1
|
Ferrando-Marco M, Barkoulas M. EFL-3/E2F7 modulates Wnt signalling by repressing the Nemo-like kinase LIT-1 during asymmetric epidermal cell division in Caenorhabditis elegans. Development 2025; 152:DEV204546. [PMID: 40026193 PMCID: PMC11925398 DOI: 10.1242/dev.204546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025]
Abstract
The E2F family of transcription factors is conserved in higher eukaryotes and plays pivotal roles in controlling gene expression during the cell cycle. Most canonical E2Fs associate with members of the Dimerisation Partner (DP) family to activate or repress target genes. However, atypical repressors, such as E2F7 and E2F8, lack DP interaction domains and their functions are less understood. We report here that EFL-3, the E2F7 homologue of Caenorhabditis elegans, regulates epidermal stem cell differentiation. We show that phenotypic defects in efl-3 mutants depend on the Nemo-like kinase LIT-1. EFL-3 represses lit-1 expression through direct binding to a lit-1 intronic element. Increased LIT-1 expression in efl-3 mutants reduces POP-1/TCF nuclear distribution, and consequently alters Wnt pathway activation. Our findings provide a mechanistic link between an atypical E2F family member and NLK during C. elegans asymmetric cell division, which may be conserved in other animals.
Collapse
|
2
|
Calva Moreno JF, Jose G, Weaver YM, Weaver BP. UBR-5 and UBE2D mediate timely exit from stem fate via destabilization of poly(A)-binding protein PABP-2 in cell state transition. Proc Natl Acad Sci U S A 2024; 121:e2407561121. [PMID: 39405353 PMCID: PMC11513905 DOI: 10.1073/pnas.2407561121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
UBR5 E3 ligase has been associated with cancer susceptibility and neuronal integrity, with functions in chromatin regulation and proteostasis. However, the functions of ubr5 within animals remain unclear due to lethality in both mammals and flies when disrupted. Using Caenorhabditis elegans, we show that UBR-5 E3 ligase is required for timely exit of stem fate and complete transition into multiple cell type descendants in an ectodermal blast lineage. Animals lacking intact UBR-5 function simultaneously exhibit both stem fate and differentiated fate in the same descendant cells. A functional screen of UBR-5 physical interactors allowed us to identify the UBE2D2/3 E2 conjugase LET-70 working with UBR-5 to exit stem fate. Strikingly, we revealed that another UBR-5 physical interactor, namely the nuclear poly(A)-binding protein PABPN1 ortholog PABP-2, worked antagonistically to UBR-5 and LET-70. Lowering pabp-2 levels restored normal transition of cell state out of stemness and promoted normal cell fusion when either ubr-5 or let-70 UBE2D function was compromised. The UBR-5-LET-70 and PABP-2 switch works independently of the stem pool size determined by pluripotency factors like lin-28. UBR-5 limits PABP-2 protein and reverses the PABP-2-dependent gene expression program including developmental, proteostasis, and innate immunity genes. Loss of ubr-5 rescues the developmental stall when pabp-2 is compromised. Disruption of ubr-5 elevates PABP-2 levels and prolongs expression of ectodermal and muscle stem markers at the transition to adulthood. Additionally, ubr-5 mutants exhibit an extended period of motility during aging and suppress pabp-2-dependent early onset of immobility.
Collapse
Affiliation(s)
| | - George Jose
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yi M. Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Benjamin P. Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
3
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Tsuji S, Brace CS, Yao R, Tanie Y, Tada H, Rensing N, Mizuno S, Almunia J, Kong Y, Nakamura K, Furukawa T, Ogiso N, Toyokuni S, Takahashi S, Wong M, Imai SI, Satoh A. Sleep-wake patterns are altered with age, Prdm13 signaling in the DMH, and diet restriction in mice. Life Sci Alliance 2023; 6:e202301992. [PMID: 37045472 PMCID: PMC10105329 DOI: 10.26508/lsa.202301992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Old animals display significant alterations in sleep-wake patterns such as increases in sleep fragmentation and sleep propensity. Here, we demonstrated that PR-domain containing protein 13 (Prdm13)+ neurons in the dorsomedial hypothalamus (DMH) are activated during sleep deprivation (SD) in young mice but not in old mice. Chemogenetic inhibition of Prdm13+ neurons in the DMH in young mice promotes increase in sleep attempts during SD, suggesting its involvement in sleep control. Furthermore, DMH-specific Prdm13-knockout (DMH-Prdm13-KO) mice recapitulated age-associated sleep alterations such as sleep fragmentation and increased sleep attempts during SD. These phenotypes were further exacerbated during aging, with increased adiposity and decreased physical activity, resulting in shortened lifespan. Dietary restriction (DR), a well-known anti-aging intervention in diverse organisms, ameliorated age-associated sleep fragmentation and increased sleep attempts during SD, whereas these effects of DR were abrogated in DMH-Prdm13-KO mice. Moreover, overexpression of Prdm13 in the DMH ameliorated increased sleep attempts during SD in old mice. Therefore, maintaining Prdm13 signaling in the DMH might play an important role to control sleep-wake patterns during aging.
Collapse
Affiliation(s)
- Shogo Tsuji
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
| | - Cynthia S Brace
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ruiqing Yao
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
| | - Yoshitaka Tanie
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
| | - Hirobumi Tada
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nicholas Rensing
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Julio Almunia
- Laboratory of Experimental Animals, NCGG, Obu, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahisa Furukawa
- Laboratories for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Noboru Ogiso
- Laboratory of Experimental Animals, NCGG, Obu, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
- Department of Integrative Physiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
RUNX3 in Stem Cell and Cancer Biology. Cells 2023; 12:cells12030408. [PMID: 36766749 PMCID: PMC9913995 DOI: 10.3390/cells12030408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The runt-related transcription factors (RUNX) play prominent roles in cell cycle progression, differentiation, apoptosis, immunity and epithelial-mesenchymal transition. There are three members in the mammalian RUNX family, each with distinct tissue expression profiles. RUNX genes play unique and redundant roles during development and adult tissue homeostasis. The ability of RUNX proteins to influence signaling pathways, such as Wnt, TGFβ and Hippo-YAP, suggests that they integrate signals from the environment to dictate cell fate decisions. All RUNX genes hold master regulator roles, albeit in different tissues, and all have been implicated in cancer. Paradoxically, RUNX genes exert tumor suppressive and oncogenic functions, depending on tumor type and stage. Unlike RUNX1 and 2, the role of RUNX3 in stem cells is poorly understood. A recent study using cancer-derived RUNX3 mutation R122C revealed a gatekeeper role for RUNX3 in gastric epithelial stem cell homeostasis. The corpora of RUNX3R122C/R122C mice showed a dramatic increase in proliferating stem cells as well as inhibition of differentiation. Tellingly, RUNX3R122C/R122C mice also exhibited a precancerous phenotype. This review focuses on the impact of RUNX3 dysregulation on (1) stem cell fate and (2) the molecular mechanisms underpinning early carcinogenesis.
Collapse
|
6
|
Osawa Y, Murata K, Usui M, Kuba Y, Le HT, Mikami N, Nakagawa T, Daitoku Y, Kato K, Shawki HH, Ikeda Y, Kuno A, Morimoto K, Tanimoto Y, Dinh TTH, Yagami KI, Ema M, Yoshida S, Takahashi S, Mizuno S, Sugiyama F. EXOC1 plays an integral role in spermatogonia pseudopod elongation and spermatocyte stable syncytium formation in mice. eLife 2021; 10:59759. [PMID: 33973520 PMCID: PMC8112867 DOI: 10.7554/elife.59759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
The male germ cells must adopt the correct morphology at each differentiation stage for proper spermatogenesis. The spermatogonia regulates its differentiation state by its own migration. The male germ cells differentiate and mature with the formation of syncytia, failure of forming the appropriate syncytia results in the arrest at the spermatocyte stage. However, the detailed molecular mechanisms of male germ cell morphological regulation are unknown. Here, we found that EXOC1, a member of the Exocyst complex, is important for the pseudopod formation of spermatogonia and spermatocyte syncytia in mice. EXOC1 contributes to the pseudopod formation of spermatogonia by inactivating the Rho family small GTPase Rac1 and also functions in the spermatocyte syncytia with the SNARE proteins STX2 and SNAP23. Since EXOC1 is known to bind to several cell morphogenesis factors, this study is expected to be the starting point for the discovery of many morphological regulators of male germ cells.
