1
|
Yi L, Han N, Li Z, Jiang H, Cao Z. Relaxin-2 promotes osteoblastic differentiation mediated by epidermal growth factor and epidermal growth factor receptor signaling. Biotechnol Appl Biochem 2025; 72:260-267. [PMID: 39219221 DOI: 10.1002/bab.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Loss of osteogenic differentiation potential of osteoblasts has been associated with the pathogenesis of osteoporosis. Thus, stimulation of osteoblastic differentiation is a therapeutic strategy for osteoporosis. Relaxin-2 is a peptide hormone with potent biological functions. However, the effects of Relaxin-2 in osteoblastic differentiation and osteoporosis have not been reported before. Here, we report a novel physiological role of Relaxin-2 in promoting osteoblastic differentiation and mineralization of MC3T3-E1 cells. Our results indicate that exposure to Relaxin-2 upregulated the expression, and elevated the activity of alkaline phosphatase (ALP) when MC3T3-E1 cells were cultured in osteogenic differentiation medium (OM). Additionally, Relaxin-2 upregulated the mRNA levels of osteocalcin (ocn), osteopontin (opn), and collagen type I alpha 1 (Col1a1). The alizarin red S staining assay revealed that Relaxin-2 promoted the mineralization of MC3T3-E1 cells. We also found that Relaxin-2 increased the expression of Runx-2 as well as the epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR). Importantly, silencing of EGF abolished the effects of Relaxin-2 in osteoblastic differentiation and related gene expression. These findings suggest that Relaxin-2 stimulates osteogenic differentiation through activating EGF/EGFR signaling.
Collapse
Affiliation(s)
- Lankai Yi
- Department of Hand, Foot, and Orthopedics Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Ning Han
- Department of Hand, Foot, and Orthopedics Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Zhong Li
- Department of Hand, Foot, and Orthopedics Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Housen Jiang
- Department of Hand, Foot, and Orthopedics Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Zhenhao Cao
- Department of Hand, Foot, and Orthopedics Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| |
Collapse
|
2
|
Paddenberg-Schubert E, Küchler E, Bitencourt Reis CL, Silva-Sousa AC, Kirschneck C. New insights into the genetics of mandibular retrognathism: novel candidate genes. J Orofac Orthop 2024:10.1007/s00056-023-00512-z. [PMID: 38296908 DOI: 10.1007/s00056-023-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
PURPOSE Mandibular retrognathism (MR) is a common skeletal malocclusion in humans with a strong genetic component. Single nucleotide polymorphisms (SNPs) in genes encoding epidermal growth factor (EGF) and EGF receptor (EGFR) could be involved in the etiology of mandibular retrognathism. Therefore, in this study, we investigated whether SNPs in the genes encoding for EGF and EGFR are associated with MR in German teenagers. METHODS This nested case-control study evaluated German orthodontic patients, aged 10-18 years. DNA, which was isolated from buccal epithelial cells using two cytobrushes, was used for genotyping analysis and digital pretreatment lateral cephalograms were examined to calculate SNB and ANB. Patients with a retrognathic mandible (SNB < 78°) were included as cases, while patients with an orthognathic mandible (SNB = 78-82°) were included as controls. Four SNPs in the genes encoding for EGF and EGFR were chosen and genotyped using real-time PCR. Allele, genotype, and haplotype frequency were compared across groups (α = 5%). RESULTS Finally, 119 patients were included in this study (45 orthognathic mandible, 74 retrognathic mandible). The minor allele G in rs4444903 (EGF) was statistically more frequent in individuals with an orthognathic mandible (p = 0.008). The haplotype formed by the mutant alleles for rs4444903|rs2237051 (EGF; G|A) was statistically more frequent in the orthognathic mandible group (p = 0.007). The SNPs rs4444903 and rs2237051 in EGF, and rs2227983 in EGFR were statistically associated with a decreasing risk of developing a retrognathic mandible according to univariate and multivariate statistical analysis (p < 0.05). CONCLUSION SNPs in EGF (rs4444903 and rs2237051) and EGFR (rs2227983) were associated with MR in our German sample and could be genetic biomarkers for early and individualized diagnostic identification of retrognathic mandibular development by means of genetic screening tests.
Collapse
Affiliation(s)
- Eva Paddenberg-Schubert
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Erika Küchler
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Caio Luiz Bitencourt Reis
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alice Corrêa Silva-Sousa
- Restorative Dentistry Department, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| |
Collapse
|
3
|
Çiçek Ç, Filinte G, Başak K, Kayiş AF. Artificial Dermis and Human Recombinant Epidermal Growth Factor Application for the Management of Critical Size Calvarial Defect. J Craniofac Surg 2024:00001665-990000000-01301. [PMID: 38284900 DOI: 10.1097/scs.0000000000009970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
Restoration of the 3-dimensional structure of the facial and calvarial skeleton after trauma or ablative oncologic surgeries serves as a framework for soft tissue reconstruction. In the present study, the authors aimed to evaluate the osteogenic effect of artificial dermis and epidermal growth factor treatment in critical-sized calvarial defects, which cannot be healed spontaneously. 8 mm calvarial defects were created in 28 male rats and filled with the artificial dermis, the artificial dermis and growth factor, growth factor or left untreated. Atomic absorption spectrometry was used to determine the amount of calcium, scanning electron microscopy was used to show the bone tissue in 3 dimensions, and immunohistochemistry was used to assess the bone formation and cell density. Histologic evaluation at 6 weeks showed incomplete bone regeneration in all groups. No statistical differences were found between the groups with regard to their scores for the following: inflammation, new bone formation, osteocyte density, resorption of bone at the edges of the defect, or fibrous tissue formation in the defect area. In conclusion, the predictability of bone formation in critical-size defects is not clear. Contrary to popular belief, the combined use of epidermal growth factor with artificial dermis or alone did not enhance the potential for osseous healing.
Collapse
Affiliation(s)
- Çağla Çiçek
- Department of Plastic, Reconstructive and Aesthetic Surgery, Kartal Dr. Lütfi Kirdar City Hospital
| | - Gaye Filinte
- Department of Plastic, Reconstructive and Aesthetic Surgery, Kartal Dr. Lütfi Kirdar City Hospital, University of Health Sciences, Istanbul
| | - Kayhan Başak
- Department of Plastic, Reconstructive and Aesthetic Surgery, Kartal Dr. Lütfi Kirdar City Hospital
| | - Ahmet F Kayiş
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Bao Y, Zhang S, Zhang X, Pan Y, Yan Y, Wang N, Ren Y, Zuo J, Zong WX, Wang Z, Wang Y. RBM10 Loss Promotes EGFR-Driven Lung Cancer and Confers Sensitivity to Spliceosome Inhibition. Cancer Res 2023; 83:1490-1502. [PMID: 36853175 DOI: 10.1158/0008-5472.can-22-1549] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/04/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023]
Abstract
In lung adenocarcinoma (LUAD), loss-of-function mutations in the splicing factor RBM10 frequently co-occur with oncogenic EGFR mutations. A detailed understanding of the functional consequences and therapeutic impact of RBM10 loss in EGFR-mutant LUAD could help identify more effective treatment strategies. Here, analysis of LUAD data sets indicated that RBM10 mutations are mutually exclusive with mutations in the tumor suppressor gene TP53. In an EGFR-driven LUAD mouse model, lung-specific ablation of either Rbm10 or Trp53 similarly promoted tumor development, leading to overlapping gene expression changes enriched in cancer-related pathways. RBM10 loss induced key RNA splicing changes concordant in mice and LUAD patients. Importantly, RBM10 deficiency conferred high sensitivity to spliceosome inhibition in EGFR-mutated LUAD cells. Combined treatment with spliceosome inhibitor improved the therapeutic efficacy of EGFR tyrosine kinase inhibitor osimertinib and overcame drug resistance, especially in RBM10-deficient LUAD. Together, this study establishes RBM10 as a tumor suppressor akin to p53 and provides a therapeutic strategy of targeting the splicing machinery in EGFR-driven LUAD. SIGNIFICANCE Loss of the splicing factor RBM10 is mutually exclusive with p53 mutations, promotes tumorigenesis, and enhances the efficacy of spliceosome inhibition in EGFR-driven lung cancer.
Collapse
Affiliation(s)
- Yufang Bao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Sirui Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyu Zhang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yunjian Pan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yueren Yan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yunpeng Ren
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Tan S, Yang S, Kang H, Zhou K, Wang H, Zhang Y, Chen S. Atractylenolide III Ameliorated Autophagy Dysfunction via Epidermal Growth Factor Receptor-Mammalian Target of Rapamycin Signals and Alleviated Silicosis Fibrosis in Mice. J Transl Med 2023; 103:100024. [PMID: 37039148 DOI: 10.1016/j.labinv.2022.100024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/11/2023] Open
Abstract
Atractylenolide III (ATL-III) is a major active constituent of the natural plant Atractylodes rhizome. Our previous study has shown that ATL-III may alleviate alveolar macrophage apoptosis via the inhibition of the mammalian target of rapamycin (mTOR)-mediated autophagy of human silicosis. Therefore, we aimed to further explore the function of ATL-III in autophagy, apoptosis, and pulmonary fibrosis by establishing the ATL-III-intervened silicosis mouse model in this study. Meanwhile, we sought and then verified potential autophagy-related signaling pathways by matching differentially expressed genes (attained by RNA sequencing) and the autophagy database. In this study, RNA-sequencing results implied that the epidermal growth factor receptor, the crucial upstream activator of mTOR, was seen as a potential autophagy-regulatory molecule in the ATL-III-intervened silicosis mouse model. The finding of this study was that ATL-III might improve the disorder of autophagic degradation via the activation of epidermal growth factor receptor-mTOR signals in the pulmonary tissue of the silicosis mouse model. ATL-III also alleviated cell apoptosis and silicotic fibrosis. Overall, we supposed that ATL-III might be a potential protective medicine, which had a regulatory effect on autophagy, for the intervention of silicotic fibrosis. In the future, the therapeutic drugs for silicosis should be further focused on the development and application of such natural autophagy agents.
