1
|
Phelps PE, Ha SM, Khankan RR, Mekonnen MA, Juarez G, Ingraham Dixie KL, Chen YW, Yang X. Olfactory ensheathing cells from adult female rats are hybrid glia that promote neural repair. eLife 2025; 13:RP95629. [PMID: 40297980 PMCID: PMC12040321 DOI: 10.7554/elife.95629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Olfactory ensheathing cells (OECs) are unique glial cells found in both central and peripheral nervous systems where they support continuous axonal outgrowth of olfactory sensory neurons to their targets. Previously, we reported that following severe spinal cord injury, OECs transplanted near the injury site modify the inhibitory glial scar and facilitate axon regeneration past the scar border and into the lesion. To better understand the mechanisms underlying the reparative properties of OECs, we used single-cell RNA-sequencing of OECs from adult rats to study their gene expression programs. Our analyses revealed five diverse OEC subtypes, each expressing novel marker genes and pathways indicative of progenitor, axonal regeneration, secreted molecules, or microglia-like functions. We found substantial overlap of OEC genes with those of Schwann cells, but also with microglia, astrocytes, and oligodendrocytes. We confirmed established markers on cultured OECs, and localized select top genes of OEC subtypes in olfactory bulb tissue. We also show that OECs secrete Reelin and Connective tissue growth factor, extracellular matrix molecules which are important for neural repair and axonal outgrowth. Our results support that OECs are a unique hybrid glia, some with progenitor characteristics, and that their gene expression patterns indicate functions related to wound healing, injury repair, and axonal regeneration.
Collapse
Affiliation(s)
- Patricia E Phelps
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Rana R Khankan
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Mahlet A Mekonnen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Giovanni Juarez
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | | | - Yen-Wei Chen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| |
Collapse
|
2
|
Huang X, Jie S, Li W, Liu C. CHRDL2 activates the PI3K/AKT pathway to ameliorate glucocorticoid-induced damages to bone microvascular endothelial cells (BMECs). Heliyon 2024; 10:e33867. [PMID: 39050472 PMCID: PMC11268171 DOI: 10.1016/j.heliyon.2024.e33867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Steroid-induced avascular necrosis of the femoral head (ANFH) is characterized by the death of bone tissues, leading to the impairment of normal reparative processes within micro-fractures in the femoral head. Glucocorticoid (GCs)-induced bone microvascular endothelial cell (BMEC) damage has been reported to contribute to ANFH development. In this study, differentially expressed genes (DEGs) between necrosis of the femoral head (NFH) and normal samples were analyzed based on two sets of online expression profiles, GSE74089 and GSE26316. Chordin-like 2 (CHRDL2) was found to be dramatically downregulated in NFH samples. In GCs-stimulated BMECs, cellular damages were observed alongside CHRDL2 down-regulation. GCs-caused cell viability suppression, cell apoptosis promotion, tubule formation suppression, and cell migration suppression were partially abolished by CHRDL2 overexpression but amplified by CHRDL2 knockdown; consistent trends were observed in GCs-caused alterations in the protein levels of VEGFA, VEGFR2, and BMP-9 levels, and the ratios of Bax/Bcl-2 and cleaved-caspase3/Caspase3. GC stimulation significantly inhibited PI3K and Akt phosphorylation in BMECs, whereas the inhibitor effects of GCs on PI3K and Akt phosphorylation were partially attenuated by CHRDL2 overexpression but further amplified by CHRDL2 knockdown. Moreover, CHRDL2 overexpression caused improvement in GCs-induced damages to BMECs that were partially eliminated by PI3K inhibitor LY294002. In conclusion, CHRDL2 is down-regulated in NFH samples and GCs-stimulated BMECs. CHRDL2 overexpression could improve GCs-caused BMEC apoptosis and dysfunctions, possibly via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xianzhe Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shuo Jie
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wenzhao Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chan Liu
- International Medical Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
3
|
Hirota R, Teramoto A, Yoshimoto M, Takashima H, Yasuda N, Tsukamoto A, Iesato N, Emori M, Iba K, Kawaharada N, Yamashita T. Osteophyte Bridge Formation Correlates with Vascular Calcification and Cardiovascular Disease in Diffuse Idiopathic Skeletal Hyperostosis. J Clin Med 2023; 12:5412. [PMID: 37629454 PMCID: PMC10455897 DOI: 10.3390/jcm12165412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Diffuse idiopathic skeletal hyperostosis (DISH) is a noninflammatory spondyloarthropathy characterized by ectopic calcification of spinal cord tissue. Its etiology is possibly polygenic. However, its pathogenesis and systemic effects remain unclear. Recent studies have reported a high prevalence of DISH in heart failure patients. The authors investigated how the incidence and severity of DISH are associated with vascular calcification and the occurrence of cardiovascular events. In this retrospective chart review study, 500 patients with cardiovascular disease who underwent surgery (cardiovascular events group) and 500 patients with non-cardiovascular disease who underwent computed tomography scans (non-cardiovascular events group) were randomly selected to investigate the degree of ossification of the anterior longitudinal ligament and the incidence of DISH. We found that the incidence of DISH was higher in patients with cardiovascular events and that patients with DISH had more calcification of the coronary arteries and aorta. Next, we examined the relationship between the degree of coronary and aortic calcification, the incidence of DISH, and the degree of ossification of the anterior longitudinal ligament in the non-cardiovascular event group. The prevalence of DISH in the cardiovascular and non-cardiovascular groups was 31.4% and 16.5%, respectively (p = 0.007). Aortic calcification and a predominant degree of vascular calcification with a certain level of ossification of the anterior longitudinal ligament suggest some correlation between DISH and cardiovascular events. This study is important in understanding the pathophysiology and pathogenesis of DISH.
Collapse
Affiliation(s)
- Ryosuke Hirota
- Department of Orthopaedic Surgery, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Atsushi Teramoto
- Department of Orthopaedic Surgery, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Mitsunori Yoshimoto
- Department of Orthopaedic Surgery, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hiroyuki Takashima
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0808, Japan
| | - Naomi Yasuda
- Department of Cardiovascular Surgery, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Arihiko Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Noriyuki Iesato
- Department of Orthopaedic Surgery, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Makoto Emori
- Department of Orthopaedic Surgery, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Kousuke Iba
- Department of Orthopaedic Surgery, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Nobuyoshi Kawaharada
- Department of Cardiovascular Surgery, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| |
Collapse
|
4
|
Yu R, Han H, Chu S, Ding Y, Jin S, Wang Y, Jiang W, Liu Y, Zou Y, Wang M, Liu Q, Sun G, Jiang B, Gong Y. CUL4B orchestrates mesenchymal stem cell commitment by epigenetically repressing KLF4 and C/EBPδ. Bone Res 2023; 11:29. [PMID: 37268647 DOI: 10.1038/s41413-023-00263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 06/04/2023] Open
Abstract
Dysregulated lineage commitment of mesenchymal stem cells (MSCs) contributes to impaired bone formation and an imbalance between adipogenesis and osteogenesis during skeletal aging and osteoporosis. The intrinsic cellular mechanism that regulates MSC commitment remains unclear. Here, we identified Cullin 4B (CUL4B) as a critical regulator of MSC commitment. CUL4B is expressed in bone marrow MSCs (BMSCs) and downregulated with aging in mice and humans. Conditional knockout of Cul4b in MSCs resulted in impaired postnatal skeletal development with low bone mass and reduced bone formation. Moreover, depletion of CUL4B in MSCs aggravated bone loss and marrow adipose accumulation during natural aging or after ovariectomy. In addition, CUL4B deficiency in MSCs reduced bone strength. Mechanistically, CUL4B promoted osteogenesis and inhibited adipogenesis of MSCs by repressing KLF4 and C/EBPδ expression, respectively. The CUL4B complex directly bound to Klf4 and Cebpd and epigenetically repressed their transcription. Collectively, this study reveals CUL4B-mediated epigenetic regulation of the osteogenic or adipogenic commitment of MSCs, which has therapeutic implications in osteoporosis.
Collapse
Affiliation(s)
- Ruiqi Yu
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hong Han
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shuxian Chu
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yijun Ding
- The Key Laboratory of Liquid‒Solid Structural Evolution and Processing of Materials of Ministry of Education and Institute of Liquid Metal and Casting Technology, School of Materials Science and Engineering, Shandong University, Jinan, 250012, China
| | - Shiqi Jin
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yufeng Wang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wei Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuting Liu
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Molin Wang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiao Liu
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
5
|
Sethi A, Ruby JG, Veras MA, Telis N, Melamud E. Genetics implicates overactive osteogenesis in the development of diffuse idiopathic skeletal hyperostosis. Nat Commun 2023; 14:2644. [PMID: 37156767 PMCID: PMC10167361 DOI: 10.1038/s41467-023-38279-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Diffuse idiopathic skeletal hyperostosis (DISH) is a condition where adjacent vertebrae become fused through formation of osteophytes. The genetic and epidemiological etiology of this condition is not well understood. Here, we implemented a machine learning algorithm to assess the prevalence and severity of the pathology in ~40,000 lateral DXA scans in the UK Biobank Imaging cohort. We find that DISH is highly prevalent, above the age of 45, ~20% of men and ~8% of women having multiple osteophytes. Surprisingly, we find strong phenotypic and genetic association of DISH with increased bone mineral density and content throughout the entire skeletal system. Genetic association analysis identified ten loci associated with DISH, including multiple genes involved in bone remodeling (RUNX2, IL11, GDF5, CCDC91, NOG, and ROR2). Overall, this study describes genetics of DISH and implicates the role of overactive osteogenesis as a key driver of the pathology.
Collapse
Affiliation(s)
- Anurag Sethi
- Calico Life Sciences, LLC, South San Francisco, CA, 94080, USA.
| | - J Graham Ruby
- Calico Life Sciences, LLC, South San Francisco, CA, 94080, USA
| | - Matthew A Veras
- Calico Life Sciences, LLC, South San Francisco, CA, 94080, USA
| | - Natalie Telis
- Calico Life Sciences, LLC, South San Francisco, CA, 94080, USA
| | - Eugene Melamud
- Calico Life Sciences, LLC, South San Francisco, CA, 94080, USA.
| |
Collapse
|
6
|
Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies. Cells 2022; 11:cells11244034. [PMID: 36552796 PMCID: PMC9777397 DOI: 10.3390/cells11244034] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
Articular cartilage shows limited self-healing ability owing to its low cellularity and avascularity. Untreated cartilage defects display an increased propensity to degenerate, leading to osteoarthritis (OA). During OA progression, articular chondrocytes are subjected to significant alterations in gene expression and phenotype, including a shift towards a hypertrophic-like state (with the expression of collagen type X, matrix metalloproteinases-13, and alkaline phosphatase) analogous to what eventuates during endochondral ossification. Present OA management strategies focus, however, exclusively on cartilage inflammation and degradation. A better understanding of the hypertrophic chondrocyte phenotype in OA might give new insights into its pathogenesis, suggesting potential disease-modifying therapeutic approaches. Recent developments in the field of cellular/molecular biology and tissue engineering proceeded in the direction of contrasting the onset of this hypertrophic phenotype, but knowledge gaps in the cause-effect of these processes are still present. In this review we will highlight the possible advantages and drawbacks of using this approach as a therapeutic strategy while focusing on the experimental models necessary for a better understanding of the phenomenon. Specifically, we will discuss in brief the cellular signaling pathways associated with the onset of a hypertrophic phenotype in chondrocytes during the progression of OA and will analyze in depth the advantages and disadvantages of various models that have been used to mimic it. Afterwards, we will present the strategies developed and proposed to impede chondrocyte hypertrophy and cartilage matrix mineralization/calcification. Finally, we will examine the future perspectives of OA therapeutic strategies.
