1
|
Jiang Y, Su L, Peng B, Wang W, Zhang Y. Ivermectin induced early developmental damage to the nervous system of zebrafish larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104719. [PMID: 40381749 DOI: 10.1016/j.etap.2025.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/01/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Ivermectin has good antiparasitic activity and is heavily used in animal husbandry. However, its extensive use puts pressure on the environment. This study focused on evaluating the safety of ivermectin on the nervous system of aquatic organisms. The effects of ivermectin on the neurological development of zebrafish larvae were mainly explored. The results showed that ivermectin was able to induce developmental abnormalities in zebrafish larvae, which were mainly manifested as head edema. Further results showed that zebrafish larvae had reduced cellular densities and decreased numbers of neuronal cells in the brain. Ivermectin also impaired neural crest development and induced apoptosis. In locomotor behavior, ivermectin induced diminished locomotion in zebrafish larvae. Finally, the results showed that ivermectin was able to induce abnormal expression of genes related to neural development in zebrafish larvae. This study hopes to draw more attention to the safety of ivermectin for aquatic organisms.
Collapse
Affiliation(s)
- Yixuan Jiang
- United World College of South East Asia Dover, Singapore 139654, Singapore
| | - Lin Su
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Bo Peng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Song J, Pu Q, Chen C, Liu X, Zhang X, Wang Z, Yan J, Wang X, Wang H, Qian Q. Neurological Outcomes of Joint Exposure to Polystyrene Micro/Nanospheres and Silver Nanoparticles in Zebrafish. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:57007. [PMID: 40138633 PMCID: PMC12068508 DOI: 10.1289/ehp14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/04/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Micro/nanoplastics and silver nanoparticles (AgNPs) are emerging environmental contaminants widely detected in aquatic environments. However, previous research has primarily focused on the interactions between micro/nanoplastics and organic substances or heavy metals, whereas the interactions and combined toxic effects of micro/nanoplastics with AgNPs remain unclear. OBJECTIVE Our study aimed to investigate the effects and mechanisms of coexposure to AgNPs and polystyrene micro/nanospheres (PS M/NPs) on the nervous system, comparing the toxicity of AgNPs alone and in combination with PS M/NPs in larval zebrafish. METHODS We investigated the dynamics of AgNPs' (5 nm ) adsorption onto PS M/NPs (5 μ m / 100 nm ) using inductively coupled plasma-mass spectrometry. Zebrafish larvae were coexposed to PS M/NPs (200 μ g / L ) and AgNPs (10 μ g / L ) from 6 h post fertilization (hpf) to 72 hpf to ∼ 120 hpf to evaluate neuroinflammatory effects from multiple perspectives, including developmental abnormalities, oxidative stress, neurobehavioral differences, vascular development, immune responses, differences in gene expression, and differences upon neuroinflammation inhibitor addition. RESULTS Adsorption experiments showed PS M/NPs could stably adsorb AgNPs, with higher adsorption in smaller particles. Zebrafish larvae exposed to combined PS M/NPs and AgNPs demonstrated neurodevelopmental abnormalities, including developmental malformations, lower levels of locomotor activity, delayed response, and abnormal neuronal development. In addition, exposed zebrafish also exhibited disrupted neurodevelopmental markers, including vascular and apoptotic indicators, and oxidative stress and neuroimmune responses. Quantitative real-time polymerase chain reaction analysis showed differences in gene expression within neurotoxic pathways in PS M/NPs and AgNPs-exposed zebrafish, focusing on key genes in immunity, apoptosis, vascular, and neural development. Furthermore, these neurotoxic effects induced by combined exposure were alleviated following the introduction of the neuroinflammation inhibitor curcumin. DISCUSSION Our findings demonstrate that polystyrene nanospheres (PSNPs) intensified AgNPs-induced neurotoxicity in larval zebrafish, whereas polystyrene microspheres (PSMPs) had a lesser effect, indicating distinct gene regulation roles when combined with AgNPs. These findings enhance the assessment of environmental risks in settings with coexisting nanomaterials and microplastics, offering important insights for evaluating combined exposure risks. https://doi.org/10.1289/EHP14873.
Collapse
Affiliation(s)
- Jie Song
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Qian Pu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Chen Chen
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Xingcheng Liu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Xinlei Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zejun Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
3
|
Yeung TJ, Wilkinson DG. Short-range Fgf signalling patterns hindbrain progenitors to induce the neurogenesis-to-oligodendrogenesis switch. Development 2024; 151:dev204256. [PMID: 39575980 DOI: 10.1242/dev.204256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
In the vertebrate nervous system, neurogenesis generally precedes gliogenesis. The mechanisms driving the switch in cell type production and generation of the correct proportion of cell types remain unclear. Here, we show that Fgf20 signalling patterns progenitors to induce the switch from neurogenesis to oligodendrogenesis in the zebrafish hindbrain. Fgf20 emanating from earlier-born neurons signals at a short range to downregulate proneural gene expression in the segment centre with high spatial precision along both anterior-posterior and dorsal-ventral axes. This signal induces oligodendrocytes in the segment centre by upregulating olig2 and sox10 expression in pre-patterned competent progenitors. We show that the magnitude of proneural gene downregulation and the quantity of oligodendrocyte precursor cells specified is dependent on the extent of Fgf20 signalling. Overexpression of fgf20a induces precocious specification and differentiation of oligodendrocytes among olig2+ progenitors, resulting in an increase in oligodendrocytes at the expense of neurogenesis. Thus, Fgf20 signalling defines the proportion of each cell type produced. Taken together, Fgf20 signalling from earlier-born neurons patterns hindbrain segments spatially and temporally to induce the neurogenesis-to-oligodendrogenesis switch.
Collapse
Affiliation(s)
- Tim J Yeung
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | |
Collapse
|
4
|
Chouly M, Bally-Cuif L. Generating neurons in the embryonic and adult brain: compared principles and mechanisms. C R Biol 2024; 347:199-221. [PMID: 39535540 DOI: 10.5802/crbiol.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Neurogenesis is a lifelong process, generating neurons in the right amount, time and place and with the correct identity to permit the growth, function, plasticity and repair of the nervous system, notably the brain. Neurogenesis originates from neural progenitor cells (NPs), endowed with the capacity to divide, renew to maintain the progenitor population, or commit to engage in the neurogenesis process. In the adult brain, these progenitors are classically called neural stem cells (NSCs). We review here the commonalities and differences between NPs and NSCs, in their cellular and molecular attributes but also in their potential, regulators and lineage, in the embryonic and adult brains. Our comparison is based on the two most studied model systems, namely the telencephalon of the zebrafish and mouse. We also discuss how the population of embryonic NPs gives rise to adult NSCs, and outstanding questions pertaining to this transition.
Collapse
|
5
|
Czopka T, Monk K, Peri F. Glial Cell Development and Function in the Zebrafish Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041350. [PMID: 38692835 PMCID: PMC11529855 DOI: 10.1101/cshperspect.a041350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Over the past decades the zebrafish has emerged as an excellent model organism with which to study the biology of all glial cell types in nervous system development, plasticity, and regeneration. In this review, which builds on the earlier work by Lyons and Talbot in 2015, we will summarize how the relative ease to manipulate the zebrafish genome and its suitability for intravital imaging have helped understand principles of glial cell biology with a focus on oligodendrocytes, microglia, and astrocytes. We will highlight recent findings on the diverse properties and functions of these glial cell types in the central nervous system and discuss open questions and future directions of the field.
Collapse
Affiliation(s)
- Tim Czopka
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Kelly Monk
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Francesca Peri
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
6
|
Stefanova EE, Dychiao JVT, Chinn MC, Borhani M, Scott AL. P2X7 regulates ependymo-radial glial cell proliferation in adult Danio rerio following spinal cord injury. Biol Open 2024; 13:bio060270. [PMID: 38526172 PMCID: PMC11033521 DOI: 10.1242/bio.060270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
In contrast to mammals, zebrafish undergo successful neural regeneration following spinal cord injury. Spinal cord ependymo-radial glia (ERG) undergo injury-induced proliferation and neuronal differentiation to replace damaged cells and restore motor function. However, the molecular cues driving these processes remain elusive. Here, we demonstrate that the evolutionarily conserved P2X7 receptors are widely distributed on neurons and ERG within the zebrafish spinal cord. At the protein level, the P2X7 receptor expressed in zebrafish is a truncated splice variant of the full-length variant found in mammals. The protein expression of this 50 kDa isoform was significantly downregulated at 7 days post-injury (dpi) but returned to basal levels at 14 dpi when compared to naïve controls. Pharmacological activation of P2X7 following SCI resulted in a greater number of proliferating cells around the central canal by 7 dpi but did not affect neuronal differentiation at 14 dpi. Our findings suggest that unlike in mammals, P2X7 signaling may not play a maladaptive role following SCI in adult zebrafish and may also work to curb the proliferative response of ERG following injury.
Collapse
Affiliation(s)
- Eva E. Stefanova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Mavis C. Chinn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Matin Borhani
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Angela L. Scott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Belmonte-Mateos C, Meister L, Pujades C. Hindbrain rhombomere centers harbor a heterogenous population of dividing progenitors which rely on Notch signaling. Front Cell Dev Biol 2023; 11:1268631. [PMID: 38020924 PMCID: PMC10652760 DOI: 10.3389/fcell.2023.1268631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Tissue growth and morphogenesis are interrelated processes, whose tight coordination is essential for the production of different cell fates and the timely precise allocation of stem cell capacities. The zebrafish embryonic brainstem, the hindbrain, exemplifies such coupling between spatiotemporal cell diversity acquisition and tissue growth as the neurogenic commitment is differentially distributed over time. Here, we combined cell lineage and in vivo imaging approaches to reveal the emergence of specific cell population properties within the rhombomeres. We studied the molecular identity of hindbrain rhombomere centers and showed that they harbor different progenitor capacities that change over time. By clonal analysis, we revealed that cells within the center of rhombomeres decrease the proliferative capacity to remain mainly in the G1 phase. Proliferating progenitors give rise to neurons by asymmetric and symmetric neurogenic divisions while maintaining the pool of progenitors. The proliferative capacity of these cells differs from their neighbors, and they are delayed in the onset of Notch activity. Through functional studies, we demonstrated that they rely on Notch3 signaling to be maintained as non-committed progenitors. In this study, we show that cells in rhombomere centers, despite the neurogenic asynchrony, might share steps of a similar program with the rhombomere counterparts, to ensure proper tissue growth.
