1
|
Ku PI, Sreeja JS, Chadha A, Williams DS, Engelke MF, Subramanian R. Collaborative role of two distinct cilium-specific cytoskeletal systems in driving Hedgehog-responsive transcription factor trafficking. SCIENCE ADVANCES 2025; 11:eadt5439. [PMID: 40073114 PMCID: PMC11900865 DOI: 10.1126/sciadv.adt5439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
In vertebrate Hedgehog (Hh) signaling, the precise output of the final effectors, GLI (glioma-associated oncogene) transcription factors, depends on the primary cilium. Upon pathway initiation, generating the precise levels of the activator form of GLI depends on its concentration at the cilium tip. The mechanisms underlying this critical step in Hh signaling are unclear. We developed an assay to visualize GLI2, the primary GLI activator isoform, at single-particle resolution within the cilium. We found that GLI2 is a cargo of intraflagellar transport (IFT) machinery. Anterograde-biased IFT loading of GLI2 in a restricted time window following pathway activation results in the tip accumulation of GLI2. Unexpectedly, we found that the conserved Hh regulator KIF7, a nonmotile kinesin, is important for the temporal control of IFT-mediated GLI2 transport and retention of GLI2 at the cilium tip. Our findings underscore a design principle where a cilia-specific cytoskeletal transport system and an Hh pathway-specific cytoskeletal protein collaboratively regulate GLI2 trafficking for Hh signaling.
Collapse
Affiliation(s)
- Pei-I Ku
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jamuna S. Sreeja
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Abhishek Chadha
- Departments of Ophthalmology and Neurobiology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - David S. Williams
- Departments of Ophthalmology and Neurobiology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Martin F. Engelke
- Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Takahashi Y, Ishida Y, Yoshida S, Shin HW, Katoh Y, Nakayama K. Counterregulatory roles of GLI2 and GLI3 in osteogenic differentiation via Gli1 expression. J Cell Sci 2025; 138:jcs263556. [PMID: 39801296 DOI: 10.1242/jcs.263556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
The GLI1, GLI2 and GLI3 transcription factors mediate Hedgehog (Hh) signaling, which is crucial for bone development. During intramembranous ossification, mesenchymal stem cells (MSCs) are directly differentiated into osteoblasts. Under basal and Hh pathway-stimulated conditions, primary cilia play essential roles in proteolytic processing of GLI3 to its repressor form (GLI3R) and in activation of GLI2. Although previous studies in mice have suggested that Gli1 expression depends on GLI2 and GLI3, coordinated roles of GLI1, GLI2 and GLI3 in osteogenic differentiation are not fully understood at the cellular level. From the MSC line C3H10T1/2, we established Gli2-knockout (KO) and Gli3-KO cells, as well as constitutively GLI3R-producing (cGLI3R) cells, and expressed GLI1, GLI2 and GLI3 constructs in these cell lines. The results demonstrate at the cellular level that GLI2 and GLI3R counterregulate osteogenic differentiation via activation and repression of Gli1 expression, respectively; GLI3R, which results from GLI3 processing requiring protein kinase A-mediated phosphorylation, downregulates expression of Gli2 as well as Gli1; and GLI1 upregulates expression of Gli1 itself and Gli2, constituting a GLI1-GLI2 positive feedback loop.
Collapse
Affiliation(s)
- Yuto Takahashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yamato Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Ku PI, Sreeja JS, Chadha A, Williams DS, Engelke MF, Subramanian R. Collaborative role of two distinct cilium-specific cytoskeletal systems in driving Hedgehog-responsive transcription factor trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615198. [PMID: 39386719 PMCID: PMC11463396 DOI: 10.1101/2024.09.26.615198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Calibrated transcriptional outputs in cellular signaling require fine regulation of transcription factor activity. In vertebrate Hedgehog (Hh) signaling, the precise output of the final effectors, the GLI (Glioma-associated-oncogene) transcription factors, depends on the primary cilium. In particular, the formation of the activator form of GLI upon pathway initiation requires its concentration at the distal cilium tip. However, the mechanisms underlying this critical step in Hh signaling are unclear. We developed a real-time imaging assay to visualize GLI2, the primary GLI activator isoform, at single particle resolution within the cilium. We observed that GLI2 is a cargo of Intraflagellar Transport (IFT) machinery and is transported with anterograde bias during a restricted time window following pathway activation. Our findings position IFT as a crucial mediator of transcription factor transport within the cilium for vertebrate Hh signaling, in addition to IFT's well-established role in ciliogenesis. Surprisingly, a conserved Hh pathway regulator, the atypical non-motile kinesin KIF7, is critical for the temporal control of GLI2 transport by IFT and the spatial control of GLI2 localization at the cilium tip. This discovery underscores the collaborative role of a motile and a non-motile cilium-specific cytoskeletal system in determining the transcriptional output during Hh signaling.
Collapse
|
4
|
Kahane N, Dahan-Barda Y, Kalcheim C. A Spatio-Temporal-Dependent Requirement of Sonic Hedgehog in the Early Development of Sclerotome-Derived Vertebrae and Ribs. Int J Mol Sci 2024; 25:5602. [PMID: 38891790 PMCID: PMC11171667 DOI: 10.3390/ijms25115602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations.
Collapse
Affiliation(s)
| | | | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 9112102, Israel; (N.K.); (Y.D.-B.)
| |
Collapse
|
5
|
Draga M, Scaal M. Building a vertebra: Development of the amniote sclerotome. J Morphol 2024; 285:e21665. [PMID: 38100740 DOI: 10.1002/jmor.21665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
In embryonic development, the vertebral column arises from the sclerotomal compartment of the somites. The sclerotome is a mesenchymal cell mass which can be subdivided into several subpopulations specified by different regulatory mechanisms and giving rise to different parts of the vertebrae like vertebral body, vertebral arch, ribs, and vertebral joints. This review gives a short overview on the molecular and cellular basis of the formation of sclerotomal subdomains and the morphogenesis of their vertebral derivatives.
Collapse
Affiliation(s)
- Margarethe Draga
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Martin Scaal
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Rothschild SC, Row RH, Martin BL, Clements WK. Sclerotome is compartmentalized by parallel Shh and Bmp signaling downstream of CaMKII. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550086. [PMID: 37503202 PMCID: PMC10370206 DOI: 10.1101/2023.07.21.550086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The sclerotome in vertebrates comprises an embryonic population of cellular progenitors that give rise to diverse adult tissues including the axial skeleton, ribs, intervertebral discs, connective tissue, and vascular smooth muscle. In the thorax, this cell population arises in the ventromedial region of each of the segmented tissue blocks known as somites. How and when sclerotome adult tissue fates are specified and how the gene signatures that predate those fates are regulated has not been well studied. We have identified a previously unknown role for Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) in regulating sclerotome patterning in zebrafish. Mechanistically, CaMKII regulates the activity of parallel signaling inputs that pattern sclerotome gene expression. In one downstream arm, CaMKII regulates distribution of the established sclerotome-inductive morphogen sonic hedgehog (Shh), and thus Shh-dependent sclerotome genes. In the second downstream arm, we show a previously unappreciated inductive requirement for Bmp signaling, where CaMKII activates expression of bmp4 and consequently Bmp activity. Bmp activates expression of a second subset of stereotypical sclerotome genes, while simultaneously repressing Shh-dependent markers. Our work demonstrates that CaMKII promotes parallel Bmp and Shh signaling as a mechanism to first promote global sclerotome specification, and that these pathways subsequently regionally activate and refine discrete compartmental genetic programs. Our work establishes how the earliest unique gene signatures that likely drive distinct cell behaviors and adult fates arise within the sclerotome.
Collapse
|
7
|
Bian Y, Hahn H, Uhmann A. The hidden hedgehog of the pituitary: hedgehog signaling in development, adulthood and disease of the hypothalamic-pituitary axis. Front Endocrinol (Lausanne) 2023; 14:1219018. [PMID: 37476499 PMCID: PMC10355329 DOI: 10.3389/fendo.2023.1219018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Hedgehog signaling plays pivotal roles in embryonic development, adult homeostasis and tumorigenesis. However, its engagement in the pituitary gland has been long underestimated although Hedgehog signaling and pituitary embryogenic development are closely linked. Thus, deregulation of this signaling pathway during pituitary development results in malformation of the gland. Research of the last years further implicates a regulatory role of Hedgehog signaling in the function of the adult pituitary, because its activity is also interlinked with homeostasis, hormone production, and most likely also formation of neoplasms of the gland. The fact that this pathway can be efficiently targeted by validated therapeutic strategies makes it a promising candidate for treating pituitary diseases. We here summarize the current knowledge about the importance of Hedgehog signaling during pituitary development and review recent data that highlight the impact of Hedgehog signaling in the healthy and the diseased adult pituitary gland.
Collapse
|
8
|
Tesanovic S, Krenn PW, Aberger F. Hedgehog/GLI signaling in hematopoietic development and acute myeloid leukemia-From bench to bedside. Front Cell Dev Biol 2022; 10:944760. [PMID: 35990601 PMCID: PMC9388743 DOI: 10.3389/fcell.2022.944760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
While the underlying genetic alterations and biology of acute myeloid leukemia (AML), an aggressive hematologic malignancy characterized by clonal expansion of undifferentiated myeloid cells, have been gradually unraveled in the last decades, translation into clinical treatment approaches has only just begun. High relapse rates remain a major challenge in AML therapy and are to a large extent attributed to the persistence of treatment-resistant leukemic stem cells (LSCs). The Hedgehog (HH) signaling pathway is crucial for the development and progression of multiple cancer stem cell driven tumors, including AML, and has therefore gained interest as a therapeutic target. In this review, we give an overview of the major components of the HH signaling pathway, dissect HH functions in normal and malignant hematopoiesis, and specifically elaborate on the role of HH signaling in AML pathogenesis and resistance. Furthermore, we summarize preclinical and clinical HH inhibitor studies, leading to the approval of the HH pathway inhibitor glasdegib, in combination with low-dose cytarabine, for AML treatment.