Collapse
|
7
|
Gerwin N, Scotti C, Halleux C, Fornaro M, Elliott J, Zhang Y, Johnson K, Shi J, Walter S, Li Y, Jacobi C, Laplanche N, Belaud M, Paul J, Glowacki G, Peters T, Wharton KA, Vostiar I, Polus F, Kramer I, Guth S, Seroutou A, Choudhury S, Laurent D, Gimbel J, Goldhahn J, Schieker M, Brachat S, Roubenoff R, Kneissel M. Angiopoietin-like 3-derivative LNA043 for cartilage regeneration in osteoarthritis: a randomized phase 1 trial. Nat Med 2022; 28:2633-2645. [PMID: 36456835 PMCID: PMC9800282 DOI: 10.1038/s41591-022-02059-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/28/2022] [Indexed: 12/02/2022]
Abstract
Osteoarthritis (OA) is a common, debilitating, chronic disease with no disease-modifying drug approved to date. We discovered LNA043-a derivative of angiopoietin-like 3 (ANGPTL3)-as a potent chondrogenesis inducer using a phenotypic screen with human mesenchymal stem cells. We show that LNA043 promotes chondrogenesis and cartilage matrix synthesis in vitro and regenerates hyaline articular cartilage in preclinical OA and cartilage injury models in vivo. LNA043 exerts at least part of these effects through binding to the fibronectin receptor, integrin α5β1 on mesenchymal stem cells and chondrocytes. In a first-in-human (phase 1), randomized, double-blinded, placebo-controlled, single ascending dose, single-center trial ( NCT02491281 ; sponsored by Novartis Pharmaceuticals), 28 patients with knee OA were injected intra-articularly with LNA043 or placebo (3:1 ratio) either 2 h, 7 d or 21 d before total knee replacement. LNA043 met its primary safety endpoint and showed short serum pharmacokinetics, cartilage penetration and a lack of immunogenicity (secondary endpoints). Post-hoc transcriptomics profiling of cartilage revealed that a single LNA043 injection reverses the OA transcriptome signature over at least 21 d, inducing the expression of hyaline cartilage matrix components and anabolic signaling pathways, while suppressing mediators of OA progression. LNA043 is a novel disease-modifying OA drug candidate that is currently in a phase 2b trial ( NCT04864392 ) in patients with knee OA.
Collapse
Affiliation(s)
- Nicole Gerwin
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | | | | - Mara Fornaro
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jimmy Elliott
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Yunyu Zhang
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Jian Shi
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Sandra Walter
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Yufei Li
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Carsten Jacobi
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nelly Laplanche
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Magali Belaud
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Thomas Peters
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Igor Vostiar
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Florine Polus
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ina Kramer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sabine Guth
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Didier Laurent
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Jörg Goldhahn
- Institute for Translational Medicine, ETH Zürich, Zürich, Switzerland
| | | | - Sophie Brachat
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | |
Collapse
|
8
|
Wang L, Xu W, Mei Y, Wang X, Liu W, Zhu Z, Ni Z. CHRDL2 promotes cell proliferation by activating the YAP/TAZ signaling pathway in gastric cancer. Free Radic Biol Med 2022; 193:158-170. [PMID: 36206931 DOI: 10.1016/j.freeradbiomed.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022]
Abstract
The encoding product of Chordin-like 2 (CHRDL2) is a member of the chordin family of proteins, which has been shown to be aberrantly expressed in several types of solid tumors. The regulatory underlying mechanisms of CHRDL2, however, remain poorly understood in gastric cancer (GC). In the present study, we determined that CHRDL2 was abnormally upregulated in human gastric cancer tissues compared with adjacent normal tissues. We also showed that CHRDL2 was positively associated with T stage, the pathological stage, distant metastasis, and poor patient prognosis. Furthermore, the serum level of CHRDL2 was obviously higher in GC patients than normal people, and is positively correlated with later TNM stage, deeper T stage, later N stage and poorer differentiation. Moreover, we verified that overexpressing CHRDL2 promoted the proliferation and cell cycle transition of GC cells both in vitro and in vivo, whereas the opposite results were observed in CHRDL2-depleted cells. In addition, the phosphorylation levels of Yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ) and the total levels MST2 were decreased in CHRDL2 overexpressing cells. Consistent with previous findings, we observed the converse results in CHRDL2-silenced GC cells. Additionally, knockdown of YAP and overexpression of STK3 (MST2) could reverse the effects of CHRDL2 overexpression-induced proliferation of GC cells in vitro. Taken together, CHRDL2 plays a key role by activating the YAP/TAZ pathway in gastric cancer. Therefore, CHRDL2 could serve as a potential therapeutic tool for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Lingquan Wang
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Xu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Mei
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xufeng Wang
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wentao Liu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhenggang Zhu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhentian Ni
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
9
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
10
|
Yu L, Lin YL, Yan M, Li T, Wu EY, Zimmel K, Qureshi O, Falck A, Sherman KM, Huggins SS, Hurtado DO, Suva LJ, Gaddy D, Cai J, Brunauer R, Dawson LA, Muneoka K. Hyaline cartilage differentiation of fibroblasts in regeneration and regenerative medicine. Development 2022; 149:274141. [PMID: 35005773 PMCID: PMC8917415 DOI: 10.1242/dev.200249] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Amputation injuries in mammals are typically non-regenerative; however, joint regeneration is stimulated by BMP9 treatment, indicating the presence of latent articular chondrocyte progenitor cells. BMP9 induces a battery of chondrogenic genes in vivo, and a similar response is observed in cultures of amputation wound cells. Extended cultures of BMP9-treated cells results in differentiation of hyaline cartilage, and single cell RNAseq analysis identified wound fibroblasts as BMP9 responsive. This culture model was used to identify a BMP9-responsive adult fibroblast cell line and a culture strategy was developed to engineer hyaline cartilage for engraftment into an acutely damaged joint. Transplanted hyaline cartilage survived engraftment and maintained a hyaline cartilage phenotype, but did not form mature articular cartilage. In addition, individual hypertrophic chondrocytes were identified in some samples, indicating that the acute joint injury site can promote osteogenic progression of engrafted hyaline cartilage. The findings identify fibroblasts as a cell source for engineering articular cartilage and establish a novel experimental strategy that bridges the gap between regeneration biology and regenerative medicine. Summary:In vivo articular cartilage regeneration serves as a model to develop novel approaches for engineering cartilage to repair damaged joints and identifies fibroblasts as a BMP9-inducible chondroprogenitor.
Collapse
Affiliation(s)
- Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yu-Lieh Lin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tao Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Emily Y. Wu
- Dewpoint Therapeutics, 6 Tide Street, Suite 300, Boston, MA 02210, USA
| | - Katherine Zimmel
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Alyssa Falck
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kirby M. Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Shannon S. Huggins
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Daniel Osorio Hurtado
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Larry J. Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - James Cai
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lindsay A. Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Tu J, Li W, Yang S, Yang P, Yan Q, Wang S, Lai K, Bai X, Wu C, Ding W, Cooper‐White J, Diwan A, Yang C, Yang H, Zou J. Single-Cell Transcriptome Profiling Reveals Multicellular Ecosystem of Nucleus Pulposus during Degeneration Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103631. [PMID: 34825784 PMCID: PMC8787427 DOI: 10.1002/advs.202103631] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Although degeneration of the nucleus pulposus (NP) is a major contributor to intervertebral disc degeneration (IVDD) and low back pain, the underlying molecular complexity and cellular heterogeneity remain poorly understood. Here, a comprehensive single-cell resolution transcript landscape of human NP is reported. Six novel human NP cells (NPCs) populations are identified by their distinct molecular signatures. The potential functional differences among NPC subpopulations are analyzed. Predictive transcripts, transcriptional factors, and signal pathways with respect to degeneration grades are explored. It is reported that fibroNPCs is the subpopulation for end-stage degeneration. CD90+NPCs are observed to be progenitor cells in degenerative NP tissues. NP-infiltrating immune cells comprise a previously unrecognized diversity of cell types, including granulocytic myeloid-derived suppressor cells (G-MDSCs). Integrin αM (CD11b) and oxidized low density lipoprotein receptor 1 (OLR1) as surface markers of NP-derived G-MDSCs are uncovered. The G-MDSCs are found to be enriched in mildly degenerated (grade II and III) NP tissues compared to severely degenerated (grade IV and V) NP tissues. Their immunosuppressive function and alleviation effects on NPCs' matrix degradation are revealed in vitro. Collectively, this study reveals the NPC-type complexity and phenotypic characteristics in NP, thereby providing new insights and clues for IVDD treatment.
Collapse
Affiliation(s)
- Ji Tu
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Spine Labs, St. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2217Australia
| | - Wentian Li
- Spine Labs, St. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2217Australia
| | - Sidong Yang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
- Department of Spine SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuang05000China
| | - Pengyi Yang
- Charles Perkins CentreThe University of SydneySydneyNSW2006Australia
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
- Computational Systems Biology GroupChildren's Medical Research InstituteFaculty of Medicine and HealthThe University of SydneyWestmeadNSW2145Australia
| | - Qi Yan
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Shenyu Wang
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Kaitao Lai
- The ANZAC Research InstituteConcord Repatriation General HospitalSydneyNSW2139Australia
- Concord Clinical SchoolFaculty of Medicine and HealthThe University of SydneySydneyNSW2139Australia
| | - Xupeng Bai
- Cancer Care CentreSt. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Cenhao Wu
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Wenyuan Ding
- Department of Spine SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuang05000China
| | - Justin Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQueensland4072Australia
| | - Ashish Diwan
- Spine Labs, St. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2217Australia
- Spine ServiceDepartment of Orthopaedic SurgerySt. George HospitalKogarahNew South Wales2217Australia
| | - Cao Yang
- Department of Orthopaedic SurgeryWuhan Union HospitalTongji Medical SchoolHuazhong University of Science and TechnologyWuhanHubei430022China
| | - Huilin Yang
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Jun Zou
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| |
Collapse
|
12
|
Facioli FL, da Silva AN, Dos Santos ED, de Camargo J, Warpechowski MB, da Oliveira Cruz J, Lof LM, Zanella R. From Mendel laws to whole genetic association study to decipher the swine mulefoot phenotype. Res Vet Sci 2021; 143:58-65. [PMID: 34974356 DOI: 10.1016/j.rvsc.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
The swine mulefoot (SM) is a rare condition characterized by a non-cloven hoof due to the partial or total fusion of the phalanges. No comprehensive study has been conducted to identify associated markers with this phenotype until now. We aimed to characterize the association between SNP and the mulefoot phenotype using a Genome-Wide Association Study (GWAS). An experimental population was produced using a half-sib mating where the male had the mulefoot phenotype and the females (n = 6) had cloven hoofs. The cross resulted in 27 (47%) animals with the mulefoot characteristic and 30 (53%) normal animals, indicating the possible dominant gene action. Animals were further genotyped using the Illumina PorcineSNP50k BeadChip, and SNPs were tested for associations. Twenty-nine SNPs located on the SSC15, SSC4, and SSCX were associated with the mulefoot phenotype (p-value <5 × 10-5). Six markers were found in the intronic regions of VWC2L, CATIP, PDK3, PCYT1B, and POLA1 genes. The marker rs81277626, on SSC15:116,886,110 bp, is located in the Von Willebrand Factor C Domain (VWC2L), a possible functional candidate gene. The VWC2L is part of a biological process involved with the bone morphogenetic protein (BMP) signaling pathway, previously associated with syndactyly in other species. In conclusion, the identified markers suggest the involvement of the VWC2L gene in the SM phenotype in this population.