Collapse
|
8
|
Leino SA, Constable SCJ, Streit A, Wilkinson DG. Zbtb16 mediates a switch between Fgf signalling regimes in the developing hindbrain. Development 2023; 150:dev201319. [PMID: 37642135 PMCID: PMC10508701 DOI: 10.1242/dev.201319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Developing tissues are sequentially patterned by extracellular signals that are turned on and off at specific times. In the zebrafish hindbrain, fibroblast growth factor (Fgf) signalling has different roles at different developmental stages: in the early hindbrain, transient Fgf3 and Fgf8 signalling from rhombomere 4 is required for correct segmentation, whereas later, neuronal Fgf20 expression confines neurogenesis to specific spatial domains within each rhombomere. How the switch between these two signalling regimes is coordinated is not known. We present evidence that the Zbtb16 transcription factor is required for this transition to happen in an orderly fashion. Zbtb16 expression is high in the early anterior hindbrain, then gradually upregulated posteriorly and confined to neural progenitors. In mutants lacking functional Zbtb16, fgf3 expression fails to be downregulated and persists until a late stage, resulting in excess and more widespread Fgf signalling during neurogenesis. Accordingly, the spatial pattern of neurogenesis is disrupted in Zbtb16 mutants. Our results reveal how the distinct stage-specific roles of Fgf signalling are coordinated in the zebrafish hindbrain.
Collapse
Affiliation(s)
- Sami A. Leino
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Sean C. J. Constable
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - David G. Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
9
|
Soto X, Burton J, Manning CS, Minchington T, Lea R, Lee J, Kursawe J, Rattray M, Papalopulu N. Sequential and additive expression of miR-9 precursors control timing of neurogenesis. Development 2022; 149:276990. [PMID: 36189829 PMCID: PMC9641661 DOI: 10.1242/dev.200474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/26/2022] [Indexed: 11/06/2022]
Abstract
MicroRNAs (miRs) have an important role in tuning dynamic gene expression. However, the mechanism by which they are quantitatively controlled is unknown. We show that the amount of mature miR-9, a key regulator of neuronal development, increases during zebrafish neurogenesis in a sharp stepwise manner. We characterize the spatiotemporal profile of seven distinct microRNA primary transcripts (pri-mir)-9s that produce the same mature miR-9 and show that they are sequentially expressed during hindbrain neurogenesis. Expression of late-onset pri-mir-9-1 is added on to, rather than replacing, the expression of early onset pri-mir-9-4 and -9-5 in single cells. CRISPR/Cas9 mutation of the late-onset pri-mir-9-1 prevents the developmental increase of mature miR-9, reduces late neuronal differentiation and fails to downregulate Her6 at late stages. Mathematical modelling shows that an adaptive network containing Her6 is insensitive to linear increases in miR-9 but responds to stepwise increases of miR-9. We suggest that a sharp stepwise increase of mature miR-9 is created by sequential and additive temporal activation of distinct loci. This may be a strategy to overcome adaptation and facilitate a transition of Her6 to a new dynamic regime or steady state.
Collapse
Affiliation(s)
- Ximena Soto
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK,Authors for correspondence (; )
| | - Joshua Burton
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Cerys S. Manning
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Thomas Minchington
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Robert Lea
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jessica Lee
- Discovery Department, Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Jochen Kursawe
- School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
| | - Magnus Rattray
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK,Authors for correspondence (; )
| |
Collapse
|
10
|
The tissue-specificity associated region and motif of an emx2 downstream enhancer CNE2.04 in zebrafish. Gene Expr Patterns 2022; 45:119269. [PMID: 35970322 DOI: 10.1016/j.gep.2022.119269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/04/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Expression level of EMX2 plays an important role in the development of nervous system and cancers. CNE2.04, a conserved enhancer downstream of emx2, drives fluorescent protein expression in the similar pattern of emx2. METHODS CNE2.04 truncated or motif-mutated transgenic reporter plasmids were constructed and injected into the zebrafish fertilized egg with Tol2 mRNA at the unicellular stage of zebrafish eggs. The green fluorescence expression patterns were observed at 24, 48, and 72 hpf, and the fluorescence rates of different tissues were counted at 48 hpf. RESULTS Compared to CNE2.04, CNE2.04-R400 had comparable enhancer activity, while the tissue specificity of CNE2.04-L400 was obviously changed. Motif CCCCTC mutation obviously changed the enhancer activity, while motif CCGCTC mutations also changed it. CONCLUSION Due to their correlation with tissue specificity, CNE2.04-R400 is associated with the tissue-specificity of CNE2.04, and motif CCCCTC plays an important role in the enhancer activity of CNE2.04.
Collapse
|
11
|
Hevia CF, Engel-Pizcueta C, Udina F, Pujades C. The neurogenic fate of the hindbrain boundaries relies on Notch3-dependent asymmetric cell divisions. Cell Rep 2022; 39:110915. [PMID: 35675784 DOI: 10.1016/j.celrep.2022.110915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/16/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Elucidating the cellular and molecular mechanisms that regulate the balance between progenitor cell proliferation and neuronal differentiation in the construction of the embryonic brain demands the combination of cell lineage and functional approaches. Here, we generate the comprehensive lineage of hindbrain boundary cells by using a CRISPR-based knockin zebrafish transgenic line that specifically labels the boundaries. We unveil that boundary cells asynchronously engage in neurogenesis undergoing a functional transition from neuroepithelial progenitors to radial glia cells, coinciding with the onset of Notch3 signaling that triggers their asymmetrical cell division. Upon notch3 loss of function, boundary cells lose radial glia properties and symmetrically divide undergoing neuronal differentiation. Finally, we show that the fate of boundary cells is to become neurons, the subtype of which relies on their axial position, suggesting that boundary cells contribute to refine the number and proportion of the distinct neuronal populations.
Collapse
Affiliation(s)
| | | | - Frederic Udina
- Department of Economics and Business, Universitat Pompeu Fabra, 08002 Barcelona, Spain; Data Science Center, Barcelona School of Economics, 08002 Barcelona, Spain
| | - Cristina Pujades
- Department of Medicine and Life Sciences, 08003 Barcelona, Spain.
| |
Collapse
|
12
|
Long descending commissural V0v neurons ensure coordinated swimming movements along the body axis in larval zebrafish. Sci Rep 2022; 12:4348. [PMID: 35288598 PMCID: PMC8921517 DOI: 10.1038/s41598-022-08283-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/02/2022] [Indexed: 01/03/2023] Open
Abstract
Developmental maturation occurs in slow swimming behavior in larval zebrafish; older larvae acquire the ability to perform slow swimming while keeping their head stable in the yaw dimension. A class of long-distance descending commissural excitatory V0v neurons, called MCoD neurons, are known to develop in a later phase of neurogenesis, and participate in slow swimming in older larvae. We hypothesized that these MCoD neurons play a role in coordinating the activities of trunk muscles in the diagonal dimension (e.g., the rostral left and the caudal right) to produce the S-shaped swimming form that contributes to the stability of the head. Here, we show that MCoD neurons do indeed play this role. In larvae in which MCoD neurons were laser-ablated, the swimming body form often adopted a one-sided (C-shaped) bend with reduced appearance of the normal S-shaped bend. With this change in swimming form, the MCoD-ablated larvae exhibited a greater degree of head yaw displacement during slow swimming. In mice, the long-distance descending commissural V0v neurons have been implicated in diagonal interlimb coordination during walking. Together with this, our study suggests that the long-distance descending commissural V0v neurons form an evolutionarily conserved pathway in the spinal locomotor circuits that coordinates the movements of the diagonal body/limb muscles.
Collapse
|
13
|
Fontenas L, Kucenas S. Spinal cord precursors utilize neural crest cell mechanisms to generate hybrid peripheral myelinating glia. eLife 2021; 10:64267. [PMID: 33554855 PMCID: PMC7886336 DOI: 10.7554/elife.64267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
During development, oligodendrocytes and Schwann cells myelinate central and peripheral nervous system axons, respectively, while motor exit point (MEP) glia are neural tube-derived, peripheral glia that myelinate axonal territory between these populations at MEP transition zones. From which specific neural tube precursors MEP glia are specified, and how they exit the neural tube to migrate onto peripheral motor axons, remain largely unknown. Here, using zebrafish, we found that MEP glia arise from lateral floor plate precursors and require foxd3 to delaminate and exit the spinal cord. Additionally, we show that similar to Schwann cells, MEP glial development depends on axonally derived neuregulin1. Finally, our data demonstrate that overexpressing axonal cues is sufficient to generate additional MEP glia in the spinal cord. Overall, these studies provide new insight into how a novel population of hybrid, peripheral myelinating glia are generated from neural tube precursors and migrate into the periphery.
