016/j.celrep.2013.08.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/11/2013] [Accepted: 08/06/2013] [Indexed: 01/30/2023] Open
Abstract
The design of effective cell replacement therapies requires detailed knowledge of how embryonic stem cells form primary tissues, such as mesoderm or neurectoderm that later become skeletal muscle or nervous system. Members of the T-box transcription factor family are key in the formation of these primary tissues, but their underlying molecular activities are poorly understood. Here, we define in vivo genome-wide regulatory inputs of the T-box proteins Brachyury, Eomesodermin, and VegT, which together maintain neuromesodermal stem cells and determine their bipotential fates in frog embryos. These T-box proteins are all recruited to the same genomic recognition sites, from where they activate genes involved in stem cell maintenance and mesoderm formation while repressing neurogenic genes. Consequently, their loss causes embryos to form an oversized neural tube with no mesodermal derivatives. This collaboration between T-box family members thus ensures the continuous formation of correctly proportioned neural and mesodermal tissues in vertebrate embryos during axial elongation.
Collapse
Affiliation(s)
- George E. Gentsch
- Division of Systems Biology, National Institute for Medical Research, London NW7 1AA, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Nick D.L. Owens
- Division of Systems Biology, National Institute for Medical Research, London NW7 1AA, UK
| | - Stephen R. Martin
- Division of Physical Biochemistry, National Institute for Medical Research, London NW7 1AA, UK
| | - Paul Piccinelli
- Division of Systems Biology, National Institute for Medical Research, London NW7 1AA, UK
| | - Tiago Faial
- Division of Systems Biology, National Institute for Medical Research, London NW7 1AA, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Anne McLaren Laboratory for Regenerative Medicine, Cambridge CB2 0SZ, UK
| | | | - Michael J. Gilchrist
- Division of Systems Biology, National Institute for Medical Research, London NW7 1AA, UK
| | - James C. Smith
- Division of Systems Biology, National Institute for Medical Research, London NW7 1AA, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
5
|
Pereira LA, Wong MS, Mei Lim S, Stanley EG, Elefanty AG. The Mix family of homeobox genes—Key regulators of mesendoderm formation during vertebrate development. Dev Biol 2012; 367:163-77. [DOI: 10.1016/j.ydbio.2012.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 04/24/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
|
6
|
Cai C, Tamai K, Molyneaux K. KHDC1B is a novel CPEB binding partner specifically expressed in mouse oocytes and early embryos. Mol Biol Cell 2010; 21:3137-48. [PMID: 20668163 PMCID: PMC2938380 DOI: 10.1091/mbc.e10-03-0255] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
mRNAs required for meiotic maturation and early embryonic development are stored in growing oocytes. These transcripts are translationally repressed until hormonal cues trigger ovulation. Errors in translation underlie some cases of human infertility and are associated with ovarian germ cell tumors. However, it remains unclear how maternal transcripts are kept quiescent in mammals. This study describes a potential translational regulator, KHDC1B. KHDC1B is a member of a small family of KH-domain containing proteins specific to eutherian mammals. Two family members, KHDC1A and 1B, are highly expressed in oocytes. KHDC1A and 1B bind polyU agarose and form oligomers like other KH-domain proteins. The functions of these proteins were tested by expression in Xenopus embryos. KHDC1A caused cell death, whereas KHDC1B caused cleavage arrest. This arrest phenotype was rescued by coexpression of the mouse translational regulator cytoplasmic polyadenylation binding protein 1 (mCPEB1). Coimmunoprecipitation and coimmunostaining experiments confirmed the functional interaction between KHDC1B and mCPEB1. Finally, KHDC1B levels and binding partners were shown to fluctuate with the cell cycle. KHDC1B, via its interaction with mCEPB1, may regulate translation of mRNA targets required for oocyte maturation.