Collapse
Affiliation(s)
- Fernanda Luiza Facioli
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Arthur Nery da Silva
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Ezequiel Davi Dos Santos
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Janine de Camargo
- Programa de Pós Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina Veterinária,Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Marson Bruck Warpechowski
- Departamento de Zootecnia, Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Juliano da Oliveira Cruz
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Lucas Mallmann Lof
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Ricardo Zanella
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Programa de Pós Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina Veterinária,Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
13
|
Wang YW, Wu CH, Lin TY, Luo CW. Expression profiling of ovarian BMP antagonists reveals the potential interaction between TWSG1 and the chordin subfamily in the ovary. Mol Cell Endocrinol 2021; 538:111457. [PMID: 34517078 DOI: 10.1016/j.mce.2021.111457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
The TGF-β superfamily members and their antagonists comprise an indispensable system that controls mammalian ovarian development in a sophisticated manner. In contrast to a plethora of studies on the ovary-expressed TGF-β superfamily members, knowledge regarding their antagonists, including their expression profiles and antagonism preferences, is still lacking. Using quantitative PCR in rats and transcriptomic dataset comparisons in mice and humans, we set out to characterize the relative expression levels of most antagonists in the mammalian ovary. We found that Twsg1 and Nbl1 are the most abundant BMP antagonists expressed in the rodent and human ovaries, respectively. TWSG1 has been reported to have synergistic action with the chordin subfamily, including CHRD and CHRDL1, the genes of which also showed moderate expression in the mammalian ovary. Therefore, their ovarian expression profiles and antagonisms against the ovary-expressed TGF-β superfamily members were further characterized. Bioactivity tests indicated that TWSG1 alone can directly inhibit the signaling of BMP6 or BMP7. In addition, it can further enhance the antagonizing ability of CHRD towards BMP2, BMP4, BMP7 and GDF5, or CHRDL1's antagonism towards BMP2, BMP4, GDF5 and activin A. In combination with their distinct transcript profiles in ovarian compartments, our findings suggest that TWSG1 may work coordinately with CHRD within theca/interstitial shells and also with CHRDL1 in developing granulosa cells; these interactions would modulate the intraovarian functions of the TGF-β superfamily members, such as the control of progesterone production.
Collapse
Affiliation(s)
- Ying-Wen Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chia-Hsu Wu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ting-Yu Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ching-Wei Luo
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
14
|
Jones G, Trajanoska K, Santanasto AJ, Stringa N, Kuo CL, Atkins JL, Lewis JR, Duong T, Hong S, Biggs ML, Luan J, Sarnowski C, Lunetta KL, Tanaka T, Wojczynski MK, Cvejkus R, Nethander M, Ghasemi S, Yang J, Zillikens MC, Walter S, Sicinski K, Kague E, Ackert-Bicknell CL, Arking DE, Windham BG, Boerwinkle E, Grove ML, Graff M, Spira D, Demuth I, van der Velde N, de Groot LCPGM, Psaty BM, Odden MC, Fohner AE, Langenberg C, Wareham NJ, Bandinelli S, van Schoor NM, Huisman M, Tan Q, Zmuda J, Mellström D, Karlsson M, Bennett DA, Buchman AS, De Jager PL, Uitterlinden AG, Völker U, Kocher T, Teumer A, Rodriguéz-Mañas L, García FJ, Carnicero JA, Herd P, Bertram L, Ohlsson C, Murabito JM, Melzer D, Kuchel GA, Ferrucci L, Karasik D, Rivadeneira F, Kiel DP, Pilling LC. Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women. Nat Commun 2021; 12:654. [PMID: 33510174 PMCID: PMC7844411 DOI: 10.1038/s41467-021-20918-w] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256,523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1 p = 4 × 10-17), arthritis (GDF5 p = 4 × 10-13), cell cycle control and cancer protection, regulation of transcription, and others involved in the development and maintenance of the musculoskeletal system. Using Mendelian randomization we report possible overlapping causal pathways, including diabetes susceptibility, haematological parameters, and the immune system. We conclude that muscle weakness in older adults has distinct mechanisms from continuous strength, including several pathways considered to be hallmarks of ageing.
Collapse
Affiliation(s)
- Garan Jones
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adam J Santanasto
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA
| | - Najada Stringa
- Department of Epidemiology and Biostatistics, Amsterdam UMC- Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Chia-Ling Kuo
- Biostatistics Center, Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, USA
| | - Janice L Atkins
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Joshua R Lewis
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- School fo Public Health University of Sydney, Sydney, NSW, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
| | - ThuyVy Duong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shengjun Hong
- Lübeck Interdisciplinary Plattform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Mary L Biggs
- Cardiovascular Health Research Unit, Department of Medicine, and Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Chloe Sarnowski
- Biostatistics Department, Boston University School of Public Health, Boston, MA, USA
| | - Kathryn L Lunetta
- Biostatistics Department, Boston University School of Public Health, Boston, MA, USA
| | - Toshiko Tanaka
- Longitudinal Study Section, Translational Gerontology branch, National Institute on Aging, Baltimore, MD, USA
| | - Mary K Wojczynski
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Cvejkus
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA
| | - Maria Nethander
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sahar Ghasemi
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Jingyun Yang
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Stefan Walter
- Department of Medicine and Public Health, Rey Juan Carlos University, Madrid, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Kamil Sicinski
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - B Gwen Windham
- Department of Medicine/Geriatrics, University of Mississippi School of Medicine, Jackson, MS, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Misa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Dominik Spira
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Department of Endocrinology and Metabolism, Berlin, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Department of Endocrinology and Metabolism, Berlin, Germany
- Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Nathalie van der Velde
- Department of Internal Medicine, Section of Geriatric Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisette C P G M de Groot
- Wageningen University, Division of Human Nutrition, PO-box 17, 6700 AA, Wageningen, The Netherlands
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Michelle C Odden
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Alison E Fohner
- Department of Epidemiology and Institute of Public Genetics, University of Washington, Seattle, WA, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | | | - Natasja M van Schoor
- Department of Epidemiology and Biostatistics, Amsterdam UMC- Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Martijn Huisman
- Department of Epidemiology and Biostatistics, Amsterdam UMC- Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Joseph Zmuda
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA
| | - Dan Mellström
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Orthopedics and Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - David A Bennett
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Leocadio Rodriguéz-Mañas
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Geriatrics, Getafe University Hospital, Getafe, Spain
| | - Francisco J García
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Geriatrics, Hospital Virgen del Valle, Complejo Hospitalario de Toledo, Toledo, Spain
| | | | - Pamela Herd
- Professor of Public Policy, Georgetown University, Washington, DC, USA
| | - Lars Bertram
- Lübeck Interdisciplinary Plattform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden
| | - Joanne M Murabito
- Section of General Internal Medicine, Boston University School of Medicine, Boston, MA, USA
| | - David Melzer
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - George A Kuchel
- Center on Aging, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | | | - David Karasik
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Douglas P Kiel
- Marcus Institute for Aging Research, Hebrew SeniorLife and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Broad Institute of MIT & Harvard, Boston, MA, USA
| | - Luke C Pilling
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
15
|
Simonds MM, Schlefman AR, McCahan SM, Sullivan KE, Rose CD, Brescia AC. Juvenile idiopathic arthritis fibroblast-like synoviocytes influence chondrocytes to alter BMP antagonist expression demonstrating an interaction between the two prominent cell types involved in endochondral bone formation. Pediatr Rheumatol Online J 2020; 18:89. [PMID: 33198759 PMCID: PMC7670793 DOI: 10.1186/s12969-020-00483-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/01/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND To examine critical interactions between juvenile idiopathic arthritis synovial fibroblasts (JFLS) and chondrocytes (Ch), and their role in bony overgrowth seen in patients with juvenile idiopathic arthritis (JIA). METHODS Control (CFLS) and JFLS were cultured in synoviocyte media containing recombinant BMP4. Ch were cultured in either CFLS or JFLS conditioned-media without stimulation. Media supernatants were analyzed by ELISA. RNA from conditioned media experiment was analyzed by ClariomS microarray. RESULTS As expected, genes expressed in untreated JFLS and CFLS cultured in synoviocyte media were similar to each other and this expression differed from untreated Ch cultured in chondrocyte media. JFLS favor BMP ligand gene expression while downregulating TGFβ receptors' expression. Noggin and chordin, antagonists with high affinity for BMP4, are JFLS- but not Ch-preferred regulators of BMP signaling. Compared to Ch, JFLS overexpress collagen X (COLX), a marker of chondrocyte hypertrophy. Exogenous BMP4 causes JFLS to significantly decrease expression of noggin and collagen II (COL2), a marker of chondrocyte proliferation, and causes overexpression of COLX and alkaline-phosphatase (ALP). Chondrocytes cultured in JFLS-conditioned media (Ch-JFLS) express BMP genes and favor chordin protein expression over other antagonists. Ch-JFLS have significantly increased expression of COL2 and significantly decreased expression of COLX. CONCLUSIONS These data suggest JFLS, in the presence of BMP4, undergo hypertrophy and that JFLS-conditioned media influence chondrocytes to become highly proliferative. To the authors' knowledge, no prior study has shown that JFLS and chondrocytes play a direct role in the bony overgrowth in joints of patients with JIA and that BMPs or regulation of these growth factors influence the interaction between two prominent synovial cell types.
Collapse
Affiliation(s)
- Megan M. Simonds
- grid.239281.30000 0004 0458 9676Nemours Biomedical Research, Nemours A.I. duPont Hospital for Children, 1701 Rockland Rd, Wilmington, DE 19803 USA
| | - Amanda R. Schlefman
- grid.239281.30000 0004 0458 9676Rheumatology, Nemours A.I. duPont Hospital for Children, Wilmington, DE USA ,grid.413611.00000 0004 0467 2330Rheumatology, Johns Hopkins All Childrens, St. Petersburg, FL USA
| | - Suzanne M. McCahan
- grid.239281.30000 0004 0458 9676Rheumatology, Nemours A.I. duPont Hospital for Children, Wilmington, DE USA
| | - Kathleen E. Sullivan
- grid.239552.a0000 0001 0680 8770Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Carlos D. Rose
- grid.239281.30000 0004 0458 9676Rheumatology, Nemours A.I. duPont Hospital for Children, Wilmington, DE USA
| | - AnneMarie C. Brescia
- grid.239281.30000 0004 0458 9676Rheumatology, Nemours A.I. duPont Hospital for Children, Wilmington, DE USA
| |
Collapse
|
16
|
Black RM, Wang Y, Struglics A, Lorenzo P, Tillgren V, Rydén M, Grodzinsky AJ, Önnerfjord P. Proteomic analysis reveals dexamethasone rescues matrix breakdown but not anabolic dysregulation in a cartilage injury model. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2. [PMID: 34322675 DOI: 10.1016/j.ocarto.2020.100099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objectives In this exploratory study, we used discovery proteomics to follow the release of proteins from bovine knee articular cartilage in response to mechanical injury and cytokine treatment. We also studied the effect of the glucocorticoid Dexamethasone (Dex) on these responses. Design Bovine cartilage explants were treated with either cytokines alone (10 ng/ml TNFα, 20 ng/ml IL-6, 100 ng/ml sIL-6R), a single compressive mechanical injury, cytokines and injury, or no treatment, and cultured in serum-free DMEM supplemented with 1% ITS for 22 days. All samples were incubated with or without addition of 100 nM Dex. Mass spectrometry and western blot analyses were performed on medium samples for the identification and quantification of released proteins. Results We identified 500 unique proteins present in all three biological replicates. Many proteins involved in the catabolic response of cartilage degradation had increased release after inflammatory stress. Dex rescued many of these catabolic effects. The release of some proteins involved in anabolic and chondroprotective processes was inconsistent, indicating differential effects on processes that may protect cartilage from injury. Dex restored only a small fraction of these to the control state, while others had their effects exacerbated by Dex exposure. Conclusions We identified proteins that were released upon cytokine treatment which could be potential biomarkers of the inflammatory contribution to cartilage degradation. We also demonstrated the imperfect rescue of Dex on the effects of cartilage degradation, with many catabolic factors being reduced, while other anabolic or chondroprotective processes were not.