Collapse
Affiliation(s)
- Laura Fontenas
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, United States
| |
Collapse
|
14
|
Loss-of-function of p53 isoform Δ113p53 accelerates brain aging in zebrafish. Cell Death Dis 2021; 12:151. [PMID: 33542214 PMCID: PMC7862496 DOI: 10.1038/s41419-021-03438-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species (ROS) stress has been demonstrated as potentially critical for induction and maintenance of cellular senescence, and been considered as a contributing factor in aging and in various neurological disorders including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). In response to low-level ROS stress, the expression of Δ133p53, a human p53 isoform, is upregulated to promote cell survival and protect cells from senescence by enhancing the expression of antioxidant genes. In normal conditions, the basal expression of Δ133p53 prevents human fibroblasts, T lymphocytes, and astrocytes from replicative senescence. It has been also found that brain tissues from AD and ALS patients showed decreased Δ133p53 expression. However, it is uncharacterized if Δ133p53 plays a role in brain aging. Here, we report that zebrafish Δ113p53, an ortholog of human Δ133p53, mainly expressed in some of the radial glial cells along the telencephalon ventricular zone in a full-length p53-dependent manner. EDU-labeling and cell lineage tracing showed that Δ113p53-positive cells underwent cell proliferation to contribute to the neuron renewal process. Importantly, Δ113p53M/M mutant telencephalon possessed less proliferation cells and more senescent cells compared to wild-type (WT) zebrafish telencephalon since 9-months old, which was associated with decreased antioxidant genes expression and increased level of ROS in the mutant telencephalon. More interestingly, unlike the mutant fish at 5-months old with cognition ability, Δ113p53M/M zebrafish, but not WT zebrafish, lost their learning and memory ability at 19-months old. The results demonstrate that Δ113p53 protects the brain from aging by its antioxidant function. Our finding provides evidence at the organism level to show that depletion of Δ113p53/Δ133p53 may result in long-term ROS stress, and finally lead to age-related diseases, such as AD and ALS in humans.
Collapse
|
15
|
Diazepam and Its Disinfection Byproduct Promote the Early Development of Nervous System in Zebrafish Embryos. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/8878143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The widely used diazepam, as central nervous system inhibitor, has found to be ubiquitous in surface water and drinking water. Moreover, a series of byproducts such as 2-methylamino-5-chlorobenzophenone (MACB) were generated after the chlorine disinfection process. However, little information is available about the neurobiological effects of these emerging chemicals at low doses, especially on infants and children. Here, we exposed zebrafish (Danio rerio) embryos to diazepam and MACB at 0.05, 0.5, and 5 nM, which were equivalent to environmental levels. Both diazepam and MACB increased the somite number and promoted nervous development of transgenic zebrafish [Tg (elavl3: EGFP) larvae] at 72 hours postfertilization ( hpf). Both diazepam and MACB also disrupted the homeostasis of adenosine monophosphate, valine, methionine, and fumaric acid in zebrafish embryos at 12 hpf. Additionally, the locomotor behavior activity of zebrafish was significantly enhanced after 120-hour sustained exposure to diazepam or MACB. Moreover, the mRNA expression levels of oct4, sox2, and nanog, modulating the pluripotency and self-renewal, were upregulated by diazepam and MACB in zebrafish embryo. Altogether, diazepam and MACB stimulate developmental neurogenesis and may induce neuronal excitotoxicity at quite low doses. These results indicated that the chronic exposure to psychoactive drugs may pose a potential risk to the development of the nervous system in infancy.
Collapse
|
16
|
Live-imaging of astrocyte morphogenesis and function in zebrafish neural circuits. Nat Neurosci 2020; 23:1297-1306. [PMID: 32895565 PMCID: PMC7530038 DOI: 10.1038/s41593-020-0703-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/24/2020] [Indexed: 01/10/2023]
Abstract
How astrocytes grow and integrate into neural circuits remains poorly defined. Zebrafish are well-suited for such investigations, but bona fide astrocytes have not been described in this system. Here, we characterize a zebrafish cell type that is remarkably similar to mammalian astrocytes that derive from radial glial cells and elaborate processes to establish their territories at early larval stages. Zebrafish astrocytes associate closely with synapses, tile with one another, and express markers including Glast and glutamine synthetase. Once integrated into circuits, they exhibit whole-cell and microdomain Ca2+ transients, which are sensitive to norepinephrine. Finally, using a cell-specific CRISPR/Cas9 approach we demonstrate that fgfr3/4 are required for vertebrate astrocyte morphogenesis. This work provides the first visualization of astrocyte morphogenesis from stem cell to post-mitotic astrocyte in vivo, identifies a role for Fgf receptors in vertebrate astrocytes, and establishes zebrafish as a valuable new model system to study astrocyte biology in vivo.
Collapse
|
17
|
Soto X, Biga V, Kursawe J, Lea R, Doostdar P, Thomas R, Papalopulu N. Dynamic properties of noise and Her6 levels are optimized by miR-9, allowing the decoding of the Her6 oscillator. EMBO J 2020; 39:e103558. [PMID: 32395844 PMCID: PMC7298297 DOI: 10.15252/embj.2019103558] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023] Open
Abstract
Noise is prevalent in biology and has been widely quantified using snapshot measurements. This static view obscures our understanding of dynamic noise properties and how these affect gene expression and cell state transitions. Using a CRISPR/Cas9 Zebrafish her6::Venus reporter combined with mathematical and in vivo experimentation, we explore how noise affects the protein dynamics of Her6, a basic helix-loop-helix transcriptional repressor. During neurogenesis, Her6 expression transitions from fluctuating to oscillatory at single-cell level. We identify that absence of miR-9 input generates high-frequency noise in Her6 traces, inhibits the transition to oscillatory protein expression and prevents the downregulation of Her6. Together, these impair the upregulation of downstream targets and cells accumulate in a normally transitory state where progenitor and early differentiation markers are co-expressed. Computational modelling and double smFISH of her6 and the early neurogenesis marker, elavl3, suggest that the change in Her6 dynamics precedes the downregulation in Her6 levels. This sheds light onto the order of events at the moment of cell state transition and how this is influenced by the dynamic properties of noise. Our results suggest that Her/Hes oscillations, facilitated by dynamic noise optimization by miR-9, endow progenitor cells with the ability to make a cell state transition.
Collapse
Affiliation(s)
- Ximena Soto
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Veronica Biga
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Jochen Kursawe
- School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
| | - Robert Lea
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Parnian Doostdar
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Riba Thomas
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Nancy Papalopulu
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| |
Collapse
|
18
|
Albadri S, Armant O, Aljand-Geschwill T, Del Bene F, Carl M, Strähle U, Poggi L. Expression of a Barhl1a reporter in subsets of retinal ganglion cells and commissural neurons of the developing zebrafish brain. Sci Rep 2020; 10:8814. [PMID: 32483163 PMCID: PMC7264323 DOI: 10.1038/s41598-020-65435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/05/2020] [Indexed: 12/03/2022] Open
Abstract
Promoting the regeneration or survival of retinal ganglion cells (RGCs) is one focus of regenerative medicine. Homeobox Barhl transcription factors might be instrumental in these processes. In mammals, only barhl2 is expressed in the retina and is required for both subtype identity acquisition of amacrine cells and for the survival of RGCs downstream of Atoh7, a transcription factor necessary for RGC genesis. The underlying mechanisms of this dual role of Barhl2 in mammals have remained elusive. Whole genome duplication in the teleost lineage generated the barhl1a and barhl2 paralogues. In the Zebrafish retina, Barhl2 functions as a determinant of subsets of amacrine cells lineally related to RGCs independently of Atoh7. In contrast, barhl1a expression depends on Atoh7 but its expression dynamics and function have not been studied. Here we describe for the first time a Barhl1a reporter line in vivo showing that barhl1a turns on exclusively in subsets of RGCs and their post-mitotic precursors. We also show transient expression of barhl1a:GFP in diencephalic neurons extending their axonal projections as part of the post-optic commissure, at the time of optic chiasm formation. This work sets the ground for future studies on RGC subtype identity, axonal projections and genetic specification of Barhl1a-positive RGCs and commissural neurons.
Collapse
Affiliation(s)
- Shahad Albadri
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany.,Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Olivier Armant
- Institute of Biological and Chemical Systems, Biological Information Processing Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Filippo Del Bene
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Matthias Carl
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Uwe Strähle
- Institute of Biological and Chemical Systems, Biological Information Processing Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Lucia Poggi
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany. .,Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
19
|
Wnt-PLC-IP 3-Connexin-Ca 2+ axis maintains ependymal motile cilia in zebrafish spinal cord. Nat Commun 2020; 11:1860. [PMID: 32312952 PMCID: PMC7170879 DOI: 10.1038/s41467-020-15248-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
Ependymal cells (ECs) are multiciliated neuroepithelial cells that line the ventricles of the brain and the central canal of the spinal cord (SC). How ependymal motile cilia are maintained remains largely unexplored. Here we show that zebrafish embryos deficient in Wnt signaling have defective motile cilia, yet harbor intact basal bodies. With respect to maintenance of ependymal motile cilia, plcδ3a is a target gene of Wnt signaling. Lack of Connexin43 (Cx43), especially its channel function, decreases motile cilia and intercellular Ca2+ wave (ICW) propagation. Genetic ablation of cx43 in zebrafish and mice diminished motile cilia. Finally, Cx43 is also expressed in ECs of the human SC. Taken together, our findings indicate that gap junction mediated ICWs play an important role in the maintenance of ependymal motile cilia, and suggest that the enhancement of functional gap junctions by pharmacological or genetic manipulations may be adopted to ameliorate motile ciliopathy. Ependymal cells are supporting cells in the central nervous system. Here the authors elucidate a signalling axis in zebrafish spinal cord ependymal cells that is important for motile cilia assembly and maintenance, demonstrating that it depends on intercellular propagation of calcium ions via connexin 43.