Collapse
Affiliation(s)
| | - Peter W. Krenn
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
9
|
Cilia and their role in neural tube development and defects. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [DOI: 10.1097/rd9.0000000000000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Seki S, Iwasaki M, Makino H, Yahara Y, Miyazaki Y, Kamei K, Futakawa H, Nogami M, Tran Canh Tung N, Hirokawa T, Tsuji M, Kawaguchi Y. Direct Reprogramming and Induction of Human Dermal Fibroblasts to Differentiate into iPS-Derived Nucleus Pulposus-like Cells in 3D Culture. Int J Mol Sci 2022; 23:4059. [PMID: 35409417 PMCID: PMC8999916 DOI: 10.3390/ijms23074059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc (IVD) diseases are common spinal disorders that cause neck or back pain in the presence or absence of an underlying neurological disorder. IVD diseases develop on the basis of degeneration, and there are no established treatments for degeneration. IVD diseases may therefore represent a candidate for the application of regenerative medicine, potentially employing normal human dermal fibroblasts (NHDFs) induced to differentiate into nucleus pulposus (NP) cells. Here, we used a three-dimensional culture system to demonstrate that ectopic expression of MYC, KLF4, NOTO, SOX5, SOX6, and SOX9 in NHDFs generated NP-like cells, detected using Safranin-O staining. Quantitative PCR, microarray analysis, and fluorescence-activated cell sorting revealed that the induced NP cells exhibited a fully differentiated phenotype. These findings may significantly contribute to the development of effective strategies for treating IVD diseases.
Collapse
Affiliation(s)
- Shoji Seki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Mami Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Hiroto Makino
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Yasuhito Yahara
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan;
| | | | - Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Hayato Futakawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Makiko Nogami
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Nguyen Tran Canh Tung
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
- Department of Trauma and Orthopaedic Surgery, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Tatsuro Hirokawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Mamiko Tsuji
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Yoshiharu Kawaguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (M.I.); (H.M.); (K.K.); (H.F.); (M.N.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| |
Collapse
|
11
|
On the horizon: Hedgehog signaling to heal broken bones. Bone Res 2022; 10:13. [PMID: 35165260 PMCID: PMC8844053 DOI: 10.1038/s41413-021-00184-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 11/25/2021] [Indexed: 12/22/2022] Open
Abstract
Uncovering the molecular pathways that drive skeletal repair has been an ongoing challenge. Initial efforts have relied on in vitro assays to identify the key signaling pathways that drive cartilage and bone differentiation. While these assays can provide some clues, assessing specific pathways in animal models is critical. Furthermore, definitive proof that a pathway is required for skeletal repair is best provided using genetic tests. Stimulating the Hh (Hedgehog) pathway can promote cartilage and bone differentiation in cell culture assays. In addition, the application of HH protein or various pathway agonists in vivo has a positive influence on bone healing. Until recently, however, genetic proof that the Hh pathway is involved in bone repair has been lacking. Here, we consider both in vitro and in vivo studies that examine the role of Hh in repair and discuss some of the challenges inherent in their interpretation. We also identify needed areas of study considering a new appreciation for the role of cartilage during repair, the variety of cell types that may have differing roles in repair, and the recent availability of powerful lineage tracing techniques. We are optimistic that emerging genetic tools will make it possible to precisely define when and in which cells promoting Hh signaling can best promote skeletal repair, and thus, the clinical potential for targeting the Hh pathway can be realized.
Collapse
|
12
|
GLI transcriptional repression is inert prior to Hedgehog pathway activation. Nat Commun 2022; 13:808. [PMID: 35145123 PMCID: PMC8831537 DOI: 10.1038/s41467-022-28485-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/28/2022] [Indexed: 12/28/2022] Open
Abstract
The Hedgehog (HH) pathway regulates a spectrum of developmental processes through the transcriptional mediation of GLI proteins. GLI repressors control tissue patterning by preventing sub-threshold activation of HH target genes, presumably even before HH induction, while lack of GLI repression activates most targets. Despite GLI repression being central to HH regulation, it is unknown when it first becomes established in HH-responsive tissues. Here, we investigate whether GLI3 prevents precocious gene expression during limb development. Contrary to current dogma, we find that GLI3 is inert prior to HH signaling. While GLI3 binds to most targets, loss of Gli3 does not increase target gene expression, enhancer acetylation or accessibility, as it does post-HH signaling. Furthermore, GLI repression is established independently of HH signaling, but after its onset. Collectively, these surprising results challenge current GLI pre-patterning models and demonstrate that GLI repression is not a default state for the HH pathway. GLI repression has been presumed to be the default transcriptional state and important for pre-patterning tissues. Challenging current models, the authors show that GLI3 repression is inert in the limb bud before the onset of Hedgehog signaling.
Collapse
|
13
|
Lainez-González D, Serrano-López J, Alonso-Domínguez JM. Understanding the Hedgehog Signaling Pathway in Acute Myeloid Leukemia Stem Cells: A Necessary Step toward a Cure. BIOLOGY 2021; 10:biology10040255. [PMID: 33804919 PMCID: PMC8063837 DOI: 10.3390/biology10040255] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary The Hedgehog signaling pathway is related to the cell cycle. In particular, it is considered to play a fundamental role in the quiescence of leukemic stem cell (i.e., a temporary resting state without cell replication). Leukemic stem cells are the cells supposed to give rise to the relapses of the leukemia. Therefore, the Hedgehog pathway must be understood to improve the current treatments against acute myeloid leukemia and avoid the relapse of the disease. In this review, we gather the present knowledge about the physiological Hedgehog pathway function, the aberrant activation of Hedgehog in leukemia, and highlight the lack of evidence regarding some aspects of this important pathway. Finally, we summarize the acute myeloid leukemia treatments targeting this signaling pathway. Abstract A better understanding of how signaling pathways govern cell fate is fundamental to advances in cancer development and treatment. The initialization of different tumors and their maintenance are caused by the deregulation of different signaling pathways and cancer stem cell maintenance. Quiescent stem cells are resistant to conventional chemotherapeutic treatments and, consequently, are responsible for disease relapse. In this review we focus on the conserved Hedgehog (Hh) signaling pathway which is involved in regulating the cell cycle of hematopoietic and leukemic stem cells. Thus, we examine the role of the Hh signaling pathway in normal and leukemic stem cells and dissect its role in acute myeloid leukemia. We explain not only the connection between illness and the signaling pathway but also evaluate innovative therapeutic approaches that could affect the outcome of patients with acute myeloid leukemia. We found that many aspects of the Hedgehog signaling pathway remain unknown. The role of Hh has only been proven in embryo and hematopoietic stem cell development. Further research is needed to elucidate the role of GLI transcription factors for therapeutic targeting. Glasdegib, an SMO inhibitor, has shown clinical activity in acute myeloid leukemia; however, its mechanism of action is not clear.
Collapse
Affiliation(s)
- Daniel Lainez-González
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
| | - Juana Serrano-López
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
| | - Juan Manuel Alonso-Domínguez
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
- Hematology Department, Hospital Universitario Fundación Jiménez Díaz, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-918488100-2673
| |
Collapse
|
14
|
Shen M, Quertermous T, Fischbein MP, Wu JC. Generation of Vascular Smooth Muscle Cells From Induced Pluripotent Stem Cells: Methods, Applications, and Considerations. Circ Res 2021; 128:670-686. [PMID: 33818124 PMCID: PMC10817206 DOI: 10.1161/circresaha.120.318049] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The developmental origin of vascular smooth muscle cells (VSMCs) has been increasingly recognized as a major determinant for regional susceptibility or resistance to vascular diseases. As a human material-based complement to animal models and human primary cultures, patient induced pluripotent stem cell iPSC-derived VSMCs have been leveraged to conduct basic research and develop therapeutic applications in vascular diseases. However, iPSC-VSMCs (induced pluripotent stem cell VSMCs) derived by most existing induction protocols are heterogeneous in developmental origins. In this review, we summarize signaling networks that govern in vivo cell fate decisions and in vitro derivation of distinct VSMC progenitors, as well as key regulators that terminally specify lineage-specific VSMCs. We then highlight the significance of leveraging patient-derived iPSC-VSMCs for vascular disease modeling, drug discovery, and vascular tissue engineering and discuss several obstacles that need to be circumvented to fully unleash the potential of induced pluripotent stem cells for precision vascular medicine.
Collapse
Affiliation(s)
- Mengcheng Shen
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | - Thomas Quertermous
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | | | - Joseph C. Wu
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
15
|
Understanding paraxial mesoderm development and sclerotome specification for skeletal repair. Exp Mol Med 2020; 52:1166-1177. [PMID: 32788657 PMCID: PMC8080658 DOI: 10.1038/s12276-020-0482-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
Pluripotent stem cells (PSCs) are attractive regenerative therapy tools for skeletal tissues. However, a deep understanding of skeletal development is required in order to model this development with PSCs, and for the application of PSCs in clinical settings. Skeletal tissues originate from three types of cell populations: the paraxial mesoderm, lateral plate mesoderm, and neural crest. The paraxial mesoderm gives rise to the sclerotome mainly through somitogenesis. In this process, key developmental processes, including initiation of the segmentation clock, formation of the determination front, and the mesenchymal–epithelial transition, are sequentially coordinated. The sclerotome further forms vertebral columns and contributes to various other tissues, such as tendons, vessels (including the dorsal aorta), and even meninges. To understand the molecular mechanisms underlying these developmental processes, extensive studies have been conducted. These studies have demonstrated that a gradient of activities involving multiple signaling pathways specify the embryonic axis and induce cell-type-specific master transcription factors in a spatiotemporal manner. Moreover, applying the knowledge of mesoderm development, researchers have attempted to recapitulate the in vivo development processes in in vitro settings, using mouse and human PSCs. In this review, we summarize the state-of-the-art understanding of mesoderm development and in vitro modeling of mesoderm development using PSCs. We also discuss future perspectives on the use of PSCs to generate skeletal tissues for basic research and clinical applications. A deeper understanding of skeletal tissue development and improvements in tissue engineering will help pluripotent stem cell (PSC) therapies to reach their full potential for skeletal repair. The paraxial mesoderm, an embryonic germ layer, is crucial to the formation of healthy axial skeleton. Shoichiro Tani at the University of Tokyo, Japan, and co-workers reviewed current understanding of paraxial mesoderm development and studies involving in vitro PSC skeletal modeling. The formation of the paraxial mesoderm and associated connective tissues comprises multiple stages, and studies in vertebrate embryos have uncovered critical signaling pathways and cellular components important to PSC modeling. Although many individual cellular components can now be modeled, it remains challenging to recreate three-dimensional skeletal tissues. Such an achievement would facilitate a functioning model of bone metabolism, the next step in achieving skeletal regeneration.