Collapse
Affiliation(s)
- Congli Cai
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
7
|
Swiers G, Chen YH, Johnson AD, Loose M. A conserved mechanism for vertebrate mesoderm specification in urodele amphibians and mammals. Dev Biol 2010; 343:138-52. [PMID: 20394741 DOI: 10.1016/j.ydbio.2010.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 11/26/2022]
Abstract
Understanding how mesoderm is specified during development is a fundamental issue in biology, and it has been studied intensively in embryos from Xenopus. The gene regulatory network (GRN) for Xenopus is surprisingly complex and is not conserved in vertebrates, including mammals, which have single copies of the key genes Nodal and Mix. Why the Xenopus GRN should express multiple copies of Nodal and Mix genes is not known. To understand how these expanded gene families evolved, we investigated mesoderm specification in embryos from axolotls, representing urodele amphibians, since urodele embryology is basal to amphibians and was conserved during the evolution of amniotes, including mammals. We show that single copies of Nodal and Mix are required for mesoderm specification in axolotl embryos, suggesting the ancestral vertebrate state. Furthermore, we uncovered a novel genetic interaction in which Mix induces Brachyury expression, standing in contrast to the relationship of these molecules in Xenopus. However, we demonstrate that this functional relationship is conserved in mammals by showing that it is involved in the production of mesoderm from mouse embryonic stem cells. From our results, we produced an ancestral mesoderm (m)GRN, which we suggest is conserved in vertebrates. The results are discussed within the context of a theory in which the evolution of mechanisms governing early somatic development is constrained by the ancestral germ line-soma relationship, in which germ cells are produced by epigenesis.
Collapse
Affiliation(s)
- Gemma Swiers
- Institute of Genetics, Queens Medical Centre, University of Nottingham, NG7 2UH, UK
| | | | | | | |
Collapse
|
8
|
Ectodermal Factor Restricts Mesoderm Differentiation by Inhibiting p53. Cell 2008; 133:878-90. [DOI: 10.1016/j.cell.2008.03.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/31/2008] [Accepted: 03/24/2008] [Indexed: 11/18/2022]
|
9
|
Gao H, Wu B, Giese R, Zhu Z. Xom interacts with and stimulates transcriptional activity of LEF1/TCFs: implications for ventral cell fate determination during vertebrate embryogenesis. Cell Res 2007; 17:345-56. [PMID: 17404593 DOI: 10.1038/cr.2007.20] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
LEF1/TCFs are high mobility group box-containing transcriptional factors mediating canonical Wnt/beta-catenin signaling during early embryogenesis and tumorigenesis. Beta-catenin forms a complex with LEF1/TCFs and transactivates LEF1/TCF-mediated transcriptions during dorsalization. Although LEF-mediated transcription is also implicated in ventralization, the underlying molecular mechanism is not well understood. Using the vertebrate Xenopus laevis model system, we found that Xom, which is a ventralizing homeobox protein with dual roles of transcriptional activation and repression, forms a complex with LEF1/TCF through its homeodomain and transactivates LEF1/TCF-mediated transcription through its N-terminal transactivation domain (TAD). Our data show that Xom lacking the N-terminal TAD fails to transactivate ventral genes, such as BMP4 and Xom itself, but retains the ability to suppress transcriptional activation of dorsal gene promoters, such as the Goosecoid promoter, indicating that transactivation and repression are separable functions of Xom. It has been postulated that Xom forms a positive re-enforcement loop with BMP4 to promote ventralization and to suppress dorsal gene expression. Consistent with an essential role of Xom transactivation of LEF1/TCFs during early embryogenesis, we found that expression of the dominant-negative Xom mutant that lacks the TAD fails to re-enforce the ventral signaling of BMP4 and causes a catastrophic effect during gastrulation. Our data suggest that the functional interaction of Xom and LEF1/TCF-factors is essential for ventral cell fate determination and that LEF1/TCF factors may function as a point of convergence to mediate the combined signaling of Wnt/beta-catenin and BMP4/Xom pathways during early embryogenesis.