Collapse
|
6
|
Mangiavini L, Peretti GM, Canciani B, Maffulli N. Epidermal growth factor signalling pathway in endochondral ossification: an evidence-based narrative review. Ann Med 2022; 54:37-50. [PMID: 34955078 PMCID: PMC8725985 DOI: 10.1080/07853890.2021.2015798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
During endochondral bone development, a complex process that leads to the formation of the majority of skeletal elements, mesenchymal cells condense, differentiating into chondrocytes and producing the foetal growth plate. Chondrocytes progressively hypertrophy, induce angiogenesis and are then gradually replaced by bone. Epidermal Growth Factor (EGF), one of many growth factors, is the prototype of the EGF-ligand family, which comprises several proteins involved in cell proliferation, migration and survival. In bone, EGF pathway signalling finely tunes the first steps of chondrogenesis by maintaining mesenchymal cells in an undifferentiated stage, and by promoting hypertrophic cartilage replacement. Moreover, EGF signalling modulates bone homeostasis by stimulating osteoblast and osteoclast proliferation, and by regulating osteoblast differentiation under specific spatial and temporal conditions. This evidence-based narrative review describes the EGF pathway in bone metabolism and endochondral bone development. This comprehensive description may be useful in light of possible clinical applications in orthopaedic practice. A deeper knowledge of the role of EGF in bone may be useful in musculoskeletal conditions which may benefit from the modulation of this signalling pathway.Key messagesThe EGF pathway is involved in bone metabolism.EGF signalling is essential in the very early stages of limb development by maintaining cells in an undifferentiated stage.EGF pathway positively regulates chondrocyte proliferation, negatively modulates hypertrophy, and favours cartilage replacement by bone.EGF and EGF-like proteins finely tune the proliferation and differentiation of bone tissue cells, and they also regulate the initial phases of endochondral ossification.
Collapse
Affiliation(s)
- L Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - G M Peretti
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - B Canciani
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - N Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy.,Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London, UK.,School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke on Trent, UK
| |
Collapse
|
7
|
Su W, Chen X, Zhang W, Li D, Chen X, Yu D. Therapeutic targets and signaling mechanisms of dasatinib activity against radiation skin ulcer. Front Public Health 2022; 10:1031038. [PMID: 36530656 PMCID: PMC9749824 DOI: 10.3389/fpubh.2022.1031038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To reveal the potential targets and signaling pathways of dasatinib in the treatment of radiation ulcers through network pharmacology and molecular docking technology. Methods Pathological targets of radiation ulcers were screened using GeneCards database. At the same time, the pharmacological targets of dasatinib were obtained through SwissTargetPrediction (STP), Binding DB and Drugbank databases. Subsequently, the potential targets of dasatinib for anti-radiation ulcers were obtained after intersection by Venn diagram. Next, a protein-protein interaction (PPI) network was constructed through the STRING database and core targets were screened. Finally, the identified core targets were subjected to GO and KEGG enrichment analysis, co-expression network analysis, and molecular docking technology to verify the reliability of the core targets. Results A total of 76 potential targets for anti-radiation ulcer with dasatinib were obtained, and 6 core targets were screened, including EGFR, ERBB2, FYN, JAK2, KIT, and SRC. These genes were mainly enriched in Adherens junction, EGFR tyrosine kinase inhibitor resistance, Focal adhesion, Bladder cancer and PI3K-Akt signaling pathway. Molecular docking results showed that dasatinib binds well to the core target. Conclusion Dasatinib may play a role in the treatment of radiation ulcers by regulating EGFR, ERBB2, FYN, JAK2, KIT, and SRC. These core targets may provide new insights for follow-up studies of radiation ulcers.
Collapse
Affiliation(s)
- Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- Department of Cosmetic Plastic and Burn Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xuelian Chen
- Department of Cosmetic Plastic and Burn Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Wen Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Dazhuang Li
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoming Chen
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Daojiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
8
|
Zhao Y, Dávila EM, Li X, Tang B, Rabinowitsch AI, Perez-Aguilar JM, Blobel CP. Identification of Molecular Determinants in iRhoms1 and 2 That Contribute to the Substrate Selectivity of Stimulated ADAM17. Int J Mol Sci 2022; 23:12796. [PMID: 36361585 PMCID: PMC9654401 DOI: 10.3390/ijms232112796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
The metalloprotease ADAM17 is a key regulator of the TNFα, IL-6R and EGFR signaling pathways. The maturation and function of ADAM17 is controlled by the seven-membrane-spanning proteins iRhoms1 and 2. The functional properties of the ADAM17/iRhom1 and ADAM17/iRhom2 complexes differ, in that stimulated shedding of most ADAM17 substrates tested to date can be supported by iRhom2, whereas iRhom1 can only support stimulated shedding of very few ADAM17 substrates, such as TGFα. The first transmembrane domain (TMD1) of iRhom2 and the sole TMD of ADAM17 are important for the stimulated shedding of ADAM17 substrates by iRhom2. However, little is currently known about how the iRhoms interact with different substrates to control their stimulated shedding by ADAM17. To provide new insights into this topic, we tested how various chimeras between iRhom1 and iRhom2 affect the stimulated processing of the EGFR-ligands TGFα (iRhom1- or 2-dependent) and EREG (iRhom2-selective) by ADAM17. This uncovered an important role for the TMD7 of the iRhoms in determining their substrate selectivity. Computational methods utilized to characterize the iRhom1/2/substrate interactions suggest that the substrate selectivity is determined, at least in part, by a distinct accessibility of the substrate cleavage site to stimulated ADAM17. These studies not only provide new insights into why the substrate selectivity of stimulated iRhom2/ADAM17 differs from that of iRhom1/ADAM17, but also suggest new approaches for targeting the release of specific ADAM17 substrates.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Biochemistry, Cellular and Molecular Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eliud Morales Dávila
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Xue Li
- Department of Biochemistry, Cellular and Molecular Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Beiyu Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ariana I. Rabinowitsch
- Department of Biochemistry, Cellular and Molecular Biology, Weill Cornell Medicine, New York, NY 10021, USA
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Carl P. Blobel
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10021, USA
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
9
|
EGFR Signaling in Lung Fibrosis. Cells 2022; 11:cells11060986. [PMID: 35326439 PMCID: PMC8947373 DOI: 10.3390/cells11060986] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
In this review article, we will first provide a brief overview of the ErbB receptor-ligand system and its importance in developmental and physiological processes. We will then review the literature regarding the role of ErbB receptors and their ligands in the maladaptive remodeling of lung tissue, with special emphasis on idiopathic pulmonary fibrosis (IPF). Here we will focus on the pathways and cellular processes contributing to epithelial-mesenchymal miscommunication seen in this pathology. We will also provide an overview of the in vivo studies addressing the efficacy of different ErbB signaling inhibitors in experimental models of lung injury and highlight how such studies may contribute to our understanding of ErbB biology in the lung. Finally, we will discuss what we learned from clinical applications of the ErbB1 signaling inhibitors in cancer in order to advance clinical trials in IPF.
Collapse
|
10
|
Lees-Shepard JB, Flint K, Fisher M, Omi M, Richard K, Antony M, Chen PJ, Yadav S, Threadgill D, Maihle NJ, Dealy CN. Cross-talk between EGFR and BMP signals regulates chondrocyte maturation during endochondral ossification. Dev Dyn 2021; 251:75-94. [PMID: 34773433 DOI: 10.1002/dvdy.438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Progressive maturation of growth plate chondrocytes drives long bone growth during endochondral ossification. Signals from the epidermal growth factor receptor (EGFR), and from bone morphogenetic protein-2 (BMP2), are required for normal chondrocyte maturation. Here, we investigated cross-talk between EGFR and BMP2 signals in developing and adult growth plates. RESULTS Using in vivo mouse models of conditional cartilage-targeted EGFR or BMP2 loss, we show that canonical BMP signal activation is increased in the hypertrophic chondrocytes of EGFR-deficient growth plates; whereas EGFR signal activation is increased in the reserve, prehypertrophic and hypertrophic chondrocytes of BMP2-deficient growth plates. EGFR-deficient chondrocytes displayed increased BMP signal activation in vitro, accompanied by increased expression of IHH, COL10A1, and RUNX2. Hypertrophic differentiation and BMP signal activation were suppressed in normal chondrocyte cultures treated with the EGFR ligand betacellulin, effects that were partially blocked by simultaneous treatment with BMP2 or a chemical EGFR antagonist. CONCLUSIONS Cross-talk between EGFR and BMP2 signals occurs during chondrocyte maturation. In the reserve and prehypertrophic zones, BMP2 signals unilaterally suppress EGFR activity; in the hypertrophic zone, EGFR and BMP2 signals repress each other. This cross-talk may play a role in regulating chondrocyte maturation in developing and adult growth plates.
Collapse
Affiliation(s)
- John B Lees-Shepard
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Kaitlyn Flint
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Melanie Fisher
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Minoru Omi
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Kelsey Richard
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Michelle Antony
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Po Jung Chen
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Sumit Yadav
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - David Threadgill
- Department of Veterinary Pathology, Texas A&M University, College Station, Texas, USA.,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Nita J Maihle
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Department of Cell & Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Caroline N Dealy
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, USA.,Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA.,Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
11
|
Guo S, Okyere AD, McEachern E, Strong JL, Carter RL, Patwa VC, Thomas TP, Landy M, Song J, Lucchese AM, Martin TG, Gao E, Rajan S, Kirk JA, Koch WJ, Cheung JY, Tilley DG. Epidermal growth factor receptor-dependent maintenance of cardiac contractility. Cardiovasc Res 2021; 118:1276-1288. [PMID: 33892492 DOI: 10.1093/cvr/cvab149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/16/2021] [Accepted: 04/21/2021] [Indexed: 01/22/2023] Open
Abstract
AIMS Epidermal growth factor receptor (EGFR) is essential to the development of multiple tissues and organs and is a target of cancer therapeutics. Due to the embryonic lethality of global EGFR deletion and conflicting reports of cardiac-overexpressed EGFR mutants, its specific impact on the adult heart, normally or in response to chronic stress, has not been established. Using complimentary genetic strategies to modulate cardiomyocyte-specific EGFR expression, we aim to define its role in the regulation of cardiac function and remodeling. METHODS AND RESULTS A floxed EGFR mouse model with α-myosin heavy chain-Cre-mediated cardiomyocyte-specific EGFR downregulation (CM-EGFR-KD mice) developed contractile dysfunction by 9 weeks of age, marked by impaired diastolic relaxation, as monitored via echocardiographic, hemodynamic and isolated cardiomyocyte contractility analyses. This contractile defect was maintained over time without overt cardiac remodeling until 10 months of age, after which the mice ultimately developed severe heart failure and reduced lifespan. Acute downregulation of EGFR in adult floxed EGFR mice with adeno-associated virus 9 (AAV9)-encoded Cre with a cardiac troponin T promoter (AAV9-cTnT-Cre) recapitulated the CM-EGFR-KD phenotype, while AAV9-cTnT-EGFR treatment of adult CM-EGFR-KD mice rescued the phenotype. Notably, chronic administration of the β-adrenergic receptor (βAR) agonist isoproterenol effectively and reversibly compensated for the contractile dysfunction in the absence of cardiomyocyte hypertrophy in CM-EGFR-KD mice. Mechanistically, EGFR downregulation reduced the expression of protein phosphatase 2 A (PP2A) regulatory subunit Ppp2r3a/PR72, which was associated with decreased phosphorylation of phospholamban (PLB) and Ca2+ clearance, and whose re-expression via AAV9-cTnT-PR72 rescued the CM-EGFR-KD phenotype. CONCLUSIONS Altogether our study highlights a previously unrecognized role for EGFR in maintaining contractile homeostasis under physiologic conditions in the adult heart via regulation of PR72 expression. TRANSLATIONAL PERSPECTIVE Our study highlights a previously unrecognized role for EGFR in maintaining contractile homeostasis under physiologic conditions in the adult heart via regulation of PR72, a PP2A regulatory subunit with an unknown impact on cardiac function. Further, we have shown that cardiomyocyte-expressed EGFR is required for the promotion of cardiac hypertrophy under conditions of chronic catecholamine stress. Altogether, our study provides new insight into the dynamic nature of cardiomyocyte-specific EGFR.