Collapse
|
16
|
Chen JL, Chang CH, Tsai JW. Gli2 Rescues Delays in Brain Development Induced by Kif3a Dysfunction. Cereb Cortex 2020; 29:751-764. [PMID: 29342244 DOI: 10.1093/cercor/bhx356] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/23/2017] [Indexed: 01/01/2023] Open
Abstract
The primary cilium in neural stem cells plays distinct roles in different stages during cortical development. Ciliary dysfunctions in human (i.e., ciliopathy) cause developmental defects in multiple organs, including brain developmental delays, which lead to intellectual disabilities and cognitive deficits. However, effective treatment to this devastating developmental disorder is still lacking. Here, we first investigated the effects of ciliopathy on neural stem cells by knocking down Kif3a, a kinesin II motor required for ciliogenesis, in the neurogenic stage of cortical development by in utero electroporation of mouse embryos. Brains electroporated with Kif3a shRNA showed defects in neuronal migration and differentiation, delays in neural stem cell cycle progression, and failures in interkinetic nuclear migration. Interestingly, introduction of Gli1 and Gli2 both can restore the cell cycle progression by elevating cyclin D1 in neural stem cells. Remarkably, enforced Gli2 expression, but not Gli1, partially restored the ability of Kif3a-knockdown neurons to differentiate and move from the germinal ventricular zone to the cortical plate. Moreover, Cyclin D1 knockdown abolished Gli2's rescue effect. These findings suggest Gli2 may rescue neural stem cell proliferation, differentiation and migration through Cyclin D1 pathway and may serve as a potential therapeutic target for human ciliopathy syndromes through modulating the progression of neural stem cell cycle.
Collapse
Affiliation(s)
- Jia-Long Chen
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hsiang Chang
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Taiwan International Graduate Program (TIGP) in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center (BRC), Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
17
|
Quantitative Single-Cell Transcript Assessment of Biomarkers Supports Cellular Heterogeneity in the Bovine IVD. Vet Sci 2019; 6:vetsci6020042. [PMID: 31083612 PMCID: PMC6631975 DOI: 10.3390/vetsci6020042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Severe and chronic low back pain is often associated with intervertebral disc (IVD) degeneration. While imposing a considerable socio-economic burden worldwide, IVD degeneration is also severely impacting on the quality of life of affected individuals. Cell-based regenerative medicine approaches have moved into clinical trials, yet IVD cell identities in the mature disc remain to be fully elucidated and tissue heterogeneity exists, requiring a better characterization of IVD cells. The bovine coccygeal IVD is an accepted research model to study IVD mechano-biology and disc homeostasis. Recently, we identified novel IVD biomarkers in the outer annulus fibrosus (AF) and nucleus pulposus (NP) of the mature bovine coccygeal IVD through RNA in situ hybridization (AP-RISH) and z-proportion test. Here we follow up on Lam1, Thy1, Gli1, Gli3, Noto, Ptprc, Scx, Sox2 and Zscan10 with fluorescent RNA in situ hybridization (FL-RISH) and confocal microscopy. This permits sub-cellular transcript localization and the addition of quantitative single-cell derived values of mRNA expression levels to our previous analysis. Lastly, we used a Gaussian mixture modeling approach for the exploratory analysis of IVD cells. This work complements our earlier cell population proportion-based study, confirms the previously proposed biomarkers and indicates even further heterogeneity of cells in the outer AF and NP of a mature IVD.
Collapse
|
18
|
Gli Proteins: Regulation in Development and Cancer. Cells 2019; 8:cells8020147. [PMID: 30754706 PMCID: PMC6406693 DOI: 10.3390/cells8020147] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Gli proteins are transcriptional effectors of the Hedgehog signaling pathway. They play key roles in the development of many organs and tissues, and are deregulated in birth defects and cancer. We review the molecular mechanisms of Gli protein regulation in mammals, with special emphasis on posttranslational modifications and intracellular transport. We also discuss how Gli proteins interact with co-activators and co-repressors to fine-tune the expression of Hedgehog target genes. Finally, we provide an overview of the regulation of developmental processes and tissue regeneration by Gli proteins and discuss how these proteins are involved in cancer progression, both through canonical regulation via the Hedgehog pathway and through cross-talk with other signaling pathways.
Collapse
|
19
|
Ford MJ, Yeyati PL, Mali GR, Keighren MA, Waddell SH, Mjoseng HK, Douglas AT, Hall EA, Sakaue-Sawano A, Miyawaki A, Meehan RR, Boulter L, Jackson IJ, Mill P, Mort RL. A Cell/Cilia Cycle Biosensor for Single-Cell Kinetics Reveals Persistence of Cilia after G1/S Transition Is a General Property in Cells and Mice. Dev Cell 2019; 47:509-523.e5. [PMID: 30458140 PMCID: PMC6251972 DOI: 10.1016/j.devcel.2018.10.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/04/2018] [Accepted: 10/24/2018] [Indexed: 01/31/2023]
Abstract
The cilia and cell cycles are inextricably linked. Centrioles in the basal body of cilia nucleate the ciliary axoneme and sequester pericentriolar matrix (PCM) at the centrosome to organize the mitotic spindle. Cilia themselves respond to growth signals, prompting cilia resorption and cell cycle re-entry. We describe a fluorescent cilia and cell cycle biosensor allowing live imaging of cell cycle progression and cilia assembly and disassembly kinetics in cells and inducible mice. We define assembly and disassembly in relation to cell cycle stage with single-cell resolution and explore the intercellular heterogeneity in cilia kinetics. In all cells and tissues analyzed, we observed cilia that persist through the G1/S transition and into S/G2/M-phase. We conclude that persistence of cilia after the G1/S transition is a general property. This resource will shed light at an individual cell level on the interplay between the cilia and cell cycles in development, regeneration, and disease. Arl13bCerulean-Fucci2a biosensor labels the cell and cilia cycles Analysis of cells and mice reveals persistence of cilia after the G1/S transition Inducible mouse line allows lineage tracing and ex vivo live imaging Organisms can tolerate artificially lengthened cilia without overt phenotypes.
Collapse
Affiliation(s)
- Matthew J Ford
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Patricia L Yeyati
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Girish R Mali
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Margaret A Keighren
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Scott H Waddell
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Heidi K Mjoseng
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Adam T Douglas
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Emma A Hall
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Asako Sakaue-Sawano
- Centre of Brain Science, Laboratory for Cell Function and Dynamics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Centre of Brain Science, Laboratory for Cell Function and Dynamics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Richard R Meehan
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Luke Boulter
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Ian J Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; Roslin Institute, University of Edinburgh, Roslin EH25 9RG, UK
| | - Pleasantine Mill
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK.
| | - Richard L Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, Furness Building, Lancaster LA1 4YG, UK.
| |
Collapse
|
20
|
Li K, Kapper D, Youngs B, Kocsis V, Mondal S, Kraus P, Lufkin T. Potential biomarkers of the mature intervertebral disc identified at the single cell level. J Anat 2018; 234:16-32. [PMID: 30450595 PMCID: PMC6284444 DOI: 10.1111/joa.12904] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration and trauma is a major socio-economic burden and the focus of cell-based regenerative medicine approaches. Despite numerous ongoing clinical trials attempting to replace ailing IVD cells with mesenchymal stem cells, a solid understanding of the identity and nature of cells in a healthy mature IVD is still in need of refinement. Although anatomically simple, the IVD is comprised of heterogeneous cell populations. Therefore, methods involving cell pooling for RNA profiling could be misleading. Here, by using RNA in situ hybridization and z proportion test, we have identified potential novel biomarkers through single cell assessment. We quantified the proportion of RNA transcribing cells for 50 genetic loci in the outer annulus fibrosus (AF) and nucleus pulposus (NP) in coccygeal bovine discs isolated from tails of four skeletally mature animals. Our data reconfirm existing data and suggest 10 novel markers such as Lam1 and Thy1 in the outer AF and Gli1, Gli3, Noto, Scx, Ptprc, Sox2, Zscan10 and LOC101904175 in the NP, including pluripotency markers, that indicate stemness potential of IVD cells. These markers could be added to existing biomarker panels for cell type characterization. Furthermore, our data once more demonstrate heterogeneity in cells of the AF and NP, indicating the need for single cell assessment by methods such as RNA in situ hybridization. Our work refines the molecular identity of outer AF and NP cells, which can benefit future regenerative medicine and tissue engineering strategies in humans.
Collapse
Affiliation(s)
- Kangning Li
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Devin Kapper
- Department of Mathematics, Clarkson University, Potsdam, NY, USA
| | - Brittany Youngs
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Victoria Kocsis
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Sumona Mondal
- Department of Mathematics, Clarkson University, Potsdam, NY, USA
| | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
21
|
Ma RC, Jacobs CT, Sharma P, Kocha KM, Huang P. Stereotypic generation of axial tenocytes from bipartite sclerotome domains in zebrafish. PLoS Genet 2018; 14:e1007775. [PMID: 30388110 PMCID: PMC6235400 DOI: 10.1371/journal.pgen.1007775] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/14/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Development of a functional musculoskeletal system requires coordinated generation of muscles, bones, and tendons. However, how axial tendon cells (tenocytes) are generated during embryo development is still poorly understood. Here, we show that axial tenocytes arise from the sclerotome in zebrafish. In contrast to mouse and chick, the zebrafish sclerotome consists of two separate domains: a ventral domain and a previously undescribed dorsal domain. While dispensable for sclerotome induction, Hedgehog (Hh) signaling is required for the migration and maintenance of sclerotome derived cells. Axial tenocytes are located along the myotendinous junction (MTJ), extending long cellular processes into the intersomitic space. Using time-lapse imaging, we show that both sclerotome domains contribute to tenocytes in a dynamic and stereotypic manner. Tenocytes along a given MTJ always arise from the sclerotome of the adjacent anterior somite. Inhibition of Hh signaling results in loss of tenocytes and enhanced sensitivity to muscle detachment. Together, our work shows that axial tenocytes in zebrafish originate from the sclerotome and are essential for maintaining muscle integrity. The coordinated generation of bones, muscles and tendons at the correct time and location is critical for the development of a functional musculoskeletal system. Although it is well known that tendon is the connective tissue that attaches muscles to bones, it is still poorly understood how tendon cells, or tenocytes, are generated during embryo development. Using the zebrafish model, we identify trunk tenocytes located along the boundary of muscle segments. Using cell tracing in live animals, we find that tenocytes originate from the sclerotome, an embryonic structure that is previously known to generate the trunk skeleton. In contrast to higher vertebrates, the zebrafish sclerotome consists of two separate domains, a ventral domain and a novel dorsal domain. Both domains give rise to trunk tenocytes in a dynamic and stereotypic manner. Hedgehog (Hh) signaling, an important cell signaling pathway, is not required for sclerotome induction but essential for the generation of sclerotome derived cells. Inhibition of Hh signaling leads to loss of tenocytes and increased sensitivity to muscle detachment. Thus, our work shows that tenocytes develop from the sclerotome and play an important role in maintaining muscle integrity.