Collapse
Affiliation(s)
- Hong Gao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
10
|
Tseng AS, Adams DS, Qiu D, Koustubhan P, Levin M. Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev Biol 2007; 301:62-9. [PMID: 17150209 PMCID: PMC3136124 DOI: 10.1016/j.ydbio.2006.10.048] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 10/27/2006] [Accepted: 10/31/2006] [Indexed: 01/16/2023]
Abstract
The Xenopus tadpole is able to regenerate its tail, including skin, muscle, notochord, spinal cord and neurons and blood vessels. This process requires rapid tissue growth and morphogenesis. Here we show that a focus of apoptotic cells appears in the regeneration bud within 12 h of amputation. Surprisingly, when caspase-3 activity is specifically inhibited, regeneration is abolished. This is true of tails both before and after the refractory period. Programmed cell death is only required during the first 24 h after amputation, as later inhibition has no effect on regeneration. Inhibition of caspase-dependent apoptosis results in a failure to induce proliferation in the growth zone, a mispatterning of axons in the regenerate, and the appearance of ectopic otoliths in the neural tube, in the context of otherwise normal continued development of the larva. Larvae amputated during the refractory stage exhibit a much broader domain of caspase-3-positive cells, suggesting a window for the amount of apoptosis that is compatible with normal regeneration. These data reveal novel roles for apoptosis in development and indicate that a degree of apoptosis is an early and obligate component of normal tail regeneration, suggesting the possibility of the existence of endogenous inhibitory cells that must be destroyed by programmed cell death for regeneration to occur.
Collapse
Affiliation(s)
- Ai-Sun Tseng
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - Dany S. Adams
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - Dayong Qiu
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - Punita Koustubhan
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| |
Collapse
|
11
|
Zorn AM, Wells JM. Molecular basis of vertebrate endoderm development. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 259:49-111. [PMID: 17425939 DOI: 10.1016/s0074-7696(06)59002-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The embryonic endoderm gives rise to the epithelial lining of the digestive and respiratory systems and organs such as the thyroid, lungs, liver, gallbladder, and pancreas. Studies in Xenopus, zebrafish, and mice have revealed a conserved molecular pathway controlling vertebrate endoderm development. The TGFbeta/Nodal signaling pathway is at the top of this molecular hierarchy and controls the expression of a number of key transcription factors including Mix-like homeodomain proteins, Gata zinc finger factors, Sox HMG domain proteins, and Fox forkhead factors. Here we review the function of these molecules comparing and contrasting their roles in each model organism. Finally, we will describe how our understanding of the molecular pathway governing endoderm development in embryos is being used to differentiate embryonic stem cells in vitro along endodermal lineages, with the ultimate goal of making therapeutically useful tissue.
Collapse
Affiliation(s)
- Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Research, Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
12
|
Patil SS, Alexander TB, Uzman JA, Lou CH, Gohil H, Sater AK. Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning. Dev Dyn 2006; 235:1895-907. [PMID: 16680723 DOI: 10.1002/dvdy.20834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The novel gene ashwin was isolated in a differential display screen for genes activated or up-regulated early in neural specification. ashwin is expressed maternally and zygotically, and it is up-regulated in the neural ectoderm after the midgastrula stage. It is expressed in the neural plate and later in the embryonic brain, eyes, and spinal cord. Overexpression of ashwin in whole embryos leads to anterior truncations and other defects. However, a second Organizer does not form, and the secondary axial structures may result from splitting of the Organizer, rather than axis duplication. Morpholino oligonucleotide-mediated reduction in ashwin expression leads to lethality or abnormalities in gastrulation, as well as significant apoptosis in midgastrula embryos. Apoptosis is also observed in midgastrula embryos overexpressing ashwin. Coexpression of ashwin with the bone morphogenetic protein-4 antagonist noggin has a synergistic effect on neural-specific gene expression in isolated animal cap ectoderm. Ashwin has no previously characterized domains, although two nuclear localization signals can be identified. Orthologues have been identified in the human, mouse, chicken, and pufferfish genomes. Our results suggest that ashwin regulates cell survival and anteroposterior patterning.