Collapse
|
20
|
Pushchina EV, Kapustyanov IA, Varaksin AA. Neural Stem Cells/Neuronal Precursor Cells and Postmitotic Neuroblasts in Constitutive Neurogenesis and After ,Traumatic Injury to the Mesencephalic Tegmentum of Juvenile Chum Salmon, Oncorhynchus keta. Brain Sci 2020; 10:brainsci10020065. [PMID: 31991815 PMCID: PMC7071460 DOI: 10.3390/brainsci10020065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 11/30/2022] Open
Abstract
The proliferation of neural stem cells (NSCs)/neuronal precursor cells (NPCs) and the occurrence of postmitotic neuroblasts in the mesencephalic tegmentum of intact juvenile chum salmon, Oncorhynchus keta, and at 3 days after a tegmental injury, were studied by immunohistochemical labeling. BrdU+ constitutive progenitor cells located both in the periventricular matrix zone and in deeper subventricular and parenchymal layers of the brain are revealed in the tegmentum of juvenile chum salmon. As a result of traumatic damage to the tegmentum, the proliferation of resident progenitor cells of the neuroepithelial type increases. Nestin-positive and vimentin-positive NPCs and granules located in the periventricular and subventricular matrix zones, as well as in the parenchymal regions of the tegmentum, are revealed in the mesencephalic tegmentum of juvenile chum salmon, which indicates a high level of constructive metabolism and constitutive neurogenesis. The expression of vimentin and nestin in the extracellular space, as well as additionally in the NSCs and NPCs of the neuroepithelial phenotype, which do not express nestin in the control animals, is enhanced during the traumatic process. As a result of the proliferation of such cells in the post-traumatic period, local Nes+ and Vim+ NPCs clusters are formed and become involved in the reparative response. Along with the primary traumatic lesion, which coincides with the injury zone, additional Nes+ and Vim+ secondary lesions are observed to form in the adjacent subventricular and parenchymal zones of the tegmentum. In the lateral tegmentum, the number of doublecortin-positive cells is higher compared to that in the medial tegmentum, which determines the different intensities and rates of neuronal differentiation in the sensory and motor regions of the tegmentum, respectively. In periventricular regions remote from the injury, the expression of doublecortin in single cells and their groups significantly increases compared to that in the damage zone.
Collapse
Affiliation(s)
- Evgeniya V. Pushchina
- Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; (I.A.K.); (A.A.V.)
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01024, Ukraine
- Correspondence:
| | - Ilya A. Kapustyanov
- Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; (I.A.K.); (A.A.V.)
| | - Anatoly A. Varaksin
- Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; (I.A.K.); (A.A.V.)
| |
Collapse
|
21
|
Burrows DRW, Samarut É, Liu J, Baraban SC, Richardson MP, Meyer MP, Rosch RE. Imaging epilepsy in larval zebrafish. Eur J Paediatr Neurol 2020; 24:70-80. [PMID: 31982307 PMCID: PMC7035958 DOI: 10.1016/j.ejpn.2020.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/19/2022]
Abstract
Our understanding of the genetic aetiology of paediatric epilepsies has grown substantially over the last decade. However, in order to translate improved diagnostics to personalised treatments, there is an urgent need to link molecular pathophysiology in epilepsy to whole-brain dynamics in seizures. Zebrafish have emerged as a promising new animal model for epileptic seizure disorders, with particular relevance for genetic and developmental epilepsies. As a novel model organism for epilepsy research they combine key advantages: the small size of larval zebrafish allows high throughput in vivo experiments; the availability of advanced genetic tools allows targeted modification to model specific human genetic disorders (including genetic epilepsies) in a vertebrate system; and optical access to the entire central nervous system has provided the basis for advanced microscopy technologies to image structure and function in the intact larval zebrafish brain. There is a growing body of literature describing and characterising features of epileptic seizures and epilepsy in larval zebrafish. Recently genetically encoded calcium indicators have been used to investigate the neurobiological basis of these seizures with light microscopy. This approach offers a unique window into the multiscale dynamics of epileptic seizures, capturing both whole-brain dynamics and single-cell behaviour concurrently. At the same time, linking observations made using calcium imaging in the larval zebrafish brain back to an understanding of epileptic seizures largely derived from cortical electrophysiological recordings in human patients and mammalian animal models is non-trivial. In this review we briefly illustrate the state of the art of epilepsy research in zebrafish with particular focus on calcium imaging of epileptic seizures in the larval zebrafish. We illustrate the utility of a dynamic systems perspective on the epileptic brain for providing a principled approach to linking observations across species and identifying those features of brain dynamics that are most relevant to epilepsy. In the following section we survey the literature for imaging features associated with epilepsy and epileptic seizures and link these to observations made from humans and other more traditional animal models. We conclude by identifying the key challenges still facing epilepsy research in the larval zebrafish and indicate strategies for future research to address these and integrate more directly with the themes and questions that emerge from investigating epilepsy in other model systems and human patients.
Collapse
Affiliation(s)
- D R W Burrows
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - É Samarut
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - J Liu
- Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - S C Baraban
- Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - M P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M P Meyer
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - R E Rosch
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
22
|
Rosch R, Burrows DRW, Jones LB, Peters CH, Ruben P, Samarut É. Functional Genomics of Epilepsy and Associated Neurodevelopmental Disorders Using Simple Animal Models: From Genes, Molecules to Brain Networks. Front Cell Neurosci 2019; 13:556. [PMID: 31920556 PMCID: PMC6923670 DOI: 10.3389/fncel.2019.00556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 01/06/2023] Open
Abstract
The genetic diagnosis of patients with seizure disorders has been improved significantly by the development of affordable next-generation sequencing technologies. Indeed, in the last 20 years, dozens of causative genes and thousands of associated variants have been described and, for many patients, are now considered responsible for their disease. However, the functional consequences of these mutations are often not studied in vivo, despite such studies being central to understanding pathogenic mechanisms and identifying novel therapeutic avenues. One main roadblock to functionally characterizing pathogenic mutations is generating and characterizing in vivo mammalian models carrying clinically relevant variants in specific genes identified in patients. Although the emergence of new mutagenesis techniques facilitates the production of rodent mutants, the fact that early development occurs internally hampers the investigation of gene function during neurodevelopment. In this context, functional genomics studies using simple animal models such as flies or fish are advantageous since they open a dynamic window of investigation throughout embryonic development. In this review, we will summarize how the use of simple animal models can fill the gap between genetic diagnosis and functional and phenotypic correlates of gene function in vivo. In particular, we will discuss how these simple animals offer the possibility to study gene function at multiple scales, from molecular function (i.e., ion channel activity), to cellular circuit and brain network dynamics. As a result, simple model systems offer alternative avenues of investigation to model aspects of the disease phenotype not currently possible in rodents, which can help to unravel the pathogenic substratum in vivo.
Collapse
Affiliation(s)
- Richard Rosch
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Paediatric Neurology, Great Ormond Street Hospital, NHS Foundation Trust, London, United Kingdom
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Dominic R. W. Burrows
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Laura B. Jones
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Colin H. Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Peter Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Éric Samarut
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Modelis Inc., Montreal, QC, Canada
| |
Collapse
|
23
|
Brockway NL, Cook ZT, O'Gallagher MJ, Tobias ZJC, Gedi M, Carey KM, Unni VK, Pan YA, Metz MR, Weissman TA. Multicolor lineage tracing using in vivo time-lapse imaging reveals coordinated death of clonally related cells in the developing vertebrate brain. Dev Biol 2019; 453:130-140. [PMID: 31102591 PMCID: PMC10426338 DOI: 10.1016/j.ydbio.2019.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/12/2019] [Accepted: 05/12/2019] [Indexed: 01/08/2023]
Abstract
The global mechanisms that regulate and potentially coordinate cell proliferation & death in developing neural regions are not well understood. In particular, it is not clear how or whether clonal relationships between neural progenitor cells and their progeny influence the growing brain. We have developed an approach using Brainbow in the developing zebrafish to visualize and follow multiple clones of related cells in vivo over time. This allows for clear visualization of many dividing clones of cells, deep in proliferating brain regions. As expected, in addition to undergoing interkinetic nuclear migration and cell division, cells also periodically undergo apoptosis. Interestingly, cell death occurs in a non-random manner: clonally related cells are more likely to die in a progressive fashion than cells from different clones. Multiple members of an individual clone die while neighboring clones appear healthy and continue to divide. Our results suggest that clonal relationships can influence cellular fitness and survival in the developing nervous system, perhaps through a competitive mechanism whereby clones of cells are competing with other clones. Clonal cell competition may help regulate neuronal proliferation in the vertebrate brain.