Collapse
Affiliation(s)
- Roger C. Ma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Craig T. Jacobs
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Priyanka Sharma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Katrinka M. Kocha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
22
|
Regulation of Gli2 stability by deubiquitinase OTUB2. Biochem Biophys Res Commun 2018; 505:113-118. [DOI: 10.1016/j.bbrc.2018.09.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 02/05/2023]
|
23
|
Séguin CA, Chan D, Dahia CL, Gazit Z. Latest advances in intervertebral disc development and progenitor cells. JOR Spine 2018; 1:e1030. [PMID: 30687811 PMCID: PMC6338208 DOI: 10.1002/jsp2.1030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
This paper is a concise review aiming to assemble the most relevant topics presented by the authors at ORS-Philadelphia Spine Research Society Fourth International Spine Research Symposium. It centers on the latest advances in disc development, its main structural entities, and the populating cells, with emphasis on the advances in pivotal molecular pathways responsible for forming the intervertebral discs (IVD). The objective of finding and emphasizing pathways and mechanisms that function to control tissue formation is to identify and to explore modifications occurring during normal aging, disease, and tissue repair. Thus, to comprehend that the cellular and molecular basis of tissue degeneration are crucial in the study of the dynamic interplay that includes cell-cell communication, gene regulation, and growth factors required to form a healthy and functional tissue during normal development.
Collapse
Affiliation(s)
- Cheryle A Séguin
- Schulich School of Medicine and Dentistry Bone and Joint Institute, The University of Western Ontario London ON Canada
| | - Danny Chan
- School of Biomedical Sciences LKS Faculty of Medicine, The University of Hong Kong Hong Kong China
| | - Chitra L Dahia
- Hospital for Special Surgery Weill Cornell Medical College New York New York
| | - Zulma Gazit
- Department of Surgery Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles California
| |
Collapse
|
24
|
Lupu FI, Burnett JB, Eggenschwiler JT. Cell cycle-related kinase regulates mammalian eye development through positive and negative regulation of the Hedgehog pathway. Dev Biol 2017; 434:24-35. [PMID: 29166577 DOI: 10.1016/j.ydbio.2017.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 01/20/2023]
Abstract
Cell cycle-related kinase (CCRK) is a conserved regulator of ciliogenesis whose loss in mice leads to a wide range of developmental defects, including exencephaly, preaxial polydactyly, skeletal abnormalities, and microphthalmia. Here, we investigate the role of CCRK in mouse eye development. Ccrk mutants show dramatic patterning defects, with an expansion of the optic stalk domain into the optic cup, as well as an expansion of the retinal pigment epithelium (RPE) into neural retina (NR) territory. In addition, Ccrk mutants display a shortened optic stalk. These defects are associated with bimodal changes in Hedgehog (Hh) pathway activity within the eye, including the loss of proximal, high level responses but a gain in distal, low level responses. We simultaneously removed the Hh activator GLI2 in Ccrk mutants (Ccrk-/-;Gli2-/-), which resulted in rescue of optic cup patterning and exacerbation of optic stalk length defects. Next, we disrupted the Hh pathway antagonist GLI3 in mutants lacking CCRK (Ccrk-/-;Gli3-/-), which lead to even greater expansion of the RPE markers into the NR domain and a complete loss of NR specification within the optic cup. These results indicate that CCRK functions in eye development by both positively and negatively regulating the Hh pathway, and they reveal distinct requirements for Hh signaling in patterning and morphogenesis of the eyes.
Collapse
Affiliation(s)
- Floria I Lupu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Jacob B Burnett
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
25
|
Sheybani-Deloui S, Chi L, Staite MV, Cain JE, Nieman BJ, Henkelman RM, Wainwright BJ, Potter SS, Bagli DJ, Lorenzo AJ, Rosenblum ND. Activated Hedgehog-GLI Signaling Causes Congenital Ureteropelvic Junction Obstruction. J Am Soc Nephrol 2017; 29:532-544. [PMID: 29109083 DOI: 10.1681/asn.2017050482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022] Open
Abstract
Intrinsic ureteropelvic junction obstruction is the most common cause of congenital hydronephrosis, yet the underlying pathogenesis is undefined. Hedgehog proteins control morphogenesis by promoting GLI-dependent transcriptional activation and inhibiting the formation of the GLI3 transcriptional repressor. Hedgehog regulates differentiation and proliferation of ureteric smooth muscle progenitor cells during murine kidney-ureter development. Histopathologic findings of smooth muscle cell hypertrophy and stroma-like cells, consistently observed in obstructing tissue at the time of surgical correction, suggest that Hedgehog signaling is abnormally regulated during the genesis of congenital intrinsic ureteropelvic junction obstruction. Here, we demonstrate that constitutively active Hedgehog signaling in murine intermediate mesoderm-derived renal progenitors results in hydronephrosis and failure to develop a patent pelvic-ureteric junction. Tissue obstructing the ureteropelvic junction was marked as early as E13.5 by an ectopic population of cells expressing Ptch2, a Hedgehog signaling target. Constitutive expression of GLI3 repressor in Ptch1-deficient mice rescued ectopic Ptch2 expression and obstructive hydronephrosis. Whole transcriptome analysis of isolated Ptch2+ cells revealed coexpression of genes characteristic of stromal progenitor cells. Genetic lineage tracing indicated that stromal cells blocking the ureteropelvic junction were derived from intermediate mesoderm-derived renal progenitors and were distinct from the smooth muscle or epithelial lineages. Analysis of obstructive ureteric tissue resected from children with congenital intrinsic ureteropelvic junction obstruction revealed a molecular signature similar to that observed in Ptch1-deficient mice. Together, these results demonstrate a Hedgehog-dependent mechanism underlying mammalian intrinsic ureteropelvic junction obstruction.
Collapse
Affiliation(s)
| | - Lijun Chi
- Program in Developmental and Stem Cell Biology
| | - Marian V Staite
- Program in Developmental and Stem Cell Biology.,Departments of Physiology
| | | | - Brian J Nieman
- Program in Physiology and Experimental Medicine, and.,Medical Biophysics and Medical Imaging, and.,Mouse Imaging Centre, Toronto Centre for Phenogenomics Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - R Mark Henkelman
- Medical Biophysics and Medical Imaging, and.,Mouse Imaging Centre, Toronto Centre for Phenogenomics Toronto, Ontario, Canada
| | - Brandon J Wainwright
- Genomics of Development and Disease Division, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; and
| | - S Steven Potter
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Darius J Bagli
- Program in Developmental and Stem Cell Biology.,Departments of Physiology.,Division of Urology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Armando J Lorenzo
- Division of Urology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, .,Departments of Physiology.,Division of Nephrology.,Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Fogel JL, Lakeland DL, Mah IK, Mariani FV. A minimally sufficient model for rib proximal-distal patterning based on genetic analysis and agent-based simulations. eLife 2017; 6:e29144. [PMID: 29068314 PMCID: PMC5693115 DOI: 10.7554/elife.29144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
For decades, the mechanism of skeletal patterning along a proximal-distal axis has been an area of intense inquiry. Here, we examine the development of the ribs, simple structures that in most terrestrial vertebrates consist of two skeletal elements-a proximal bone and a distal cartilage portion. While the ribs have been shown to arise from the somites, little is known about how the two segments are specified. During our examination of genetically modified mice, we discovered a series of progressively worsening phenotypes that could not be easily explained. Here, we combine genetic analysis of rib development with agent-based simulations to conclude that proximal-distal patterning and outgrowth could occur based on simple rules. In our model, specification occurs during somite stages due to varying Hedgehog protein levels, while later expansion refines the pattern. This framework is broadly applicable for understanding the mechanisms of skeletal patterning along a proximal-distal axis.
Collapse
Affiliation(s)
- Jennifer L Fogel
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell ResearchUniversity of Southern CaliforniaLos AngelesUnited States
| | | | - In Kyoung Mah
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell ResearchUniversity of Southern CaliforniaLos AngelesUnited States
| | - Francesca V Mariani
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell ResearchUniversity of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
27
|
Thorpe SD, Gambassi S, Thompson CL, Chandrakumar C, Santucci A, Knight MM. Reduced primary cilia length and altered Arl13b expression are associated with deregulated chondrocyte Hedgehog signaling in alkaptonuria. J Cell Physiol 2017; 232:2407-2417. [PMID: 28158906 PMCID: PMC5484994 DOI: 10.1002/jcp.25839] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/11/2017] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
Abstract
Alkaptonuria (AKU) is a rare inherited disease resulting from a deficiency of the enzyme homogentisate 1,2-dioxygenase which leads to the accumulation of homogentisic acid (HGA). AKU is characterized by severe cartilage degeneration, similar to that observed in osteoarthritis. Previous studies suggest that AKU is associated with alterations in cytoskeletal organization which could modulate primary cilia structure/function. This study investigated whether AKU is associated with changes in chondrocyte primary cilia and associated Hedgehog signaling which mediates cartilage degradation in osteoarthritis. Human articular chondrocytes were obtained from healthy and AKU donors. Additionally, healthy chondrocytes were treated with HGA to replicate AKU pathology (+HGA). Diseased cells exhibited shorter cilia with length reductions of 36% and 16% in AKU and +HGA chondrocytes respectively, when compared to healthy controls. Both AKU and +HGA chondrocytes demonstrated disruption of the usual cilia length regulation by actin contractility. Furthermore, the proportion of cilia with axoneme breaks and bulbous tips was increased in AKU chondrocytes consistent with defective regulation of ciliary trafficking. Distribution of the Hedgehog-related protein Arl13b along the ciliary axoneme was altered such that its localization was increased at the distal tip in AKU and +HGA chondrocytes. These changes in cilia structure/trafficking in AKU and +HGA chondrocytes were associated with a complete inability to activate Hedgehog signaling in response to exogenous ligand. Thus, we suggest that altered responsiveness to Hedgehog, as a consequence of cilia dysfunction, may be a contributing factor in the development of arthropathy highlighting the cilium as a novel target in AKU.