Collapse
Affiliation(s)
- Yuki Osawa
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Miho Usui
- School of Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yumeno Kuba
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hoai Thu Le
- Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Natsuki Mikami
- Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Toshinori Nakagawa
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Hossam Hassan Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshihisa Ikeda
- Doctoral program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Kuno
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan.,Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Kento Morimoto
- Doctoral program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Tra Thi Huong Dinh
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
Akai R, Saito M, Kohno K, Iwawaki T. Transgenic mouse model exhibiting weak red fluorescence before and strong green fluorescenceafter Cre/loxP-mediated recombination. Exp Anim 2020; 69:306-318. [PMID: 32115549 PMCID: PMC7445058 DOI: 10.1538/expanim.19-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The Cre/loxP system is an indispensable tool for temporal and spatial control of gene function in mice. Many mice that express Cre and carry loxP sites in their genomes have been bred for functional analysis of various genes in vivo. Also, several reporter mice have been generated for monitoring of recombination by the Cre/loxP system. We have developed a Cre reporter gene with DsRed1 and Venus that exhibits a strong red fluorescence before and a strong green fluorescence after Cre/loxP-mediated recombination in experiments using NIH3T3 cells. However, a transgenic mouse introduced with the same reporter gene exhibits a weak red fluorescence before and a strong green fluorescence after Cre/loxP-mediated recombination. This property manifested ubiquitously in this mouse model and was maintained stably in mouse-derived fibroblasts. Use of the mouse model exhibiting the stronger red fluorescence might result in confusion of the Cre-dependent signal with false signals, because the Venus signal includes some fluorescence in the red region of the spectrum and the DsRed1 signal includes some fluorescence in the green region. However, we fortuitously obtained reporter mice that exhibit a weaker red fluorescence before Cre/loxP-mediated recombination. The use of this mouse model would decrease concern regarding errors in the identification of signals and should increase certainty in the detection of Cre activity in vivo.
Collapse
Affiliation(s)
- Ryoko Akai
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| | - Michiko Saito
- Bio-science Research Center, Kyoto Pharmaceutical University, 1 Shichono-cho, Misasagi, Yamashina, Kyoto 607-8412, Japan
| | - Kenji Kohno
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| |
Collapse
|
8
|
Hintze M, Koneru SL, Gilbert SPR, Katsanos D, Lambert J, Barkoulas M. A Cell Fate Switch in the Caenorhabditis elegans Seam Cell Lineage Occurs Through Modulation of the Wnt Asymmetry Pathway in Response to Temperature Increase. Genetics 2020; 214:927-939. [PMID: 31988193 PMCID: PMC7153939 DOI: 10.1534/genetics.119.302896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Populations often display consistent developmental phenotypes across individuals despite inevitable biological stochasticity. Nevertheless, developmental robustness has limits, and systems can fail upon change in the environment or the genetic background. We use here the seam cells, a population of epidermal stem cells in Caenorhabditis elegans, to study the influence of temperature change and genetic variation on cell fate. Seam cell development has mostly been studied so far in the laboratory reference strain (N2), grown at 20° temperature. We demonstrate that an increase in culture temperature to 25° introduces variability in the wild-type seam cell lineage, with a proportion of animals showing an increase in seam cell number. We map this increase to lineage-specific symmetrization events of normally asymmetric cell divisions at the fourth larval stage, leading to the retention of seam cell fate in both daughter cells. Using genetics and single-molecule imaging, we demonstrate that this symmetrization occurs via changes in the Wnt asymmetry pathway, leading to aberrant Wnt target activation in anterior cell daughters. We find that intrinsic differences in the Wnt asymmetry pathway already exist between seam cells at 20° and this may sensitize cells toward a cell fate switch at increased temperature. Finally, we demonstrate that wild isolates of C. elegans display variation in seam cell sensitivity to increased culture temperature, although their average seam cell number is comparable at 20°. Our results highlight how temperature can modulate cell fate decisions in an invertebrate model of stem cell patterning.
Collapse
Affiliation(s)
- Mark Hintze
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Sneha L Koneru
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | | | | - Julien Lambert
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | |
Collapse
|
9
|
van der Horst SEM, Cravo J, Woollard A, Teapal J, van den Heuvel S. C. elegans Runx/CBFβ suppresses POP-1 TCF to convert asymmetric to proliferative division of stem cell-like seam cells. Development 2019; 146:dev.180034. [PMID: 31740621 PMCID: PMC6899014 DOI: 10.1242/dev.180034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023]
Abstract
A correct balance between proliferative and asymmetric cell divisions underlies normal development, stem cell maintenance and tissue homeostasis. What determines whether cells undergo symmetric or asymmetric cell division is poorly understood. To gain insight into the mechanisms involved, we studied the stem cell-like seam cells in the Caenorhabditis elegans epidermis. Seam cells go through a reproducible pattern of asymmetric divisions, instructed by divergent canonical Wnt/β-catenin signaling, and symmetric divisions that increase the seam cell number. Using time-lapse fluorescence microscopy we observed that symmetric cell divisions maintain asymmetric localization of Wnt/β-catenin pathway components. Our observations, based on lineage-specific knockout and GFP-tagging of endogenous pop-1, support the model that POP-1TCF induces differentiation at a high nuclear level, whereas low nuclear POP-1 promotes seam cell self-renewal. Before symmetric division, the transcriptional regulator RNT-1Runx and cofactor BRO-1CBFβ temporarily bypass Wnt/β-catenin asymmetry by downregulating pop-1 expression. Thereby, RNT-1/BRO-1 appears to render POP-1 below the level required for its repressor function, which converts differentiation into self-renewal. Thus, we found that conserved Runx/CBFβ-type stem cell regulators switch asymmetric to proliferative cell division by opposing TCF-related transcriptional repression. Summary: To switch asymmetric to proliferative cell division, the C. elegans RNT-1/BRO-1 transcriptional repressor opposes POP-1 TCF expression in seam stem cells, which turns POP-1-induced differentiation into self-renewal.
Collapse
Affiliation(s)
- Suzanne E M van der Horst
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Janine Cravo
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alison Woollard
- Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, UK
| | - Juliane Teapal
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sander van den Heuvel
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
10
|
Hong D, Fritz AJ, Gordon JA, Tye CE, Boyd JR, Tracy KM, Frietze SE, Carr FE, Nickerson JA, Van Wijnen AJ, Imbalzano AN, Zaidi SK, Lian JB, Stein JL, Stein GS. RUNX1-dependent mechanisms in biological control and dysregulation in cancer. J Cell Physiol 2019; 234:8597-8609. [PMID: 30515788 PMCID: PMC6395522 DOI: 10.1002/jcp.27841] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 01/02/2023]
Abstract
The RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context-dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial-to-mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context-dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.