Collapse
Affiliation(s)
- Nicole L Brockway
- Department of Biology, Lewis & Clark College, Portland, OR, 97219, USA
| | - Zoe T Cook
- Department of Biology, Lewis & Clark College, Portland, OR, 97219, USA
| | | | | | - Mako Gedi
- Department of Biology, Lewis & Clark College, Portland, OR, 97219, USA
| | - Kristine M Carey
- Department of Biology, Lewis & Clark College, Portland, OR, 97219, USA
| | - Vivek K Unni
- Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Y Albert Pan
- Developmental and Translational Neurobiology Center, Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, 24016, USA
| | - Margaret R Metz
- Department of Biology, Lewis & Clark College, Portland, OR, 97219, USA
| | - Tamily A Weissman
- Department of Biology, Lewis & Clark College, Portland, OR, 97219, USA.
| |
Collapse
|
24
|
Docampo-Seara A, Santos-Durán GN, Candal E, Rodríguez Díaz MÁ. Expression of radial glial markers (GFAP, BLBP and GS) during telencephalic development in the catshark (Scyliorhinus canicula). Brain Struct Funct 2018; 224:33-56. [PMID: 30242506 PMCID: PMC6373381 DOI: 10.1007/s00429-018-1758-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
Abstract
Radial glial cells (RGCs) are the first cell populations of glial nature to appear during brain ontogeny. They act as primary progenitor (stem) cells as well as a scaffold for neuronal migration. The proliferative capacity of these cells, both in development and in adulthood, has been subject of interest during past decades. In contrast with mammals where RGCs are restricted to specific ventricular areas in the adult brain, RGCs are the predominant glial element in fishes. However, developmental studies on the RGCs of cartilaginous fishes are scant. We have studied the expression patterns of RGCs markers including glial fibrillary acidic protein (GFAP), brain lipid binding protein (BLBP), and glutamine synthase (GS) in the telencephalic hemispheres of catshark (Scyliorhinus canicula) from early embryos to post-hatch juveniles. GFAP, BLBP and GS are first detected, respectively, in early, intermediate and late embryos. Expression of these glial markers was observed in cells with radial glia morphology lining the telencephalic ventricles, as well as in their radial processes and endfeet at the pial surface and their expression continue in ependymal cells (or tanycytes) in early juveniles. In addition, BLBP- and GS-immunoreactive cells morphologically resembling oligodendrocytes were observed. In late embryos, most of the GFAP- and BLBP-positive RGCs also coexpress GS and show proliferative activity. Our results indicate the existence of different proliferating subpopulations of RGCs in the embryonic ventricular zone of catshark. Further investigations are needed to determine whether these proliferative RGCs could act as neurogenic and/or gliogenic precursors.
Collapse
Affiliation(s)
- A Docampo-Seara
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - G N Santos-Durán
- Laboratory of Artificial and Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - E Candal
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Miguel Ángel Rodríguez Díaz
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
25
|
Study of pallial neurogenesis in shark embryos and the evolutionary origin of the subventricular zone. Brain Struct Funct 2018; 223:3593-3612. [PMID: 29980930 DOI: 10.1007/s00429-018-1705-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022]
Abstract
The dorsal part of the developing telencephalon is one of the brain areas that has suffered most drastic changes throughout vertebrate evolution. Its evolutionary increase in complexity was thought to be partly achieved by the appearance of a new neurogenic niche in the embryonic subventricular zone (SVZ). Here, a new kind of amplifying progenitors (basal progenitors) expressing Tbr2, undergo a second round of divisions, which is believed to have contributed to the expansion of the neocortex. Accordingly, the existence of a pallial SVZ has been classically considered exclusive of mammals. However, the lack of studies in ancient vertebrates precludes any clear conclusion about the evolutionary origin of the SVZ and the neurogenic mechanisms that rule pallial development. In this work, we explore pallial neurogenesis in a basal vertebrate, the shark Scyliorhinus canicula, through the study of the expression patterns of several neurogenic markers. We found that apical progenitors and radial migration are present in sharks, and therefore, their presence must be highly conserved throughout evolution. Surprisingly, we detected a subventricular band of ScTbr2-expressing cells, some of which also expressed mitotic markers, indicating that the existence of basal progenitors should be considered an ancestral condition rather than a novelty of mammals or amniotes. Finally, we report that the transcriptional program for the specification of glutamatergic pallial cells (Pax6, Tbr2, NeuroD, Tbr1) is also present in sharks. However, the segregation of these markers into different cell types is not clear yet, which may be linked to the lack of layering in anamniotes.
Collapse
|
26
|
McIntosh R, Norris J, Clarke JD, Alexandre P. Spatial distribution and characterization of non-apical progenitors in the zebrafish embryo central nervous system. Open Biol 2017; 7:rsob.160312. [PMID: 28148823 PMCID: PMC5356445 DOI: 10.1098/rsob.160312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/21/2016] [Indexed: 11/24/2022] Open
Abstract
Studies of non-apical progenitors (NAPs) have been largely limited to the developing mammalian cortex. They are postulated to generate the increase in neuron numbers that underlie mammalian brain expansion. Recently, NAPs have also been reported in the retina and central nervous system of non-mammalian species; in the latter, however, they remain poorly characterized. Here, we characterize NAP location along the zebrafish central nervous system during embryonic development, and determine their cellular and molecular characteristics and renewal capacity. We identified a small population of NAPs in the spinal cord, hindbrain and telencephalon of zebrafish embryos. Live-imaging analysis revealed at least two types of mitotic behaviour in the telencephalon: one NAP subtype retains the apical attachment during division, while another divides in a subapical position disconnected from the apical surface. All NAPs observed in spinal cord lost apical contact prior to mitoses. These NAPs express HuC and produce two neurons from a single division. Manipulation of Notch activity reveals that neurons and NAPs in the spinal cord use similar regulatory mechanisms. This work suggests that the majority of spinal NAPs in zebrafish share characteristics with basal progenitors in mammalian brains.
Collapse
Affiliation(s)
- Rebecca McIntosh
- Developmental Biology and Cancer Department, UCL Institute of Child Health, London WC1N 1EH, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| | - Joseph Norris
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Jon D Clarke
- Department of Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Paula Alexandre
- Developmental Biology and Cancer Department, UCL Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
27
|
Barbosa JS, Ninkovic J. Adult neural stem cell behavior underlying constitutive and restorative neurogenesis in zebrafish. NEUROGENESIS 2016; 3:e1148101. [PMID: 27606336 PMCID: PMC4973591 DOI: 10.1080/23262133.2016.1148101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/11/2023]
Abstract
Adult Neural Stem Cells (aNSCs) generate new neurons that integrate into the pre-existing networks in specific locations of the Vertebrate brain. Moreover, aNSCs contribute with new neurons to brain regeneration in some non-mammalian Vertebrates. The similarities and the differences in the cellular and molecular processes governing neurogenesis in the intact and regenerating brain are still to be assessed. Toward this end, we recently established a protocol for non-invasive imaging of aNSC behavior in their niche in vivo in the adult intact and regenerating zebrafish telencephalon. We observed different modes of aNSC division in the intact brain and a novel mode of neurogenesis by direct conversion, which contributes to stem cell depletion with age. After injury, the generation of neurons is increased both by the activation of additional aNSCs and a shift in the division mode of aNSCs, thereby contributing to the successful neuronal regeneration. The cellular behavior we observed opens new questions regarding long-term aNSC maintenance in homeostasis and in regeneration. In this commentary we discuss our data and new questions arising in the context of aNSC behavior, not only in zebrafish but also in other species, including mammals.
Collapse
Affiliation(s)
- Joana S Barbosa
- Institute of Stem Cell Research, Helmholtz Center, Munich, Germany; PhD Program in Biomedicine and Experimental Biology (BEB), Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center, Munich, Germany; Biomedical Center, University of Munich, Germany; Excellence Cluster of Systems Neurology SYNERGY, LMU
| |
Collapse
|
28
|
Thuret R, Auger H, Papalopulu N. Analysis of neural progenitors from embryogenesis to juvenile adult in Xenopus laevis reveals biphasic neurogenesis and continuous lengthening of the cell cycle. Biol Open 2015; 4:1772-81. [PMID: 26621828 PMCID: PMC4736028 DOI: 10.1242/bio.013391] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Xenopus laevis is a prominent model system for studying neural development, but our understanding of the long-term temporal dynamics of neurogenesis remains incomplete. Here, we present the first continuous description of neurogenesis in X. laevis, covering the entire period of development from the specification of neural ectoderm during gastrulation to juvenile frog. We have used molecular markers to identify progenitors and neurons, short-term bromodeoxyuridine (BrdU) incorporation to map the generation of newborn neurons and dual pulse S-phase labelling to characterise changes in their cell cycle length. Our study revealed the persistence of Sox3-positive progenitor cells from the earliest stages of neural development through to the juvenile adult. Two periods of intense neuronal generation were observed, confirming the existence of primary and secondary waves of neurogenesis, punctuated by a period of quiescence before metamorphosis and culminating in another period of quiescence in the young adult. Analysis of multiple parameters indicates that neural progenitors alternate between global phases of differentiation and amplification and that, regardless of their behaviour, their cell cycle lengthens monotonically during development, at least at the population level.
Collapse
Affiliation(s)
- Raphaël Thuret
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Hélène Auger
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
29
|
Oriented cell division: new roles in guiding skin wound repair and regeneration. Biosci Rep 2015; 35:BSR20150225. [PMID: 26582817 PMCID: PMC4708010 DOI: 10.1042/bsr20150225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/12/2015] [Indexed: 01/14/2023] Open
Abstract
Tissue morphogenesis depends on precise regulation and timely co-ordination of cell division and also on the control of the direction of cell division. Establishment of polarity division axis, correct alignment of the mitotic spindle, segregation of fate determinants equally or unequally between daughter cells, are essential for the realization of oriented cell division. Furthermore, oriented cell division is regulated by intrinsic cues, extrinsic cues and other cues, such as cell geometry and polarity. However, dysregulation of cell division orientation could lead to abnormal tissue development and function. In the present study, we review recent studies on the molecular mechanism of cell division orientation and explain their new roles in skin repair and regeneration.