Collapse
Affiliation(s)
- Shuchi Guo
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Ama Dedo Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Erin McEachern
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Joshua L Strong
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Rhonda L Carter
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Viren C Patwa
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Toby P Thomas
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Melissa Landy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jianliang Song
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Ana Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Thomas G Martin
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Sudarsan Rajan
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jonathan A Kirk
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Joseph Y Cheung
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
12
|
Fang R, Haxaire C, Otero M, Lessard S, Weskamp G, McIlwain DR, Mak TW, Lichtenthaler SF, Blobel CP. Role of iRhoms 1 and 2 in Endochondral Ossification. Int J Mol Sci 2020; 21:ijms21228732. [PMID: 33227998 PMCID: PMC7699240 DOI: 10.3390/ijms21228732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
Growth of the axial and appendicular skeleton depends on endochondral ossification, which is controlled by tightly regulated cell–cell interactions in the developing growth plates. Previous studies have uncovered an important role of a disintegrin and metalloprotease 17 (ADAM17) in the normal development of the mineralized zone of hypertrophic chondrocytes during endochondral ossification. ADAM17 regulates EGF-receptor signaling by cleaving EGFR-ligands such as TGFα from their membrane-anchored precursor. The activity of ADAM17 is controlled by two regulatory binding partners, the inactive Rhomboids 1 and 2 (iRhom1, 2), raising questions about their role in endochondral ossification. To address this question, we generated mice lacking iRhom2 (iR2−/−) with floxed alleles of iRhom1 that were specifically deleted in chondrocytes by Col2a1-Cre (iR1∆Ch). The resulting iR2−/−iR1∆Ch mice had retarded bone growth compared to iR2−/− mice, caused by a significantly expanded zone of hypertrophic mineralizing chondrocytes in the growth plate. Primary iR2−/−iR1∆Ch chondrocytes had strongly reduced shedding of TGFα and other ADAM17-dependent EGFR-ligands. The enlarged zone of mineralized hypertrophic chondrocytes in iR2−/−iR1∆Ch mice closely resembled the abnormal growth plate in A17∆Ch mice and was similar to growth plates in Tgfα−/− mice or mice with EGFR mutations. These data support a model in which iRhom1 and 2 regulate bone growth by controlling the ADAM17/TGFα/EGFR signaling axis during endochondral ossification.
Collapse
Affiliation(s)
- Renpeng Fang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China;
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
| | - Coline Haxaire
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
| | - Miguel Otero
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (M.O.); (S.L.)
| | - Samantha Lessard
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (M.O.); (S.L.)
| | - Gisela Weskamp
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
| | - David R. McIlwain
- Baxter Laboratory in Stem Cell Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Tak W. Mak
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2M9, Canada;
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany;
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
| | - Carl P. Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
- Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
- Department of Medicine, Department of Biophysics, Physiology and Systems Biology, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: ; Tel.: +212-606-1429; Fax: +212-774-2560
| |
Collapse
|
13
|
Kong L, Liu G, Deng M, Lian Z, Han Y, Sun B, Guo Y, Liu D, Li Y. Growth retardation-responsive analysis of mRNAs and long noncoding RNAs in the liver tissue of Leiqiong cattle. Sci Rep 2020; 10:14254. [PMID: 32868811 PMCID: PMC7459292 DOI: 10.1038/s41598-020-71206-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
As an important type of non-coding RNA molecule, long non-coding RNAs (lncRNAs) have varied roles in many biological processes, and have been studied extensively over the past few years. However, little is known about lncRNA-mediated regulation during cattle growth and development. Therefore, in the present study, RNA sequencing was used to determine the expression level of mRNAs and lncRNAs in the liver of adult Leiqiong cattle under the condition of growth retardation and normal growth. We totally detected 1,124 and 24 differentially expressed mRNAs and lncRNAs, respectively. The differentially expressed mRNAs were mainly associated with growth factor binding, protein K63-linked ubiquitination and cellular protein metabolic process; additionally, they were significantly enriched in the growth and development related pathways, including PPAR signaling pathway, vitamin B6 metabolism, glyoxylate and dicarboxylate metabolism. Combined analysis showed that the co-located differentially expressed lncRNA Lnc_002583 might positively influence the expression of the corresponding genes IFI44 and IFI44L, exerting co-regulative effects on Leiqiong cattle growth and development. Thus, we made the hypothesis that Lnc_002583, IFI44 and IFI44L might function synergistically to regulate the growth of Leiqiong cattle. This study provides a catalog of Leiqiong cattle liver mRNAs and lncRNAs, and will contribute to a better understanding of the molecular mechanism underlying growth regulataion.
Collapse
Affiliation(s)
- Lingxuan Kong
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Zhiquan Lian
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Yinru Han
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China.
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China.
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China.
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China.
| |
Collapse
|
14
|
Transcription-independent Induction of ERBB1 through Hypoxia-inducible Factor 2A Provides Cardioprotection during Ischemia and Reperfusion. Anesthesiology 2020; 132:763-780. [PMID: 31794514 DOI: 10.1097/aln.0000000000003037] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND During myocardial ischemia, hypoxia-inducible factors are stabilized and provide protection from ischemia and reperfusion injury. Recent studies show that myocyte-specific hypoxia-inducible factor 2A promotes myocardial ischemia tolerance through induction of epidermal growth factor, amphiregulin. Here, the authors hypothesized that hypoxia-inducible factor 2A may enhance epidermal growth factor receptor 1 (ERBB1) expression in the myocardium that could interface between growth factors and its effect on providing tolerance to ischemia and reperfusion injury. METHODS Human myocardial tissues were obtained from ischemic heart disease patients and normal control patients to compare ERBB1 expression. Myocyte-specific Hif2a or ErbB1 knockout mice were generated to observe the effect of Hif2a knockdown in regulating ERBB1 expression and to examine the role of ERBB1 during myocardial ischemia and reperfusion injury. RESULTS Initial studies of myocardial tissues from patients with ischemic heart disease showed increased ERBB1 protein (1.12 ± 0.24 vs. 13.01 ± 2.20, P < 0.001). In contrast, ERBB1 transcript was unchanged. Studies using short hairpin RNA repression of Hif2A or Hif2a Myosin Cre+ mice directly implicated hypoxia-inducible factor 2A in ERBB1 protein induction during hypoxia or after myocardial ischemia, respectively. Repression of RNA-binding protein 4 abolished hypoxia-inducible factor 2A-dependent induction of ERBB1 protein. Moreover, ErbB1 Myosin Cre+ mice experienced larger infarct sizes (22.46 ± 4.06 vs. 46.14 ± 1.81, P < 0.001) and could not be rescued via amphiregulin treatment. CONCLUSIONS These findings suggest that hypoxia-inducible factor 2A promotes transcription-independent induction of ERBB1 protein and implicates epidermal growth factor signaling in protection from myocardial ischemia and reperfusion injury.
Collapse
|
15
|
Hanauer JRH, Koch V, Lauer UM, Mühlebach MD. High-Affinity DARPin Allows Targeting of MeV to Glioblastoma Multiforme in Combination with Protease Targeting without Loss of Potency. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:186-200. [PMID: 31788553 PMCID: PMC6880102 DOI: 10.1016/j.omto.2019.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Measles virus (MeV) is naturally cytolytic by extensive cell-to-cell fusion. Vaccine-derived MeV is toxic for cancer cells and is clinically tested as oncolytic virus. To combine the potential of MeV with enhanced safety, different targeting strategies have been described. We generated a receptor-targeted MeV by using receptor-blind viral attachment protein genetically fused to designed ankyrin repeat protein (DARPin) binding domains specific for the epidermal growth factor receptor (EGFR). To reduce on-target toxicity for EGFR+ healthy cells, we used an engineered viral fusion protein activatable by tumor-associated matrix metalloproteases (MMPs) for additional protease targeting. The dual-targeted virus replicated exclusively on EGFR+/MMP+ tumor cells but was safe on healthy EGFR+ target cells, primary human keratinocytes. Nevertheless, glioblastoma and other tumor cells were efficiently killed by all targeted viruses, although replication and oncolysis were slower for protease-targeted MeV. In vivo, efficacy of EGFR-targeted MeV was virtually unimpaired, whereas also dual-targeted MeV showed significant intra-tumoral spread and efficacy and could be armed with a prodrug convertase. The use of DARPin-domains resulted in potent EGFR-targeted MeV and for the first time effective dual retargeting of an oncolytic virus, further enhancing tumor selectivity. Together with powerful cell-toxic genes, the application as highly tumor-specific platform is promising.
Collapse
Affiliation(s)
- Jan R H Hanauer
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Vivian Koch
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ulrich M Lauer
- Department of Medical Oncology and Pneumology, University Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Michael D Mühlebach
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
16
|
Fukuyama T, Nakamura Y, Kanemaru K, Toyoda C, Jang HJ, Suh PG, Fukami K. Phospholipase Cγ1 is required for normal irritant contact dermatitis responses and sebaceous gland homeostasis. Exp Dermatol 2019; 28:1051-1057. [PMID: 31338881 DOI: 10.1111/exd.14009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
Differentiation and proliferation of keratinocyte are controlled by various signalling pathways. The epidermal growth factor receptor (EGFR) is known to be an important regulator of multiple epidermal functions. Inhibition of EGFR signalling disturbs keratinocyte proliferation, differentiation and migration. Previous studies have revealed that one of the EGFR downstream signalling molecules, phospholipase Cγ1 (PLCγ1), regulates differentiation, proliferation and migration of keratinocytes in in vitro cell culture system. However, the role of PLCγ1 in the regulation of keratinocyte functions in animal epidermis remains unexplored. In this study, we generated keratinocyte-specific PLCγ1 knockout (KO) mice (PLCγ1 cKO mice). Contrary to our expectations, loss of PLCγ1 did not affect differentiation, proliferation and migration of interfollicular keratinocytes. We further examined the role of PLCγ1 in irritant contact dermatitis (ICD), in which epidermal cells play a pivotal role. Upon irritant stimulation, PLCγ1 cKO mice showed exaggerated ICD responses. Further study revealed that epidermal loss of PLCγ1 induced sebaceous gland hyperplasia, indicating that PLCγ1 regulates homeostasis of one of the epidermal appendages. Taken together, our results indicate that, although PLCγ1 is dispensable in interfollicular keratinocyte for normal differentiation, proliferation and migration, it is required for normal ICD responses. Our results also indicate that PLCγ1 regulates homeostasis of sebaceous glands.