Collapse
Affiliation(s)
- Deli Hong
- Dana Farber Cancer Institute, Boston, Massachusetts
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Seth E Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - Frances E. Carr
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Andre J. Van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Anthony N. Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts
| | - Sayyed K. Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| |
Collapse
|
11
|
Robinson SB, Refai O, Hardaway JA, Sturgeon S, Popay T, Bermingham DP, Freeman P, Wright J, Blakely RD. Dopamine-dependent, swimming-induced paralysis arises as a consequence of loss of function mutations in the RUNX transcription factor RNT-1. PLoS One 2019; 14:e0216417. [PMID: 31083672 PMCID: PMC6513266 DOI: 10.1371/journal.pone.0216417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/21/2019] [Indexed: 11/18/2022] Open
Abstract
Dopamine (DA) is a neurotransmitter with actions across phylogeny that modulate core behaviors such as motor activity, reward, attention, and cognition. Perturbed DA signaling in humans is associated with multiple disorders, including addiction, ADHD, schizophrenia, and Parkinson's disease. The presynaptic DA transporter exerts powerful control on DA signaling by efficient clearance of the neurotransmitter following release. As in vertebrates, Caenorhabditis elegans DAT (DAT-1) constrains DA signaling and loss of function mutations in the dat-1 gene result in slowed crawling on solid media and swimming-induced paralysis (Swip) in water. Previously, we identified a mutant line, vt34, that exhibits robust DA-dependent Swip. vt34 exhibits biochemical and behavioral phenotypes consistent with reduced DAT-1 function though vt34; dat-1 double mutants exhibit an enhanced Swip phenotype, suggesting contributions of the vt34-associated mutation to additional mechanisms that lead to excess DA signaling. SNP mapping and whole genome sequencing of vt34 identified the site of the molecular lesion in the gene B0412.2 that encodes the Runx transcription factor ortholog RNT-1. Unlike dat-1 animals, but similar to other loss of function rnt-1 mutants, vt34 exhibits altered male tail morphology and reduced body size. Deletion mutations in both rnt-1 and the bro-1 gene, which encodes a RNT-1 binding partner also exhibit Swip. Both vt34 and rnt-1 mutations exhibit reduced levels of dat-1 mRNA as well as the tyrosine hydroxylase ortholog cat-2. Although reporter studies indicate that rnt-1 is expressed in DA neurons, its re-expression in DA neurons of vt34 animals fails to fully rescue Swip. Moreover, as shown for vt34, rnt-1 mutation exhibits additivity with dat-1 in generating Swip, as do rnt-1 and bro-1 mutations, and vt34 exhibits altered capacity for acetylcholine signaling at the neuromuscular junction. Together, these findings identify a novel role for rnt-1 in limiting DA neurotransmission and suggest that loss of RNT-1 may disrupt function of both DA neurons and body wall muscle to drive Swip.
Collapse
Affiliation(s)
- Sarah B Robinson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Osama Refai
- Department of Biomedical Science, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL United States of America
| | - J Andrew Hardaway
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Sarah Sturgeon
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Tessa Popay
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Daniel P Bermingham
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Phyllis Freeman
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States of America
| | - Jane Wright
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL United States of America
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States of America
| |
Collapse
|
12
|
Developmental Control of the Cell Cycle: Insights from Caenorhabditis elegans. Genetics 2019; 211:797-829. [PMID: 30846544 PMCID: PMC6404260 DOI: 10.1534/genetics.118.301643] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
During animal development, a single fertilized egg forms a complete organism with tens to trillions of cells that encompass a large variety of cell types. Cell cycle regulation is therefore at the center of development and needs to be carried out in close coordination with cell differentiation, migration, and death, as well as tissue formation, morphogenesis, and homeostasis. The timing and frequency of cell divisions are controlled by complex combinations of external and cell-intrinsic signals that vary throughout development. Insight into how such controls determine in vivo cell division patterns has come from studies in various genetic model systems. The nematode Caenorhabditis elegans has only about 1000 somatic cells and approximately twice as many germ cells in the adult hermaphrodite. Despite the relatively small number of cells, C. elegans has diverse tissues, including intestine, nerves, striated and smooth muscle, and skin. C. elegans is unique as a model organism for studies of the cell cycle because the somatic cell lineage is invariant. Somatic cells divide at set times during development to produce daughter cells that adopt reproducible developmental fates. Studies in C. elegans have allowed the identification of conserved cell cycle regulators and provided insights into how cell cycle regulation varies between tissues. In this review, we focus on the regulation of the cell cycle in the context of C. elegans development, with reference to other systems, with the goal of better understanding how cell cycle regulation is linked to animal development in general.
Collapse
|
13
|
Dong Z, Yang Y, Chen G, Liu D. Identification of runt family genes involved in planarian regeneration and tissue homeostasis. Gene Expr Patterns 2018; 29:24-31. [PMID: 29649632 DOI: 10.1016/j.gep.2018.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
The runt family genes play important roles in physiological processes in eukaryotic organisms by regulation of protein transcription, such as hematopoietic system, proliferation of gastric epithelial cells and neural development. However, it remains unclear about the specific functions of these genes. In this study, the full-length cDNA sequences of two runt genes are first cloned from Dugesia japonica, and their roles are investigated by WISH and RNAi. The results show that: (1) the Djrunts are conserved during evolution; (2) the Djrunts mRNA are widely expressed in intact and regenerative worms, and their expression levels are up-regulated significantly on day 1 after amputation; (3) loss of Djrunts function lead to lysis or regeneration failure in the intact and regenerating worms. Overall, the data suggests that Djrunts play important roles in regeneration and homeostatic maintenance in planarians.
Collapse
Affiliation(s)
- Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| | - Yibo Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| |
Collapse
|
14
|
Wolf B, Balestra FR, Spahr A, Gönczy P. ZYG-1 promotes limited centriole amplification in the C. elegans seam lineage. Dev Biol 2018; 434:221-230. [PMID: 29307730 DOI: 10.1016/j.ydbio.2018.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/08/2017] [Accepted: 01/01/2018] [Indexed: 11/27/2022]
Abstract
Genome stability relies notably on the integrity of centrosomes and on the mitotic spindle they organize. Structural and numerical centrosome aberrations are frequently observed in human cancer, and there is increasing evidence that centrosome amplification can promote tumorigenesis. Here, we use C. elegans seam cells as a model system to analyze centrosome homeostasis in the context of a stereotyped stem like lineage. We found that overexpression of the Plk4-related kinase ZYG-1 leads to the formation of one supernumerary centriolar focus per parental centriole during the cell cycle that leads to the sole symmetric division in the seam lineage. In the following cell cycle, such supernumerary foci function as microtubule organizing centers, but do not cluster during mitosis, resulting in the formation of a multipolar spindle and then aneuploid daughter cells. Intriguingly, we found also that supernumerary centriolar foci do not assemble in the asymmetric cell divisions that precedes or that follows the symmetric seam cell division, despite the similar presence of GFP::ZYG-1. Furthermore, we established that supernumerary centrioles form earlier during development in animals depleted of the heterochronic gene lin-14, in which the symmetric division is precocious. Conversely, supernumerary centrioles are essentially not observed in animals depleted of lin-28, in which the symmetric division is lacking. These findings lead us to conclude that ZYG-1 promotes limited centriole amplification solely during the symmetric division in the C. elegans seam lineage.
Collapse
Affiliation(s)
- Benita Wolf
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Fernando R Balestra
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Antoine Spahr
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
15
|
Transcription factor Runx1 is pro-neurogenic in adult hippocampal precursor cells. PLoS One 2018; 13:e0190789. [PMID: 29324888 PMCID: PMC5764282 DOI: 10.1371/journal.pone.0190789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/20/2017] [Indexed: 01/12/2023] Open
Abstract
Transcription factor Runx1 (Runt Related Transcription Factor 1), plays an important role in the differentiation of hematopoetic stem cells, angiogenesis and the development of nociceptive neurons. These known functions have in common that they relate to lineage decisions. We thus asked whether such role might also be found for Runx1 in adult hippocampal neurogenesis as a process, in which such decisions have to be regulated lifelong. Runx1 shows a widespread low expression in the adult mouse brain, not particularly prominent in the hippocampus and the resident neural precursor cells. Isoforms 1 and 2 of Runx1 (but not 3 to 5) driven by the proximal promoter were expressed in hippocampal precursor cells ex vivo, albeit again at very low levels, and were markedly increased after stimulation with TGF-β1. Under differentiation conditions (withdrawal of growth factors) Runx1 became down-regulated. Overexpression of Runx1 in vitro reduced proliferation, increased survival of precursor cells by reducing apoptosis, and increased neuronal differentiation, while slightly reducing dendritic morphology and complexity. Transfection with dominant-negative Runx1 in hippocampal precursor cells in vitro did not result in differences in neurogenesis. Hippocampal expression of Runx1 correlated with adult neurogenesis (precursor cell proliferation) across BXD recombinant strains of mice and covarying transcripts enriched in the GO categories “neural precursor cell proliferation” and “neuron differentiation”. Runx1 is thus a plausible candidate gene to be involved in regulating initial differentiation-related steps of adult neurogenesis. It seems, however, that the relative contribution of Runx1 to such effect is complementary and will explain only small parts of the cell-autonomous pro-differentiation effect.