Collapse
|
30
|
Gao H, Bu Y, Wu Q, Wang X, Chang N, Lei L, Chen S, Liu D, Zhu X, Hu K, Xiong JW. Mecp2 regulates neural cell differentiation by suppressing the Id1 to Her2 axis in zebrafish. J Cell Sci 2015; 128:2340-50. [DOI: 10.1242/jcs.167874] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/28/2015] [Indexed: 01/20/2023] Open
Abstract
ABSTRACT
Rett syndrome (RTT) is a progressive neurological disorder caused by mutations in the X-linked protein methyl-CpG-binding protein 2 (MeCP2). The endogenous function of MeCP2 during neural differentiation is still unclear. Here, we report that mecp2 is required for brain development in zebrafish. Mecp2 was broadly expressed initially in embryos and enriched later in the brain. Either morpholino knockdown or genetic depletion of mecp2 inhibited neuronal differentiation, whereas its overexpression promoted neuronal differentiation, suggesting an essential role of mecp2 in directing neural precursors into differentiated neurons. Mechanistically, her2 (the zebrafish ortholog of mammalian Hes5) was upregulated in mecp2 morphants in an Id1-dependent manner. Moreover, knockdown of either her2 or id1 fully rescued neuronal differentiation in mecp2 morphants. These results suggest that Mecp2 plays an important role in neural cell development by suppressing the Id1–Her2 axis, and provide new evidence that embryonic neural defects contribute to the later motor and cognitive dysfunctions in RTT.
Collapse
Affiliation(s)
- Hai Gao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Ye Bu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qing Wu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xu Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Nannan Chang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lei Lei
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Shilin Chen
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Dong Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Peking University, Beijing, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Keping Hu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
31
|
Than-Trong E, Bally-Cuif L. Radial glia and neural progenitors in the adult zebrafish central nervous system. Glia 2015; 63:1406-28. [DOI: 10.1002/glia.22856] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/22/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Emmanuel Than-Trong
- Team Zebrafisdh Neurogenetics; Paris-Saclay University, Paris-Sud University, CNRS, UMR 9197, Paris-Saclay Institute for Neuroscience (NeuroPSI); Avenue De La Terrasse, Bldg 5 Gif-sur-Yvette F-91190 France
| | - Laure Bally-Cuif
- Team Zebrafisdh Neurogenetics; Paris-Saclay University, Paris-Sud University, CNRS, UMR 9197, Paris-Saclay Institute for Neuroscience (NeuroPSI); Avenue De La Terrasse, Bldg 5 Gif-sur-Yvette F-91190 France
| |
Collapse
|
32
|
Abstract
The zebrafish is a premier vertebrate model system that offers many experimental advantages for in vivo imaging and genetic studies. This review provides an overview of glial cell types in the central and peripheral nervous system of zebrafish. We highlight some recent work that exploited the strengths of the zebrafish system to increase the understanding of the role of Gpr126 in Schwann cell myelination and illuminate the mechanisms controlling oligodendrocyte development and myelination. We also summarize similarities and differences between zebrafish radial glia and mammalian astrocytes and consider the possibility that their distinct characteristics may represent extremes in a continuum of cell identity. Finally, we focus on the emergence of zebrafish as a model for elucidating the development and function of microglia. These recent studies have highlighted the power of the zebrafish system for analyzing important aspects of glial development and function.
Collapse
Affiliation(s)
- David A Lyons
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - William S Talbot
- Department of Developmental Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
33
|
Dyer C, Blanc E, Hanisch A, Roehl H, Otto GW, Yu T, Basson MA, Knight R. A bi-modal function of Wnt signalling directs an FGF activity gradient to spatially regulate neuronal differentiation in the midbrain. Development 2013; 141:63-72. [PMID: 24284206 DOI: 10.1242/dev.099507] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
FGFs and Wnts are important morphogens during midbrain development, but their importance and potential interactions during neurogenesis are poorly understood. We have employed a combination of genetic and pharmacological manipulations in zebrafish to show that during neurogenesis FGF activity occurs as a gradient along the anterior-posterior axis of the dorsal midbrain and directs spatially dynamic expression of the Hairy gene her5. As FGF activity diminishes during development, Her5 is lost and differentiation of neuronal progenitors occurs in an anterior-posterior manner. We generated mathematical models to explain how Wnt and FGFs direct the spatial differentiation of neurons in the midbrain through Wnt regulation of FGF signalling. These models suggested that a negative-feedback loop controlled by Wnt is crucial for regulating FGF activity. We tested Sprouty genes as mediators of this regulatory loop using conditional mouse knockouts and pharmacological manipulations in zebrafish. These reveal that Sprouty genes direct the positioning of early midbrain neurons and are Wnt responsive in the midbrain. We propose a model in which Wnt regulates FGF activity at the isthmus by driving both FGF and Sprouty gene expression. This controls a dynamic, posteriorly retracting expression of her5 that directs neuronal differentiation in a precise spatiotemporal manner in the midbrain.
Collapse
Affiliation(s)
- Carlene Dyer
- Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Satou C, Kimura Y, Hirata H, Suster ML, Kawakami K, Higashijima SI. Transgenic tools to characterize neuronal properties of discrete populations of zebrafish neurons. Development 2013; 140:3927-31. [PMID: 23946442 DOI: 10.1242/dev.099531] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The developing nervous system consists of a variety of cell types. Transgenic animals expressing reporter genes in specific classes of neuronal cells are powerful tools for the study of neuronal network formation. We generated a wide variety of transgenic zebrafish that expressed reporter genes in specific classes of neurons or neuronal progenitors. These include lines in which neurons of specific neurotransmitter phenotypes expressed fluorescent proteins or Gal4, and lines in which specific subsets of the dorsal progenitor domain in the spinal cord expressed fluorescent proteins. Using these, we examined domain organization in the developing dorsal spinal cord, and found that there are six progenitor domains in zebrafish, which is similar to the domain organization in mice. We also systematically characterized neurotransmitter properties of the neurons that are produced from each domain. Given that reporter gene expressions occurs in a wide area of the nervous system in the lines generated, these transgenic fish should serve as powerful tools for the investigation of not only the neurons in the dorsal spinal cord but also neuronal structures and functions in many other regions of the nervous system.
Collapse
Affiliation(s)
- Chie Satou
- National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Yao S, Cheng M, Zhang Q, Wasik M, Kelsh R, Winkler C. Anaplastic lymphoma kinase is required for neurogenesis in the developing central nervous system of zebrafish. PLoS One 2013; 8:e63757. [PMID: 23667670 PMCID: PMC3648509 DOI: 10.1371/journal.pone.0063757] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/27/2013] [Indexed: 11/18/2022] Open
Abstract
Anaplastic Lymphoma Kinase (ALK) was initially discovered as an oncogene in human lymphoma and other cancers, including neuroblastoma. However, little is known about the physiological function of ALK. We identified the alk ortholog in zebrafish (Danio rerio) and found that it is highly expressed in the developing central nervous system (CNS). Heat-shock inducible transgenic zebrafish lines were generated to over-express alk during early neurogenesis. Its ectopic expression resulted in activation of the MEK/ERK pathway, increased cell proliferation, and aberrant neurogenesis leading to mis-positioning of differentiated neurons. Thus, overexpressed alk is capable of promoting cell proliferation in the nervous system, similar to the situation in ALK-related cancers. Next, we used Morpholino mediated gene knock-down and a pharmacological inhibitor to interfere with expression and function of endogenous Alk. Alk inhibition did not affect neuron progenitor formation but severely compromised neuronal differentiation and neuron survival in the CNS. These data indicate that tightly controlled alk expression is critical for the balance between neural progenitor proliferation, differentiation and survival during embryonic neurogenesis.
Collapse
Affiliation(s)
- Sheng Yao
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore
| | - Mangeng Cheng
- In Vitro Pharmacology, Merck Research Laboratory, Boston, Massachusetts, United States of America
| | - Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mariusz Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert Kelsh
- Centre for Regenerative Medicine, Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Christoph Winkler
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
36
|
Coppola E, D'autréaux F, Nomaksteinsky M, Brunet JF. Phox2b expression in the taste centers of fish. J Comp Neurol 2013; 520:3633-49. [PMID: 22473338 DOI: 10.1002/cne.23117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The homeodomain transcription factor Phox2b controls the formation of the sensory-motor reflex circuits of the viscera in vertebrates. Among Phox2b-dependent structures characterized in rodents is the nucleus of the solitary tract, the first relay for visceral sensory input, including taste. Here we show that Phox2b is expressed throughout the primary taste centers of two cyprinid fish, Danio rerio and Carassius auratus, i.e., in their vagal, glossopharyngeal, and facial lobes, providing the first molecular evidence for their homology with the nucleus of the solitary tract of mammals and suggesting that a single ancestral Phox2b-positive neuronal type evolved to give rise to both fish and mammalian structures. In zebrafish larvae, the distribution of Phox2b²⁺ neurons, combined with the expression pattern of Olig4 (a homologue of Olig3, determinant of the nucleus of the solitary tract in mice), reveals that the superficial position and sheet-like architecture of the viscerosensory column in cyprinid fish, ideally suited for the somatotopic representation of oropharyngeal and bodily surfaces, arise by radial migration from a dorsal progenitor domain, in contrast to the tangential migration observed in amniotes.
Collapse
Affiliation(s)
- Eva Coppola
- École Normale Supérieure, Institut de Biologie de l'École Normale Supérieure, Paris F-75005, France
| | | | | | | |
Collapse
|
37
|
Schmidt R, Strähle U, Scholpp S. Neurogenesis in zebrafish - from embryo to adult. Neural Dev 2013; 8:3. [PMID: 23433260 PMCID: PMC3598338 DOI: 10.1186/1749-8104-8-3] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/17/2013] [Indexed: 01/19/2023] Open
Abstract
Neurogenesis in the developing central nervous system consists of the induction and proliferation of neural progenitor cells and their subsequent differentiation into mature neurons. External as well as internal cues orchestrate neurogenesis in a precise temporal and spatial way. In the last 20 years, the zebrafish has proven to be an excellent model organism to study neurogenesis in the embryo. Recently, this vertebrate has also become a model for the investigation of adult neurogenesis and neural regeneration. Here, we summarize the contributions of zebrafish in neural development and adult neurogenesis.
