1
|
Kanai SM, Garcia CR, Augustus MR, Sharafeldeen SA, Brooks EP, Sucharov J, Lencer ES, Nichols JT, Clouthier DE. The Gq/11 family of Gα subunits is necessary and sufficient for lower jaw development. Development 2025; 152:dev204396. [PMID: 40171762 PMCID: PMC12045641 DOI: 10.1242/dev.204396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
Vertebrate jaw development is coordinated by highly conserved ligand-receptor systems such as the peptide ligand Endothelin 1 (Edn1) and Endothelin receptor type A (Ednra), which are required for patterning of lower jaw structures. The Edn1/Ednra signaling pathway establishes the identity of lower jaw progenitor cells by regulating expression of numerous patterning genes, but the intracellular signaling mechanisms linking receptor activation to gene regulation remain poorly understood. As a first step towards elucidating this mechanism, we examined the function of the Gq/11 family of Gα subunits in zebrafish using pharmacological inhibition and genetic ablation of Gq/11 activity, and transgenic induction of a constitutively active Gq protein in edn1-/- embryos. Genetic loss of Gq/11 activity fully recapitulated the edn1-/- phenotype, with genes encoding G11 being most essential. Furthermore, inducing Gq activity in edn1-/- embryos not only restored Edn1/Ednra-dependent jaw structures and gene expression signatures but also caused homeosis of the upper jaw structure into a lower jaw-like structure. These results indicate that Gq/11 is necessary and sufficient to mediate the lower jaw patterning mechanism for Ednra in zebrafish.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| | - Chloe R. Garcia
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| | - MaCalia R. Augustus
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| | - Shujan A. Sharafeldeen
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| | - Elliott P. Brooks
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| | - Juliana Sucharov
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| | - Ezra S. Lencer
- Department of Biology, Lafayette College, Easton, PA 18042, USA
| | - James T. Nichols
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| | - David E. Clouthier
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| |
Collapse
|
2
|
Sohail A, Nicoll O, Bendall AJ. Assessing candidate DLX-regulated genes in the first pharyngeal arch of chick embryos. Dev Dyn 2025. [PMID: 39810614 DOI: 10.1002/dvdy.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Insights into the development and evolution of asymmetrical jaws will require an understanding of the gene regulatory networks that underpin the differential morphogenesis of the maxillary and mandibular domains of the first pharyngeal arch in a variety of gnathostomes. While a robust relationship has been demonstrated between jaw patterning and the Endothelin-Dlx gene axis, much less is known of the next level of genes in the jaw patterning hierarchy. RESULTS Several genes, whose expression depends on Dlx5 and/or Dlx6, have been identified in mice. Here, we examined the expression patterns of the chick orthologues of some of those genes, namely GSC, PITX1, HAND2, and GBX2, and tested their dependence on endothelin signaling to assess whether there is a conserved regulatory relationship between those genes in the chick embryo. To further validate these genes as direct DLX targets, we identified conserved non-coding sequences containing candidate DLX binding motifs and demonstrated DLX-responsiveness in vitro. CONCLUSIONS The evidence presented in this study combines to support the hypothesis that these four genes are direct targets of DLX transcription factors in the lower jaw-forming tissue.
Collapse
Affiliation(s)
- Afshan Sohail
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Olivia Nicoll
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Andrew J Bendall
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Kanai SM, Garcia CR, Augustus MR, Sharafeldeen SA, Brooks EP, Sucharov J, Lencer ES, Nichols JT, Clouthier DE. The Gq/11 family of Gα subunits is necessary and sufficient for lower jaw development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.611698. [PMID: 39345358 PMCID: PMC11430119 DOI: 10.1101/2024.09.17.611698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Vertebrate jaw development is coordinated by highly conserved ligand-receptor systems such as the peptide ligand Endothelin 1 (Edn1) and Endothelin receptor type A (Ednra), which are required for patterning of lower jaw structures. The Edn1/Ednra signaling pathway establishes the identity of lower jaw progenitor cells by regulating expression of numerous patterning genes, but the intracellular signaling mechanisms linking receptor activation to gene regulation remain poorly understood. As a first step towards elucidating this mechanism, we examined the function of the Gq/11 family of Gα subunits in zebrafish using pharmacological inhibition and genetic ablation of Gq/11 activity and transgenic induction of a constitutively active Gq protein in edn1 -/- embryos. Genetic loss of Gq/11 activity fully recapitulated the edn1 -/- phenotype, with genes encoding G11 being most essential. Furthermore, inducing Gq activity in edn1 -/- embryos not only restored Edn1/Ednra-dependent jaw structures and gene expression signatures but also caused homeosis of the upper jaw structure into a lower jaw-like structure. These results indicate that Gq/11 is necessary and sufficient to mediate the lower jaw patterning mechanism for Ednra in zebrafish.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Chloe R. Garcia
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - MaCalia R. Augustus
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Shujan A. Sharafeldeen
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Elliott P. Brooks
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Juliana Sucharov
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Ezra S. Lencer
- Department of Biology, Lafayette College, Easton, PA USA
| | - James T. Nichols
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - David E. Clouthier
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
4
|
Liang J, Wang J, Ye C, Bai Y, Tong Y, Li Y, Ji Y, Zhang Y. Ptip is essential for tooth development via regulating Wnt pathway. Oral Dis 2024; 30:1451-1461. [PMID: 36648392 DOI: 10.1111/odi.14509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Epigenetic regulation plays important role in stem cell maintenance. Ptip was identified as epigenetic regulator, but the role in dental progenitor cells remains unclear. SUBJECTS AND METHODS Dental mesenchymal progenitor cells were targeted by Sp7-icre and visualized in mTmG; Sp7-icre mice. The Ptipf/f; Sp7-icre mice were generated and the phenotype of incisors and molars were shown by micro-computerized tomography, scanning electron microscope, hematoxylin & eosin staining, and immunofluorescence. Dental mesenchymal progenitor cells were sorted by fluorescence-activated cell sorting from lower incisors and RNA sequencing was performed. RESULTS The Sp7-icre targets dental mesenchymal progenitor cells in incisors and molars. The Ptipf/f; Sp7-icre mice showed spontaneous fractures in the cusp of upper incisors and lower incisors at 3 weeks (w), compensative overgrowth of lower incisors at 1 month (M), and overgrowth extended to the outside at 2 M. The molars showed shortened roots. The functions of odontoblasts and dental mesenchymal progenitor cells were impaired. Mechanically, loss of Ptip activates the Wnt pathway and upregulates the expression of Wls in dental mesenchymal progenitor cells. Also, the regenerative ability of lower incisors was significantly impaired. CONCLUSION We first demonstrated that Ptip was crucial for tooth development via regulating Wnt signaling.