Collapse
Affiliation(s)
- Stephen D. Thorpe
- Institute of BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| | - Silvia Gambassi
- Dipartimento di BiotecnologieChimica e FarmaciaUniversità degli Studi di SienaSienaItaly
| | - Clare L. Thompson
- Institute of BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| | - Charmilie Chandrakumar
- Institute of BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| | - Annalisa Santucci
- Dipartimento di BiotecnologieChimica e FarmaciaUniversità degli Studi di SienaSienaItaly
| | - Martin M. Knight
- Institute of BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
28
|
Burnett JB, Lupu FI, Eggenschwiler JT. Proper ciliary assembly is critical for restricting Hedgehog signaling during early eye development in mice. Dev Biol 2017; 430:32-40. [PMID: 28778798 DOI: 10.1016/j.ydbio.2017.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 11/25/2022]
Abstract
Patterning of the vertebrate eye into optic stalk, retinal pigment epithelium (RPE) and neural retina (NR) territories relies on a number of signaling pathways, but how these signals are interpreted by optic progenitors is not well understood. The primary cilium is a microtubule-based organelle that is essential for Hedgehog (Hh) signaling, but it has also been implicated in the regulation of other signaling pathways. Here, we show that the optic primordium is ciliated during early eye development and that ciliogenesis is essential for proper patterning and morphogenesis of the mouse eye. Ift172 mutants fail to generate primary cilia and exhibit patterning defects that resemble those of Gli3 mutants, suggesting that cilia are required to restrict Hh activity during eye formation. Ift122 mutants, which produce cilia with abnormal morphology, generate optic vesicles that fail to invaginate to produce the optic cup. These mutants also lack formation of the lens, RPE and NR. Such phenotypic features are accompanied by strong, ectopic Hh pathway activity, evidenced by altered gene expression patterns. Removal of GLI2 from Ift122 mutants rescued several aspects of optic cup and lens morphogenesis as well as RPE and NR specification. Collectively, our data suggest that proper assembly of primary cilia is critical for restricting the Hedgehog pathway during eye formation in the mouse.
Collapse
Affiliation(s)
- Jacob B Burnett
- Department of Genetics, University of Georgia, Athens, GA 30602, United States
| | - Floria I Lupu
- Department of Genetics, University of Georgia, Athens, GA 30602, United States
| | | |
Collapse
|
29
|
Lawson LY, Harfe BD. Developmental mechanisms of intervertebral disc and vertebral column formation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [DOI: 10.1002/wdev.283] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Lisa Y. Lawson
- Department of Molecular Genetics and Microbiology; Genetics Institute University of Florida, College of Medicine; Gainesville FL USA
| | - Brian D. Harfe
- Department of Molecular Genetics and Microbiology; Genetics Institute University of Florida, College of Medicine; Gainesville FL USA
| |
Collapse
|
30
|
Xiang Y, Jiang L, Wang B, Xu Y, Cai H, Fu Q. Mutational screening of GLI3, SHH, preZRS, and ZRS in 102 Chinese children with nonsyndromic polydactyly. Dev Dyn 2017; 246:392-402. [PMID: 28127823 DOI: 10.1002/dvdy.24488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Polydactyly is a group of congenital limb malformations that show high degree of phenotypic variability and genetic heterogeneity. RESULTS In the present study, four genomic regions (exons of GLI3, SHH, and noncoding sequences of preZRS and ZRS) involved in hedgehog (Hh) signaling pathway were sequenced for 102 unrelated Chinese children with nonsyndromic polydactyly. Two GLI3 variants (c.2844 G > G/A; c.1486C > C/T) and four preZRS variants (chr7:156585336 A>G; chr7:156585421 C>A; chr7: 156585247 G>C; chr7:156585420 A > C) were observed in 2(2.0%) and 6(5.9%) patients, respectively. These variants are not over-represented in the Chinese healthy population. All the 8 cases showed preaxial polydactyly in hands. Additionally, no specific patterns of malformation predicted mutations in other candidate genes or sequences. CONCLUSIONS This is the first report of the assessment of the frequency of GLI3/SHH/preZRS/ZRS in Chinese patients to show any higher possibility of mutations or variants for the 4 genes or sequences in China. Developmental Dynamics 246:392-402, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying Xiang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Limin Jiang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Bo Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yunlan Xu
- Department of Pediatric Orthopedic, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Haiqing Cai
- Department of Pediatric Orthopedic, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Qihua Fu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
31
|
Sivakamasundari V, Kraus P, Sun W, Hu X, Lim SL, Prabhakar S, Lufkin T. A developmental transcriptomic analysis of Pax1 and Pax9 in embryonic intervertebral disc development. Biol Open 2017; 6:187-199. [PMID: 28011632 PMCID: PMC5312110 DOI: 10.1242/bio.023218] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pax1 and Pax9 play redundant, synergistic functions in the patterning and differentiation of the sclerotomal cells that give rise to the vertebral bodies and intervertebral discs (IVD) of the axial skeleton. They are conserved in mice and humans, whereby mutation/deficiency of human PAX1/PAX9 has been associated with kyphoscoliosis. By combining cell-type-specific transcriptome and ChIP-sequencing data, we identified the roles of Pax1/Pax9 in cell proliferation, cartilage development and collagen fibrillogenesis, which are vital in early IVD morphogenesis. Pax1 is up-regulated in the absence of Pax9, while Pax9 is unaffected by the loss of Pax1/Pax9 We identified the targets compensated by a single- or double-copy of Pax9 They positively regulate many of the cartilage genes known to be regulated by Sox5/Sox6/Sox9 and are connected to Sox5/Sox6 by a negative feedback loop. Pax1/Pax9 are intertwined with BMP and TGF-B pathways and we propose they initiate expression of chondrogenic genes during early IVD differentiation and subsequently become restricted to the outer annulus by the negative feedback mechanism. Our findings highlight how early IVD development is regulated spatio-temporally and have implications for understanding kyphoscoliosis.
Collapse
Affiliation(s)
- V Sivakamasundari
- The Single Cell Biology Laboratory, The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | - Petra Kraus
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Wenjie Sun
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Xiaoming Hu
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Siew Lan Lim
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Shyam Prabhakar
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Thomas Lufkin
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| |
Collapse
|
32
|
Chang CF, Chang YT, Millington G, Brugmann SA. Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline. PLoS Genet 2016; 12:e1006351. [PMID: 27802276 PMCID: PMC5089743 DOI: 10.1371/journal.pgen.1006351] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/08/2016] [Indexed: 11/19/2022] Open
Abstract
Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development. Primary cilia are ubiquitous organelles that serve to transduce molecular signals within a cell. Loss of functional primary cilia results in a disease class called ciliopathies. Ciliopathies have a broad range of phenotypes; however, severe facial anomalies are commonly associated with this disease class. The facial midline is particularly sensitive to loss of primary cilia, frequently undergoing a significant widening. This phenotype is similar to that which occurs when there are gain-of-function defects in the Sonic Hedgehog pathway. This manuscript addresses the molecular basis for midfacial widening in ciliopathies. Importantly, we determine mechanisms to both rescue and phenocopy the ciliopathic midfacial phenotype. In sum, this work provides novel insight into the molecular mechanisms of midfacial patterning and the extent to which loss of cilia impact that process.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Ya-Ting Chang
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Grethel Millington
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Samantha A. Brugmann
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
- * E-mail:
| |
Collapse
|
33
|
Chang YT, Chaturvedi P, Schock EN, Brugmann SA. Understanding Mechanisms of GLI-Mediated Transcription during Craniofacial Development and Disease Using the Ciliopathic Mutant, talpid2. Front Physiol 2016; 7:468. [PMID: 27799912 PMCID: PMC5065992 DOI: 10.3389/fphys.2016.00468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/29/2016] [Indexed: 01/23/2023] Open
Abstract
The primary cilium is a ubiquitous, microtubule-based organelle that cells utilize to transduce molecular signals. Ciliopathies are a group of diseases that are caused by a disruption in the structure or function of the primary cilium. Over 30% of all ciliopathies are primarily defined by their craniofacial phenotypes, which typically include midfacial defects, cleft lip/palate, micrognathia, aglossia, and craniosynostosis. The frequency and severity of craniofacial phenotypes in ciliopathies emphasizes the importance of the cilium during development of the craniofacial complex. Molecularly, many ciliopathic mutants, including the avian talpid2 (ta2), report pathologically high levels of full-length GLI3 (GLI3FL), which can go on to function as an activator (GLIA), and reduced production of truncated GLI3 (GLI3T), which can go on to function as a repressor (GLIR). These observations suggest that the craniofacial phenotypes of ciliary mutants like ta2 are caused either by excessive activity of the GLIA or reduced activity of GLIR. To decipher between these two scenarios, we examined GLI3 occupation at the regulatory regions of target genes and subsequent target gene expression. Using in silico strategies we identified consensus GLI binding regions (GBRs) in the avian genome and confirmed GLI3 binding to the regulatory regions of its targets by chromatin immunoprecipitation (ChIP). In ta2 mutants, there was a strikingly low number of GLI3 target genes that had significantly increased expression in facial prominences compared to the control embryo and GLI3 occupancy at GBRs associated with target genes was largely reduced. In vitro DNA binding assays, further supported ChIP results, indicated that the excessive GLI3FL generated in ta2 mutants did not bind to GBRs. In light of these results, we explored the possibility of GLI co-regulator proteins playing a role in regulatory mechanism of GLI-mediated transcription. Taken together our studies suggest that craniofacial ciliopathic phenotypes are produced via reduced GLIT production, allowing for target gene transcription to be mediated by the combinatorial code of GLI co-regulators.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Elizabeth N Schock
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA
| |
Collapse
|
34
|
Adhikari K, Fuentes-Guajardo M, Quinto-Sánchez M, Mendoza-Revilla J, Camilo Chacón-Duque J, Acuña-Alonzo V, Jaramillo C, Arias W, Lozano RB, Pérez GM, Gómez-Valdés J, Villamil-Ramírez H, Hunemeier T, Ramallo V, Silva de Cerqueira CC, Hurtado M, Villegas V, Granja V, Gallo C, Poletti G, Schuler-Faccini L, Salzano FM, Bortolini MC, Canizales-Quinteros S, Cheeseman M, Rosique J, Bedoya G, Rothhammer F, Headon D, González-José R, Balding D, Ruiz-Linares A. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation. Nat Commun 2016; 7:11616. [PMID: 27193062 PMCID: PMC4874031 DOI: 10.1038/ncomms11616] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 04/14/2016] [Indexed: 12/28/2022] Open
Abstract
We report a genome-wide association scan for facial features in ∼6,000 Latin Americans. We evaluated 14 traits on an ordinal scale and found significant association (P values<5 × 10−8) at single-nucleotide polymorphisms (SNPs) in four genomic regions for three nose-related traits: columella inclination (4q31), nose bridge breadth (6p21) and nose wing breadth (7p13 and 20p11). In a subsample of ∼3,000 individuals we obtained quantitative traits related to 9 of the ordinal phenotypes and, also, a measure of nasion position. Quantitative analyses confirmed the ordinal-based associations, identified SNPs in 2q12 associated to chin protrusion, and replicated the reported association of nasion position with SNPs in PAX3. Strongest association in 2q12, 4q31, 6p21 and 7p13 was observed for SNPs in the EDAR, DCHS2, RUNX2 and GLI3 genes, respectively. Associated SNPs in 20p11 extend to PAX1. Consistent with the effect of EDAR on chin protrusion, we documented alterations of mandible length in mice with modified Edar funtion. Humans show great diversity in facial appearance and this variation is highly heritable. Here, Andres Ruiz-Linares and colleagues examined facial features in admixed Latin Americans and identify genome-wide associations for 14 facial traits, including four gene loci (RUNX2, GLI3, DCHS2 and PAX1) influencing nose morphology.