Collapse
Affiliation(s)
- Rebecca Schmidt
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, 76021, Karlsruhe, Germany
| | | | | |
Collapse
|
38
|
Kondrychyn I, Teh C, Sin M, Korzh V. Stretching morphogenesis of the roof plate and formation of the central canal. PLoS One 2013; 8:e56219. [PMID: 23409159 PMCID: PMC3567028 DOI: 10.1371/journal.pone.0056219] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/07/2013] [Indexed: 12/20/2022] Open
Abstract
Background Neurulation is driven by apical constriction of actomyosin cytoskeleton resulting in conversion of the primitive lumen into the central canal in a mechanism driven by F-actin constriction, cell overcrowding and buildup of axonal tracts. The roof plate of the neural tube acts as the dorsal morphogenetic center and boundary preventing midline crossing by neural cells and axons. Methodology/Principal Findings The roof plate zebrafish transgenics expressing cytosolic GFP were used to study and describe development of this structure in vivo for a first time ever. The conversion of the primitive lumen into the central canal causes significant morphogenetic changes of neuroepithelial cells in the dorsal neural tube. We demonstrated that the roof plate cells stretch along the D–V axis in parallel with conversion of the primitive lumen into central canal and its ventral displacement. Importantly, the stretching of the roof plate is well-coordinated along the whole spinal cord and the roof plate cells extend 3× in length to cover 2/3 of the neural tube diameter. This process involves the visco-elastic extension of the roof place cytoskeleton and depends on activity of Zic6 and the Rho-associated kinase (Rock). In contrast, stretching of the floor plate is much less extensive. Conclusions/Significance The extension of the roof plate requires its attachment to the apical complex of proteins at the surface of the central canal, which depends on activity of Zic6 and Rock. The D–V extension of the roof plate may change a range and distribution of morphogens it produces. The resistance of the roof plate cytoskeleton attenuates ventral displacement of the central canal in illustration of the novel mechanical role of the roof plate during development of the body axis.
Collapse
Affiliation(s)
- Igor Kondrychyn
- Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
| | - Melvin Sin
- Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
39
|
Pacal M, Bremner R. Mapping differentiation kinetics in the mouse retina reveals an extensive period of cell cycle protein expression in post-mitotic newborn neurons. Dev Dyn 2012; 241:1525-44. [PMID: 22837015 DOI: 10.1002/dvdy.23840] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Knowledge of gene expression kinetics around neuronal cell birth is required to dissect mechanisms underlying progenitor fate. Here, we timed cell cycle and neuronal protein silencing/induction during cell birth in the developing murine retina. RESULTS The pan-cell cycle markers Pcna and Mcm6 were present in the post-mitotic ganglion cell layer. Although confined to the neuroblastic layer (NBL), 6-7% of Ki67(+) cells lacked six progenitor/cell cycle markers, and expressed neuronal markers. To define protein extinction/induction timing, we defined G2/M length throughout retinogenesis, which was typically 1-2 h, but <10% cells took double this time. BrdU-chase analyses revealed that at E12.5, Tubb3 (Tuj1) appeared at M-phase, followed by Calb2 and Dcx at ~2 h, Elavl2/3/4 at ~4 h, and Map2 at ~6 h after cell birth, and these times extended with embryonic age. Strikingly, Ki67 was not extinguished until up to a day after cell cycle exit, coinciding with exit from the NBL and induction of late markers such as Map1b/Uchl1/Rbfox3. CONCLUSIONS A minor population of progenitors transits slowly through G2/M and, most importantly, some cell cycle proteins are retained for an unexpectedly long period in post-mitotic neurons. The high-resolution map of cell birth kinetics reported here provides a framework to better define mechanisms that regulate neurogenesis.
Collapse
Affiliation(s)
- Marek Pacal
- Genetics and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Canada
| | | |
Collapse
|
40
|
Coolen M, Thieffry D, Drivenes Ø, Becker TS, Bally-Cuif L. miR-9 controls the timing of neurogenesis through the direct inhibition of antagonistic factors. Dev Cell 2012; 22:1052-64. [PMID: 22595676 DOI: 10.1016/j.devcel.2012.03.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 01/17/2012] [Accepted: 03/08/2012] [Indexed: 11/26/2022]
Abstract
The timing of commitment and cell-cycle exit within progenitor populations during neurogenesis is a fundamental decision that impacts both the number and identity of neurons produced during development. We show here that microRNA-9 plays a key role in this process through the direct inhibition of targets with antagonistic functions. Across the ventricular zone of the developing zebrafish hindbrain, miR-9 expression occurs at a range of commitment stages. Abrogating miR-9 function transiently delays cell-cycle exit, leading to the increased generation of late-born neuronal populations. Target protection analyses in vivo identify the progenitor-promoting genes her6 and zic5 and the cell-cycle exit-promoting gene elavl3/HuC as sequential targets of miR-9 as neurogenesis proceeds. We propose that miR-9 activity generates an ambivalent progenitor state poised to respond to both progenitor maintenance and commitment cues, which may be necessary to adjust neuronal production to local extrinsic signals during late embryogenesis.
Collapse
Affiliation(s)
- Marion Coolen
- Zebrafish Neurogenetics Group, Laboratory of Neurobiology and Development, CNRS UPR 3294, Institute of Neurobiology Alfred Fessard, 91198 Gif-sur-Yvette Cédex, France.
| | | | | | | | | |
Collapse
|
41
|
Liu DZ, Ander BP, Tian Y, Stamova B, Jickling GC, Davis RR, Sharp FR. Integrated analysis of mRNA and microRNA expression in mature neurons, neural progenitor cells and neuroblastoma cells. Gene 2012; 495:120-7. [PMID: 22244746 DOI: 10.1016/j.gene.2011.12.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/24/2011] [Accepted: 12/10/2011] [Indexed: 01/22/2023]
Abstract
Mature neurons (MNs), neural progenitor cells (NPCs) and neuroblastoma cells (NBCs) are all neural-derived cells. However, MNs are unable to divide once differentiated; NPCs are able to divide a limited number of times and differentiate to normal brain cell types; whereas NBCs can divide an unlimited number of times but rarely differentiate. Here, we perform whole transcriptome (mRNA, miRNA) profiling of these cell types and compare expression levels of each cell type to the others. Integrated mRNA-miRNA functional analyses reveal that: 1) several very highly expressed genes (e.g., Robo1, Nrp1, Epha3, Unc5c, Dcc, Pak3, Limk4) and a few under-expressed miRNAs (e.g., miR-152, miR-146b, miR-339-5p) in MNs are associated with one important cellular process-axon guidance; 2) some very highly expressed mitogenic pathway genes (e.g., Map2k1, Igf1r, Rara, Runx1) and under-expressed miRNAs (e.g., miR-370, miR-9, miR-672) in NBCs are associated with cancer pathways. These results provide a library of negative mRNAmiRNA networks that are likely involved in the cellular processes of differentiation and division.
Collapse
Affiliation(s)
- Da-Zhi Liu
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Poulson ND, Lechler T. Asymmetric cell divisions in the epidermis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:199-232. [PMID: 22449491 DOI: 10.1016/b978-0-12-394306-4.00012-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Generation of three-dimensional tissues with distinct cell types is required for the development of all organs. On its own, mitotic spindle orientation allows tissues to change in length or shape. In combination with intrinsic or extrinsic cues, this can also be coupled to the generation of diverse cell fates-a process known as asymmetric cell division (ACD). Understanding ACDs has been greatly aided by studies in invertebrate model systems, where genetics and live imaging have provided the basis for much of what we know. ACDs also drive the development and differentiation of the epidermis in mammals. While similar to the invertebrate models, the epidermis is distinct in balancing symmetric and asymmetric divisions to yield a tissue of the correct surface area and thickness. Here, we review the roles of spindle orientation in driving both morphogenesis and cell fate decisions. We highlight the epidermis as a unique model system to study not only basic mechanisms of ACD but also their regulation during development.
Collapse
Affiliation(s)
- Nicholas D Poulson
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
43
|
Taverna E, Haffner C, Pepperkok R, Huttner WB. A new approach to manipulate the fate of single neural stem cells in tissue. Nat Neurosci 2011; 15:329-37. [PMID: 22179113 DOI: 10.1038/nn.3008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/14/2011] [Indexed: 12/19/2022]
Abstract
A challenge in the field of neural stem cell biology is the mechanistic dissection of single stem cell behavior in tissue. Although such behavior can be tracked by sophisticated imaging techniques, current methods of genetic manipulation do not allow researchers to change the level of a defined gene product on a truly acute time scale and are limited to very few genes at a time. To overcome these limitations, we established microinjection of neuroepithelial/radial glial cells (apical progenitors) in organotypic slice culture of embryonic mouse brain. Microinjected apical progenitors showed cell cycle parameters that were indistinguishable to apical progenitors in utero, underwent self-renewing divisions and generated neurons. Microinjection of single genes, recombinant proteins or complex mixtures of RNA was found to elicit acute and defined changes in apical progenitor behavior and progeny fate. Thus, apical progenitor microinjection provides a new approach to acutely manipulating single neural stem and progenitor cells in tissue.