Collapse
Affiliation(s)
- Rebecca Mae Black
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yang Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - André Struglics
- Department of Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Pilar Lorenzo
- Department of Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Viveka Tillgren
- Department of Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Martin Rydén
- Department of Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrik Önnerfjord
- Department of Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Sadeghi Z, Kenyon JD, Richardson B, Khalifa AO, Cartwright M, Conroy B, Caplan A, Cameron MJ, Hijaz A. Transcriptomic Analysis of Human Mesenchymal Stem Cell Therapy in Incontinent Rat Injured Urethra. Tissue Eng Part A 2020; 26:792-810. [PMID: 32614683 DOI: 10.1089/ten.tea.2020.0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Periurethral human mesenchymal stem cell (hMSC) injections are associated with functional improvement in animal models of postpartum stress urinary incontinence (SUI). However, limited data exist on the role of hMSCs in modulating gene expression in tissue repair after urethral injury. To this end, we quantified temporal gene expression modulation in hMSCs, and in injured rat urethral tissue, using RNA-seq in an animal model of SUI, over a 3-day period following urethral injury, and local hMSC injection. We injected PKH fluorescent-labeled hMSC into the periurethral space of rats following a 4 h vaginal distention (VD) (three rats per time point). Control rats underwent VD injury only, and all animals were euthanized at 12, 24, 36, 72 h postinjury. Rat urethral and vaginal tissues were frozen and sectioned. Fluorescent labeled hMSCs were distinguished from adjacent, unlabeled rat urethral tissue. RNA was prepared from hMSCs and urethral tissue obtained by laser dissection of frozen tissue sections and sequenced on an Illumina HiSeq 2500. Differentially expressed genes (DEGs) over 72 h were evaluated using a two-group t-test (p < 0.05). Our transcriptional analyses identified candidate genes involved in tissue injury that were broadly sorted by injury and exposure to hMSC throughout the first 72 h of acute phase of injury. DEGs in treated urethra, compared with untreated urethra, were functionally associated with tissue repair, angiogenesis, neurogenesis, and oxidative stress suppression. DEGs included a variety of cytokines, extracellular matrix stabilization and regeneration genes, cytokine signaling modification, cell cycle regulation, muscle differentiation, and stabilization. Moreover, our results revealed DEG changes in hMSCs (PKH-labeled) harvested from injured urethra. The expressions are related to DNA damage repair, transcription activation, stem cell regulation, cell survival, apoptosis, self-renewal, cell proliferation, migration, and injury response. Impact statement Stress urinary incontinence (SUI) affects nearly half of women over 40, resulting in reduced quality of life and increased health care cost. Development of SUI is multifactorial and strongly associated with vaginal delivery. While stem cell therapy in animal models of SUI and limited preliminary clinical trials demonstrate functional improvement of SUI, the role of stem cell therapy in modulating tissue repair is unclear impeding advanced clinical trials. Our work provides a new understanding of the transcriptional mechanisms with which human mesenchymal stem cells improve acute injury repair thus guiding the development of cell-based therapies for women with nonacute established SUI.
Collapse
Affiliation(s)
- Zhina Sadeghi
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, Ohio, USA
| | - Jonathan D Kenyon
- Biology Department, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ahmad O Khalifa
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, Ohio, USA.,Menoufia University Faculty of Medicine, Urology, Shebin El-Kom, Egypt
| | - Michael Cartwright
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Britt Conroy
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, Ohio, USA
| | - Arnold Caplan
- Biology Department, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Adonis Hijaz
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Cavalli E, Levinson C, Hertl M, Broguiere N, Brück O, Mustjoki S, Gerstenberg A, Weber D, Salzmann G, Steinwachs M, Barreto G, Zenobi-Wong M. Characterization of polydactyly chondrocytes and their use in cartilage engineering. Sci Rep 2019; 9:4275. [PMID: 30862915 PMCID: PMC6414529 DOI: 10.1038/s41598-019-40575-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/19/2019] [Indexed: 01/22/2023] Open
Abstract
Treating cartilage injuries and degenerations represents an open surgical challenge. The recent advances in cell therapies have raised the need for a potent off-the-shelf cell source. Intra-articular injections of TGF-β transduced polydactyly chondrocytes have been proposed as a chronic osteoarthritis treatment but despite promising results, the use of gene therapy still raises safety concerns. In this study, we characterized infant, polydactyly chondrocytes during in vitro expansion and chondrogenic re-differentiation. Polydactyly chondrocytes have a steady proliferative rate and re-differentiate in 3D pellet culture after up to five passages. Additionally, we demonstrated that polydactyly chondrocytes produce cartilage-like matrix in a hyaluronan-based hydrogel, namely transglutaminase cross-linked hyaluronic acid (HA-TG). We utilized the versatility of TG cross-linking to augment the hydrogels with heparin moieties. The heparin chains allowed us to load the scaffolds with TGF-β1, which induced cartilage-like matrix deposition both in vitro and in vivo in a subcutaneous mouse model. This strategy introduces the possibility to use infant, polydactyly chondrocytes for the clinical treatment of joint diseases.
Collapse
Affiliation(s)
- Emma Cavalli
- Tissue Engineering + Biofabrication, Institute for Biomechanics, Swiss Federal Institute of Technology Zürich (ETH Zürich), Otto-Stern-Weg 7, CH-8093, Zürich, Switzerland
| | - Clara Levinson
- Tissue Engineering + Biofabrication, Institute for Biomechanics, Swiss Federal Institute of Technology Zürich (ETH Zürich), Otto-Stern-Weg 7, CH-8093, Zürich, Switzerland
| | - Matthias Hertl
- Tissue Engineering + Biofabrication, Institute for Biomechanics, Swiss Federal Institute of Technology Zürich (ETH Zürich), Otto-Stern-Weg 7, CH-8093, Zürich, Switzerland
| | - Nicolas Broguiere
- Tissue Engineering + Biofabrication, Institute for Biomechanics, Swiss Federal Institute of Technology Zürich (ETH Zürich), Otto-Stern-Weg 7, CH-8093, Zürich, Switzerland
| | - Oscar Brück
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Anja Gerstenberg
- Division of Hand Surgery, University Children's Hospital, Steinwiesstrasse 75, 8032, Zürich, Switzerland
| | - Daniel Weber
- Division of Hand Surgery, University Children's Hospital, Steinwiesstrasse 75, 8032, Zürich, Switzerland
| | - Gian Salzmann
- Schulthess Clinic, Lengghalde 2, 8008, Zürich, Switzerland
| | - Matthias Steinwachs
- Sport Clinic Zürich Hirslanden, Witellikerstrasse 40, 8032, Zürich, Switzerland
| | - Gonçalo Barreto
- Tissue Engineering + Biofabrication, Institute for Biomechanics, Swiss Federal Institute of Technology Zürich (ETH Zürich), Otto-Stern-Weg 7, CH-8093, Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication, Institute for Biomechanics, Swiss Federal Institute of Technology Zürich (ETH Zürich), Otto-Stern-Weg 7, CH-8093, Zürich, Switzerland.
| |
Collapse
|
19
|
Lee JY, Matthias N, Pothiawala A, Ang BK, Lee M, Li J, Sun D, Pigeot S, Martin I, Huard J, Huang Y, Nakayama N. Pre-transplantational Control of the Post-transplantational Fate of Human Pluripotent Stem Cell-Derived Cartilage. Stem Cell Reports 2018; 11:440-453. [PMID: 30057264 PMCID: PMC6092881 DOI: 10.1016/j.stemcr.2018.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/24/2023] Open
Abstract
Cartilage pellets generated from ectomesenchymal progeny of human pluripotent stem cells (hPSCs) in vitro eventually show signs of commitment of chondrocytes to hypertrophic differentiation. When transplanted subcutaneously, most of the surviving pellets were fully mineralized by 8 weeks. In contrast, treatment with the adenylyl cyclase activator, forskolin, in vitro resulted in slightly enlarged cartilage pellets containing an increased proportion of proliferating immature chondrocytes that expressed very low levels of hypertrophic/terminally matured chondrocyte-specific genes. Forskolin treatment also enhanced hyaline cartilage formation by reducing type I collagen gene expression and increasing sulfated glycosaminoglycan accumulation in the developed cartilage. Chondrogenic mesoderm from hPSCs and dedifferentiated nasal chondrocytes responded similarly to forskolin. Furthermore, forskolin treatment in vitro increased the frequency at which the cartilage pellets maintained unmineralized chondrocytes after subcutaneous transplantation. Thus, the post-transplantational fate of chondrocytes originating from hPSC-derived chondroprogenitors can be controlled during their genesis in vitro. Forskolin/cAMP suppresses/delays BMP-induced chondrocyte maturation in vitro Forskolin supports chondrocyte proliferation and hyaline chondrogenesis in vitro Forskolin suppresses osteogenesis and BMP signaling gene expression in cartilage In vitro forskolin treatment improves in vivo maintenance of uncalcified cartilage
Collapse
Affiliation(s)
- John Y Lee
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 1825 Pressler St., Houston, TX 77030, USA
| | - Nadine Matthias
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 1825 Pressler St., Houston, TX 77030, USA
| | - Azim Pothiawala
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 1825 Pressler St., Houston, TX 77030, USA
| | - Bryan K Ang
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 1825 Pressler St., Houston, TX 77030, USA
| | - Minjung Lee
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Jia Li
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Deqiang Sun
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Sebastien Pigeot
- Department of Biomedicine, University Hospital Basel, Basel CH-4031, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, Basel CH-4031, Switzerland
| | - Johnny Huard
- Department of Orthopaedic Surgery, UTHealth Medical School, Houston, TX 77030, USA
| | - Yun Huang
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Naoki Nakayama
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 1825 Pressler St., Houston, TX 77030, USA; Department of Orthopaedic Surgery, UTHealth Medical School, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
21
|
Sun J, Liu X, Gao H, Zhang L, Ji Q, Wang Z, Zhou L, Wang Y, Sui H, Fan Z, Li Q. Overexpression of colorectal cancer oncogene CHRDL2 predicts a poor prognosis. Oncotarget 2017; 8:11489-11506. [PMID: 28009989 PMCID: PMC5355280 DOI: 10.18632/oncotarget.14039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) both promote and suppress tumorigenesis, and multiple BMP antagonists reportedly contribute to cancer progression. In this study, we demonstrated that the BMP antagonist Chordin-like 2 (CHRDL2) is upregulated in colorectal cancer (CRC) tissues, and that CHRDL2 levels correlate with clinical features of CRC patients, including tumor size, TNM staging, and tumor differentiation. In addition, survival rate and Cox proportional hazards model analyses showed that high CHRDL2 levels correlate with a poor prognosis in CRC. Moreover, CHRDL2 promoted CRC cell proliferation in vitro and in vivo, perhaps through up-regulation of Cyclin D1 and down-regulation of P21. Co-immunoprecipitation assays showed that CHRDL2 bound to BMPs, which inhibited p-Smad1/5, thereby promoting CRC cell proliferation and inhibiting apoptosis. These results suggest CHRDL2 could serve as a biomarker of poor prognosis in CRC, and provide evidence that CHRDL2 acts as an oncogene in human CRC, making it a novel potential therapeutic target.
Collapse
Affiliation(s)
- Jian Sun
- Interventional Cancer Institute of Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xuan Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Gao
- Interventional Cancer Institute of Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Long Zhang
- Interventional Cancer Institute of Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziyuan Wang
- Interventional Cancer Institute of Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Cancer Institute of Traditional Chinese Medicine & Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhongze Fan
- Interventional Cancer Institute of Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
22
|
Steinberg J, Ritchie GRS, Roumeliotis TI, Jayasuriya RL, Clark MJ, Brooks RA, Binch ALA, Shah KM, Coyle R, Pardo M, Le Maitre CL, Ramos YFM, Nelissen RGHH, Meulenbelt I, McCaskie AW, Choudhary JS, Wilkinson JM, Zeggini E. Integrative epigenomics, transcriptomics and proteomics of patient chondrocytes reveal genes and pathways involved in osteoarthritis. Sci Rep 2017; 7:8935. [PMID: 28827734 PMCID: PMC5566454 DOI: 10.1038/s41598-017-09335-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/17/2017] [Indexed: 11/09/2022] Open
Abstract
Osteoarthritis (OA) is a common disease characterized by cartilage degeneration and joint remodeling. The underlying molecular changes underpinning disease progression are incompletely understood. We investigated genes and pathways that mark OA progression in isolated primary chondrocytes taken from paired intact versus degraded articular cartilage samples across 38 patients undergoing joint replacement surgery (discovery cohort: 12 knee OA, replication cohorts: 17 knee OA, 9 hip OA patients). We combined genome-wide DNA methylation, RNA sequencing, and quantitative proteomics data. We identified 49 genes differentially regulated between intact and degraded cartilage in at least two -omics levels, 16 of which have not previously been implicated in OA progression. Integrated pathway analysis implicated the involvement of extracellular matrix degradation, collagen catabolism and angiogenesis in disease progression. Using independent replication datasets, we showed that the direction of change is consistent for over 90% of differentially expressed genes and differentially methylated CpG probes. AQP1, COL1A1 and CLEC3B were significantly differentially regulated across all three -omics levels, confirming their differential expression in human disease. Through integration of genome-wide methylation, gene and protein expression data in human primary chondrocytes, we identified consistent molecular players in OA progression that replicated across independent datasets and that have translational potential.