Collapse
Affiliation(s)
- Kaustubh Adhikari
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Macarena Fuentes-Guajardo
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK.,Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica 1000009, Chile
| | - Mirsha Quinto-Sánchez
- Centro Nacional Patagónico, CONICET, Unidad de Diversidad, Sistematica y Evolucion, Puerto Madryn U912OACD, Argentina
| | - Javier Mendoza-Revilla
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Juan Camilo Chacón-Duque
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Victor Acuña-Alonzo
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK.,Laboratorio de Genética Molecular, Escuela Nacional de Antropologia e Historia, México City 14030, México
| | - Claudia Jaramillo
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Rodrigo Barquera Lozano
- Laboratorio de Genética Molecular, Escuela Nacional de Antropologia e Historia, México City 14030, México.,Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City 4510, México
| | - Gastón Macín Pérez
- Laboratorio de Genética Molecular, Escuela Nacional de Antropologia e Historia, México City 14030, México.,Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City 4510, México
| | - Jorge Gómez-Valdés
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City 04510, México
| | - Hugo Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City 4510, México
| | - Tábita Hunemeier
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Virginia Ramallo
- Centro Nacional Patagónico, CONICET, Unidad de Diversidad, Sistematica y Evolucion, Puerto Madryn U912OACD, Argentina.,Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Caio C Silva de Cerqueira
- Centro Nacional Patagónico, CONICET, Unidad de Diversidad, Sistematica y Evolucion, Puerto Madryn U912OACD, Argentina.,Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Lavinia Schuler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Francisco M Salzano
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City 4510, México
| | - Michael Cheeseman
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Javier Rosique
- Departamento de Antropología, Universidad de Antioquia, Medellín 5001000, Colombia
| | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | | | - Denis Headon
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Rolando González-José
- Centro Nacional Patagónico, CONICET, Unidad de Diversidad, Sistematica y Evolucion, Puerto Madryn U912OACD, Argentina
| | - David Balding
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK.,Schools of BioSciences and Mathematics and Statistics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
35
|
Hyun J, Wang S, Kim J, Rao KM, Park SY, Chung I, Ha CS, Kim SW, Yun YH, Jung Y. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat Commun 2016; 7:10993. [PMID: 27001906 PMCID: PMC4804167 DOI: 10.1038/ncomms10993] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/09/2016] [Indexed: 12/14/2022] Open
Abstract
Hedgehog (Hh) signalling regulates hepatic fibrogenesis. MicroRNAs (miRNAs) mediate various cellular processes; however, their role in liver fibrosis is unclear. Here we investigate regulation of miRNAs in chronically damaged fibrotic liver. MiRNA profiling shows that expression of miR-378 family members (miR-378a-3p, miR-378b and miR-378d) declines in carbon tetrachloride (CCl4)-treated compared with corn-oil-treated mice. Overexpression of miR-378a-3p, directly targeting Gli3 in activated hepatic stellate cells (HSCs), reduces expression of Gli3 and profibrotic genes but induces gfap, the inactivation marker of HSCs, in CCl4-treated liver. Smo blocks transcriptional expression of miR-378a-3p by activating the p65 subunit of nuclear factor-κB (NF-κB). The hepatic level of miR-378a-3p is inversely correlated with the expression of Gli3 in tumour and non-tumour tissues in human hepatocellular carcinoma. Our results demonstrate that miR-378a-3p suppresses activation of HSCs by targeting Gli3 and its expression is regulated by Smo-dependent NF-κB signalling, suggesting miR-378a-3p has therapeutic potential for liver fibrosis.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Korea
| | - Sihyung Wang
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Korea
| | - Jieun Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Korea
| | - Kummara Madhusudana Rao
- Department of Polymer Science and Engineering, College of Engineering, Pusan National University, Pusan, 46241, Korea
| | - Soo Yong Park
- Department of Polymer Science and Engineering, College of Engineering, Pusan National University, Pusan, 46241, Korea
| | - Ildoo Chung
- Department of Polymer Science and Engineering, College of Engineering, Pusan National University, Pusan, 46241, Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, College of Engineering, Pusan National University, Pusan, 46241, Korea
| | - Sang-Woo Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Korea
- Department of Biological Sciences, College of Natural Science, Pusan National University, 63-2 Pusandaehak-ro, Kumjeong-gu, Pusan 46241, Korea
| | - Yang H. Yun
- Department of Biomedical Engineering, College of Engineering, The University of Akron, Akron, Ohio 44685-0302, USA
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Korea
- Department of Biological Sciences, College of Natural Science, Pusan National University, 63-2 Pusandaehak-ro, Kumjeong-gu, Pusan 46241, Korea
| |
Collapse
|
36
|
Thompson CL, Wiles A, Poole CA, Knight MM. Lithium chloride modulates chondrocyte primary cilia and inhibits Hedgehog signaling. FASEB J 2016; 30:716-26. [PMID: 26499268 DOI: 10.1096/fj.15-274944] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2024]
Abstract
Lithium chloride (LiCl) exhibits significant therapeutic potential as a treatment for osteoarthritis. Hedgehog signaling is activated in osteoarthritis, where it promotes chondrocyte hypertrophy and cartilage matrix catabolism. Hedgehog signaling requires the primary cilium such that maintenance of this compartment is essential for pathway activity. Here we report that LiCl (50 mM) inhibits Hedgehog signaling in bovine articular chondrocytes such that the induction of GLI1 and PTCH1 expression is reduced by 71 and 55%, respectively. Pathway inhibition is associated with a 97% increase in primary cilia length from 2.09 ± 0.7 μm in untreated cells to 4.06 ± 0.9 μm in LiCl-treated cells. We show that cilia elongation disrupts trafficking within the axoneme with a 38% reduction in Arl13b ciliary localization at the distal region of the cilium, consistent with the role of Arl13b in modulating Hedgehog signaling. In addition, we demonstrate similar increases in cilia length in human chondrocytes in vitro and after administration of dietary lithium to Wistar rats in vivo. Our data provide new insights into the effects of LiCl on chondrocyte primary cilia and Hedgehog signaling and shows for the first time that pharmaceutical targeting of the primary cilium may have therapeutic benefits in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Clare L Thompson
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Anna Wiles
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - C Anthony Poole
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Martin M Knight
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
37
|
Chen H, Ji HY, Yang Y. The Expression of Gli3 and Teashirt3 in the Stenotic Tissue of Congenital Pelvi-Ureteric Junction Obstruction in Children. Int J Med Sci 2016; 13:412-7. [PMID: 27279789 PMCID: PMC4893554 DOI: 10.7150/ijms.14880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/13/2016] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The aim of this study was to determine the expression pattern of Gli3 and Teashirt3 in stenotic segments in children with congenital hydronephrosis due to pelvi-ureteric junction obstruction (PUJO) versus in normal control subjects. MATERIALS AND METHODS 60 patients and 10 controls were included in this study. Immunohistochemistry, Western blot and real-time PCR were used to investigate into the expression of Gli3 and Teashirt3. RESULTS Immunohistochemistry identified that Gli3 and Teashirt3 located in the cytoplasm of smooth muscle in normal ureter. However, the expression of Gli3 and Teashirt3 was negative in the PUJO group. Gli3 and Teashirt3 protein and mRNA expression was significantly decreased in PUJO group compared with control group on Western blot and real time PCR. CONCLUSIONS The expression of protein and mRNA of Gli3 and Teashirt3 was significantly decreased in the PUJO group. Gli3 and Teashirt3 protein was mainly located in the cytoplasm of smooth muscle in normal ureter. Gli3 and Teashirt3 might play an important role in the normal development of the ureter. The down-regulated Gli3 and Teashirt3 perhaps participated in the pathogenesis of the congenital hydronephrosis due to PUJO.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, P.R. China
| | - Hong-Ying Ji
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, P.R. China
| | - Yi Yang
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, P.R. China
| |
Collapse
|
38
|
Early development of the vertebral column. Semin Cell Dev Biol 2016; 49:83-91. [DOI: 10.1016/j.semcdb.2015.11.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022]
|
39
|
Thompson CL, Patel R, Kelly TAN, Wann AKT, Hung CT, Chapple JP, Knight MM. Hedgehog signalling does not stimulate cartilage catabolism and is inhibited by Interleukin-1β. Arthritis Res Ther 2015; 17:373. [PMID: 26705100 PMCID: PMC4718026 DOI: 10.1186/s13075-015-0891-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Background In osteoarthritis, chondrocytes adopt an abnormal hypertrophic morphology and upregulate the expression of the extracellular matrix-degrading enzymes, MMP-13 and ADAMTS-5. The activation of the hedgehog signalling pathway has been established in osteoarthritis and is thought to influence both of these processes. However, the role of this pathway in the initiation and progression of osteoarthritis is unclear as previous studies have been unable to isolate the effects of hedgehog pathway activation from other pathological processes. In this study we test the hypothesis that hedgehog pathway activation causes cartilage degradation in healthy cartilage and in an in vitro model of inflammatory arthritis. Methods Isolated articular chondrocytes from the bovine metacarpal-phalangeal joint were stimulated for up to 24 hours with the agonist, recombinant Indian hedgehog (r-Ihh). ADAMTS-5 and MMP-13 gene expression was quantified by real-time PCR. In addition, healthy bovine cartilage explants were treated with r-Ihh or the hedgehog antagonist, cyclopamine, and sGAG release into the media was measured over 72 hours. Studies were repeated using chondrocytes and cartilage explants from human knee joint. Finally, studies were conducted to determine the effect of hedgehog pathway activation on matrix catabolism in the presence of the pro-inflammatory cytokine, IL-1β. Results Addition of r-Ihh activated hedgehog signalling, confirmed by upregulation of Gli1 and Ptch1 expression, but did not increase ADAMTS-5 or MMP-13 expression in bovine or human chondrocytes. Furthermore, r-Ihh did not induce sGAG release in healthy bovine or human cartilage explants. IL-1β treatment induced sGAG release, but this response was not altered by the stimulation or inhibition of hedgehog signalling. Hedgehog pathway activation was downregulated by IL-1β. Conversely, r-Ihh weakly suppressed IL-1β-induced ADAMTS-5 expression. Conclusion Our results show for the first time that Indian hedgehog does not cause extracellular matrix degradation in healthy ex vivo cartilage or in the presence of IL-1β and that IL-1β downregulates Indian hedgehog induced signalling. Thus, we suggest reported hedgehog induced matrix catabolism in osteoarthritis must be due to its interaction with pathological factors other than IL-1β. Hence, hedgehog signalling and its downstream effects are highly context-dependent. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0891-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clare L Thompson