Collapse
|
16
|
Katsanos D, Koneru SL, Mestek Boukhibar L, Gritti N, Ghose R, Appleford PJ, Doitsidou M, Woollard A, van Zon JS, Poole RJ, Barkoulas M. Stochastic loss and gain of symmetric divisions in the C. elegans epidermis perturbs robustness of stem cell number. PLoS Biol 2017; 15:e2002429. [PMID: 29108019 PMCID: PMC5690688 DOI: 10.1371/journal.pbio.2002429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 11/16/2017] [Accepted: 10/20/2017] [Indexed: 11/19/2022] Open
Abstract
Biological systems are subject to inherent stochasticity. Nevertheless, development is remarkably robust, ensuring the consistency of key phenotypic traits such as correct cell numbers in a certain tissue. It is currently unclear which genes modulate phenotypic variability, what their relationship is to core components of developmental gene networks, and what is the developmental basis of variable phenotypes. Here, we start addressing these questions using the robust number of Caenorhabditis elegans epidermal stem cells, known as seam cells, as a readout. We employ genetics, cell lineage tracing, and single molecule imaging to show that mutations in lin-22, a Hes-related basic helix-loop-helix (bHLH) transcription factor, increase seam cell number variability. We show that the increase in phenotypic variability is due to stochastic conversion of normally symmetric cell divisions to asymmetric and vice versa during development, which affect the terminal seam cell number in opposing directions. We demonstrate that LIN-22 acts within the epidermal gene network to antagonise the Wnt signalling pathway. However, lin-22 mutants exhibit cell-to-cell variability in Wnt pathway activation, which correlates with and may drive phenotypic variability. Our study demonstrates the feasibility to study phenotypic trait variance in tractable model organisms using unbiased mutagenesis screens.
Collapse
Affiliation(s)
- Dimitris Katsanos
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Sneha L. Koneru
- Department of Life Sciences, Imperial College, London, United Kingdom
| | | | - Nicola Gritti
- Institute for Atomic and Molecular Physics (AMOLF), Amsterdam, The Netherlands
| | - Ritobrata Ghose
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Peter J. Appleford
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Maria Doitsidou
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Woollard
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jeroen S. van Zon
- Institute for Atomic and Molecular Physics (AMOLF), Amsterdam, The Netherlands
| | - Richard J. Poole
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | |
Collapse
|
17
|
Ding SS, Woollard A. Non-muscle myosin II is required for correct fate specification in the Caenorhabditis elegans seam cell divisions. Sci Rep 2017; 7:3524. [PMID: 28615630 PMCID: PMC5471188 DOI: 10.1038/s41598-017-01675-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/31/2017] [Indexed: 11/09/2022] Open
Abstract
During development, cell division often generates two daughters with different developmental fates. Distinct daughter identities can result from the physical polarity and size asymmetry itself, as well as the subsequent activation of distinct fate programmes in each daughter. Asymmetric divisions are a feature of the C. elegans seam lineage, in which a series of post-embryonic, stem-like asymmetric divisions give rise to an anterior daughter that differentiates and a posterior daughter that continues to divide. Here we have investigated the role of non-muscle myosin II (nmy-2) in these asymmetric divisions. We show that nmy-2 does not appear to be involved in generating physical division asymmetry, but nonetheless is important for specifying differential cell fate. While cell polarity appears normal, and chromosome and furrow positioning remains unchanged when nmy-2 is inactivated, seam cell loss occurs through inappropriate terminal differentiation of posterior daughters. This reveals a role for nmy-2 in cell fate determination not obviously linked to the primary polarity determination mechanisms it has been previously associated with.
Collapse
Affiliation(s)
- Siyu Serena Ding
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.,Institution of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, United Kingdom.,MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Alison Woollard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
18
|
RUNX transcription factors at the interface of stem cells and cancer. Biochem J 2017; 474:1755-1768. [PMID: 28490659 DOI: 10.1042/bcj20160632] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
Abstract
The RUNX1 transcription factor is a critical regulator of normal haematopoiesis and its functional disruption by point mutations, deletions or translocations is a major causative factor leading to leukaemia. In the majority of cases, genetic changes in RUNX1 are linked to loss of function classifying it broadly as a tumour suppressor. Despite this, several recent studies have reported the need for a certain level of active RUNX1 for the maintenance and propagation of acute myeloid leukaemia and acute lymphoblastic leukaemia cells, suggesting an oncosupportive role of RUNX1. Furthermore, in solid cancers, RUNX1 is overexpressed compared with normal tissue, and RUNX factors have recently been discovered to promote growth of skin, oral, breast and ovarian tumour cells, amongst others. RUNX factors have key roles in stem cell fate regulation during homeostasis and regeneration of many tissues. Cancer cells appear to have corrupted these stem cell-associated functions of RUNX factors to promote oncogenesis. Here, we discuss current knowledge on the role of RUNX genes in stem cells and as oncosupportive factors in haematological malignancies and epithelial cancers.
Collapse
|
19
|
Abstract
Runx genes have been identified in all metazoans and considerable conservation of function observed across a wide range of phyla. Thus, insight gained from studying simple model organisms is invaluable in understanding RUNX biology in higher animals. Consequently, this chapter will focus on the Runx genes in the diploblasts, which includes sea anemones and sponges, as well as the lower triploblasts, including the sea urchin, nematode, planaria and insect. Due to the high degree of functional redundancy amongst vertebrate Runx genes, simpler model organisms with a solo Runx gene, like C. elegans, are invaluable systems in which to probe the molecular basis of RUNX function within a whole organism. Additionally, comparative analyses of Runx sequence and function allows for the development of novel evolutionary insights. Strikingly, recent data has emerged that reveals the presence of a Runx gene in a protist, demonstrating even more widespread occurrence of Runx genes than was previously thought. This review will summarize recent progress in using invertebrate organisms to investigate RUNX function during development and regeneration, highlighting emerging unifying themes.
Collapse
Affiliation(s)
- S Hughes
- Faculteit Techniek, Hogeschool van Arnhem en Nijmegen, Laan van Scheut 2, 6503 GL, Nijmegen, The Netherlands
| | - A Woollard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
20
|
Control of stem cell self-renewal and differentiation by the heterochronic genes and the cellular asymmetry machinery in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2015; 112:E287-96. [PMID: 25561544 DOI: 10.1073/pnas.1422852112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transitions between asymmetric (self-renewing) and symmetric (proliferative) cell divisions are robustly regulated in the context of normal development and tissue homeostasis. To genetically assess the regulation of these transitions, we used the postembryonic epithelial stem (seam) cell lineages of Caenorhabditis elegans. In these lineages, the timing of these transitions is regulated by the evolutionarily conserved heterochronic pathway, whereas cell division asymmetry is conferred by a pathway consisting of Wnt (Wingless) pathway components, including posterior pharynx defect (POP-1)/TCF, APC related/adenomatosis polyposis coli (APR-1)/APC, and LIT-1/NLK (loss of intestine/Nemo-like kinase). Here we explore the genetic regulatory mechanisms underlying stage-specific transitions between self-renewing and proliferative behavior in the seam cell lineages. We show that mutations of genes in the heterochronic developmental timing pathway, including lin-14 (lineage defect), lin-28, lin-46, and the lin-4 and let-7 (lethal defects)-family microRNAs, affect the activity of LIT-1/POP-1 cellular asymmetry machinery and APR-1 polarity during larval development. Surprisingly, heterochronic mutations that enhance LIT-1 activity in seam cells can simultaneously also enhance the opposing, POP-1 activity, suggesting a role in modulating the potency of the cellular polarizing activity of the LIT-1/POP-1 system as development proceeds. These findings illuminate how the evolutionarily conserved cellular asymmetry machinery can be coupled to microRNA-regulated developmental pathways for robust regulation of stem cell maintenance and proliferation during the course of development. Such genetic interactions between developmental timing regulators and cell polarity regulators could underlie transitions between asymmetric and symmetric stem cell fates in other systems and could be deregulated in the context of developmental disorders and cancer.