Collapse
Affiliation(s)
- Julia Steinberg
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Cancer Research Division, Cancer Council NSW, Sydney, NSW, 2011, Australia
| | - Graham R S Ritchie
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.,Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, Edinburgh, EH16 4UX, UK.,MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Theodoros I Roumeliotis
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Raveen L Jayasuriya
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Matthew J Clark
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Roger A Brooks
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Box 180, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Abbie L A Binch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Karan M Shah
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Rachael Coyle
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Mercedes Pardo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Yolande F M Ramos
- Department of Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, 2300RC, The Netherlands
| | - Rob G H H Nelissen
- Department of Orthopedics, Leiden University Medical Center, Leiden, 2300RC, The Netherlands
| | - Ingrid Meulenbelt
- Department of Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, 2300RC, The Netherlands
| | - Andrew W McCaskie
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Box 180, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jyoti S Choudhary
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| | - Eleftheria Zeggini
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
23
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
24
|
Ling IT, Rochard L, Liao EC. Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification. Dev Biol 2016; 421:219-232. [PMID: 27908786 PMCID: PMC5266562 DOI: 10.1016/j.ydbio.2016.11.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/09/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Abstract
Formation of the mandible requires progressive morphologic change, proliferation, differentiation and organization of chondrocytes preceding osteogenesis. The Wnt signaling pathway is involved in regulating bone development and maintenance. Chondrocytes that are fated to become bone require Wnt to polarize and orientate appropriately to initiate the endochondral ossification program. Although the canonical Wnt signaling has been well studied in the context of bone development, the effects of non-canonical Wnt signaling in regulating the timing of cartilage maturation and subsequent bone formation in shaping ventral craniofacial structure is not fully understood.. Here we examined the role of the non-canonical Wnt signaling pathway (wls, gpc4, wnt5b and wnt9a) in regulating zebrafish Meckel's cartilage maturation to the onset of osteogenic differentiation. We found that disruption of wls resulted in a significant loss of craniofacial bone, whereas lack of gpc4, wnt5b and wnt9a resulted in severely delayed endochondral ossification. This study demonstrates the importance of the non-canonical Wnt pathway in regulating coordinated ventral cartilage morphogenesis and ossification.
Collapse
Affiliation(s)
- Irving Tc Ling
- Center for Regenerative Medic ine, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, MA 02114, USA; School of Medicine, Veterinary and Life Sciences, Glasgow University, UK
| | - Lucie Rochard
- Center for Regenerative Medic ine, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, MA 02114, USA
| | - Eric C Liao
- Center for Regenerative Medic ine, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, MA 02114, USA; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
26
|
Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016; 4:16009. [PMID: 27563484 PMCID: PMC4985055 DOI: 10.1038/boneres.2016.9] [Citation(s) in RCA: 1147] [Impact Index Per Article: 127.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-β and BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-β and BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-β and BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| | - Guiqian Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA; Department of neurology, Bruke Medical Research Institute, Weil Cornell Medicine of Cornell University, White Plains, USA
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| |
Collapse
|
27
|
Taylor SEB, Lee J, Smeriglio P, Razzaque A, Smith RL, Dragoo JL, Maloney WJ, Bhutani N. Identification of Human Juvenile Chondrocyte-Specific Factors that Stimulate Stem Cell Growth. Tissue Eng Part A 2016; 22:645-53. [PMID: 26955889 DOI: 10.1089/ten.tea.2015.0366] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although regeneration of human cartilage is inherently inefficient, age is an important risk factor for osteoarthritis. Recent reports have provided compelling evidence that juvenile chondrocytes (from donors below 13 years of age) are more efficient at generating articular cartilage as compared to adult chondrocytes. However, the molecular basis for such a superior regenerative capability is not understood. To identify the cell-intrinsic differences between juvenile and adult cartilage, we have systematically profiled global gene expression changes between a small cohort of human neonatal/juvenile and adult chondrocytes. No such study is available for human chondrocytes although young and old bovine and equine cartilage have been recently profiled. Our studies have identified and validated new factors enriched in juvenile chondrocytes as compared to adult chondrocytes including secreted extracellular matrix factors chordin-like 1 (CHRDL1) and microfibrillar-associated protein 4 (MFAP4). Network analyses identified cartilage development pathways, epithelial-mesenchymal transition, and innate immunity pathways to be overrepresented in juvenile-enriched genes. Finally, CHRDL1 was observed to aid the proliferation and survival of bone marrow-derived human mesenchymal stem cells (hMSC) while maintaining their stem cell potential. These studies, therefore, provide a mechanism for how young cartilage factors can potentially enhance stem cell function in cartilage repair.
Collapse
Affiliation(s)
- Sarah E B Taylor
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| | - Jieun Lee
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| | - Piera Smeriglio
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| | - Adnan Razzaque
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| | - Robert L Smith
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| | - Jason L Dragoo
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| | - William J Maloney
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| | - Nidhi Bhutani
- Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
28
|
Seiler KM, Schenhals EL, von Furstenberg RJ, Allena BK, Smith BJ, Scaria D, Bresler MN, Dekaney CM, Henning SJ. Tissue underlying the intestinal epithelium elicits proliferation of intestinal stem cells following cytotoxic damage. Cell Tissue Res 2015; 361:427-38. [PMID: 25693894 PMCID: PMC4530061 DOI: 10.1007/s00441-015-2111-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/21/2014] [Indexed: 12/16/2022]
Abstract
The goals of this study were to document the proliferative response of intestinal stem cells (ISCs) during regeneration after damage from doxorubicin (DXR), and to characterize the signals responsible for ISC activation. To this end, jejuni from DXR-treated mice were harvested for histology, assessment of ISC numbers and proliferation by flow cytometry, crypt culture, and RNA analyses. Histology showed that crypt depth and width were increased 4 days after DXR. At this time point, flow cytometry on tissue collected 1 h after EdU administration revealed increased numbers of CD24(lo)UEA(-) ISCs and increased percentage of ISCs cycling. In culture, crypts harvested from DXR-treated mice were equally proliferative as those of control mice. Addition of subepithelial intestinal tissue (SET) collected 4 days after DXR elicited increased budding (1.4 ± 0.3 vs. 5.1 ± 1.0 buds per enteroid). Microarray analysis of SET collected 4 days after DXR revealed 1030 differentially expressed transcripts. Cross-comparison of Gene Ontology terms considered relevant to ISC activation pointed to 10 candidate genes. Of these, the epidermal growth factor (EGF) family member amphiregulin and the BMP antagonist chordin-like 2 were chosen for further study. In crypt culture, amphiregulin alone did not elicit significant budding, but amphiregulin in combination with BMP antagonism showed marked synergism (yielding 6.3 ± 0.5 buds per enteroid). These data suggest a critical role for underlying tissue in regulating ISC behavior after damage, and point to synergism between amphiregulin and chordin-like 2 as factors which may account for activation of ISCs in the regenerative phase.
Collapse
Affiliation(s)
- Kristen M Seiler
- Department of Medicine and Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 4341 Medical Biomolecular Research Building (MBRB), CB# 7032, Chapel Hill, NC, 27599-7032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Guo WT, Dong DL. Bone morphogenetic protein-4: a novel therapeutic target for pathological cardiac hypertrophy/heart failure. Heart Fail Rev 2015; 19:781-8. [PMID: 24736806 DOI: 10.1007/s10741-014-9429-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic protein-4 (BMP4) is a member of the bone morphogenetic protein family which plays a key role in the bone formation and embryonic development. In addition to these predominate and well-studied effects, the growing evidences highlight BMP4 as an important factor in cardiovascular diseases, such as hypertension, pulmonary hypertension and valve disease. Our recent works demonstrated that BMP4 mediated cardiac hypertrophy, apoptosis, fibrosis and ion channel remodeling in pathological cardiac hypertrophy. In this review, we discussed the role of BMP4 in pathological cardiac hypertrophy, as well as the recent advances about BMP4 in cardiovascular diseases closely related to pathological cardiac hypertrophy/heart failure. We put forward that BMP4 is a novel therapeutic target for pathological cardiac hypertrophy/heart failure.
Collapse
Affiliation(s)
- Wen-Ting Guo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Baojian Road 157, Harbin, 150086, Heilongjiang Province, People's Republic of China
| | | |
Collapse
|
30
|
Itoh N, Ohta H. Secreted bone morphogenetic protein antagonists of the Chordin family. Biomol Concepts 2015; 1:297-304. [PMID: 25962004 DOI: 10.1515/bmc.2010.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chordin, Chordin-like 1, and Chordin-like 2 are secreted bone morphogenetic protein (BMP) antagonists with highly conserved Chordin-like cysteine-rich domains. Recently, Brorin and Brorin-like have been identified as new Chordin-like BMP antagonists. A Chordin ortholog, Short gastrulation, has been identified in Drosophila, a protostome, but not other orthologs. By contrast, Chordin, Chordin-like 1, and Chordin-like 2 have been identified in Ciona intestinalis, the closest living relatives of the vertebrates, but Brorin and Brorin-like have not. However, all these genes have been identified in most vertebrates. These results indicate that Chordin, Chordin-like 1, and Chordin-like 2 were generated early in the metazoan lineage. Later on, Brorin and Brorin-like were potentially generated by a genome duplication event in early vertebrate evolution. All four cysteine-rich domains of Chordin are essential for the regulation of its action. However, Chordin-like 1, Chordin-like 2, Brorin, and Brorin-like contain only two or three cysteine-rich domains. Although their mechanisms of action remain unclear, they might be distinct from that of Chordin. The expression profiles of these genes in mice and zebrafish indicate unique roles at embryonic and postnatal stages. Mutant/knockdown mouse and zebrafish phenotypes indicate roles in morphogenesis during gastrulation, dorsoventral axis formation, ear, pharyngeal, and neural development, and venous and arterial patterning. Aberrant Chordin expression might result in hereditary diseases and cancer. In addition, altered serum Chordin and Chordin-like 1 levels are also observed in non-hereditary diseases. Together, these results indicate pathophysiological roles.
Collapse
|
31
|
Degenkolbe E, Schwarz C, Ott CE, König J, Schmidt-Bleek K, Ellinghaus A, Schmidt T, Lienau J, Plöger F, Mundlos S, Duda GN, Willie BM, Seemann P. Improved bone defect healing by a superagonistic GDF5 variant derived from a patient with multiple synostoses syndrome. Bone 2015; 73:111-9. [PMID: 25543012 DOI: 10.1016/j.bone.2014.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 11/20/2022]
Abstract
Multiple synostoses syndrome 2 (SYNS2) is a rare genetic disease characterized by multiple fusions of the joints of the extremities, like phalangeal joints, carpal and tarsal joints or the knee and elbows. SYNS2 is caused by point mutations in the Growth and Differentiation Factor 5 (GDF5), which plays an essential role during skeletal development and regeneration. We selected one of the SYNS2-causing GDF5 mutations, p.N445T, which is known to destabilize the interaction with the Bone Morphogenetic Protein (BMP) antagonist NOGGIN (NOG), in order to generate the superagonistic GDF5 variant GDF5(N445T). In this study, we tested its capacity to support regeneration in a rat critical-sized defect model in vivo. MicroCT and histological analyses indicate that GDF5(N445T)-treated defects show faster and more efficient healing compared to GDF5 wild type (GDF5(wt))-treated defects. Microarray-based gene expression and quantitative PCR analyses from callus tissue point to a specific acceleration of the early phases of bone healing, comprising the inflammation and chondrogenesis phase. These results support the concept that disease-deduced growth factor variants are promising lead structures for novel therapeutics with improved clinical activities.