Collapse
Affiliation(s)
- Sonali S Patil
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA
| | | | | | | | | | | |
Collapse
|
13
|
Rana AA, Collart C, Gilchrist MJ, Smith JC. Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. PLoS Genet 2006; 2:e193. [PMID: 17112317 PMCID: PMC1636699 DOI: 10.1371/journal.pgen.0020193] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 10/03/2006] [Indexed: 12/03/2022] Open
Abstract
To identify novel genes involved in early development, and as proof-of-principle of a large-scale reverse genetics approach in a vertebrate embryo, we have carried out an antisense morpholino oligonucleotide (MO) screen in Xenopus tropicalis, in the course of which we have targeted 202 genes expressed during gastrula stages. MOs were designed to complement sequence between −80 and +25 bases of the initiating AUG codons of the target mRNAs, and the specificities of many were tested by (i) designing different non-overlapping MOs directed against the same mRNA, (ii) injecting MOs differing in five bases, and (iii) performing “rescue” experiments. About 65% of the MOs caused X. tropicalis embryos to develop abnormally (59% of those targeted against novel genes), and we have divided the genes into “synphenotype groups,” members of which cause similar loss-of-function phenotypes and that may function in the same developmental pathways. Analysis of the expression patterns of the 202 genes indicates that members of a synphenotype group are not necessarily members of the same synexpression group. This screen provides new insights into early vertebrate development and paves the way for a more comprehensive MO-based analysis of gene function in X. tropicalis. Genome sequencing projects have provided remarkable insights into the expression and regulation of many genes. For some species, such as the invertebrates Caenorhabditis elegans and Drosophila melanogaster, it has been possible to assign functions to these genes on a genome-wide scale. For the vertebrates, similar efforts are being made in mouse and zebrafish, but work in the former species is expensive and slow, and the zebrafish experienced a whole genome duplication event, so that some genes may have retained redundant functions. Here, this study uses antisense morpholino oligonucleotides (MOs) to show that the diploid amphibian Xenopus tropicalis provides a powerful alternative species. The authors have designed MOs to target sequences around the initiating AUG codons of 202 genes expressed during early development and confirmed that these function in a specific manner. About 65% of the MOs caused embryos to develop abnormally, and the authors have divided the genes into “synphenotype groups,” members of which cause similar loss-of-function phenotypes. Expression pattern analysis indicates that members of a synphenotype group are not necessarily members of the same synexpression group. This screen provides new insights into vertebrate development and paves the way for a comprehensive MO-based analysis of gene function in X. tropicalis.
Collapse
Affiliation(s)
- Amer Ahmed Rana
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Clara Collart
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Michael J Gilchrist
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - J. C Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Doherty JR, Zhu H, Kuliyev E, Mead PE. Determination of the minimal domains of Mix.3/Mixer required for endoderm development. Mech Dev 2006; 123:56-66. [PMID: 16330190 DOI: 10.1016/j.mod.2005.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 08/31/2005] [Accepted: 09/30/2005] [Indexed: 11/28/2022]
Abstract
The Mix/Bix family of Pax-like homeodomain transcription factors is expressed early in vertebrate development and play important roles in endoderm and mesoderm formation. Like other Pax-related homeodomain proteins, the Mix/Bix family binds DNA as monomers or dimers and dimerization is mediated by the homeodomain. While the Mix/Bix family shares extensive sequence homology within the DNA-binding homeodomain, ectopic expression of these proteins has profoundly different outcomes. Expression of Xenopus Mix.3/Mixer in explanted ectoderm results in endoderm differentiation, whereas Mix.1 expression does not. In this study we sought to define the domains of Mix.3/Mixer that are responsible for this endoderm inducing activity. We generated domain swap mutants between Mix.3/Mixer and Mix.1 and tested their ability to induce endoderm in explanted ectoderm. We demonstrate that the homeodomain and sixty-two amino acids in the carboxyl terminus are required to induce endoderm and that these domains must be on the same polypeptide and can not act in trans as a heterodimer. A Smad2 interaction motif in Mix.3/Mixer is involved in endoderm differentiation but is not essential. Thus, we have defined the regions of Mix.3/Mixer that confer endoderm-inducing activity. These studies reveal a novel co-operation between the homeodomain and a small domain in the carboxyl terminal region that is essential for Mix.3/Mixer function.
Collapse
Affiliation(s)
- Joanne R Doherty
- Department of Pathology, St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Mesoderm and endoderm formation in Xenopus involves the coordinated efforts of maternally and zygotically expressed transcription factors together with growth factor signalling, including members of the TGFbeta and wnt families. In this review we discuss our current state of knowledge of these pathways, and describe in more detail some of the transcription factor-DNA interactions that are involved in mesendoderm formation.