Collapse
Affiliation(s)
- Takatsugu Fukuyama
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshikazu Nakamura
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kaori Kanemaru
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Chiho Toyoda
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.,Korea Brain Reaseach Institute, Daegu, Korea
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
17
|
Amberg N, Sotiropoulou PA, Heller G, Lichtenberger BM, Holcmann M, Camurdanoglu B, Baykuscheva-Gentscheva T, Blanpain C, Sibilia M. EGFR Controls Hair Shaft Differentiation in a p53-Independent Manner. iScience 2019; 15:243-256. [PMID: 31082735 PMCID: PMC6515155 DOI: 10.1016/j.isci.2019.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling controls skin development and homeostasis in mice and humans, and its deficiency causes severe skin inflammation, which might affect epidermal stem cell behavior. Here, we describe the inflammation-independent effects of EGFR deficiency during skin morphogenesis and in adult hair follicle stem cells. Expression and alternative splicing analysis of RNA sequencing data from interfollicular epidermis and outer root sheath indicate that EGFR controls genes involved in epidermal differentiation and also in centrosome function, DNA damage, cell cycle, and apoptosis. Genetic experiments employing p53 deletion in EGFR-deficient epidermis reveal that EGFR signaling exhibits p53-dependent functions in proliferative epidermal compartments, as well as p53-independent functions in differentiated hair shaft keratinocytes. Loss of EGFR leads to absence of LEF1 protein specifically in the innermost epithelial hair layers, resulting in disorganization of medulla cells. Thus, our results uncover important spatial and temporal features of cell-autonomous EGFR functions in the epidermis.
Collapse
Affiliation(s)
- Nicole Amberg
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Panagiota A Sotiropoulou
- Interdisciplinary Research Institute (IRIBHM), Université Libre Bruxelles, Bruxelles 1070, Belgium
| | - Gerwin Heller
- Department of Medicine I, Comprehensive Cancer Center, Clinical Division of Oncology, Medical University of Vienna, Vienna 1090, Austria
| | - Beate M Lichtenberger
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Martin Holcmann
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Bahar Camurdanoglu
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Temenuschka Baykuscheva-Gentscheva
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Cedric Blanpain
- Interdisciplinary Research Institute (IRIBHM), Université Libre Bruxelles, Bruxelles 1070, Belgium; WELBIO, Interdisciplinary Research Institute (IRIBHM), Université Libre Bruxelles, Bruxelles 1070, Belgium
| | - Maria Sibilia
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
18
|
Qin L, Beier F. EGFR Signaling: Friend or Foe for Cartilage? JBMR Plus 2019; 3:e10177. [PMID: 30828691 PMCID: PMC6383702 DOI: 10.1002/jbm4.10177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Recent studies using genetically modified mice, pharmacological approaches, and human samples have highlighted an important role for the epidermal growth factor receptor (EGFR), selected ligands, and downstream components in endochondral bone formation and joint homeostasis. Although most data demonstrate an important function of this pathway in endochondral ossification and articular cartilage growth, conflicting results on its role in osteoarthritis have been reported. In some contexts, inactivation of EGFR signaling has been shown to protect joints from surgically induced osteoarthritis, whereas in others, similar manipulations worsened joint pathology. The current review summarizes recent studies of cartilage EGFR signaling in long bone development and diseases, provides potential explanations for the reported discrepancies, and suggests directions for future work to clarify the potential of this pathway as target for osteoarthritis treatment. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ling Qin
- Department of Orthopaedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Frank Beier
- Department of Physiology and PharmacologyUniversity of Western OntarioLondonCanada
- Western Bone and Joint InstituteUniversity of Western OntarioLondonCanada
| |
Collapse
|
19
|
Janssen JN, Batschkus S, Schimmel S, Bode C, Schminke B, Miosge N. The Influence of TGF-β3, EGF, and BGN on SOX9 and RUNX2 Expression in Human Chondrogenic Progenitor Cells. J Histochem Cytochem 2018; 67:117-127. [PMID: 30431382 DOI: 10.1369/0022155418811645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is the most common chronic joint disease and leads to the degradation of the extracellular matrix by an imbalance between anabolic and catabolic processes. TGF-β3 (transforming growth factor beta-3) and epidermal growth factor (EGF) influence the osteochondrogenic potential of chondrocytes. In this study, we compared the expression of mediators and receptors in the TGF-β3 and EGF pathways, as well as biglycan (BGN), in healthy and diseased chondrocytes. Furthermore, we used chondrogenic progenitor cells (CPCs) for in vitro stimulation and knockdown experiments to elucidate the effects of TGF-β3 and EGF on the chondrogenic potential. Our results demonstrate that the expression of TGF-beta receptor type-1 (TGFBRI) and epidermal growth factor receptor (EGFR) is altered in diseased chondrocytes as well as in CPCs. Moreover, TGF-β3 and EGF stimulation influenced the expression levels of BGN, SRY (sex determining region Y)-box 9 (SOX9), and Runt-related transcription factor 2 (RUNX2) in CPCs. Therefore, changes in TGFBRI and EGFR expression likely contribute to the degenerative and regenerative effects seen in late stages of OA.
Collapse
Affiliation(s)
| | | | - Stefan Schimmel
- Tissue Regeneration Work Group, Department of Prosthodontics
| | - Christa Bode
- Tissue Regeneration Work Group, Department of Prosthodontics
| | - Boris Schminke
- Department of Oral and Maxillofacial Surgery, University Medical Center, Göttingen, Germany
| | - Nicolai Miosge
- Tissue Regeneration Work Group, Department of Prosthodontics
| |
Collapse
|
20
|
Knight C, James S, Kuntin D, Fox J, Newling K, Hollings S, Pennock R, Genever P. Epidermal growth factor can signal via β-catenin to control proliferation of mesenchymal stem cells independently of canonical Wnt signalling. Cell Signal 2018; 53:256-268. [PMID: 30287279 PMCID: PMC6293317 DOI: 10.1016/j.cellsig.2018.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/27/2022]
Abstract
Bone marrow mesenchymal stem/stromal cells (MSCs) maintain bone homeostasis and repair through the ability to expand in response to mitotic stimuli and differentiate into skeletal lineages. Signalling mechanisms that enable precise control of MSC function remain unclear. Here we report that by initially examining differences in signalling pathway expression profiles of individual MSC clones, we identified a previously unrecognised signalling mechanism regulated by epidermal growth factor (EGF) in primary human MSCs. We demonstrate that EGF is able to activate β-catenin, a key component of the canonical Wnt signalling pathway. EGF is able to induce nuclear translocation of β-catenin in human MSCs but does not drive expression of Wnt target genes or T cell factor (TCF) activity in MSC reporter cell lines. Using an efficient Design of Experiments (DoE) statistical analysis, with different combinations and concentrations of EGF and Wnt ligands, we were able to confirm that EGF does not influence the Wnt/β-catenin pathway in MSCs. We show that the effects of EGF on MSCs are temporally regulated to initiate early “classical” EGF signalling mechanisms (e.g via mitogen activated protein kinase) with delayed activation of β-catenin. By RNA-sequencing, we identified gene sets that were exclusively regulated by the EGF/β-catenin pathway, which were distinct from classical EGF-regulated genes. However, subsets of classical EGF gene targets were significantly influenced by EGF/β-catenin activation. These signalling pathways cooperate to enable EGF-mediated proliferation of MSCs by alleviating the suppression of cell cycle pathways induced by classical EGF signalling. Epidermal growth factor (EGF) controls mesenchymal stem cell (MSC) proliferation. EGF signals through β-catenin in MSCs but not in related fibroblastic cells. Classical EGF and EGF/β-catenin cooperatively regulate distinct gene sets in MSCs. EGF/β-catenin enables MSC proliferation by alleviating cell cycle suppression.
Collapse
Affiliation(s)
- Charlotte Knight
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Sally James
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - David Kuntin
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - James Fox
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Katherine Newling
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Sam Hollings
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Rebecca Pennock
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Paul Genever
- Department of Biology, University of York, York YO10 5DD, United Kingdom.
| |
Collapse
|
21
|
Lee AMC, Bowen JM, Su YW, Plews E, Chung R, Keefe DMK, Xian CJ. Individual or combination treatments with lapatinib and paclitaxel cause potential bone loss and bone marrow adiposity in rats. J Cell Biochem 2018; 120:4180-4191. [PMID: 30260048 DOI: 10.1002/jcb.27705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/27/2018] [Indexed: 11/09/2022]
Abstract
Cancer treatments with cytotoxic drugs have been shown to cause bone loss. However, effects on bone are less clear for ErbB-targeting tyrosine kinase inhibitors or their combination use with cytotoxic drugs. This study examined the effects of individual or combination treatments with breast cancer drugs lapatinib (a dual ErbB1/ErbB2 inhibitor) and paclitaxel (a microtubule-stabilizing cytotoxic agent) on bone and bone marrow of rats. Wistar rats received lapatinib (240 mg/kg) daily, paclitaxel (12 mg/kg) weekly, or their combination for 4 weeks, and effects on bone/bone marrow were examined at the end of week 4. Microcomputed tomographical structural analyses showed a reduction in trabecular bone volume in tibia following the lapatinib, paclitaxel or their combination treatments ( P < 0.05). Histomorphometry analyses revealed marked increases in bone marrow adipocyte contents in all treatment groups. Reverse transcription polymerase chain reaction gene expression studies with bone samples and cell culture studies with isolated bone marrow stromal cells showed that the all treatment groups displayed significantly reduced levels of osterix expression and osteogenic differentiation potential but increased expression levels of adipogenesis transcription factor peroxisome proliferator-activated receptor γ. In addition, these treatments suppressed the expression of Wnt10b and/or increased expression of Wnt antagonists (secreted frizzled-related protein 1, Dickkopf-related protein 1 and/or sclerostin). Furthermore, all treatment groups showed increased numbers of bone-resorbing osteoclasts on trabecular bone surfaces, although only the lapatinib group displayed increased levels of osteoclastogenic signal (receptor activator of nuclear factor κΒ ligand/osteoclastogenesis inhibitor osteoprotegrin expression ratio) in the bones. Thus, inhibiting ErbB1 and ErbB2 by lapatinib or blocking cell division by paclitaxel or their combination causes significant trabecular bone loss and bone marrow adiposity involving a switch in osteogenesis/adipogenesis potential, altered expression of some major molecules of the Wnt/β-catenin signalling pathway, and increased recruitment of bone-resorbing osteoclasts.