Collapse
Affiliation(s)
- Elisa Degenkolbe
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Carolin Schwarz
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Claus-Eric Ott
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Jana König
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Tanja Schmidt
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Jasmin Lienau
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | - Stefan Mundlos
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Georg N Duda
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Bettina M Willie
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Petra Seemann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
32
|
Insights into osteoarthritis progression revealed by analyses of both knee tibiofemoral compartments. Osteoarthritis Cartilage 2015; 23:571-80. [PMID: 25575966 PMCID: PMC4814163 DOI: 10.1016/j.joca.2014.12.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify disease relevant genes and pathways associated with knee Osteoarthritis (OA) progression in human subjects using medial and lateral compartment dominant OA knee tissue. DESIGN Gene expression of knee cartilage was comprehensively assessed for three regions of interest from human medial dominant OA (n = 10) and non-OA (n = 6) specimens. Histology and gene expression were compared for the regions with minimal degeneration, moderate degeneration and significant degeneration. Agilent whole-genome microarray was performed and data were analyzed using Agilent GeneSpring GX11.5. Significant differentially regulated genes were further investigated by Ingenuity Pathway Analysis (IPA) to identify functional categories. To confirm their association with disease severity as opposed to site within the knee, 30 differentially expressed genes, identified by microarray, were analyzed by quantitative reverse-transcription polymerase chain reaction on additional medial (n = 16) and lateral (n = 10) compartment dominant knee OA samples. RESULTS A total of 767 genes were differentially expressed ≥ two-fold (P ≤ 0.05) in lesion compared to relatively intact regions. Analysis of these data by IPA predicted biological functions related to an imbalance of anabolism and catabolism of cartilage matrix components. Up-regulated expression of IL11, POSTN, TNFAIP6, and down-regulated expression of CHRDL2, MATN4, SPOCK3, VIT, PDE3B were significantly associated with OA progression and validated in both medial and lateral compartment dominant OA samples. CONCLUSIONS Our study provides a strategy for identifying targets whose modification may have the potential to ameliorate pathological alternations and progression of disease in cartilage and to serve as biomarkers for identifying individuals susceptible to progression.
Collapse
|
33
|
Troilo H, Zuk AV, Tunnicliffe RB, Wohl AP, Berry R, Collins RF, Jowitt TA, Sengle G, Baldock C. Nanoscale structure of the BMP antagonist chordin supports cooperative BMP binding. Proc Natl Acad Sci U S A 2014; 111:13063-8. [PMID: 25157165 PMCID: PMC4246984 DOI: 10.1073/pnas.1404166111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) orchestrate key cellular events, such as proliferation and differentiation, in development and homeostasis. Extracellular antagonists, such as chordin, are essential regulators of BMP signaling. Chordin binds to BMPs blocking interaction with receptors, and cleavage by tolloid proteinases is thought to relieve this inhibition. A model has been previously proposed where chordin adopts a horseshoe-like arrangement enabling BMP binding cooperatively by terminal domains (1). Here, we present the nanoscale structure of human chordin using electron microscopy, small angle X-ray scattering, and solution-based biophysical techniques, which together show that chordin indeed has a compact horseshoe-shaped structure. Chordin variants were used to map domain locations within the chordin molecule. The terminal BMP-binding domains protrude as prongs from the main body of the chordin structure, where they are well positioned to interact with the growth factor. The spacing provided by the chordin domains supports the principle of a cooperative BMP-binding arrangement that the original model implied in which growth factors bind to both an N- and C-terminal von Willebrand factor C domain of chordin. Using binding and bioactivity assays, we compared full-length chordin with two truncated chordin variants, such as those produced by partial tolloid cleavage. Cleavage of either terminal domain has little effect on the affinity of chordin for BMP-4 and BMP-7 but C-terminal cleavage increases the efficacy of chordin as a BMP-4 inhibitor. Together these data suggest that partial tolloid cleavage is insufficient to ablate BMP inhibition and the C-terminal chordin domains play an important role in BMP regulation.
Collapse
Affiliation(s)
- Helen Troilo
- Wellcome Trust Centre for Cell-Matrix Research and
| | | | | | | | | | - Richard F Collins
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom; and
| | | | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, and Center for Molecular Medicine Cologne, University of Cologne, D50931 Cologne, Germany
| | | |
Collapse
|
34
|
Shi X, DiRenzo D, Guo LW, Franco SR, Wang B, Seedial S, Kent KC. TGF-β/Smad3 stimulates stem cell/developmental gene expression and vascular smooth muscle cell de-differentiation. PLoS One 2014; 9:e93995. [PMID: 24718260 PMCID: PMC3981734 DOI: 10.1371/journal.pone.0093995] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/11/2014] [Indexed: 01/09/2023] Open
Abstract
Atherosclerotic-associated diseases are the leading cause of death in the United States. Despite recent progress, interventional treatments for atherosclerosis can be complicated by restenosis resulting from neo-intimal hyperplasia. We have previously demonstrated that TGF-β and its downstream signaling protein Smad3∶1) are up-regulated following vascular injury, 2) together drive smooth muscle cell (SMC) proliferation and migration and 3) enhance the development of intimal hyperplasia. In order to determine a mechanism through which TGF-β/Smad3 promote these effects, Affymetrix gene expression arrays were performed on primary rat SMCs infected with Smad3 and stimulated with TGF-β or infected with GFP alone. More than 200 genes were differentially expressed (>2.0 fold change, p<0.05) in TGF-β/Smad3 stimulated SMCs. We then performed GO term enrichment analysis using the DAVID bioinformatics database and found that TGF-β/Smad3 activated the expression of multiple genes related to either development or cell differentiation, several of which have been shown to be associated with multipotent stem or progenitor cells. Quantitative real-time PCR confirmed up-regulation of several developmental genes including FGF1, NGF, and Wnt11 (by 2.5, 6 and 7 fold, respectively) as well as stem/progenitor cell associated genes CD34 and CXCR4 (by 10 and 45 fold, respectively). In addition, up-regulation of these factors at protein levels were also confirmed by Western blotting, or by immunocytochemistry (performed for CXCR4 and NGF). Finally, TGF-β/Smad3 down regulated transcription of SMC contractile genes as well as protein production of smooth muscle alpha actin, calponin, and smooth muscle myosin heavy chain. These combined results suggest that TGF-β/Smad3 stimulation drives SMCs to a phenotypically altered state of de-differentiation through the up-regulation of developmental related genes.
Collapse
MESH Headings
- Animals
- Aorta
- Cell Dedifferentiation/genetics
- Cell Division/genetics
- Cells, Cultured
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Hyperplasia
- Male
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Recombinant Fusion Proteins/metabolism
- Smad3 Protein
- Transcription, Genetic/genetics
- Transcriptome
- Transduction, Genetic
- Transforming Growth Factor beta1
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Xudong Shi
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Daniel DiRenzo
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
- * E-mail: (LWG); (KCK)
| | - Sarah R. Franco
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Bowen Wang
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Stephen Seedial
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - K. Craig Kent
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
- * E-mail: (LWG); (KCK)
| |
Collapse
|
35
|
Snelling S, Rout R, Davidson R, Clark I, Carr A, Hulley P, Price A. A gene expression study of normal and damaged cartilage in anteromedial gonarthrosis, a phenotype of osteoarthritis. Osteoarthritis Cartilage 2014; 22:334-43. [PMID: 24361742 PMCID: PMC3988961 DOI: 10.1016/j.joca.2013.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/27/2013] [Accepted: 12/10/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify osteoarthritis (OA) relevant genes and pathways in damaged and undamaged cartilage isolated from the knees of patients with anteromedial gonarthrosis (AMG) - a specific form of knee OA. DESIGN Cartilage was obtained from nine patients undergoing unicompartmental knee replacement (UKR) for AMG. AMG provides a spatial representation of OA progression; showing a reproducible and histologically validated pattern of cartilage destruction such that damaged and undamaged cartilage from within the same knee can be consistently isolated and examined. Gene expression was analysed by microarray and validated using real-time PCR. RESULTS Damaged and undamaged cartilage showed distinct gene expression profiles. 754 genes showed significant up- or down-regulation (non-False discovery rate (FDR) P < 0.05) with enrichment for genes involved in cell signalling, Extracellular Matrix (ECM) and inflammatory response. A number of genes previously unreported in OA showed strongly altered expression including RARRES3, ADAMTSL2 and DUSP10. Confirmation of genes previously identified as modulated in OA was also obtained e.g., SFRP3, MMP3 and IGF1. CONCLUSIONS This is the first study to examine a common and consistent phenotype of OA to allow direct comparison of damaged and undamaged cartilage from within the same joint compartment. We have identified specific gene expression profiles in damaged and undamaged cartilage and have determined relevant genes and pathways in OA progression. Importantly this work also highlights the necessity for phenotypic and microanatomical characterization of cartilage in future studies of OA pathogenesis and therapeutic development.
Collapse
Affiliation(s)
- S. Snelling
- The Botnar Research Centre, University of Oxford, UK,Address correspondence and reprint requests to: S. Snelling. The Botnar Research Centre, University of Oxford, UK.
| | - R. Rout
- The Botnar Research Centre, University of Oxford, UK
| | - R. Davidson
- Biomedical Research Unit, University of East Anglia, UK
| | - I. Clark
- Biomedical Research Unit, University of East Anglia, UK
| | - A. Carr
- The Botnar Research Centre, University of Oxford, UK
| | - P.A. Hulley
- The Botnar Research Centre, University of Oxford, UK
| | - A.J. Price
- The Botnar Research Centre, University of Oxford, UK
| |
Collapse
|
36
|
Leijten JCH, Bos SD, Landman EBM, Georgi N, Jahr H, Meulenbelt I, Post JN, van Blitterswijk CA, Karperien M. GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis-associated factors. Arthritis Res Ther 2013; 15:R126. [PMID: 24286177 PMCID: PMC3978825 DOI: 10.1186/ar4306] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 08/23/2013] [Indexed: 12/24/2022] Open
Abstract
Introduction Osteoarthritis is, at least in a subset of patients, associated with hypertrophic differentiation of articular chondrocytes. Recently, we identified the bone morphogenetic protein (BMP) and wingless-type MMTV integration site (WNT) signaling antagonists Gremlin 1 (GREM1), frizzled-related protein (FRZB) and dickkopf 1 homolog (Xenopus laevis) (DKK1) as articular cartilage’s natural brakes of hypertrophic differentiation. In this study, we investigated whether factors implicated in osteoarthritis or regulation of chondrocyte hypertrophy influence GREM1, FRZB and DKK1 expression levels. Methods GREM1, FRZB and DKK1 mRNA levels were studied in articular cartilage from healthy preadolescents and healthy adults as well as in preserved and degrading osteoarthritic cartilage from the same osteoarthritic joint by quantitative PCR. Subsequently, we exposed human articular chondrocytes to WNT, BMP, IL-1β, Indian hedgehog, parathyroid hormone-related peptide, mechanical loading, different medium tonicities or distinct oxygen levels and investigated GREM1, FRZB and DKK1 expression levels using a time-course analysis. Results GREM1, FRZB and DKK1 mRNA expression were strongly decreased in osteoarthritis. Moreover, this downregulation is stronger in degrading cartilage compared with macroscopically preserved cartilage from the same osteoarthritic joint. WNT, BMP, IL-1β signaling and mechanical loading regulated GREM1, FRZB and DKK1 mRNA levels. Indian hedgehog, parathyroid hormone-related peptide and tonicity influenced the mRNA levels of at least one antagonist, while oxygen levels did not demonstrate any statistically significant effect. Interestingly, BMP and WNT signaling upregulated the expression of each other’s antagonists. Conclusions Together, the current study demonstrates an inverse correlation between osteoarthritis and GREM1, FRZB and DKK1 gene expression in cartilage and provides insight into the underlying transcriptional regulation. Furthermore, we show that BMP and WNT signaling are linked in a negative feedback loop, which might prove essential in articular cartilage homeostasis by balancing BMP and WNT activity.