Collapse
Affiliation(s)
- Fiona C Wardle
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | |
Collapse
|
16
|
Messenger NJ, Kabitschke C, Andrews R, Grimmer D, Núñez Miguel R, Blundell TL, Smith JC, Wardle FC. Functional Specificity of the Xenopus T-Domain Protein Brachyury Is Conferred by Its Ability to Interact with Smad1. Dev Cell 2005; 8:599-610. [PMID: 15809041 DOI: 10.1016/j.devcel.2005.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 11/01/2004] [Accepted: 03/04/2005] [Indexed: 11/30/2022]
Abstract
Members of the T-box gene family play important and diverse roles in development and disease. Here, we study the functional specificities of the Xenopus T-domain proteins Xbra and VegT, which differ in their abilities to induce gene expression in prospective ectodermal tissue. In particular, VegT induces strong expression of goosecoid whereas Xbra cannot. Our results indicate that Xbra is unable to induce goosecoid because it directly activates expression of Xom, a repressor of goosecoid that acts downstream of BMP signaling. We show that the inability of Xbra to induce goosecoid is imposed by an N-terminal domain that interacts with the C-terminal MH2 domain of Smad1, a component of the BMP signal transduction pathway. Interference with this interaction causes ectopic activation of goosecoid and anteriorization of the embryo. These findings suggest a mechanism by which individual T-domain proteins may interact with different partners to elicit a specific response.
Collapse
Affiliation(s)
- Nigel J Messenger
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Faure S, Cau J, de Santa Barbara P, Bigou S, Ge Q, Delsert C, Morin N. Xenopus p21-activated kinase 5 regulates blastomeres' adhesive properties during convergent extension movements. Dev Biol 2005; 277:472-92. [PMID: 15617688 DOI: 10.1016/j.ydbio.2004.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/23/2004] [Accepted: 10/01/2004] [Indexed: 11/26/2022]
Abstract
The p21-activated kinase (PAK) proteins regulate many cellular events including cell cycle progression, cell death and survival, and cytoskeleton rearrangements. We previously identified X-PAK5 that binds the actin and microtubule networks, and could potentially regulate their coordinated dynamics during cell motility. In this study, we investigated the functional importance of this kinase during gastrulation in Xenopus. X-PAK5 is mainly expressed in regions of the embryo that undergo extensive cell movements during gastrula such as the animal hemisphere and the marginal zone. Expression of a kinase-dead mutant inhibits convergent extension movements in whole embryos and in activin-treated animal cap by modifying behavior of cells. This phenotype is rescued in embryo by adding back X-PAK5 catalytic activity. The active kinase decreases cell adhesiveness when expressed in animal hemisphere and inhibits the calcium-dependent reassociation of cells, while dead X-PAK5 kinase localizes to cell-cell junctions and increases cell adhesion. In addition, endogenous X-PAK5 colocalizes with adherens junction proteins and its activity is regulated by extracellular calcium. Taken together, our results suggest that X-PAK5 regulates convergent extension movements in vivo by modulating the calcium-mediated cell-cell adhesion.
Collapse
Affiliation(s)
- Sandrine Faure
- Centre de Recherches en Biochimie Macromoléculaire, FRE 2593 CNRS, 34293 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
During blastula and gastrula stages of Xenopus development, cells become progressively and asynchronously committed to a particular germ layer. We have analysed the expression of genes normally expressed in ectoderm, mesoderm or endoderm in individual cells from early and late gastrula embryos, by both in situ hybridization and single-cell RT-PCR. We show that at early gastrula stages, individual cells in the same region may express markers of two or more germ layers, and 'rogue' cells that express a marker outside its canonical domain are also observed at these stages. However, by the late gastrula stage, individual cells express markers that are more characteristic of their position in the embryo, and 'rogue' cells are seen less frequently. These observations exemplify at the gene expression level the observation that cells of the early gastrula are less committed to one germ layer than are cells of the late gastrula embryo. Ectodermal cells induced to form mesendoderm by the addition of Activin respond by activating expression of different mesodermal and endodermal markers in the same cell, recapitulating the response of marginal zone cells in the embryo.
Collapse
Affiliation(s)
- Fiona C Wardle
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| | | |
Collapse
|