Collapse
Affiliation(s)
- Alice M C Lee
- School of Pharmacy and Medical Sciences, UniSA Institute for Cancer Research, University of South Australia, Adelaide, South Australia, Australia
| | - Joanne M Bowen
- Physiology Discipline, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, UniSA Institute for Cancer Research, University of South Australia, Adelaide, South Australia, Australia
| | - Erin Plews
- Physiology Discipline, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, UniSA Institute for Cancer Research, University of South Australia, Adelaide, South Australia, Australia
| | - Dorothy M K Keefe
- SA Cancer Service, SA Cancer Clinical Network, SA Health, Adelaide, South Australia, Australia.,Centre of Cancer Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, UniSA Institute for Cancer Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
22
|
Robson JP, Wagner B, Glitzner E, Heppner FL, Steinkellner T, Khan D, Petritsch C, Pollak DD, Sitte HH, Sibilia M. Impaired neural stem cell expansion and hypersensitivity to epileptic seizures in mice lacking the EGFR in the brain. FEBS J 2018; 285:3175-3196. [PMID: 30028091 PMCID: PMC6174950 DOI: 10.1111/febs.14603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
Mice lacking the epidermal growth factor receptor (EGFR) develop an early postnatal degeneration of the frontal cortex and olfactory bulbs and show increased cortical astrocyte apoptosis. The poor health and early lethality of EGFR−/− mice prevented the analysis of mechanisms responsible for the neurodegeneration and function of the EGFR in the adult brain. Here, we show that postnatal EGFR‐deficient neural stem cells are impaired in their self‐renewal potential and lack clonal expansion capacity in vitro. Mice lacking the EGFR in the brain (EGFRΔbrain) show low penetrance of cortical degeneration compared to EGFR−/− mice despite genetic recombination of the conditional allele. Adult EGFRΔ mice establish a proper blood–brain barrier and perform reactive astrogliosis in response to mechanical and infectious brain injury, but are more sensitive to Kainic acid‐induced epileptic seizures. EGFR‐deficient cortical astrocytes, but not midbrain astrocytes, have reduced expression of glutamate transporters Glt1 and Glast, and show reduced glutamate uptake in vitro, illustrating an excitotoxic mechanism to explain the hypersensitivity to Kainic acid and region‐specific neurodegeneration observed in EGFR‐deficient brains.
Collapse
Affiliation(s)
- Jonathan P Robson
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Bettina Wagner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Elisabeth Glitzner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Frank L Heppner
- Department of Neuropathology, Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, Germany
| | - Thomas Steinkellner
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Austria
| | - Deeba Khan
- Centre for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Claudia Petritsch
- Department of Neurological Surgery, UCSF Broad Institute of Regeneration Medicine, University of California San Francisco, CA, USA
| | - Daniela D Pollak
- Centre for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Harald H Sitte
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| |
Collapse
|
23
|
Eden G, Archinti M, Arnaudova R, Andreotti G, Motta A, Furlan F, Citro V, Cubellis MV, Degryse B. D2A sequence of the urokinase receptor induces cell growth through αvβ3 integrin and EGFR. Cell Mol Life Sci 2018; 75:1889-1907. [PMID: 29184982 PMCID: PMC11105377 DOI: 10.1007/s00018-017-2718-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023]
Abstract
The urokinase receptor (uPAR) stimulates cell proliferation by forming a macromolecular complex with αvβ3 integrin and the epidermal growth factor receptor (EGFR, ErbB1 or HER1) that we name the uPAR proliferasome. uPAR transactivates EGFR, which in turn mediates uPAR-initiated mitogenic signal to the cell. EGFR activation and EGFR-dependent cell growth are blocked in the absence of uPAR expression or when uPAR activity is inhibited by antibodies against either uPAR or EGFR. The mitogenic sequence of uPAR corresponds to the D2A motif present in domain 2. NMR analysis revealed that D2A synthetic peptide has a particular three-dimensional structure, which is atypical for short peptides. D2A peptide is as effective as EGF in promoting EGFR phosphorylation and cell proliferation that were inhibited by AG1478, a specific inhibitor of the tyrosine kinase activity of EGFR. Both D2A and EGF failed to induce proliferation of NR6-EGFR-K721A cells expressing a kinase-defective mutant of EGFR. Moreover, D2A peptide and EGF phosphorylate ERK demonstrating the involvement of the MAP kinase signalling pathway. Altogether, this study reveals the importance of sequence D2A of uPAR, and the interdependence of uPAR and EGFR.
Collapse
Affiliation(s)
- Gabriele Eden
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
- Medical Clinic V, Teaching Hospital Braunschweig, Salzdahlumer Straße 90, 38126, Brunswick, Germany
| | - Marco Archinti
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Ralitsa Arnaudova
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Naples), Italy
| | - Andrea Motta
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Naples), Italy
| | - Federico Furlan
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
- BoNetwork Programme, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Citro
- Dipartimento di Biologia, Università Federico II, Naples, Italy
| | | | - Bernard Degryse
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
24
|
Hardesty JE, Al-Eryani L, Wahlang B, Falkner KC, Shi H, Jin J, Vivace BJ, Ceresa BP, Prough RA, Cave MC. Epidermal Growth Factor Receptor Signaling Disruption by Endocrine and Metabolic Disrupting Chemicals. Toxicol Sci 2018; 162:622-634. [PMID: 29329451 PMCID: PMC5888991 DOI: 10.1093/toxsci/kfy004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study is to identify an environmentally relevant shared receptor target for endocrine and metabolism disrupting chemical pollutants. A feature of the tested chemicals was that they induced Cyp2b10 in vivo implicating activation of the constitutive androstane receptor (CAR). Recent studies suggest that these compounds could be indirect CAR activators via epidermal growth factor receptor (EGFR) inhibition. Assays included a CAR activity reporter assay, EGF endocytosis assay, and EGFR phosphorylation assay. Docking simulations were used to identify putative binding sites for environmental chemicals on the EGFR. Whole-weight and lipid-adjusted serum mean pollutant exposures were determined using data from the National Health and Examination Survey (NHANES) and compared with the IC50 values determined in vitro. Chlordane, trans-nonachlor, PCB-126, PCB-153, and atrazine were the most potent EGFR inhibitors tested. PCB-126, PCB-153, and trans-nonachlor appeared to be competitive EGFR antagonists as they displaced bound EGF from EGFR. However, atrazine acted through a different mechanism and could be an EGFR tyrosine kinase inhibitor. EGFR inhibition relative effect potencies were determined for these compounds. In NHANES, serum concentrations of trans-nonachlor, PCB-126, and PCB-153 greatly exceeded their calculated IC50 values. A common mechanism of action through EGFR inhibition for three diverse classes of metabolic disrupting chemicals was characterized by measuring inhibition of EGFR phosphorylation and EGF-EGFR endocytosis. Based on NHANES data, EGFR inhibition may be an environmentally relevant mode of action for some PCBs, pesticides, and herbicides.
Collapse
Affiliation(s)
| | | | - Banrida Wahlang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - K Cameron Falkner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | | | - Jian Jin
- Department of Pharmacology and Toxicology
| | - Brad J Vivace
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | | | | | - Matthew C Cave
- Department of Biochemistry and Molecular Genetics
- Department of Pharmacology and Toxicology
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40202
- The Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky 40206
- The Jewish Hospital Liver Transplant Program, Louisville, Kentucky 40202
| |
Collapse
|
25
|
EGFR controls bone development by negatively regulating mTOR-signaling during osteoblast differentiation. Cell Death Differ 2018; 25:1094-1106. [PMID: 29445126 PMCID: PMC5988706 DOI: 10.1038/s41418-017-0054-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Mice deficient in epidermal growth factor receptor (Egfr−/− mice) are growth retarded and exhibit severe bone defects that are poorly understood. Here we show that EGFR-deficient mice are osteopenic and display impaired endochondral and intramembranous ossification resulting in irregular mineralization of their bones. This phenotype is recapitulated in mice lacking EGFR exclusively in osteoblasts, but not in mice lacking EGFR in osteoclasts indicating that osteoblasts are responsible for the bone phenotype. Experiments are presented demonstrating that signaling via EGFR stimulates osteoblast proliferation and inhibits their differentiation by suppression of the IGF-1R/mTOR-pathway via ERK1/2-dependent up-regulation of IGFBP-3. Osteoblasts from Egfr−/− mice show increased levels of IGF-1R and hyperactivation of mTOR-pathway proteins, including enhanced phosphorylation of 4E-BP1 and S6. The same changes are also seen in Egfr−/− bones. Importantly, pharmacological inhibition of mTOR with rapamycin decreases osteoblasts differentiation as well as rescues the low bone mass phenotype of Egfr−/− fetuses. Our results demonstrate that suppression of the IGF-1R/mTOR-pathway by EGFR/ERK/IGFBP-3 signaling is necessary for balanced osteoblast maturation providing a mechanism for the skeletal phenotype observed in EGFR-deficient mice.
Collapse
|
26
|
Liu T, Hu Y, Guo S, Tan L, Zhan Y, Yang L, Liu W, Wang N, Li Y, Zhang Y, Liu C, Yang Y, Adelstein RS, Wang A. Identification and characterization of MYH9 locus for high efficient gene knock-in and stable expression in mouse embryonic stem cells. PLoS One 2018; 13:e0192641. [PMID: 29438440 PMCID: PMC5811019 DOI: 10.1371/journal.pone.0192641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/26/2018] [Indexed: 01/22/2023] Open
Abstract
Targeted integration of exogenous genes into so-called safe harbors/friend sites, offers the advantages of expressing normal levels of target genes and preventing potentially adverse effects on endogenous genes. However, the ideal genomic loci for this purpose remain limited. Additionally, due to the inherent and unresolved issues with the current genome editing tools, traditional embryonic stem (ES) cell-based targeted transgenesis technology is still preferred in practical applications. Here, we report that a high and repeatable homologous recombination (HR) frequency (>95%) is achieved when an approximate 6kb DNA sequence flanking the MYH9 gene exon 2 site is used to create the homology arms for the knockout/knock-in of diverse nonmuscle myosin II (NM II) isoforms in mouse ES cells. The easily obtained ES clones greatly facilitated the generation of multiple NM II genetic replacement mouse models, as characterized previously. Further investigation demonstrated that though the targeted integration site for exogenous genes is shifted to MYH9 intron 2 (about 500bp downstream exon 2), the high HR efficiency and the endogenous MYH9 gene integrity are not only preserved, but the expected expression of the inserted gene(s) is observed in a pre-designed set of experiments conducted in mouse ES cells. Importantly, we confirmed that the expression and normal function of the endogenous MYH9 gene is not affected by the insertion of the exogenous gene in these cases. Therefore, these findings suggest that like the commonly used ROSA26 site, the MYH9 gene locus may be considered a new safe harbor for high-efficiency targeted transgenesis and for biomedical applications.