Collapse
|
21
|
Hughes S, Wilkinson H, Gilbert SPR, Kishida M, Ding SS, Woollard A. The C. elegans TPR Containing Protein, TRD-1, Regulates Cell Fate Choice in the Developing Germ Line and Epidermis. PLoS One 2014; 9:e114998. [PMID: 25493563 PMCID: PMC4262444 DOI: 10.1371/journal.pone.0114998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023] Open
Abstract
Correct cell fate choice is crucial in development. In post-embryonic development of the hermaphroditic Caenorhabitis elegans, distinct cell fates must be adopted in two diverse tissues. In the germline, stem cells adopt one of three possible fates: mitotic cell cycle, or gamete formation via meiosis, producing either sperm or oocytes. In the epidermis, the stem cell-like seam cells divide asymmetrically, with the daughters taking on either a proliferative (seam) or differentiated (hypodermal or neuronal) fate. We have isolated a novel conserved C. elegans tetratricopeptide repeat containing protein, TRD-1, which is essential for cell fate determination in both the germline and the developing epidermis and has homologs in other species, including humans (TTC27). We show that trd-1(RNAi) and mutant animals have fewer seam cells as a result of inappropriate differentiation towards the hypodermal fate. In the germline, trd-1 RNAi results in a strong masculinization phenotype, as well as defects in the mitosis to meiosis switch. Our data suggests that trd-1 acts downstream of tra-2 but upstream of fem-3 in the germline sex determination pathway, and exhibits a constellation of phenotypes in common with other Mog (masculinization of germline) mutants. Thus, trd-1 is a new player in both the somatic and germline cell fate determination machinery, suggestive of a novel molecular connection between the development of these two diverse tissues.
Collapse
Affiliation(s)
- Samantha Hughes
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Henry Wilkinson
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Marcia Kishida
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Siyu Serena Ding
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alison Woollard
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Hughes S, Brabin C, Appleford PJ, Woollard A. CEH-20/Pbx and UNC-62/Meis function upstream of rnt-1/Runx to regulate asymmetric divisions of the C. elegans stem-like seam cells. Biol Open 2013; 2:718-27. [PMID: 23862020 PMCID: PMC3711040 DOI: 10.1242/bio.20134549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/14/2013] [Indexed: 12/16/2022] Open
Abstract
Caenorhabditis elegans seam cells divide in the stem-like mode throughout larval development, with the ability to both self-renew and produce daughters that differentiate. Seam cells typically divide asymmetrically, giving rise to an anterior daughter that fuses with the hypodermis and a posterior daughter that proliferates further. Previously we have identified rnt-1 (a homologue of the mammalian cancer-associated stem cell regulator Runx) as being an important regulator of seam development, acting to promote proliferation; rnt-1 mutants have fewer seam cells whereas overexpressing rnt-1 causes seam cell hyperplasia. We isolated the interacting CEH-20/Pbx and UNC-62/Meis TALE-class transcription factors during a genome-wide RNAi screen for novel regulators of seam cell number. Animals lacking wild type CEH-20 or UNC-62 display seam cell hyperplasia, largely restricted to the anterior of the worm, whereas double mutants have many additional seam cells along the length of the animal. The cellular basis of the hyperplasia involves the symmetrisation of normally asymmetric seam cell divisions towards the proliferative stem-like fate. The hyperplasia is completely suppressed in rnt-1 mutants, and rnt-1 is upregulated in ceh-20 and unc-62 mutants, suggesting that CEH-20 and UNC-62 function upstream of rnt-1 to limit proliferative potential to the appropriate daughter cell. In further support of this we find that CEH-20 is asymmetrically localised in seam daughters following an asymmetric division, being predominantly restricted to anterior nuclei whose fate is to differentiate. Thus, ceh-20 and unc-62 encode crucial regulators of seam cell division asymmetry, acting via rnt-1 to regulate the balance between proliferation and differentiation.
Collapse
Affiliation(s)
- Samantha Hughes
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU , UK
| | | | | | | |
Collapse
|
23
|
|
24
|
Wenemoser D, Lapan SW, Wilkinson AW, Bell GW, Reddien PW. A molecular wound response program associated with regeneration initiation in planarians. Genes Dev 2012; 26:988-1002. [PMID: 22549959 DOI: 10.1101/gad.187377.112] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Planarians are capable of regenerating any missing body part and present an attractive system for molecular investigation of regeneration initiation. The gene activation program that occurs at planarian wounds to coordinate regenerative responses remains unknown. We identified a large set of wound-induced genes during regeneration initiation in planarians. Two waves of wound-induced gene expression occurred in differentiated tissues. The first wave includes conserved immediate early genes. Many second-wave genes encode conserved patterning factors required for proper regeneration. Genes of both classes were generally induced by wounding, indicating that a common initial gene expression program is triggered regardless of missing tissue identity. Planarian regeneration uses a population of regenerative cells (neoblasts), including pluripotent stem cells. A class of wound-induced genes was activated directly within neoblasts, including the Runx transcription factor-encoding runt-1 gene. runt-1 was required for specifying different cell types during regeneration, promoting heterogeneity in neoblasts near wounds. Wound-induced gene expression in neoblasts, including that of runt-1, required SRF (serum response factor) and sos-1. Taken together, these data connect wound sensation to the activation of specific cell type regeneration programs in neoblasts. Most planarian wound-induced genes are conserved across metazoans, and identified genes and mechanisms should be important broadly for understanding wound signaling and regeneration initiation.
Collapse
Affiliation(s)
- Danielle Wenemoser
- Howard Hughes Medical Institute, Whitehead Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
25
|
Chisholm AD, Hsiao TI. The Caenorhabditis elegans epidermis as a model skin. I: development, patterning, and growth. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:861-78. [PMID: 23539299 DOI: 10.1002/wdev.79] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The skin of the nematode Caenorhabditis elegans is composed of a simple epidermal epithelium and overlying cuticle. The skin encloses the animal and plays central roles in body morphology and physiology; its simplicity and accessibility make it a tractable genetic model for several aspects of skin biology. Epidermal precursors are specified by a hierarchy of transcriptional regulators. Epidermal cells form on the dorsal surface of the embryo and differentiate to form the epidermal primordium, which then spreads out in a process of epiboly to enclose internal tissues. Subsequent elongation of the embryo into a vermiform larva is driven by cell shape changes and cell fusions in the epidermis. Most epidermal cells fuse in mid-embryogenesis to form a small number of multinucleate syncytia. During mid-embryogenesis the epidermis also becomes intimately associated with underlying muscles, performing a tendon-like role in transmitting muscle force. Post-embryonic development of the epidermis involves growth by addition of new cells to the syncytia from stem cell-like epidermal seam cells and by an increase in cell size driven by endoreplication of the chromosomes in epidermal nuclei.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
26
|
Kurosaka H, Islam MN, Kuremoto KI, Hayano S, Nakamura M, Kawanabe N, Yanagita T, Rice DPC, Harada H, Taniuchi I, Yamashiro T. Core binding factor beta functions in the maintenance of stem cells and orchestrates continuous proliferation and differentiation in mouse incisors. Stem Cells 2012; 29:1792-803. [PMID: 21898689 DOI: 10.1002/stem.722] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rodent incisors grow continuously throughout life, and epithelial progenitor cells are supplied from stem cells in the cervical loop. We report that epithelial Runx genes are involved in the maintenance of epithelial stem cells and their subsequent continuous differentiation and therefore growth of the incisors. Core binding factor β (Cbfb) acts as a binding partner for all Runx proteins, and targeted inactivation of this molecule abrogates the activity of all Runx complexes. Mice deficient in epithelial Cbfb produce short incisors and display marked underdevelopment of the cervical loop and suppressed epithelial Fgf9 expression and mesenchymal Fgf3 and Fgf10 expression in the cervical loop. In culture, FGF9 protein rescues these phenotypes. These findings indicate that epithelial Runx functions to maintain epithelial stem cells and that Fgf9 may be a target gene of Runx signaling. Cbfb mutants also lack enamel formation and display downregulated Shh mRNA expression in cells differentiating into ameloblasts. Furthermore, Fgf9 deficiency results in a proximal shift of the Shh expressing cell population and ectopic FGF9 protein suppresses Shh expression. These findings indicate that Shh as well as Fgf9 expression is maintained by Runx/Cbfb but that Fgf9 antagonizes Shh expression. The present results provide the first genetic evidence that Runx/Cbfb genes function in the maintenance of stem cells in developing incisors by activating Fgf signaling loops between the epithelium and mesenchyme. In addition, Runx genes also orchestrate continuous proliferation and differentiation by maintaining the expression of Fgf9 and Shh mRNA.