- Institute of Bioengineering and School of Engineering and Material Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Riana Patel
- Institute of Bioengineering and School of Engineering and Material Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Terri-Ann N Kelly
- Institute of Bioengineering and School of Engineering and Material Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK. .,Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - Angus K T Wann
- Institute of Bioengineering and School of Engineering and Material Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK. .,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - J Paul Chapple
- Center for Endocrinology, William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Martin M Knight
- Institute of Bioengineering and School of Engineering and Material Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
40
|
Corallo D, Trapani V, Bonaldo P. The notochord: structure and functions. Cell Mol Life Sci 2015; 72:2989-3008. [PMID: 25833128 PMCID: PMC11114051 DOI: 10.1007/s00018-015-1897-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/08/2023]
Abstract
The notochord is an embryonic midline structure common to all members of the phylum Chordata, providing both mechanical and signaling cues to the developing embryo. In vertebrates, the notochord arises from the dorsal organizer and it is critical for proper vertebrate development. This evolutionary conserved structure located at the developing midline defines the primitive axis of embryos and represents the structural element essential for locomotion. Besides its primary structural function, the notochord is also a source of developmental signals that patterns surrounding tissues. Among the signals secreted by the notochord, Hedgehog proteins play key roles during embryogenesis. The Hedgehog signaling pathway is a central regulator of embryonic development, controlling the patterning and proliferation of a wide variety of organs. In this review, we summarize the current knowledge on notochord structure and functions, with a particular emphasis on the key developmental events that take place in vertebrates. Moreover, we discuss some genetic studies highlighting the phenotypic consequences of impaired notochord development, which enabled to understand the molecular basis of different human congenital defects and diseases.
Collapse
Affiliation(s)
- Diana Corallo
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| | - Valeria Trapani
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| |
Collapse
|
41
|
Hsia EYC, Gui Y, Zheng X. Regulation of Hedgehog signaling by ubiquitination. FRONTIERS IN BIOLOGY 2015; 10:203-220. [PMID: 26366162 PMCID: PMC4564008 DOI: 10.1007/s11515-015-1343-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Hedgehog (Hh) signaling pathway plays crucial roles both in embryonic development and in adult stem cell function. The timing, duration and location of Hh signaling activity need to be tightly controlled. Abnormalities of Hh signal transduction lead to birth defects or malignant tumors. Recent data point to ubiquitination-related posttranslational modifications of several key Hh pathway components as an important mechanism of regulation of the Hh pathway. Here we review how ubiquitination regulates the localization, stability and activity of the key Hh signaling components.
Collapse
Affiliation(s)
- Elaine Y. C. Hsia
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Yirui Gui
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Xiaoyan Zheng
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
42
|
Tang C, Pan Y, Luo H, Xiong W, Zhu H, Ruan H, Wang J, Zou C, Tang L, Iguchi T, Long F, Wu X. Hedgehog signaling stimulates the conversion of cholesterol to steroids. Cell Signal 2015; 27:487-97. [PMID: 25582983 DOI: 10.1016/j.cellsig.2015.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 12/19/2014] [Accepted: 01/05/2015] [Indexed: 12/28/2022]
Abstract
Cholesterol modification of Hedgehog (Hh) ligands is fundamental for the activity of Hh signaling, and cholesterol biosynthesis is also required for intracellular Hh signaling transduction. Here, we investigated the roles and underlying mechanism of Hh signaling in metabolism of cholesterol. The main components of the Hh pathway are abundantly expressed in both human cytotrophoblasts and trophoblast-like cells. Activation of Hh signaling induces the conversion of cholesterol to progesterone (P4) and estradiol (E2) through up-regulating the expression of steroidogenic enzymes including P450 cholesterol side chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase type 1 (3β-HSD1), and aromatase. Moreover, inhibition of Hh signaling attenuates not only Hh-induced expression of steroidogenic enzymes but also the conversion of cholesterol to P4 and E2. Whereas Gli3 is required for Hh-induced P450scc expression, Gli2 mediates the induction of 3β-HSD1 and aromatase. Finally, in ovariectomized nude mice, systemic inhibition of Hh signaling by cyclopamine suppresses circulating P4 and E2 levels derived from a trophoblast-like choricarcinoma xenograft, and attenuates uterine response to P4 and E2. Together these results uncover a hitherto uncharacterized role of Hh signaling in metabolism of cholesterol.
Collapse
Affiliation(s)
- Chao Tang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yibin Pan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Huan Luo
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wenyi Xiong
- The Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Haibin Zhu
- The Affiliated First Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hongfeng Ruan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jirong Wang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chaochun Zou
- The Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lanfang Tang
- The Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Takuma Iguchi
- Department of Toxicology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fanxin Long
- Departments of Orthopaedic Surgery, Medicine and Developmental Biology Washington University in St. Louis, MO, 63110, USA
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, 310058, China; Departments of Orthopaedic Surgery, Medicine and Developmental Biology Washington University in St. Louis, MO, 63110, USA.
| |
Collapse
|
43
|
El-Magd MA, Allen S, McGonnell I, Mansour AA, Otto A, Patel K. Shh regulates chick Ebf1 gene expression in somite development. Gene 2015; 554:87-95. [DOI: 10.1016/j.gene.2014.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 11/16/2022]
|
44
|
Applebaum M, Kalcheim C. Mechanisms of myogenic specification and patterning. Results Probl Cell Differ 2015; 56:77-98. [PMID: 25344667 DOI: 10.1007/978-3-662-44608-9_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesodermal somites are initially composed of columnar cells arranged as a pseudostratified epithelium that undergoes sequential and spatially restricted changes to generate the sclerotome and dermomyotome, intermediate structures that develop into vertebrae, striated muscles of the body and limbs, dermis, smooth muscle, and endothelial cells. Regional cues were elucidated that impart differential traits upon the originally multipotent progenitors. How do somite cells and their intermediate progenitors interpret these extrinsic cues and translate them into various levels and/or modalities of intracellular signaling that lead to differential gene expression profiles remains a significant challenge. So is the understanding of how differential fate specification relates to complex cellular migrations prefiguring the formation of body muscles and vertebrae. Research in the past years has largely transited from a descriptive phase in which the lineages of distinct somite-derived progenitors and their cellular movements were traced to a more mechanistic understanding of the local function of genes and regulatory networks underlying lineage segregation and tissue organization. In this chapter, we focus on some major advances addressing the segregation of lineages from the dermomyotome, while discussing both cellular as well as molecular mechanisms, where possible.
Collapse
Affiliation(s)
- Mordechai Applebaum
- Department of Medical Neurobiology, IMRIC and ELSC-Hebrew University-Hadassah Medical School, Jerusalem, 9101201, 12272, Israel,
| | | |
Collapse
|
45
|
Ordóñez R, Gallo-Oller G, Martínez-Soto S, Legarra S, Pata-Merci N, Guegan J, Danglot G, Bernheim A, Meléndez B, Rey JA, Castresana JS. Genome-wide microarray expression and genomic alterations by array-CGH analysis in neuroblastoma stem-like cells. PLoS One 2014; 9:e113105. [PMID: 25392930 PMCID: PMC4231109 DOI: 10.1371/journal.pone.0113105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma has a very diverse clinical behaviour: from spontaneous regression to a very aggressive malignant progression and resistance to chemotherapy. This heterogeneous clinical behaviour might be due to the existence of Cancer Stem Cells (CSC), a subpopulation within the tumor with stem-like cell properties: a significant proliferation capacity, a unique self-renewal capacity, and therefore, a higher ability to form new tumors. We enriched the CSC-like cell population content of two commercial neuroblastoma cell lines by the use of conditioned cell culture media for neurospheres, and compared genomic gains and losses and genome expression by array-CGH and microarray analysis, respectively (in CSC-like versus standard tumor cells culture). Despite the array-CGH did not show significant differences between standard and CSC-like in both analyzed cell lines, the microarray expression analysis highlighted some of the most relevant biological processes and molecular functions that might be responsible for the CSC-like phenotype. Some signalling pathways detected seem to be involved in self-renewal of normal tissues (Wnt, Notch, Hh and TGF-β) and contribute to CSC phenotype. We focused on the aberrant activation of TGF-β and Hh signalling pathways, confirming the inhibition of repressors of TGF-β pathway, as SMAD6 and SMAD7 by RT-qPCR. The analysis of the Sonic Hedgehog pathway showed overexpression of PTCH1, GLI1 and SMO. We found overexpression of CD133 and CD15 in SIMA neurospheres, confirming that this cell line was particularly enriched in stem-like cells. This work shows a cross-talk among different pathways in neuroblastoma and its importance in CSC-like cells.