Collapse
Affiliation(s)
- Tanbin Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yi Hu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Shiyin Guo
- College of Food Science and Technology, HUNAU, Changsha, Hunan, China
| | - Lei Tan
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yang Zhan
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Lingchen Yang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Wei Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Naidong Wang
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Yalan Li
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yingfan Zhang
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Chengyu Liu
- Transgenic Core, NHLBI/ NIH, Bethesda, MD, United States of America
| | - Yi Yang
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Robert S. Adelstein
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Aibing Wang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
27
|
Angel PM, Narmoneva DA, Sewell-Loftin MK, Munjal C, Dupuis L, Landis BJ, Jegga A, Kern CB, Merryman WD, Baldwin HS, Bressan GM, Hinton RB. Proteomic Alterations Associated with Biomechanical Dysfunction are Early Processes in the Emilin1 Deficient Mouse Model of Aortic Valve Disease. Ann Biomed Eng 2017; 45:2548-2562. [PMID: 28812215 DOI: 10.1007/s10439-017-1899-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022]
Abstract
Aortic valve (AV) disease involves stiffening of the AV cusp with progression characterized by inflammation, fibrosis, and calcification. Here, we examine the relationship between biomechanical valve function and proteomic changes before and after the development of AV pathology in the Emilin1-/- mouse model of latent AV disease. Biomechanical studies were performed to quantify tissue stiffness at the macro (micropipette) and micro (atomic force microscopy (AFM)) levels. Micropipette studies showed that the Emilin1-/- AV annulus and cusp regions demonstrated increased stiffness only after the onset of AV disease. AFM studies showed that the Emilin1-/- cusp stiffens before the onset of AV disease and worsens with the onset of disease. Proteomes from AV cusps were investigated to identify protein functions, pathways, and interaction network alterations that occur with age- and genotype-related valve stiffening. Protein alterations due to Emilin1 deficiency, including changes in pathways and functions, preceded biomechanical aberrations, resulting in marked depletion of extracellular matrix (ECM) proteins interacting with TGFB1, including latent transforming growth factor beta 3 (LTBP3), fibulin 5 (FBLN5), and cartilage intermediate layer protein 1 (CILP1). This study identifies proteomic dysregulation is associated with biomechanical dysfunction as early pathogenic processes in the Emilin1-/- model of AV disease.
Collapse
Affiliation(s)
- P M Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - D A Narmoneva
- Division of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - M K Sewell-Loftin
- Division of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - C Munjal
- Division of Cardiology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229, USA
| | - L Dupuis
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - B J Landis
- Division of Pediatric Cardiology, Indiana University, Indianapolis, IN, USA
| | - A Jegga
- Division of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - C B Kern
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - W D Merryman
- Division of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - H S Baldwin
- Division of Pediatric Cardiology, Vanderbilt University, Nashville, TN, USA
| | - G M Bressan
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Robert B Hinton
- Division of Cardiology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229, USA.
| |
Collapse
|
28
|
Chunhui Y, Wenjun C, Hui W, Liquan S, Changwei Z, Tianzhu Z, Wenhai Z. Pilose antler peptide protects osteoblasts from inflammatory and oxidative injury through EGF/EGFR signaling. Int J Biol Macromol 2017; 99:15-20. [DOI: 10.1016/j.ijbiomac.2017.02.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022]
|
29
|
Wolf C, Qian Y, Brooke MA, Kelsell DP, Franzke CW. ADAM17/EGFR axis promotes transglutaminase-dependent skin barrier formation through phospholipase C γ1 and protein kinase C pathways. Sci Rep 2016; 6:39780. [PMID: 28004780 PMCID: PMC5177948 DOI: 10.1038/srep39780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
The vitally important skin barrier is formed by extensive cross-linking activity of transglutaminases (TGs) during terminal epidermal differentiation. We have previously shown that epidermal deficiency of a disintegrin and metalloproteinase 17 (ADAM17), the principal EGFR ligand sheddase, results in postnatal skin barrier defects in mice due to impeded TG activity. However, the mechanism by which ADAM17/EGFR signalling maintains TG activity during epidermal differentiation remains elusive. Here we demonstrate that ADAM17-dependent EGFR signalling promotes TG activity in keratinocytes committed to terminal differentiation by direct induction of TG1 expression. Restored TG1 expression of EGF-stimulated differentiated Adam17-/- keratinocytes was strongly repressed by inhibitors for PLCγ1 or protein kinase C (PKC) pathways, while treatment with the PKC stimulator 12-O-tetradecanoylphorbol-13-acetate restored TG activity in the epidermis of keratinocyte-specific Adam17-/- (AD17ΔKC) mice. Further investigations emphasized the expression of PKCη, a mediator of TGM1 transcription, to be sensitive to EGFR activation. In agreement, topical skin application of cholesterol sulfate, an activator of PKCη, significantly improved TG activity in epidermis of AD17ΔKC mice. Our results suggest ADAM17/EGFR-driven PLCγ1 and PKC pathways as important promoters of TG1 expression during terminal keratinocyte differentiation. These findings may help to identify new therapeutic targets for inflammatory skin diseases related to epidermal barrier defects.
Collapse
Affiliation(s)
- Cristina Wolf
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Yawen Qian
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Matthew A. Brooke
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - David P. Kelsell
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Claus-Werner Franzke
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Baldwin JG, Wagner F, Martine LC, Holzapfel BM, Theodoropoulos C, Bas O, Savi FM, Werner C, De-Juan-Pardo EM, Hutmacher DW. Periosteum tissue engineering in an orthotopic in vivo platform. Biomaterials 2016; 121:193-204. [PMID: 28092776 DOI: 10.1016/j.biomaterials.2016.11.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/22/2016] [Accepted: 11/14/2016] [Indexed: 01/07/2023]
Abstract
The periosteum plays a critical role in bone homeostasis and regeneration. It contains a vascular component that provides vital blood supply to the cortical bone and an osteogenic niche that acts as a source of bone-forming cells. Periosteal grafts have shown promise in the regeneration of critical size defects, however their limited availability restricts their widespread clinical application. Only a small number of tissue-engineered periosteum constructs (TEPCs) have been reported in the literature. A current challenge in the development of appropriate TEPCs is a lack of pre-clinical models in which they can reliably be evaluated. In this study, we present a novel periosteum tissue engineering concept utilizing a multiphasic scaffold design in combination with different human cell types for periosteal regeneration in an orthotopic in vivo platform. Human endothelial and bone marrow mesenchymal stem cells (BM-MSCs) were used to mirror both the vascular and osteogenic niche respectively. Immunohistochemistry showed that the BM-MSCs maintained their undifferentiated phenotype. The human endothelial cells developed into mature vessels and connected to host vasculature. The addition of an in vitro engineered endothelial network increased vascularization in comparison to cell-free constructs. Altogether, the results showed that the human TEPC (hTEPC) successfully recapitulated the osteogenic and vascular niche of native periosteum, and that the presented orthotopic xenograft model provides a suitable in vivo environment for evaluating scaffold-based tissue engineering concepts exploiting human cells.
Collapse
Affiliation(s)
- J G Baldwin
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - F Wagner
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedic Surgery for the University of Regensburg, Asklepios Klinikum Bad Abbach, Bad Abbach, Germany; Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - L C Martine
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - B M Holzapfel
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedic Surgery, Koenig-Ludwig Haus, Julius-Maximilians-University Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany
| | - C Theodoropoulos
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - O Bas
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - F M Savi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - C Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Hohe Str. 6, 01069 Dresden, Germany
| | - E M De-Juan-Pardo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - D W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; Institute for Advanced Study, Technical University of Munich (TUM), Munich, Germany.
| |
Collapse
|
31
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Ramachandra CJA, Mehta A, Lua CH, Chitre A, Ja KPMM, Shim W. ErbB Receptor Tyrosine Kinase: A Molecular Switch Between Cardiac and Neuroectoderm Specification in Human Pluripotent Stem Cells. Stem Cells 2016; 34:2461-2470. [PMID: 27324647 DOI: 10.1002/stem.2420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 04/18/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
Abstract
Mechanisms determining intrinsic differentiation bias inherent to human pluripotent stem cells (hPSCs) toward cardiogenic fate remain elusive. We evaluated the interplay between ErbB4 and Epidemal growth factor receptor (EGFR or ErbB1) in determining cardiac differentiation in vitro as these receptor tyrosine kinases are key to heart and brain development in vivo. Our results demonstrate that during cardiac differentiation, cell fate biases exist in hPSCs due to cardiac/neuroectoderm divergence post cardiac mesoderm stage. Stage-specific up-regulation of EGFR in concert with persistent Wnt3a signaling post cardiac mesoderm favors commitment toward neural progenitor cells (NPCs). Inhibition of EGFR abrogates these effects with enhanced (>twofold) cardiac differentiation efficiencies by increasing proliferation of Nkx2-5 expressing cardiac progenitors while reducing proliferation of Sox2 expressing NPCs. Forced overexpression of ErbB4 rescued cardiac commitment by augmenting Wnt11 signaling. Convergence between EGFR/ErbB4 and canonical/noncanonical Wnt signaling determines cardiogenic fate in hPSCs. Stem Cells 2016;34:2461-2470.
Collapse
Affiliation(s)
| | - Ashish Mehta
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore. .,Cardiovascular Academic Clinical Program.
| | - Chong Hui Lua
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Anuja Chitre
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - K P Myu Mai Ja
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Winston Shim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore. .,Cardiovascular and Metabolic Disorders Program, DUKE-NUS Graduate Medical School, Singapore.
| |
Collapse
|
33
|
Tholen S, Wolf C, Mayer B, Knopf JD, Löffek S, Qian Y, Kizhakkedathu JN, Biniossek ML, Franzke CW, Schilling O. Skin Barrier Defects Caused by Keratinocyte-Specific Deletion of ADAM17 or EGFR Are Based on Highly Similar Proteome and Degradome Alterations. J Proteome Res 2016; 15:1402-17. [PMID: 27089454 DOI: 10.1021/acs.jproteome.5b00691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Keratinocyte-specific deletion of ADAM17 in mice impairs terminal differentiation of keratinocytes leading to severe epidermal barrier defects. Mice deficient for ADAM17 in keratinocytes phenocopy mice with a keratinocyte-specific deletion of epidermal growth factor receptor (EGFR), which highlights the role of ADAM17 as a "ligand sheddase" of EGFR ligands. In this study, we aim for the first proteomic/degradomic approach to characterize the disruption of the ADAM17-EGFR signaling axis and its consequences for epidermal barrier formation. Proteomic profiling of the epidermal proteome of mice deficient for either ADAM17 or EGFR in keratinocytes at postnatal days 3 and 10 revealed highly similar protein alterations for ADAM17 and EGFR deficiency. These include massive proteome alterations of structural and regulatory components important for barrier formation such as transglutaminases, involucrin, filaggrin, and filaggrin-2. Cleavage site analysis using terminal amine isotopic labeling of substrates revealed increased proteolytic processing of S100 fused-type proteins including filaggrin-2. Alterations in proteolytic processing are supported by altered abundance of numerous proteases upon keratinocyte-specific Adam17 or Egfr deletion, among them kallikreins, cathepsins, and their inhibitors. This study highlights the essential role of proteolytic processing for maintenance of a functional epidermal barrier. Furthermore, it suggests that most defects in formation of the postnatal epidermal barrier upon keratinocyte-specific ADAM17 deletion are mediated via EGFR.