Collapse
Affiliation(s)
- Hiroshi Kurosaka
- Department of Orthodontics, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Matsumoto K, Azami T, Otsu A, Takase H, Ishitobi H, Tanaka J, Miwa Y, Takahashi S, Ema M. Study of normal and pathological blood vessel morphogenesis in Flt1-tdsRed BAC Tg mice. Genesis 2012; 50:561-71. [PMID: 22489010 DOI: 10.1002/dvg.22031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 03/30/2012] [Accepted: 04/01/2012] [Indexed: 11/11/2022]
Abstract
Blood vessel development and network patterning are controlled by several signaling molecules, including VEGF, FGF, TGF-ß, and Ang-1,2. Among these, the role of VEGF-A signaling in vessel morphogenesis is best understood. The biological activity of VEGF-A depends on its reaction with specific receptors Flt1 and Flk1. Roles of VEGF-A signaling in endothelial cell proliferation, migration, survival, vascular permeability, and induction of tip cell filopodia have been reported. In this study, we have generated Flt1-tdsRed BAC transgenic (Tg) mice to monitor Flt1 gene expression during vascular development. We show that tdsRed fluorescence is observed within blood vessels of adult mice and embryos, indicative of retinal angiogenesis and tumor angiogenesis. Flt1 expression recapitulated by Flt1-tdsRed BAC Tg mice overlapped well with Flk1, while Flt1 was expressed more abundantly in endothelial cells of large blood vessels such as dorsal aorta and presumptive stalk cells in retina, providing a unique model to study blood vessel development.
Collapse
Affiliation(s)
- Ken Matsumoto
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Brabin C, Appleford PJ, Woollard A. The Caenorhabditis elegans GATA factor ELT-1 works through the cell proliferation regulator BRO-1 and the Fusogen EFF-1 to maintain the seam stem-like fate. PLoS Genet 2011; 7:e1002200. [PMID: 21829390 PMCID: PMC3150447 DOI: 10.1371/journal.pgen.1002200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/08/2011] [Indexed: 11/18/2022] Open
Abstract
Seam cells in Caenorhabditis elegans provide a paradigm for the stem cell mode of division, with the ability to both self-renew and produce daughters that differentiate. The transcription factor RNT-1 and its DNA binding partner BRO-1 (homologues of the mammalian cancer-associated stem cell regulators RUNX and CBFβ, respectively) are known rate-limiting regulators of seam cell proliferation. Here, we show, using a combination of comparative genomics and DNA binding assays, that bro-1 expression is directly regulated by the GATA factor ELT-1. elt-1(RNAi) animals display similar seam cell lineage defects to bro-1 mutants, but have an additional phenotype in which seam cells lose their stem cell-like properties and differentiate inappropriately by fusing with the hyp7 epidermal syncytium. This phenotype is dependent on the fusogen EFF-1, which we show is repressed by ELT-1 in seam cells. Overall, our data suggest that ELT-1 has dual roles in the stem-like seam cells, acting both to promote proliferation and prevent differentiation. Stem cells can both produce differentiated cells and self-renew, producing more stem cells. Choosing between these opposing options is critical for development. Here, we have investigated the molecular genetics underlying this choice in the nematode worm, C. elegans, using the seam cells as a model of stem cell divisions. The transcription factor RNT-1 works together with BRO-1 (homologues of mammalian RUNX and CBFβ genes, respectively) to regulate proliferation of the seam cells, reflecting the roles of RUNX/CBFβ in mammalian stem cells. To better understand how bro-1 is regulated, we looked for conserved regions of non-coding DNA, likely to be of functional importance. We identified a 122 bp conserved non-coding element that is necessary and sufficient for bro-1 expression. Subsequent analysis suggested that the GATA transcription factor ELT-1 directly regulates bro-1. We have found that ELT-1 actually performs two distinct roles, promoting proliferation of seam cells while also preventing them from inappropriately fusing with surrounding tissue and losing their stem-like properties. Furthermore, we propose a link between the retention of stem cell properties and the maintenance of seam cells in a distinct compartment, in which they are protected from differentiation.
Collapse
Affiliation(s)
- Charles Brabin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Peter J. Appleford
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alison Woollard
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Gleason JE, Eisenmann DM. Wnt signaling controls the stem cell-like asymmetric division of the epithelial seam cells during C. elegans larval development. Dev Biol 2010; 348:58-66. [PMID: 20849842 PMCID: PMC2976807 DOI: 10.1016/j.ydbio.2010.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/06/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
Abstract
Metazoan stem cells repopulate tissues during adult life by dividing asymmetrically to generate another stem cell and a cell that terminally differentiates. Wnt signaling regulates the division pattern of stem cells in flies and vertebrates. While the short-lived nematode C. elegans has no adult somatic stem cells, the lateral epithelial seam cells divide in a stem cell-like manner in each larval stage, usually generating a posterior daughter that retains the seam cell fate and an anterior daughter that terminally differentiates. We show that while wild-type adult animals have 16 seam cells per side, animals with reduced function of the TCF homolog POP-1 have as many as 67 seam cells, and animals with reduced function of the β-catenins SYS-1 and WRM-1 have as few as three. Analysis of seam cell division patterns showed alterations in their stem cell-like divisions in the L2-L4 stages: reduced Wnt signaling caused both daughters to adopt non-seam fates, while activated Wnt signaling caused both daughters to adopt the seam fate. Therefore, our results indicate that Wnt signaling globally regulates the asymmetric, stem cell-like division of most or all somatic seam cells during C. elegans larval development, and that Wnt pathway regulation of stem cell-like behavior is conserved in nematodes.
Collapse
|
30
|
Guo H, Friedman AD. Phosphorylation of RUNX1 by cyclin-dependent kinase reduces direct interaction with HDAC1 and HDAC3. J Biol Chem 2010; 286:208-15. [PMID: 21059642 DOI: 10.1074/jbc.m110.149013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RUNX1 regulates formation of the definitive hematopoietic stem cell and its subsequent lineage maturation, and mutations of RUNX1 contribute to leukemic transformation. Phosphorylation of Ser-48, Ser-303, and Ser-424 by cyclin-dependent kinases (cdks) increases RUNX1 trans-activation activity without perturbing p300 interaction. We now find that endogenous RUNX1 interacts with endogenous HDAC1 or HDAC3. Mutation of the three RUNX1 serines to aspartic acid reduces co-immunoprecipitation with HDAC1 or HDAC3 when expressed in 293T cells; mutation of these three serines to alanine increases HDAC interaction, and mutation of each serine individually to aspartic acid also reduces these interactions. GST-RUNX1 isolated from bacterial extracts bound in vitro translated HDAC1 or HDAC3, and these interactions were weakened by mutation of Ser-48, Ser-303, and Ser-424 to aspartic acid. The ability of RUNX1 phosphorylation and not only serine to aspartic acid conversion to reduce HDAC1 binding was demonstrated using wild-type GST-RUNX1 phosphorylated in vitro using cdk1/cyclinB and by exposure of 293T cells transduced with RUNX1 and HDAC1 to roscovitine, a cdk inhibitor. Finally, RUNX1 or RUNX1(tripleD), in which Ser-48, Ser-303, and Ser-424 are mutated to aspartic acid, stimulated proliferation of transduced, lineage-negative murine marrow progenitors more potently than did RUNX1(tripleA), in which these serines are mutated to alanine, suggesting that stimulation of RUNX1 trans-activation by cdk-mediated reduction in HDAC interaction increases marrow progenitor cell proliferation.