Collapse
Affiliation(s)
- Raquel Ordóñez
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Gabriel Gallo-Oller
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Soledad Martínez-Soto
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Sheila Legarra
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | | | | | | | | | - Bárbara Meléndez
- Molecular Pathology Research Unit, Department of Pathology, Virgen de la Salud Hospital, Toledo, Spain
| | - Juan A. Rey
- IdiPaz Research Unit, La Paz University Hospital, Madrid, Spain
| | - Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| |
Collapse
|
46
|
Gruchy N, Bigot N, Jeanne Pasquier C, Read MH, Odent S, Galera P, Leporrier N. Involvement and alteration of the Sonic Hedgehog pathway is associated with decreased cholesterol level in trisomy 18 and SLO amniocytes. Mol Genet Metab 2014; 112:177-82. [PMID: 24742993 DOI: 10.1016/j.ymgme.2014.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Trisomy 18 and Smith-Lemli-Opitz syndrome are two polymalformative conditions in which a cholesterol defect has been noted. When they occur prenatally, they are associated with a decreased maternal unconjugated estriol (uE(3)) level. Cholesterol plays an essential role in the Sonic Hedgehog pathway, allowing Shh protein maturation leading to its maximal activity. Many malformations in these two syndromes occur in Shh dependent tissues. We thus sought to assess whether a cholesterol defect could affect the Shh pathway and explain some of the observed malformations. MATERIALS AND METHODS We selected 14 cases of trisomy 18 and 3 cases of SLO in which the maternal uE(3) level was decreased and reported malformations were observed after fetopathological examination. We correlated the number of malformations with maternal uE(3) level. We then carried out cholesterol concentrations in separate culture media consisting of trisomy 18, SLO and control amniocytes. Finally, we analyzed the Shh pathway by testing the gene expression of several Shh components: GLI transcription factors, BMP2, BMP4, TGFβ1, COL1A1 and COL1A2. RESULTS AND DISCUSSION There was an inverse correlation between phenotypic severity and maternal uE(3) levels in SLO and trisomy 18. The cholesterol levels in the amniocyte culture media were correlated with maternal uE3 levels and were significantly lower in T18 and SLO amniocytes, reflecting cholesterol defects. There was an alteration in the Shh pathway since expression of several genes was decreased in T18 and SLO amniocytes. However, these cholesterol defects were not solely responsible for the altered Shh pathway and the malformations observed.
Collapse
Affiliation(s)
- N Gruchy
- Laboratoire de cytogénétique prénatale, service de Génétique, avenue Côte de Nacre, CHU Caen, UFR médecine, 14033 Caen cedex 9, France.
| | - N Bigot
- Laboratoire "Microenvironnement cellulaire et pathologie" (MILPAT) EA 4652, UFR Médecine Caen, avenue Côte de Nacre, 14033 Caen cedex 9, France.
| | - C Jeanne Pasquier
- Service d'Anatomie pathologique, CHU Caen, UFR Médecine, 14033 Caen cedex 9, France.
| | - M H Read
- Service de biochimie métabolique, CHU Caen, UFR Médecine, 14033 Caen cedex 9, France.
| | - S Odent
- Génétique des pathologies liées au développement, CNRS, UMR6290, UFR Médecine, Rennes, France.
| | - P Galera
- Laboratoire "Microenvironnement cellulaire et pathologie" (MILPAT) EA 4652, UFR Médecine Caen, avenue Côte de Nacre, 14033 Caen cedex 9, France.
| | - N Leporrier
- Laboratoire de cytogénétique prénatale, service de Génétique, avenue Côte de Nacre, CHU Caen, UFR médecine, 14033 Caen cedex 9, France.
| |
Collapse
|
47
|
Wilson NH, Stoeckli ET. Sonic hedgehog regulates its own receptor on postcrossing commissural axons in a glypican1-dependent manner. Neuron 2013; 79:478-91. [PMID: 23931997 DOI: 10.1016/j.neuron.2013.05.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2013] [Indexed: 11/28/2022]
Abstract
Upon reaching their intermediate target, the floorplate, commissural axons acquire responsiveness to repulsive guidance cues, allowing the axons to exit the midline and adopt a contralateral, longitudinal trajectory. The molecular mechanisms that regulate this switch from attraction to repulsion remain poorly defined. Here, we show that the heparan sulfate proteoglycan Glypican1 (GPC1) is required as a coreceptor for the Shh-dependent induction of Hedgehog-interacting protein (Hhip) in commissural neurons. In turn, Hhip is required for postcrossing axons to respond to a repulsive anteroposterior Shh gradient. Thus, Shh is a cue with dual function. In precrossing axons it acts as an attractive guidance molecule in a transcription-independent manner. At the same time, Shh binds to GPC1 to induce the expression of its own receptor, Hhip, which mediates the repulsive response of postcrossing axons to Shh. Our study characterizes a molecular mechanism by which navigating axons switch their responsiveness at intermediate targets.
Collapse
Affiliation(s)
- Nicole H Wilson
- Institute of Molecular Life Sciences, Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
48
|
Abbasi AA, Minhas R, Schmidt A, Koch S, Grzeschik KH. Cis-regulatory underpinnings of human GLI3 expression in embryonic craniofacial structures and internal organs. Dev Growth Differ 2013; 55:699-709. [PMID: 24102645 DOI: 10.1111/dgd.12076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/24/2013] [Accepted: 08/06/2013] [Indexed: 12/16/2022]
Abstract
The zinc finger transcription factor Gli3 is an important mediator of Sonic hedgehog (Shh) signaling. During early embryonic development Gli3 participates in patterning and growth of the central nervous system, face, skeleton, limb, tooth and gut. Precise regulation of the temporal and spatial expression of Gli3 is crucial for the proper specification of these structures in mammals and other vertebrates. Previously we reported a set of human intronic cis-regulators controlling almost the entire known repertoire of endogenous Gli3 expression in mouse neural tube and limbs. However, the genetic underpinning of GLI3 expression in other embryonic domains such as craniofacial structures and internal organs remain elusive. Here we demonstrate in a transgenic mice assay the potential of a subset of human/fish conserved non-coding sequences (CNEs) residing within GLI3 intronic intervals to induce reporter gene expression at known regions of endogenous Gli3 transcription in embryonic domains other than central nervous system (CNS) and limbs. Highly specific reporter expression was observed in craniofacial structures, eye, gut, and genitourinary system. Moreover, the comparison of expression patterns directed by these intronic cis-acting regulatory elements in mouse and zebrafish embryos suggests that in accordance with sequence conservation, the target site specificity of a subset of these elements remains preserved among these two lineages. Taken together with our recent investigations, it is proposed here that during vertebrate evolution the Gli3 expression control acquired multiple, independently acting, intronic enhancers for spatiotemporal patterning of CNS, limbs, craniofacial structures and internal organs.
Collapse
Affiliation(s)
- Amir A Abbasi
- Faculty of Biological Sciences, National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | | | | | | |
Collapse
|
49
|
Imiquimod directly inhibits Hedgehog signalling by stimulating adenosine receptor/protein kinase A-mediated GLI phosphorylation. Oncogene 2013; 32:5574-81. [PMID: 23995793 PMCID: PMC3898320 DOI: 10.1038/onc.2013.343] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/27/2013] [Accepted: 07/19/2013] [Indexed: 12/20/2022]
Abstract
Imiquimod (IMQ), a nucleoside analogue of the imidazoquinoline family, is used in the topical treatment of basal cell carcinoma (BCC) and other skin diseases. It is reported to be a TLR7 and TLR8 agonist and, as such, initiates a Th1 immune response by activating sentinel cells in the vicinity of the tumour. BCC is a hedgehog (HH)-driven malignancy with oncogenic glioma-associated oncogene (GLI) signalling activated in a ligand-independent manner. Here we show that IMQ can also directly repress HH signalling by negatively modulating GLI activity in BCC and medulloblastoma cells. Further, we provide evidence that the repressive effect of IMQ on HH signalling is not dependent on TLR/MYD88 signalling. Our results suggest a mechanism for IMQ engaging adenosine receptors (ADORAs) to control GLI signalling. Pharmacological activation of ADORA with either an ADORA agonist or IMQ resulted in a protein kinase A (PKA)-mediated GLI phosphorylation and reduction in GLI activator levels. The activation of PKA and HH pathway target gene downregulation in response to IMQ were abrogated by ADORA inhibition. Furthermore, activated Smoothened signalling, which positively signals to GLI transcription factors, could be effectively counteracted by IMQ. These results reveal a previously unknown mode of action of IMQ in the treatment of BCC and also suggest a role for ADORAs in the regulation of oncogenic HH signalling.
Collapse
|
50
|
Kahane N, Ribes V, Kicheva A, Briscoe J, Kalcheim C. The transition from differentiation to growth during dermomyotome-derived myogenesis depends on temporally restricted hedgehog signaling. Development 2013; 140:1740-50. [PMID: 23533174 DOI: 10.1242/dev.092726] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of a functional tissue requires coordination of the amplification of progenitors and their differentiation into specific cell types. The molecular basis for this coordination during myotome ontogeny is not well understood. Dermomytome progenitors that colonize the myotome first acquire myocyte identity and subsequently proliferate as Pax7-expressing progenitors before undergoing terminal differentiation. We show that the dynamics of sonic hedgehog (Shh) signaling is crucial for this transition in both avian and mouse embryos. Initially, Shh ligand emanating from notochord/floor plate reaches the dermomyotome, where it both maintains the proliferation of dermomyotome cells and promotes myogenic differentiation of progenitors that colonized the myotome. Interfering with Shh signaling at this stage produces small myotomes and accumulation of Pax7-expressing progenitors. An in vivo reporter of Shh activity combined with mouse genetics revealed the existence of both activator and repressor Shh activities operating on distinct subsets of cells during the epaxial myotomal maturation. In contrast to observations in mice, in avians Shh promotes the differentiation of both epaxial and hypaxial myotome domains. Subsequently, myogenic progenitors become refractory to Shh; this is likely to occur at the level of, or upstream of, smoothened signaling. The end of responsiveness to Shh coincides with, and is thus likely to enable, the transition into the growth phase of the myotome.
Collapse
Affiliation(s)
- Nitza Kahane
- Department of Medical Neurobiology, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|