Collapse
|
37
|
Lorda-Diez CI, Montero JA, Rodriguez-Leon J, Garcia-Porrero JA, Hurle JM. Expression and functional study of extracellular BMP antagonists during the morphogenesis of the digits and their associated connective tissues. PLoS One 2013; 8:e60423. [PMID: 23573253 PMCID: PMC3616094 DOI: 10.1371/journal.pone.0060423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/26/2013] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study is to gain insight into the role of BMP signaling in the diversification of the embryonic limb mesodermal progenitors destined to form cartilage, joints, and tendons. Given the importance of extracellular BMP modulators in in vivo systems, we performed a systematic search of those expressed in the developing autopod during the formation of the digits. Here, we monitored the expression of extracellular BMP modulators including: Noggin, Chordin, Chordin-like 1, Chordin-like 2, Twisted gastrulation, Dan, BMPER, Sost, Sostdc1, Follistatin, Follistatin-like 1, Follistatin-like 5 and Tolloid. These factors show differential expression domains in cartilage, joints and tendons. Furthermore, they are induced in specific temporal patterns during the formation of an ectopic extra digit, preceding the appearance of changes that are identifiable by conventional histology. The analysis of gene regulation, cell proliferation and cell death that are induced by these factors in high density cultures of digit progenitors provides evidence of functional specialization in the control of mesodermal differentiation but not in cell proliferation or apoptosis. We further show that the expression of these factors is differentially controlled by the distinct signaling pathways acting in the developing limb at the stages covered by this study. In addition, our results provide evidence suggesting that TWISTED GASTRULATION cooperates with CHORDINS, BMPER, and NOGGIN in the establishment of tendons or cartilage in a fashion that is dependent on the presence or absence of TOLLOID.
Collapse
Affiliation(s)
- Carlos I. Lorda-Diez
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | - Juan A. Montero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | | | - Juan A. Garcia-Porrero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | - Juan M. Hurle
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
- * E-mail:
| |
Collapse
|
38
|
Badugu A, Kraemer C, Germann P, Menshykau D, Iber D. Digit patterning during limb development as a result of the BMP-receptor interaction. Sci Rep 2012; 2:991. [PMID: 23251777 PMCID: PMC3524521 DOI: 10.1038/srep00991] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/30/2012] [Indexed: 01/07/2023] Open
Abstract
Turing models have been proposed to explain the emergence of digits during limb development. However, so far the molecular components that would give rise to Turing patterns are elusive. We have recently shown that a particular type of receptor-ligand interaction can give rise to Schnakenberg-type Turing patterns, which reproduce patterning during lung and kidney branching morphogenesis. Recent knockout experiments have identified Smad4 as a key protein in digit patterning. We show here that the BMP-receptor interaction meets the conditions for a Schnakenberg-type Turing pattern, and that the resulting model reproduces available wildtype and mutant data on the expression patterns of BMP, its receptor, and Fgfs in the apical ectodermal ridge (AER) when solved on a realistic 2D domain that we extracted from limb bud images of E11.5 mouse embryos. We propose that receptor-ligand-based mechanisms serve as a molecular basis for the emergence of Turing patterns in many developing tissues.
Collapse
Affiliation(s)
- Amarendra Badugu
- Department for Biosystems Science and Engineering (D-BSSE) , ETH Zurich, Basel, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Ohyama Y, Katafuchi M, Almehmadi A, Venkitapathi S, Jaha H, Ehrenman J, Morcos J, Aljamaan R, Mochida Y. Modulation of matrix mineralization by Vwc2-like protein and its novel splicing isoforms. Biochem Biophys Res Commun 2011; 418:12-6. [PMID: 22209847 DOI: 10.1016/j.bbrc.2011.12.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 12/11/2022]
Abstract
In search of new cysteine knot protein (CKP) family members, we found a novel gene called von Willebrand factor C domain-containing protein 2-like (Vwc2l, also known as Brorin-like) and its transcript variants (Vwc2l-1, Vwc2l-2 and Vwc2l-3). Based on the deduced amino acid sequence, Vwc2l-1 has a signal peptide and 2 cysteine-rich (CR) domains, while Vwc2l-2 lacks a part of 2nd CR domain and Vwc2l-3 both CR domains. Although it has been reported that the expression of Brorin-like was predominantly observed in brain, we found that Vwc2l transcript variants were detected in more ubiquitous tissues. In osteoblasts, the induction of Vwc2l expression was observed at matrix mineralization stage. When Vwc2l was stably transfected into osteoblasts, the matrix mineralization was markedly accelerated in Vwc2l-expressing clones compared to that in the control, indicating the modulatory effect of Vwc2l protein on osteoblastic cell function. The mechanistic insight of Vwc2l-modulation was further investigated and we found that the expression of Osterix, one of the key osteogenic markers, was significantly increased by addition of all Vwc2l isoform proteins. Taken together, Vwc2l is a novel secreted protein that promotes matrix mineralization by modulating Osterix expression likely through TGF-β superfamily growth factor signaling pathway. Our data may provide mechanistic insights into the biological functions of this novel CKP member in bone and further suggest a novel approach to enhance osteoblast function, which enables to accerelate bone formation, regeneration and healing.
Collapse
Affiliation(s)
- Yoshio Ohyama
- Department of Periodontology and Oral Biology, Boston University, Henry M. Goldman School of Dental Medicine, 700 Albany Street, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Plouhinec JL, Zakin L, De Robertis EM. Systems control of BMP morphogen flow in vertebrate embryos. Curr Opin Genet Dev 2011; 21:696-703. [PMID: 21937218 PMCID: PMC3224208 DOI: 10.1016/j.gde.2011.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/04/2011] [Indexed: 02/04/2023]
Abstract
Embryonic morphogenetic programs coordinate cell behavior to ensure robust pattern formation. Having identified components of those programs by molecular genetics, developmental biology is now borrowing concepts and tools from systems biology to decode their regulatory logic. Dorsal-ventral (D-V) patterning of the frog gastrula by Bone Morphogenetic Proteins (BMPs) is one of the best studied examples of a self-regulating embryonic patterning system. Embryological analyses and mathematical modeling are revealing that the BMP activity gradient is maintained by a directed flow of BMP ligands towards the ventral side. Pattern robustness is ensured through feedback control of the levels of extracellular BMP pathway modulators that adjust the flow to the dimensions of the embryonic field.
Collapse
Affiliation(s)
- Jean-Louis Plouhinec
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
41
|
Zakin L, Chang EY, Plouhinec JL, De Robertis EM. Crossveinless-2 is required for the relocalization of Chordin protein within the vertebral field in mouse embryos. Dev Biol 2010; 347:204-15. [PMID: 20807528 PMCID: PMC2975673 DOI: 10.1016/j.ydbio.2010.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/21/2010] [Accepted: 08/23/2010] [Indexed: 11/26/2022]
Abstract
Bone morphogenetic proteins (BMPs), as well as the BMP-binding molecules Chordin (Chd), Crossveinless-2 (CV2) and Twisted Gastrulation (Tsg), are essential for axial skeletal development in the mouse embryo. We previously reported a strong genetic interaction between CV2 and Tsg and proposed a role for this interaction in the shaping of the BMP morphogenetic field during vertebral development. In the present study we investigated the roles of CV2 and Chd in the formation of the vertebral morphogenetic field. We performed immunostainings for CV2 and Chd protein on wild-type, CV2(-/-) or Chd(-/-) mouse embryo sections at the stage of onset of the vertebral phenotypes. By comparing mRNA and protein localizations we found that CV2 does not diffuse away from its place of synthesis, the vertebral body. The most interesting finding of this study was that Chd synthesized in the intervertebral disc accumulates in the vertebral body. This relocalization does not take place in CV2(-/-) mutants. Instead, Chd was found to accumulate at its site of synthesis in CV2(-/-) embryos. These results indicate a CV2-dependent flow of Chd protein from the intervertebral disc to the vertebral body. Smad1/5/8 phosphorylation was decreased in CV2(-/-)vertebral bodies. This impaired BMP signaling may result from the decreased levels of Chd/BMP complexes diffusing from the intervertebral region. The data indicate a role for CV2 and Chd in the establishment of the vertebral morphogenetic field through the long-range relocalization of Chd/BMP complexes. The results may have general implications for the formation of embryonic organ-forming morphogenetic fields.
Collapse
Affiliation(s)
| | | | - Jean-Louis Plouhinec
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - E. M. De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| |
Collapse
|
42
|
Bone morphogenetic proteins: a critical review. Cell Signal 2010; 23:609-20. [PMID: 20959140 DOI: 10.1016/j.cellsig.2010.10.003] [Citation(s) in RCA: 512] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/14/2010] [Accepted: 10/01/2010] [Indexed: 12/14/2022]
Abstract
Bone Morphogenetic Proteins (BMPs) are potent growth factors belonging to the Transforming Growth Factor Beta superfamily. To date over 20 members have been identified in humans with varying functions during processes such as embryogenesis, skeletal formation, hematopoiesis and neurogenesis. Though their functions have been identified, less is known regarding levels of regulation at the extracellular matrix, membrane surface, and receptor activation. Further, current models of activation lack the integration of these regulatory mechanisms. This review focuses on the different levels of regulation, ranging from the release of BMPs into the extracellular components to receptor activation for different BMPs. It also highlights areas in research that is lacking or contradictory.
Collapse
|
43
|
Reitmair A, Lambrecht NWG, Yakubov I, Nieves A, Old D, Donde Y, Dinh D, Burk R, Sachs G, Im WB, Wheeler L. Prostaglandin E2receptor subtype EP2- and EP4-regulated gene expression profiling in human ciliary smooth muscle cells. Physiol Genomics 2010; 42:348-60. [PMID: 20551148 DOI: 10.1152/physiolgenomics.00012.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostanoids are an important class of intraocular pressure (IOP)-lowering antiglaucoma agents that act primarily via increased uveo-scleral aqueous humor outflow through the ciliary body. We have developed two novel PGE2analogs that are specific agonists for the PGE2receptor subtypes EP2 and EP4, respectively. To identify gene regulatory networks and key players that mediate the physiological effects observed in vivo, we performed genomewide expression studies using human ciliary smooth muscle cells. Quantitative real-time RT-PCR confirmed a largely overlapping gene expression profile subsequent to EP2 and EP4 agonist treatment, with 65 significantly regulated genes identified overall, 5 being specific for the EP2 agonist and 6 specific for the EP4 agonist. We found predicted functional cAMP-response elements in promoter regions of a large fraction of the predominantly upregulated genes, which suggests that the cAMP signaling pathway is the most important intracellular signaling pathway for these agonists in these cells. Several target genes were identified that, as part of complex regulatory networks, are implicated in tissue remodeling processes and osmoregulation (e.g., AREG, LOXL3, BMP2, AQP3) and thus may help elucidate the mechanism of action of these IOP-lowering drugs involving the uveo-scleral outflow path.
Collapse
Affiliation(s)
| | - Nils W. G. Lambrecht
- Department of Pathology and Laboratory Medicine,
- Membrane Biology Laboratory, West Los Angeles Veterans Affairs Medical Center, Los Angeles, California
| | - Iskandar Yakubov
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles and
- Membrane Biology Laboratory, West Los Angeles Veterans Affairs Medical Center, Los Angeles, California
| | | | - David Old
- Department of Medical Chemistry, Allergan Incorporated, Irvine; and
| | - Yariv Donde
- Department of Medical Chemistry, Allergan Incorporated, Irvine; and
| | - Danny Dinh
- Department of Medical Chemistry, Allergan Incorporated, Irvine; and
| | - Robert Burk
- Department of Medical Chemistry, Allergan Incorporated, Irvine; and
| | - George Sachs
- Department of Physiology, and
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles and
- Membrane Biology Laboratory, West Los Angeles Veterans Affairs Medical Center, Los Angeles, California
| | | | | |
Collapse
|
44
|
Branam AM, Hoffman GG, Pelegri F, Greenspan DS. Zebrafish chordin-like and chordin are functionally redundant in regulating patterning of the dorsoventral axis. Dev Biol 2010; 341:444-58. [PMID: 20226780 PMCID: PMC2862114 DOI: 10.1016/j.ydbio.2010.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/26/2010] [Accepted: 03/01/2010] [Indexed: 11/18/2022]
Abstract
Chordin is the prototype of a group of cysteine-rich domain-containing proteins that bind and modulate signaling of various TGFbeta-like ligands. Chordin-like 1 and 2 (CHL1 and 2) are two members of this group that have been described in human, mouse, and chick. However, in vivo roles for CHL1 and 2 in early development are unknown due to lack of loss-of-function analysis. Here we identify and characterize zebrafish, Danio rerio, CHL (Chl). The chl gene is on a region of chromosome 21 syntenic with the area of murine chromosome 7 bearing the CHL2 gene. Inability to identify a separate zebrafish gene corresponding to the mammalian CHL1 gene suggests that Chl may serve roles in zebrafish distributed between CHL1 and CHL2 in other species. Chl is a maternal factor that is also zygotically expressed later in development and has spatiotemporal expression patterns that differ from but overlap those of zebrafish chordin (Chd), suggesting differences but also possible overlap in developmental roles of the two proteins. Chl, like Chd, dorsalizes embryos upon overexpression and is cleaved by BMP1, which antagonizes this activity. Loss-of-function experiments demonstrate that Chl serves as a BMP antagonist with functions that overlap and are redundant with those of Chd in forming the dorsoventral axis.