Collapse
Affiliation(s)
- Stefan Tholen
- Institute of Molecular Medicine and Cell Research, University of Freiburg , 79104 Freiburg, Germany
| | - Cristina Wolf
- Department of Dermatology, University Medical Center Freiburg , 79104 Freiburg, Germany
| | - Bettina Mayer
- Institute of Molecular Medicine and Cell Research, University of Freiburg , 79104 Freiburg, Germany
| | - Julia D Knopf
- Institute of Molecular Medicine and Cell Research, University of Freiburg , 79104 Freiburg, Germany
| | - Stefanie Löffek
- Department of Dermatology, University Medical Center Freiburg , 79104 Freiburg, Germany
| | - Yawen Qian
- Department of Dermatology, University Medical Center Freiburg , 79104 Freiburg, Germany
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine and Department of Chemistry, Centre for Blood Research, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg , 79104 Freiburg, Germany
| | - Claus-Werner Franzke
- Department of Dermatology, University Medical Center Freiburg , 79104 Freiburg, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg , 79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg , D-79104 Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| |
Collapse
|
34
|
Boonanantanasarn K, Lee HL, Baek K, Woo KM, Ryoo HM, Baek JH, Kim GS. EGF Inhibits Wnt/β-Catenin-Induced Osteoblast Differentiation by Promoting β-Catenin Degradation. J Cell Biochem 2015; 116:2849-57. [DOI: 10.1002/jcb.25231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Kanitsak Boonanantanasarn
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
- Departments of Anatomy, Faculty of Dentistry; Mahidol University; Bangkok Thailand
| | - Hye-Lim Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine; School of Dentistry and Broad Stem Cell Research Center, University of California, Los Angeles; USA
| | - Kyunghwa Baek
- Department of Pharmacology, College of Dentistry; Gangneung-Wonju National University; Gangwondo Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - Gwan-Shik Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| |
Collapse
|
35
|
Holcmann M, Sibilia M. Mechanisms underlying skin disorders induced by EGFR inhibitors. Mol Cell Oncol 2015; 2:e1004969. [PMID: 27308503 PMCID: PMC4905346 DOI: 10.1080/23723556.2015.1004969] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/31/2014] [Accepted: 01/03/2015] [Indexed: 12/21/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is frequently mutated or overexpressed in a large number of tumors such as carcinomas or glioblastoma. Inhibitors of EGFR activation have been successfully established for the therapy of some cancers and are more and more frequently being used as first or later line therapies. Although the side effects induced by inhibitors of EGFR are less severe than those observed with classic cytotoxic chemotherapy and can usually be handled by out-patient care, they may still be a cause for dose reduction or discontinuation of treatment that can reduce the effectiveness of antitumor therapy. The mechanisms underlying these cutaneous side effects are only partly understood. Important questions, such as the reasons for the correlation between the intensity of the side effects and the efficiency of treatment with EGFR inhibitors, remain to be answered. Optimized adjuvant strategies to accompany anti-EGFR therapy need to be found for optimal therapeutic application and improved quality of life of patients. Here, we summarize current literature on the molecular and cellular mechanisms underlying the cutaneous side effects induced by EGFR inhibitors and provide evidence that keratinocytes are probably the optimal targets for adjuvant therapy aimed at alleviating skin toxicities.
Collapse
Affiliation(s)
- Martin Holcmann
- Institute of Cancer Research; Department of Medicine I; Medical University of Vienna; Comprehensive Cancer Center ; Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research; Department of Medicine I; Medical University of Vienna; Comprehensive Cancer Center ; Vienna, Austria
| |
Collapse
|
36
|
Sun MMG, Beier F. Chondrocyte hypertrophy in skeletal development, growth, and disease. ACTA ACUST UNITED AC 2015; 102:74-82. [PMID: 24677724 DOI: 10.1002/bdrc.21062] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 12/31/2022]
Abstract
Most of our bones form through the process of endochondral ossification, which is tightly regulated by the activity of the cartilage growth plate. Chondrocyte maturation through the various stages of growth plate physiology ultimately results in hypertrophy. Chondrocyte hypertrophy is an essential contributor to longitudinal bone growth, but recent data suggest that these cells also play fundamental roles in signaling to other skeletal cells, thus coordinating endochondral ossification. On the other hand, ectopic hypertrophy of articular chondrocytes has been implicated in the pathogenesis of osteoarthritis. Thus, a better understanding of the processes that control chondrocyte hypertrophy in the growth plate as well as in articular cartilage is required for improved management of both skeletal growth disorders and osteoarthritis. This review summarizes recent findings on the regulation of hypertrophic chondrocyte differentiation, the cellular mechanisms involved in hypertrophy, and the role of chondrocyte hypertrophy in skeletal physiology and pathophysiology.
Collapse
Affiliation(s)
- Margaret Man-Ger Sun
- Department of Physiology and Pharmacology, Western University, and Children's Health Research Institute, London, Ontario, Canada
| | | |
Collapse
|
37
|
iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proc Natl Acad Sci U S A 2015; 112:6080-5. [PMID: 25918388 DOI: 10.1073/pnas.1505649112] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The metalloproteinase ADAM17 (a disintegrin and metalloprotease 17) controls EGF receptor (EGFR) signaling by liberating EGFR ligands from their membrane anchor. Consequently, a patient lacking ADAM17 has skin and intestinal barrier defects that are likely caused by lack of EGFR signaling, and Adam17(-/-) mice die perinatally with open eyes, like Egfr(-/-) mice. A hallmark feature of ADAM17-dependent EGFR ligand shedding is that it can be rapidly and posttranslationally activated in a manner that requires its transmembrane domain but not its cytoplasmic domain. This suggests that ADAM17 is regulated by other integral membrane proteins, although much remains to be learned about the underlying mechanism. Recently, inactive Rhomboid 2 (iRhom2), which has seven transmembrane domains, emerged as a molecule that controls the maturation and function of ADAM17 in myeloid cells. However, iRhom2(-/-) mice appear normal, raising questions about how ADAM17 is regulated in other tissues. Here we report that iRhom1/2(-/-) double knockout mice resemble Adam17(-/-) and Egfr(-/-) mice in that they die perinatally with open eyes, misshapen heart valves, and growth plate defects. Mechanistically, we show lack of mature ADAM17 and strongly reduced EGFR phosphorylation in iRhom1/2(-/-) tissues. Finally, we demonstrate that iRhom1 is not essential for mouse development but regulates ADAM17 maturation in the brain, except in microglia, where ADAM17 is controlled by iRhom2. These results provide genetic, cell biological, and biochemical evidence that a principal function of iRhoms1/2 during mouse development is to regulate ADAM17-dependent EGFR signaling, suggesting that iRhoms1/2 could emerge as novel targets for treatment of ADAM17/EGFR-dependent pathologies.
Collapse
|
38
|
miR-96 promotes osteogenic differentiation by suppressing HBEGF-EGFR signaling in osteoblastic cells. FEBS Lett 2014; 588:4761-8. [PMID: 25451232 DOI: 10.1016/j.febslet.2014.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 11/21/2022]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs with important roles in various biological and pathological processes, including osteoblast differentiation. Here, we identified miR-96 as a positive regulator of osteogenic differentiation in a mouse osteoblastic cell line (MC3T3-E1) and in mouse bone marrow-derived mesenchymal stem cells. Moreover, we found that miR-96 down-regulates post-transcriptional expression of heparin-binding EGF-like growth factor (HB-EGF) by specifically binding to the 3'untranslated region of HB-EGF mRNA. Furthermore, in MC3T3-E1 cells, miR-96-induced HB-EGF down-regulation suppressed the phosphorylation of epidermal growth factor receptor (EGFR) and of extracellular signal-regulated kinase 1 (ERK1) and AKT, which both lie downstream of EGFR activation. Taken together, miR-96 promotes osteogenic differentiation by inhibiting HB-EGF and by blocking the HB-EGF-EGFR signaling pathway in osteoblastic cells.
Collapse
|
39
|
ERBB2 deficiency alters an E2F-1-dependent adaptive stress response and leads to cardiac dysfunction. Mol Cell Biol 2014; 34:4232-43. [PMID: 25246633 DOI: 10.1128/mcb.00895-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The tyrosine kinase receptor ERBB2 is required for normal development of the heart and is a potent oncogene in breast epithelium. Trastuzumab, a monoclonal antibody targeting ERBB2, improves the survival of breast cancer patients, but cardiac dysfunction is a major side effect of the drug. The molecular mechanisms underlying how ERBB2 regulates cardiac function and why trastuzumab is cardiotoxic remain poorly understood. We show here that ERBB2 hypomorphic mice develop cardiac dysfunction that mimics the side effects observed in patients treated with trastuzumab. We demonstrate that this phenotype is related to the critical role played by ERBB2 in cardiac homeostasis and physiological hypertrophy. Importantly, genetic and therapeutic reduction of ERBB2 activity in mice, as well as ablation of ERBB2 signaling by trastuzumab or siRNAs in human cardiomyocytes, led to the identification of an impaired E2F-1-dependent genetic program critical for the cardiac adaptive stress response. These findings demonstrate the existence of a previously unknown mechanistic link between ERBB2 and E2F-1 transcriptional activity in heart physiology and trastuzumab-induced cardiac dysfunction.
Collapse
|
40
|
Fan JB, Liu W, Zhu XH, Yuan K, Xu DW, Chen JJ, Cui ZM. EGFR-AKT-mTOR activation mediates epiregulin-induced pleiotropic functions in cultured osteoblasts. Mol Cell Biochem 2014; 398:105-13. [PMID: 25223639 DOI: 10.1007/s11010-014-2210-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/30/2014] [Indexed: 10/24/2022]
Abstract
Epidermal growth factor (EGF) receptor (EGFR) emerges as an essential molecule for the regulating of osteoblast cellular functions. In the current study, we explored the effect of epiregulin, a new EGFR ligand, on osteoblast functions in vitro, and studied the underlying mechanisms. We found that epiregulin-induced EGFR activation in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, epiregulin activated AKT-mammalian target of rapamycin (mTOR) and Erk-mitogen-activated protein kinase (MAPK) signalings in cultured osteoblasts, which were blocked by EGFR inhibitor AG1478 or monoclonal antibody against EGFR (anti-EGFR). Further, in primary and MC3T3-E1 osteoblasts, epiregulin promoted cell proliferation and increased alkaline phosphatase activity, while inhibiting dexamethasone (Dex)-induced cell death. Such effects by epiregulin were largely inhibited by AG1478 or anti-EGFR. Notably, AKT-mTOR inhibitors, but not Erk inhibitors, alleviated epiregulin-induced above pleiotropic functions in osteoblasts. Meanwhile, siRNA depletion of Sin1, a key component of mTOR complex 2 (mTORC2), also suppressed epiregulin-exerted effects in MC3T3-E1 cells. Together, these results suggest that epiregulin-induced pleiotropic functions in cultured osteoblasts are mediated through EGFR-AKT-mTOR signalings.