Collapse
Affiliation(s)
- Hong Guo
- Division of Pediatric Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
31
|
Joshi PM, Riddle MR, Djabrayan NJV, Rothman JH. Caenorhabditis elegans as a model for stem cell biology. Dev Dyn 2010; 239:1539-54. [PMID: 20419785 DOI: 10.1002/dvdy.22296] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We review the application of Caenorhabditis elegans as a model system to understand key aspects of stem cell biology. The only bona fide stem cells in C. elegans are those of the germline, which serves as a valuable paradigm for understanding how stem-cell niches influence maintenance and differentiation of stem cells and how somatic differentiation is repressed during germline development. Somatic cells that share stem cell-like characteristics also provide insights into principles in stem-cell biology. The epidermal seam cell lineages lend clues to conserved mechanisms of self-renewal and expansion divisions. Principles of developmental plasticity and reprogramming relevant to stem-cell biology arise from studies of natural transdifferentiation and from analysis of early embryonic progenitors, which undergo a dramatic transition from a pluripotent, reprogrammable condition to a state of committed differentiation. The relevance of these developmental processes to our understanding of stem-cell biology in other organisms is discussed.
Collapse
Affiliation(s)
- Pradeep M Joshi
- Neuroscience Research Institute, Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
32
|
Ren H, Zhang H. Wnt signaling controls temporal identities of seam cells in Caenorhabditis elegans. Dev Biol 2010; 345:144-55. [PMID: 20624379 DOI: 10.1016/j.ydbio.2010.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/04/2010] [Accepted: 07/01/2010] [Indexed: 01/07/2023]
Abstract
The Wnt signaling pathway regulates multiple aspects of the development of stem cell-like epithelial seam cells in Caenorhabditis elegans, including cell fate specification and symmetric/asymmetric division. In this study, we demonstrate that lit-1, encoding the Nemo-like kinase in the Wnt/beta-catenin asymmetry pathway, plays a role in specifying temporal identities of seam cells. Loss of function of lit-1 suppresses defects in retarded heterochronic mutants and enhances defects in precocious heterochronic mutants. Overexpressing lit-1 causes heterochronic defects opposite to those in lit-1(lf) mutants. LIT-1 exhibits a periodic expression pattern in seam cells within each larval stage. The kinase activity of LIT-1 is essential for its role in the heterochronic pathway. lit-1 specifies the temporal fate of seam cells likely by modulating miRNA-mediated silencing of target heterochronic genes. We further show that loss of function of other components of Wnt signaling, including mom-4, wrm-1, apr-1, and pop-1, also causes heterochronic defects in sensitized genetic backgrounds. Our study reveals a novel function of Wnt signaling in controlling the timing of seam cell development in C. elegans.
Collapse
Affiliation(s)
- Haiyan Ren
- Graduate Program in Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | | |
Collapse
|
33
|
Wang CQ, Jacob B, Nah GSS, Osato M. Runx family genes, niche, and stem cell quiescence. Blood Cells Mol Dis 2010; 44:275-86. [PMID: 20144877 DOI: 10.1016/j.bcmd.2010.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 02/07/2023]
Abstract
In multicellular organisms, terminally differentiated cells of most tissues are short-lived and therefore require constant replenishment from rapidly dividing stem cells for homeostasis and tissue repair. For the stem cells to last throughout the lifetime of the organism, however, a small subset of stem cells, which are maintained in a hibernation-like state known as stem cell quiescence, is required. Such dormant stem cells reside in the niche and are activated into proliferation only when necessary. A multitude of factors are required for the maintenance of stem cell quiescence and niche. In particular, the Runx family genes have been implicated in stem cell quiescence in various organisms and tissues. In this review, we discuss the maintenance of stem cell quiescence in various tissues, mainly in the context of the Runx family genes, and with special focus on the hematopoietic system.
Collapse
Affiliation(s)
- Chelsia Qiuxia Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
34
|
Ostenfeld MS, Bramsen JB, Lamy P, Villadsen SB, Fristrup N, Sørensen KD, Ulhøi B, Borre M, Kjems J, Dyrskjøt L, Ørntoft TF. miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene 2009; 29:1073-84. [DOI: 10.1038/onc.2009.395] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
|
36
|
Hajduskova M, Jindra M, Herman MA, Asahina M. The nuclear receptor NHR-25 cooperates with the Wnt/beta-catenin asymmetry pathway to control differentiation of the T seam cell in C. elegans. J Cell Sci 2009; 122:3051-60. [PMID: 19654209 DOI: 10.1242/jcs.052373] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Asymmetric cell divisions produce new cell types during animal development. Studies in Caenorhabditis elegans have identified major signal-transduction pathways that determine the polarity of cell divisions. How these relatively few conserved pathways interact and what modulates them to ensure the diversity of multiple tissue types is an open question. The Wnt/beta-catenin asymmetry pathway governs polarity of the epidermal T seam cell in the C. elegans tail. Here, we show that the asymmetry of T-seam-cell division and morphogenesis of the male sensory rays require NHR-25, an evolutionarily conserved nuclear receptor. NHR-25 ensures the neural fate of the T-seam-cell descendants in cooperation with the Wnt/beta-catenin asymmetry pathway. Loss of NHR-25 enhances the impact of mutated nuclear effectors of this pathway, POP-1 (TCF) and SYS-1 (beta-catenin), on T-seam-cell polarity, whereas it suppresses the effect of the same mutations on asymmetric division of the somatic gonad precursor cells. Therefore, NHR-25 can either synergize with or antagonize the Wnt/beta-catenin asymmetry pathway depending on the tissue context. Our findings define NHR-25 as a versatile modulator of Wnt/beta-catenin-dependent cell-fate decisions.
Collapse
Affiliation(s)
- Martina Hajduskova
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | | | | |
Collapse
|
37
|
Maekawa M, Inoue T, Kobuna H, Nishimura T, Gengyo-Ando K, Mitani S, Arai H. Functional analysis of GS28, an intra-Golgi SNARE, in Caenorhabditis elegans. Genes Cells 2009; 14:1003-13. [PMID: 19624756 DOI: 10.1111/j.1365-2443.2009.01325.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intra-Golgi retrograde transport is assumed to maintain Golgi function by recycling Golgi-resident proteins to younger cisternae in the progression of entire Golgi stack from cis to trans. GS28 (Golgi SNARE of 28 kDa, also known as GOS28) is a Golgi-localized SNARE protein and has been implicated in intra-Golgi retrograde transport. However, the in vivo functions of GS28, and consequently, the roles of the intra-Golgi retrograde transport in animal development are largely unknown. In this study, we generated deletion mutants of Caenorhabditis elegans GS28 and performed a synthetic lethal RNAi screen using GS28 mutants. We found that another Golgi-localized SNARE, Ykt6, functions cooperatively with GS28 in embryonic development. During post-embryonic development, GS28 mutants exhibited reduced seam cell numbers and a missing ray phenotype under Ykt6 knockdown conditions, suggesting that cell proliferation and/or differentiation of stem cell-like seam cells are impaired in GS28- and Ykt6-depleted worms. We also demonstrated that GS28 and Ykt6 act redundantly for the proper expression of Golgi-resident proteins in adult intestinal cells. This study reveals the in vivo importance of the Golgi-localized SNAREs GS28 and Ykt6.