Collapse
Affiliation(s)
- Amanda M. Branam
- Molecular and Cellular Pharmacology Program, University of Wisconsin, 1300 University Ave, Madison, WI 53706, USA
| | - Guy G. Hoffman
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 1300 University Ave, Madison, WI 53706, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| | - Daniel S. Greenspan
- Molecular and Cellular Pharmacology Program, University of Wisconsin, 1300 University Ave, Madison, WI 53706, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 1300 University Ave, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
- Department of Pharmacology, University of Wisconsin, 1300 University Ave, Madison, WI 53706. USA
| |
Collapse
|
45
|
Nifuji A, Ideno H, Takanabe R, Noda M. Extracellular Modulators Regulate Bone Morphogenic Proteins in Skeletal Tissue. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
MacKenzie B, Wolff R, Lowe N, Billington CJ, Peterson A, Schmidt B, Graf D, Mina M, Gopalakrishnan R, Petryk A. Twisted gastrulation limits apoptosis in the distal region of the mandibular arch in mice. Dev Biol 2009; 328:13-23. [PMID: 19389368 PMCID: PMC2851169 DOI: 10.1016/j.ydbio.2008.12.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/03/2008] [Accepted: 12/31/2008] [Indexed: 11/23/2022]
Abstract
The mandibular arch (BA1) is critical for craniofacial development. The distal region of BA1, which gives rise to most of the mandible, is dependent upon an optimal level of bone morphogenetic protein (BMP) signaling. BMP activity is modulated in the extracellular space by BMP-binding proteins such as Twisted gastrulation (TWSG1). Twsg1(-/-) mice have a spectrum of craniofacial phenotypes, including mandibular defects that range from micrognathia to agnathia. At E9.5, the distal region of the mutant BA1 was prematurely and variably fused with loss of distal markers eHand and Msx1. Expression of proximal markers Fgf8 and Barx1 was expanded across the fused BA1. The expression of Bmp4 and Msx2 was preserved in the distal region, but shifted ventrally. While wild type embryos showed a gradient of BMP signaling with higher activity in the distal region of BA1, this gradient was disrupted and shifted ventrally in the mutants. Thus, loss of TWSG1 results in disruption of the BMP4 gradient at the level of signaling activity as well as mRNA expression. Altered distribution of BMP signaling leads to a shift in gene expression and increase in apoptosis. The extent of apoptosis may account for the variable degree of mandibular defects in Twsg1 mutants.
Collapse
Affiliation(s)
- BreAnne MacKenzie
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455-0356, USA
| | - Ryan Wolff
- School of Dentistry, University of Minnesota, Minneapolis, MN 55455-0356, USA
| | - Nick Lowe
- School of Dentistry, University of Minnesota, Minneapolis, MN 55455-0356, USA
| | - Charles J. Billington
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455-0356, USA
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN 55455-0356, USA
| | - Ashley Peterson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455-0356, USA
| | - Brian Schmidt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455-0356, USA
| | - Daniel Graf
- Institute of Immunology, Biomedical Sciences Research Center 'Al Fleming', 16672 Vari, Greece
| | - Mina Mina
- Department of Pediatric Dentistry, University of Connecticut Health Center, Farmington, CT 06032-1956, USA
| | - Rajaram Gopalakrishnan
- Diagnostic/Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455-0356, USA
| | - Anna Petryk
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455-0356, USA
- Department of Genetics, Cell Biology and Development, Minneapolis, MN 55455-0356, USA
| |
Collapse
|
47
|
Tardif G, Pelletier JP, Boileau C, Martel-Pelletier J. The BMP antagonists follistatin and gremlin in normal and early osteoarthritic cartilage: an immunohistochemical study. Osteoarthritis Cartilage 2009; 17:263-70. [PMID: 18691909 DOI: 10.1016/j.joca.2008.06.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/29/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Bone morphogenic protein (BMP) activities are controlled in part by antagonists. In human osteoarthritic (OA) cartilage, the BMP antagonists follistatin and gremlin are increased but differentially regulated. Using the OA dog model, we determined if these BMP antagonists were produced at different stages during the disease process by comparing their in situ temporal and spatial distribution. METHODS Dogs were sacrificed at 4, 8, 10 and 12 weeks after surgery; normal dogs served as control. Cartilage was removed, differentiating fibrillated and non-fibrillated areas. Immunohistochemistry and morphometric analyses were performed for follistatin, gremlin, BMP-2/4 and IL-1beta. Growth factor-induced gremlin expression was assessed in dog chondrocytes. RESULTS Follistatin and gremlin production were very low in normal cartilage. Gremlin was significantly up-regulated in both non-fibrillated and fibrillated areas at 4 weeks, and only slightly increased with disease progression. Follistatin showed a time-dependent increased level in the non-fibrillated areas with significance reached at 8-12 weeks; in the fibrillated areas significant high levels were seen as early as 4 weeks. In the whole cartilage, follistatin and IL-1beta temporal production showed similar patterns; this was also true for gremlin and BMP-2/4, though BMP-2/4 production was already high in the normal dogs. Interestingly, data revealed that basic fibroblast growth factor (bFGF) could be another factor increasing gremlin expression early in the disease process. Comparison between superficial and deep zones revealed similar patterns for follistatin and IL-1beta in the superficial zone only; gremlin and BMP-2/4 had similar patterns in both zones. CONCLUSION Data show, for the first time, different spatial and temporal production of gremlin and follistatin in cartilage during OA progression. These findings may reflect different roles for each antagonist in this disease.
Collapse
Affiliation(s)
- G Tardif
- Osteoarthritis Research Unit, University of Montreal Hospital Centre, Notre-Dame Hospital, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
48
|
Zakin L, Metzinger CA, Chang EY, Coffinier C, De Robertis EM. Development of the vertebral morphogenetic field in the mouse: interactions between Crossveinless-2 and Twisted Gastrulation. Dev Biol 2008; 323:6-18. [PMID: 18789316 PMCID: PMC2647368 DOI: 10.1016/j.ydbio.2008.08.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 08/15/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
Crossveinless-2 (Cv2), Twisted Gastrulation (Tsg) and Chordin (Chd) are components of an extracellular biochemical pathway that regulates Bone Morphogenetic Protein (BMP) activity during dorso-ventral patterning of Drosophila and Xenopus embryos, the formation of the fly wing, and mouse skeletogenesis. Because the nature of their genetic interactions remained untested in the mouse, we generated a null allele for Cv2 which was crossed to Tsg and Chd mutants to obtain Cv2; Tsg and Cv2; Chd compound mutants. We found that Cv2 is essential for skeletogenesis as its mutation caused the loss of multiple bone structures and posterior homeotic transformation of the last thoracic vertebra. During early vertebral development, Smad1 phosphorylation in the intervertebral region was decreased in the Cv2 mutant, even though CV2 protein is normally located in the future vertebral bodies. Because Cv2 mutation affects BMP signaling at a distance, this suggested that CV2 is involved in the localization of the BMP morphogenetic signal. Cv2 and Chd mutations did not interact significantly. However, mutation of Tsg was epistatic to all CV2 phenotypes. We propose a model in which CV2 and Tsg participate in the generation of a BMP signaling morphogenetic field during vertebral formation in which CV2 serves to concentrate diffusible Tsg/BMP4 complexes in the vertebral body cartilage.
Collapse
Affiliation(s)
- Lise Zakin
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Carrie A. Metzinger
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Ellen Y. Chang
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Catherine Coffinier
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - E. M. De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| |
Collapse
|
49
|
Heinke J, Wehofsits L, Zhou Q, Zoeller C, Baar KM, Helbing T, Laib A, Augustin H, Bode C, Patterson C, Moser M. BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis. Circ Res 2008; 103:804-12. [PMID: 18787191 DOI: 10.1161/circresaha.108.178434] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone morphogenetic proteins (BMPs) are involved in embryonic and adult blood vessel formation in health and disease. BMPER (BMP endothelial cell precursor-derived regulator) is a differentially expressed protein in embryonic endothelial precursor cells. In earlier work, we found that BMPER interacts with BMPs and when overexpressed antagonizes their function in embryonic axis formation. In contrast, in a BMPER-deficient zebrafish model, BMPER behaves as a BMP agonist. Furthermore, lack of BMPER induces a vascular phenotype in zebrafish that is driven by disarray of the intersomitic vasculature. Here, we investigate the impact of BMPER on endothelial cell function and signaling and elucidate its role in BMP-4 function in gain- and loss-of-function models. As shown by Western blotting and immunocytochemistry, BMPER is an extracellular matrix protein expressed by endothelial cells in skin, heart, and lung. We show that BMPER is a downstream target of FoxO3a and consistently exerts activating effects on endothelial cell sprouting and migration in vitro and in vivo. Accordingly, when BMPER is depleted from endothelial cells, sprouting is impaired. In terms of BMPER related intracellular signaling, we show that BMPER is permissive and necessary for Smad 1/5 phosphorylation and induces Erk1/2 activation. Most interestingly, BMPER is necessary for BMP-4 to exert its activating role in endothelial function and to induce Smad 1/5 activation. Vice versa, BMP-4 is necessary for BMPER activity. Taken together, BMPER is a dose-dependent endothelial cell activator that plays a unique and pivotal role in fine-tuning BMP activity in angiogenesis.
Collapse
|
50
|
Zhang JL, Huang Y, Qiu LY, Nickel J, Sebald W. von Willebrand Factor Type C Domain-containing Proteins Regulate Bone Morphogenetic Protein Signaling through Different Recognition Mechanisms. J Biol Chem 2007; 282:20002-14. [PMID: 17483092 DOI: 10.1074/jbc.m700456200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein (BMP) function is regulated in the extracellular space by many modulator proteins, including those containing a von Willebrand factor type C (VWC) domain. The function of the VWC domain-containing proteins in development and diseases has been extensively studied. The structural basis, however, for the mechanism by which BMP is regulated by these proteins is still poorly understood. By analyzing chordin, CHL2 (chordin-like 2), and CV2 (crossveinless 2) as well as their individual VWC domains, we show that the VWC domain is a versatile binding module that in its multiple forms and environments can expose a variety of binding specificities. Three of four, two of three, and one of five VWCs from chordin, CHL2, and CV2, respectively, can bind BMPs. Using an array of BMP-2 mutant proteins, it can be demonstrated that the binding-competent VWC domains all use a specific subset of BMP-2 binding determinants that overlap with the binding site for the type II receptors (knuckle epitope) or for the type I receptors (wrist epitope). This explains the competition between modulator proteins and receptors for BMP binding and therefore the inhibition of BMP signaling. A subset of VWC domains from CHL2 binds to the Tsg (twisted gastrulation) protein similar to chordin. A stable ternary complex consisting of BMP-2, CHL2, and Tsg can be formed, thus making CHL2 a more efficient BMP-2 inhibitor. The VWCs of CV2, however, do not interact with Tsg. The present results show that chordin, CHL2, and CV2 regulate BMP-2 signaling by different recognition mechanisms.
Collapse
Affiliation(s)
- Jin-Li Zhang
- Department of Physiological Chemistry II, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|