Collapse
Affiliation(s)
- Elena Taverna
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | |
Collapse
|
44
|
Hunter PR, Nikolaou N, Odermatt B, Williams PR, Drescher U, Meyer MP. Localization of Cadm2a and Cadm3 proteins during development of the zebrafish nervous system. J Comp Neurol 2011; 519:2252-70. [PMID: 21456004 DOI: 10.1002/cne.22627] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Members of the Cadm/SynCAM/Necl/IGSF/TSLC family of cell adhesion molecules are known to have diverse functions during development of the nervous system, but information regarding their role during central nervous system (CNS) development in vivo is scarce. The rapid development of a relatively simple nervous system in larval zebrafish makes them a highly tractable model organism for studying gene function during nervous system development. An essential prerequisite for functional studies is a description of protein localization. To address this we have generated subtype-specific antibodies to two members of the zebrafish cell adhesion molecule family: cadm2a and cadm3. Using these novel antibodies we show that cadm3 and cadm2a are expressed throughout the nervous system of larval stage zebrafish. Particularly striking, and largely nonoverlapping expression of cadm2a and cadm3 is observed in the developing retina and spinal cord. Using in vitro binding assays we show that cadm2a and cadm3 bind heterophilically and preferentially to cadm1 and cadm4, respectively. These binding preferences are very similar to those seen for tetrapod Cadms but our study of protein localization suggests novel and diverse functions of cadms during nervous system development.
Collapse
Affiliation(s)
- Paul R Hunter
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The developing nervous system derives from neuroepithelial progenitor cells that divide to generate all of the mature neuronal types. For the proper complement of cell types to form, the progenitors must produce postmitotic cells, yet also replenish the progenitor pool. Progenitor divisions can be classified into three general types: symmetric proliferative (producing two progenitors), asymmetric neurogenic (producing one progenitor and one postmitotic cell), and symmetric neurogenic (producing two postmitotic cells). The appropriate ratios for these modes of cell division require intrinsic polarity, which is one of the characteristics that define neuroepithelial progenitor cells. The type of division an individual progenitor undergoes can be influenced by cellular features, or behaviors, which are heterogeneous within the population of progenitors. Here we review three key cellular parameters, asymmetric inheritance, cell cycle kinetics, and interkinetic nuclear migration, and the possible mechanisms for how these features influence progenitor fates.
Collapse
Affiliation(s)
- Minde I Willardsen
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
46
|
Ulrich F, Ma LH, Baker RG, Torres-Vázquez J. Neurovascular development in the embryonic zebrafish hindbrain. Dev Biol 2011; 357:134-51. [PMID: 21745463 DOI: 10.1016/j.ydbio.2011.06.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 01/05/2023]
Abstract
The brain is made of billions of highly metabolically active neurons whose activities provide the seat for cognitive, affective, sensory and motor functions. The cerebral vasculature meets the brain's unusually high demand for oxygen and glucose by providing it with the largest blood supply of any organ. Accordingly, disorders of the cerebral vasculature, such as congenital vascular malformations, stroke and tumors, compromise neuronal function and survival and often have crippling or fatal consequences. Yet, the assembly of the cerebral vasculature is a process that remains poorly understood. Here we exploit the physical and optical accessibility of the zebrafish embryo to characterize cerebral vascular development within the embryonic hindbrain. We find that this process is primarily driven by endothelial cell migration and follows a two-step sequence. First, perineural vessels with stereotypical anatomies are formed along the ventro-lateral surface of the neuroectoderm. Second, angiogenic sprouts derived from a subset of perineural vessels migrate into the hindbrain to form the intraneural vasculature. We find that these angiogenic sprouts reproducibly penetrate into the hindbrain via the rhombomere centers, where differentiated neurons reside, and that specific rhombomeres are invariably vascularized first. While the anatomy of intraneural vessels is variable from animal to animal, some aspects of the connectivity of perineural and intraneural vessels occur reproducibly within particular hindbrain locales. Using a chemical inhibitor of VEGF signaling we determine stage-specific requirements for this pathway in the formation of the hindbrain vasculature. Finally, we show that a subset of hindbrain vessels is aligned and/or in very close proximity to stereotypical neuron clusters and axon tracts. Using endothelium-deficient cloche mutants we show that the endothelium is dispensable for the organization and maintenance of these stereotypical neuron clusters and axon tracts in the early hindbrain. However, the cerebellum's upper rhombic lip and the optic tectum are abnormal in clo. Overall, this study provides a detailed, multi-stage characterization of early zebrafish hindbrain neurovascular development with cellular resolution up to the third day of age. This work thus serves as a useful reference for the neurovascular characterization of mutants, morphants and drug-treated embryos.
Collapse
Affiliation(s)
- Florian Ulrich
- Department of Developmental Genetics, Skirball Institute of Molecular Medicine, New York City, New York 10016, USA.
| | | | | | | |
Collapse
|
47
|
Chalasani K, Brewster RM. N-cadherin-mediated cell adhesion restricts cell proliferation in the dorsal neural tube. Mol Biol Cell 2011; 22:1505-15. [PMID: 21389116 PMCID: PMC3084673 DOI: 10.1091/mbc.e10-08-0675] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neural progenitors are organized as a pseudostratified epithelium held together by adherens junctions (AJs), multiprotein complexes composed of cadherins and α- and β-catenin. Catenins are known to control neural progenitor division; however, it is not known whether they function in this capacity as cadherin binding partners, as there is little evidence that cadherins themselves regulate neural proliferation. We show here that zebrafish N-cadherin (N-cad) restricts cell proliferation in the dorsal region of the neural tube by regulating cell-cycle length. We further reveal that N-cad couples cell-cycle exit and differentiation, as a fraction of neurons are mitotic in N-cad mutants. Enhanced proliferation in N-cad mutants is mediated by ligand-independent activation of Hedgehog (Hh) signaling, possibly caused by defective ciliogenesis. Furthermore, depletion of Hh signaling results in the loss of junctional markers. We therefore propose that N-cad restricts the response of dorsal neural progenitors to Hh and that Hh signaling limits the range of its own activity by promoting AJ assembly. Taken together, these observations emphasize a key role for N-cad-mediated adhesion in controlling neural progenitor proliferation. In addition, these findings are the first to demonstrate a requirement for cadherins in synchronizing cell-cycle exit and differentiation and a reciprocal interaction between AJs and Hh signaling.
Collapse
Affiliation(s)
- Kavita Chalasani
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | |
Collapse
|
48
|
Clay MR, Halloran MC. Regulation of cell adhesions and motility during initiation of neural crest migration. Curr Opin Neurobiol 2011; 21:17-22. [PMID: 20970990 PMCID: PMC3049825 DOI: 10.1016/j.conb.2010.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 09/27/2010] [Indexed: 12/24/2022]
Abstract
Accurate neural crest cell (NCC) migration requires tight control of cell adhesions, cytoskeletal dynamics and cell motility. Cadherins and RhoGTPases are critical molecular players that regulate adhesions and motility during initial delamination of NCCs from the neuroepithelium. Recent studies have revealed multiple functions for these molecules and suggest that a precise balance of their activity is crucial. RhoGTPase appears to regulate both cell adhesions and protrusive forces during NCC delamination. Increasing evidence shows that cadherins are multi-functional proteins with novel, adhesion-independent signaling functions that control NCC motility during both delamination and migration. These functions are often regulated by specific proteolytic cleavage of cadherins. After NCC delamination, planar cell polarity signaling acts via RhoGTPases to control NCC protrusions and migration direction.
Collapse
Affiliation(s)
- Matthew R Clay
- Department of Zoology, 1117 W. Johnson Street, Madison, WI 53706, USA
| | | |
Collapse
|
49
|
Abstract
The myelin sheath is an essential component of the vertebrate nervous system, and its disruption causes numerous diseases, including multiple sclerosis (MS), and neurodegeneration. Although we understand a great deal about the early development of the glial cells that make myelin (Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system), we know much less about the cellular and molecular mechanisms that regulate the later stages of differentiation that orchestrate myelin formation. Over the past decade, the zebrafish has been employed as a model with which to dissect the development of myelinated axons. Forward genetic screens have revealed new genes essential for myelination, as well as new roles for genes previously implicated in myelinated axon formation in other systems. High-resolution in vivo imaging in zebrafish has also begun to illuminate novel cell behaviors during myelinating glial cell development. Here we review the contribution of zebrafish research to our understanding of myelinated axon formation to date. We also describe and discuss many of the methodologies used in these studies and preview future endeavors that will ensure that the zebrafish remains at the cutting edge of this important area of research.
Collapse
Affiliation(s)
- Tim Czopka
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK
| | | |
Collapse
|
50
|
Žigman M, Trinh LA, Fraser SE, Moens CB. Zebrafish neural tube morphogenesis requires Scribble-dependent oriented cell divisions. Curr Biol 2010; 21:79-86. [PMID: 21185191 DOI: 10.1016/j.cub.2010.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/18/2010] [Accepted: 12/02/2010] [Indexed: 11/17/2022]
Abstract
How control of subcellular events in single cells determines morphogenesis on the scale of the tissue is largely unresolved. The stereotyped cross-midline mitoses of progenitors in the zebrafish neural keel provide a unique experimental paradigm for defining the role and control of single-cell orientation for tissue-level morphogenesis in vivo. We show here that the coordinated orientation of individual progenitor cell division in the neural keel is the cellular determinant required for morphogenesis into a neural tube epithelium with a single straight lumen. We find that Scribble is required for oriented cell division and that its function in this process is independent of canonical apicobasal and planar polarity pathways. We identify a role for Scribble in controlling clustering of α-catenin foci in dividing progenitors. Loss of either Scrib or N-cadherin results in abnormally oriented mitoses, reduced cross-midline cell divisions, and similar neural tube defects. We propose that Scribble-dependent nascent cell-cell adhesion clusters between neuroepithelial progenitors contribute to define orientation of their cell division. Finally, our data demonstrate that while oriented mitoses of individual cells determine neural tube architecture, the tissue can in turn feed back on its constituent cells to define their polarization and cell division orientation to ensure robust tissue morphogenesis.
Collapse
Affiliation(s)
- Mihaela Žigman
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, B2-152, 1100 Fairview Avenue North, Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|