Collapse
Affiliation(s)
- Masashi Maekawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Huang X, Tian E, Xu Y, Zhang H. The C. elegans engrailed homolog ceh-16 regulates the self-renewal expansion division of stem cell-like seam cells. Dev Biol 2009; 333:337-47. [PMID: 19607822 DOI: 10.1016/j.ydbio.2009.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/01/2009] [Accepted: 07/06/2009] [Indexed: 12/24/2022]
Abstract
Stem cells undergo symmetric and asymmetric division to maintain the dynamic equilibrium of the stem cell pool and also to generate a variety of differentiated cells. The homeostatic mechanism controlling the choice between self-renewal and differentiation of stem cells is poorly understood. We show here that ceh-16, encoding the C. elegans ortholog of the transcription factor Engrailed, controls symmetric and asymmetric division of stem cell-like seam cells. Loss of function of ceh-16 causes certain seam cells, which normally undergo symmetric self-renewal expansion division with both daughters adopting the seam cell fate, to divide asymmetrically with only one daughter retaining the seam cell fate. The human engrailed homolog En2 functionally substitutes the role of ceh-16 in promoting self-renewal expansion division of seam cells. Loss of function of apr-1, encoding the C. elegans homolog of the Wnt signaling component APC, results in transformation of self-renewal maintenance seam cell division to self-renewal expansion division, leading to seam cell hyperplasia. The apr-1 mutation suppresses the seam cell division defect in ceh-16 mutants. Our study reveals that ceh-16 interacts with the Wnt signaling pathway to control the choice between self-renewal expansion and maintenance division and also demonstrates an evolutionarily conserved function of engrailed in promoting cell proliferation.
Collapse
Affiliation(s)
- Xinxin Huang
- College of Life Sciences, Beijing Normal University, Beijing, 100875, PR China
| | | | | | | |
Collapse
|
39
|
Abstract
Runx1 binds DNA in cooperation with CBFbeta to activate or repress transcription, dependent upon cellular context and interaction with a variety of co-activators and co-repressors. Runx1 is required for emergence of adult hematopoietic stem cells (HSC) during embryonic development and for lymphoid, myeloid, and megakaryocyte lineage maturation from HSC in adult marrow. Runx1 levels vary during the cell cycle, and Runx1 regulates G1 to S cell cycle progression. Both Cdk and ERK phosphorylate Runx1 to influence its interaction with co-repressors, and the Wnt effector LEF-1/TCF also modulates Runx1 activities. These links likely allow cytokines and signals from adjacent cells to influence HSC proliferation versus quiescence and the rate of progenitor expansion, in response to developmental or environmental demands. J. Cell. Physiol. 219: 520-524, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
40
|
Braun T, Woollard A. RUNX factors in development: lessons from invertebrate model systems. Blood Cells Mol Dis 2009; 43:43-8. [PMID: 19447650 DOI: 10.1016/j.bcmd.2009.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/06/2009] [Indexed: 12/20/2022]
Abstract
Runt-related (RUNX) transcription factors are evolutionarily conserved regulators of cell proliferation, differentiation and stem cell maintenance. They are critical for the correct development and function of a variety of human tissues, including during haematopoiesis. RUNX genes regulate various aspects of proliferation control, stem cell maintenance, lineage commitment and regulation of differentiation; disruptions in the correct function of RUNX genes have been associated with human pathologies, most prominently cancer. Because of the high context dependency and partial redundancy of vertebrate RUNX genes, invertebrate model systems have been studied in the hope of finding an ancestral function. Here we review the progress of these studies in three invertebrate systems, the fruit fly Drosophila melanogaster, the sea urchin Strongylocentrotus purpuratus and the nematode Caenorhabditis elegans. All essential aspects of RUNX function in vertebrates have counterparts in invertebrates, confirming the usefulness of these studies in simpler organisms. The fact that not all RUNX functions are conserved in all systems, though, underscores the importance of choosing the right model to ask specific questions.
Collapse
Affiliation(s)
- Toby Braun
- Department of Biochemistry, Laboratory of Genes and Development, University of Oxford, Oxford, UK
| | | |
Collapse
|
41
|
Roudaia L, Cheney MD, Manuylova E, Chen W, Morrow M, Park S, Lee CT, Kaur P, Williams O, Bushweller JH, Speck NA. CBFbeta is critical for AML1-ETO and TEL-AML1 activity. Blood 2009; 113:3070-9. [PMID: 19179469 PMCID: PMC2662647 DOI: 10.1182/blood-2008-03-147207] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 01/11/2009] [Indexed: 01/29/2023] Open
Abstract
AML1-ETO and TEL-AML1 are chimeric proteins resulting from the t(8;21)(q22;q22) in acute myeloid leukemia, and the t(12;21)(p13;q22) in pre-B-cell leukemia, respectively. The Runt domain of AML1 in both proteins mediates DNA binding and heterodimerization with the core binding factor beta (CBFbeta) subunit. To determine whether CBFbeta is required for AML1-ETO and TEL-AML1 activity, we introduced amino acid substitutions into the Runt domain that disrupt heterodimerization with CBFbeta but not DNA binding. We show that CBFbeta contributes to AML1-ETO's inhibition of granulocyte differentiation, is essential for its ability to enhance the clonogenic potential of primary mouse bone marrow cells, and is indispensable for its cooperativity with the activated receptor tyrosine kinase TEL-PDGFbetaR in generating acute myeloid leukemia in mice. Similarly, CBFbeta is essential for TEL-AML1's ability to promote self-renewal of B cell precursors in vitro. These studies validate the Runt domain/CBFbeta interaction as a therapeutic target in core binding factor leukemias.
Collapse
Affiliation(s)
- Liya Roudaia
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Regulation of rnt-1 expression mediated by the opposing effects of BRO-1 and DBL-1 in the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 2007; 367:130-6. [PMID: 18158917 DOI: 10.1016/j.bbrc.2007.12.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 12/14/2007] [Indexed: 11/20/2022]
Abstract
During development of Caenorhabditis elegans, expression of the RUNX homolog, rnt-1, is tightly regulated both spatially and temporally. In this study, we investigated the mechanism underlying the temporal regulation of rnt-1. We found that rnt-1 contained evolutionarily conserved consensus RUNX binding sequences within one of its introns, and that RNT-1 bound to these intronic sequences both in vitro and in vivo in the presence of BRO-1, suggesting that RNT-1 together with BRO-1 represses its own transcription. Fine deletion and substitution experiments revealed a binding site within the intron that was critical for rnt-1 regulation. Importantly, we found that the TGFbeta homolog, DBL-1, was required for counteracting the repressive activity of BRO-1 at postembryonic stages. Accordingly, ectopic expression of DBL-1 induced transcription of rnt-1 in the lateral hypodermis and other tissues even at the postembryonic stages. Taken together, our data suggest that rnt-1 expression is regulated by the balance between DBL-1-mediated activation and BRO-1-mediated repression at the postembryonic stages.
Collapse
|
43
|
Worming out the biology of Runx. Dev Biol 2007; 313:492-500. [PMID: 18062959 DOI: 10.1016/j.ydbio.2007.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 10/08/2007] [Accepted: 11/02/2007] [Indexed: 01/09/2023]
Abstract
Runx family transcription factors have risen to prominence over the last few years because of the increasing evidence implicating them as key regulators of the choice between cell proliferation and differentiation during development and carcinogenesis. Runx factors have been found to be involved in diverse developmental processes, ranging from hematopoiesis to neurogenesis, and are increasingly being linked with various human cancers. In this review, we examine the case for Runx factors as key regulators of cell proliferation in various developmental situations, a role that predisposes Runx mutations as causative agents in oncogenesis. We discuss the evidence that Runx factors regulate, and are regulated by, core components of the cell cycle machinery, and focus our attention on the solo Runx gene, rnt-1, in Caenorhabditis elegans, an organism that we feel has much to offer the Runx field.
Collapse
|