Collapse
Affiliation(s)
- Jian-Bo Fan
- The Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, 6 North Hai-er-xiang Road, Nantong, 226001, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Lee HL, Park HJ, Kwon A, Baek K, Woo KM, Ryoo HM, Kim GS, Baek JH. Smurf1 plays a role in EGF inhibition of BMP2-induced osteogenic differentiation. Exp Cell Res 2014; 323:276-87. [DOI: 10.1016/j.yexcr.2014.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/30/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022]
|
42
|
Mascia F, Lam G, Keith C, Garber C, Steinberg SM, Kohn E, Yuspa SH. Genetic ablation of epidermal EGFR reveals the dynamic origin of adverse effects of anti-EGFR therapy. Sci Transl Med 2014; 5:199ra110. [PMID: 23966299 DOI: 10.1126/scitranslmed.3005773] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer patients treated with anti-EGFR (epidermal growth factor receptor) drugs often develop a dose-limiting pruritic rash of unknown etiology. The aims of our study were to define causal associations from a clinical study of cutaneous and systemic changes in patients treated with gefitinib and use these to develop and characterize a mouse model that recapitulates the human skin rash syndrome caused by anti-EGFR therapy. We examined the patients' plasma before and after treatment with gefitinib and documented changes in chemokines and leukocyte counts associated with the extent of rash or the presence of pruritus. We established a parallel mouse model by ablating EGFR in the epidermis. These mice developed skin lesions similar to the human rash. Before lesion development, we detected increased mRNA expression of chemokines in the skin associated with early infiltration of macrophages and mast cells and later infiltration of eosinophils, T cells, and neutrophils. As the skin phenotype evolved, changes in blood counts and circulating chemokines reproduced those seen in the gefitinib-treated patients. Crossing the mutant mice with mice deficient for tumor necrosis factor-α (TNF-α) receptors, MyD88, NOS2, CCR2, T cells, or B cells failed to reverse the skin phenotype. However, local depletion of macrophages provided partial resolution, suggesting that this model can identify targets that may be effective in preventing the troublesome and dose-limiting skin response to anti-EGFR drugs. These results highlight the importance of EGFR signaling in maintaining skin immune homeostasis and identify a macrophage contribution to a serious adverse consequence of cancer chemotherapy.
Collapse
Affiliation(s)
- Francesca Mascia
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Joiner DM, Less KD, Van Wieren EM, Zhang YW, Hess D, Williams BO. Accelerated and increased joint damage in young mice with global inactivation of mitogen-inducible gene 6 after ligament and meniscus injury. Arthritis Res Ther 2014; 16:R81. [PMID: 24670222 PMCID: PMC4060238 DOI: 10.1186/ar4522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 03/13/2014] [Indexed: 12/11/2022] Open
Abstract
Introduction Ligament and meniscal damage can cause joint disease. Arthritic joints contain increased amounts of epidermal growth factor receptor (EGFR) protein, and polymorphisms in EGFR are associated with arthritis risk. The role of endogenous EGFR regulation during joint disease due to ligament and meniscal trauma is unknown. Mitogen-inducible gene 6 (MIG-6) can reduce EGFR phosphorylation and downstream signaling. We examined the effect of EGFR modulation by MIG-6 on joint disease development after ligament and meniscus injury. Methods Knee ligament transection and meniscus removal were performed surgically on mice homozygous for a global inactivating mutation in MIG-6 (Mig-6−/−) and in wild-type (WT) animals. Results Two weeks after surgery, Mig-6−/−mice had bone erosion as well as greater fibrous tissue area and serum RANKL concentration than WT mice. Four weeks after surgery, Mig-6−/−mice had less cartilage and increased cell proliferation relative to contralateral control and WT knees. Increased apoptotic cells and growth outside the articulating region occurred in Mig-6−/−mice. Tibia trabecular bone mineral density (BMD) and the number of trabeculae were lower in surgically treated knees relative to the respective control knees for both groups. BMD, as well as trabecular thickness and number, were lower in surgically treated knees from Mig-6−/−mice relative to WT surgically treated knees. Phosphorylated EGFR staining in surgically treated knees decreased for WT mice and increased for Mig-6−/−mice. Fewer inflammatory cells were present in the knees of WT mice. Conclusion Mig-6−/−mice have rapid and increased joint damage after ligament and meniscal trauma. Mig-6 modification could lessen degenerative disease development after this type of injury.
Collapse
|
44
|
Ozaki N, Fukuchi Y, Tomiyoshi SR, Uehara H, Ida S, Wang J, Araki K, Sibilia M, Baba H, Yamamura KI, Ohmuraya M. Autophagy regulation in pancreatic acinar cells is independent of epidermal growth factor receptor signaling. Biochem Biophys Res Commun 2014; 446:224-30. [DOI: 10.1016/j.bbrc.2014.02.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 01/20/2023]
|
45
|
Kim S, Lee JC, Cho ES, Kwon J. COMP-Ang1 promotes chondrogenic and osteogenic differentiation of multipotent mesenchymal stem cells through the Ang1/Tie2 signaling pathway. J Orthop Res 2013; 31:1920-8. [PMID: 23893855 DOI: 10.1002/jor.22453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 07/01/2013] [Indexed: 02/04/2023]
Abstract
Mesenchymal stem cells (MSCs) are pleiotrophic cells that differentiate to chondrocytes, osteoblasts, or adipocytes, as a result of crosstalk by specific signaling pathways including MAPK pathway. Recently cartilage oligomeric matrix protein angiopoietin1 (COMP-Ang1), an Ang1 variant which is more potent than native Ang1 in phosphorylating Tie2 receptor was developed. The Ang1/Tie2 signaling system not only plays a pivotal role in vessel growth, remodeling, and maturation, but also protective and recruit effect on MSCs. Thus, the aim of the present study was to investigate the differentiate effect of Ang1/Tie2 signaling on MSCs in the presence of chondrogenic, osteogenic and adipogenic induction medium, and to determine the possible mechanisms. Our results clearly demonstrated that MSCs cultured in each induction medium with COMP-Ang1 revealed strongly chondrogenic and osteogenic morphological change (3.5- and 2-fold, respectively) as well as up-regulate each gene, except for adipogenic differentiation. Accordingly, we found that phosphorylation of Tie2 expression lead to phosphorylation of p38 and AKT and then accelerating each differentiation of MSCs to chondrocytes and osteoblasts. Therefore, our findings suggest that COMP-Ang1 present a portal to promote MSCs differentiation to chondrocytes and osteoblasts through Ang1/Tie2 signaling pathway and provide insights into novel therapies for bone diseases.
Collapse
Affiliation(s)
- Sokho Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonju, 561-156, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Developmental defects in zebrafish for classification of EGF pathway inhibitors. Toxicol Appl Pharmacol 2013; 274:339-49. [PMID: 24262764 DOI: 10.1016/j.taap.2013.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 01/22/2023]
Abstract
One of the major challenges when testing drug candidates targeted at a specific pathway in whole animals is the discrimination between specific effects and unwanted, off-target effects. Here we used the zebrafish to define several developmental defects caused by impairment of Egf signaling, a major pathway of interest in tumor biology. We inactivated Egf signaling by genetically blocking Egf expression or using specific inhibitors of the Egf receptor function. We show that the combined occurrence of defects in cartilage formation, disturbance of blood flow in the trunk and a decrease of myelin basic protein expression represent good indicators for impairment of Egf signaling. Finally, we present a classification of known tyrosine kinase inhibitors according to their specificity for the Egf pathway. In conclusion, we show that developmental indicators can help to discriminate between specific effects on the target pathway from off-target effects in molecularly targeted drug screening experiments in whole animal systems.
Collapse
|
47
|
Gravning J, Ahmed MS, von Lueder TG, Edvardsen T, Attramadal H. CCN2/CTGF attenuates myocardial hypertrophy and cardiac dysfunction upon chronic pressure-overload. Int J Cardiol 2013; 168:2049-56. [DOI: 10.1016/j.ijcard.2013.01.165] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 12/24/2012] [Accepted: 01/13/2013] [Indexed: 01/16/2023]
|
48
|
EGFR-ras-raf signaling in epidermal stem cells: roles in hair follicle development, regeneration, tissue remodeling and epidermal cancers. Int J Mol Sci 2013; 14:19361-84. [PMID: 24071938 PMCID: PMC3821561 DOI: 10.3390/ijms141019361] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 12/19/2022] Open
Abstract
The mammalian skin is the largest organ of the body and its outermost layer, the epidermis, undergoes dynamic lifetime renewal through the activity of somatic stem cell populations. The EGFR-Ras-Raf pathway has a well-described role in skin development and tumor formation. While research mainly focuses on its role in cutaneous tumor initiation and maintenance, much less is known about Ras signaling in the epidermal stem cells, which are the main targets of skin carcinogenesis. In this review, we briefly discuss the properties of the epidermal stem cells and review the role of EGFR-Ras-Raf signaling in keratinocyte stem cells during homeostatic and pathological conditions.
Collapse
|
49
|
Lichtenberger BM, Gerber PA, Holcmann M, Buhren BA, Amberg N, Smolle V, Schrumpf H, Boelke E, Ansari P, Mackenzie C, Wollenberg A, Kislat A, Fischer JW, Rock K, Harder J, Schroder JM, Homey B, Sibilia M. Epidermal EGFR Controls Cutaneous Host Defense and Prevents Inflammation. Sci Transl Med 2013; 5:199ra111. [DOI: 10.1126/scitranslmed.3005886] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Liu X, Qin J, Luo Q, Bi Y, Zhu G, Jiang W, Kim SH, Li M, Su Y, Nan G, Cui J, Zhang W, Li R, Chen X, Kong Y, Zhang J, Wang J, Rogers MR, Zhang H, Shui W, Zhao C, Wang N, Liang X, Wu N, He Y, Luu HH, Haydon RC, Shi LL, Li T, He TC, Li M. Cross-talk between EGF and BMP9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells. J Cell Mol Med 2013; 17:1160-72. [PMID: 23844832 PMCID: PMC4118175 DOI: 10.1111/jcmm.12097] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 05/13/2013] [Accepted: 05/20/2013] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross-talks with BMP9 and regulates BMP9-induced osteogenic differentiation. We find that EGF potentiates BMP9-induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG-1478 and AG-494 in a dose- and time-dependent manner. Furthermore, EGF significantly augments BMP9-induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9-induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up-regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross-talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine.
Collapse
Affiliation(s)
- Xing Liu
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics designated by Chinese Ministry of Education and Chongqing Bureau of Education, Department of Orthopaedic Surgery, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|