Collapse
Affiliation(s)
- Jianfei Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Chen Ye
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yi Bai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yibo Tong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yashu Li
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yaoting Ji
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yufeng Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Quilez S, Dumontier E, Baim C, Kam J, Cloutier JF. Loss of Neogenin alters branchial arch development and leads to craniofacial skeletal defects. Front Cell Dev Biol 2024; 12:1256465. [PMID: 38404688 PMCID: PMC10884240 DOI: 10.3389/fcell.2024.1256465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
The formation of complex structures, such as the craniofacial skeleton, requires precise and intricate two-way signalling between populations of cells of different embryonic origins. For example, the lower jaw, or mandible, arises from cranial neural crest cells (CNCCs) in the mandibular portion of the first branchial arch (mdBA1) of the embryo, and its development is regulated by signals from the ectoderm and cranial mesoderm (CM) within this structure. The molecular mechanisms underlying CM cell influence on CNCC development in the mdBA1 remain poorly defined. Herein we identified the receptor Neogenin as a key regulator of craniofacial development. We found that ablation of Neogenin expression via gene-targeting resulted in several craniofacial skeletal defects, including reduced size of the CNCC-derived mandible. Loss of Neogenin did not affect the formation of the mdBA1 CM core but resulted in altered Bmp4 and Fgf8 expression, increased apoptosis, and reduced osteoblast differentiation in the mdBA1 mesenchyme. Reduced BMP signalling in the mdBA1 of Neogenin mutant embryos was associated with alterations in the gene regulatory network, including decreased expression of transcription factors of the Hand, Msx, and Alx families, which play key roles in the patterning and outgrowth of the mdBA1. Tissue-specific Neogenin loss-of-function studies revealed that Neogenin expression in mesodermal cells contributes to mandible formation. Thus, our results identify Neogenin as a novel regulator of craniofacial skeletal formation and demonstrates it impinges on CNCC development via a non-cell autonomous mechanism.
Collapse
Affiliation(s)
- Sabrina Quilez
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Emilie Dumontier
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
| | - Christopher Baim
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Joseph Kam
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Jean-François Cloutier
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| |
Collapse
|
6
|
Sohail A, Bendall AJ. DLX gene expression in the developing chick pharyngeal arches and relationship to endothelin signaling and avian jaw patterning. Dev Dyn 2024; 253:255-271. [PMID: 37706631 DOI: 10.1002/dvdy.653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND A hinged jaw that articulates with the skull base is a striking feature of the vertebrate head and has been greatly modified between, and within, vertebrate classes. Genes belonging to the DLX homeobox family are conserved mediators of local signaling pathways that distinguish the dorsal and ventral aspects of the first pharyngeal arch. Specifically, a subset of DLX genes are expressed in the cranial neural crest-derived mandibular ectomesenchyme in response to ventral endothelin signaling, an important step that confers the first arch with maxillary and mandibular identities. Downstream targets of DLX genes then execute the morphogenetic processes that lead to functional jaws. Identifying lineage-specific variations in DLX gene expression and the regulatory networks downstream of DLX action is necessary to understand how different kinds of jaws evolved. RESULTS Here, we describe and compare the expression of all six DLX genes in the chick pharyngeal arches, focusing on the period of active patterning in the first arch. Disruption of endothelin signaling results in the down-regulation of ventral-specific DLX genes and confirms their functional role in avian jaw patterning. CONCLUSIONS This expression resource will be important for comparative embryology and for identifying synexpression groups of DLX-regulated genes in the chick.
Collapse
Affiliation(s)
- Afshan Sohail
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Andrew J Bendall
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Tophkhane SS, Richman JM. Tissues and signals with true organizer properties in craniofacial development. Curr Top Dev Biol 2023; 157:67-82. [PMID: 38556459 DOI: 10.1016/bs.ctdb.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Transplantation experiments have shown that a true organizer provides instructive signals that induce and pattern ectopic structures in the responding tissue. Here, we review craniofacial experiments to identify tissues with organizer properties and signals with organizer properties. In particular, we evaluate whether transformation of identity took place in the mesenchyme. Using these stringent criteria, we find the strongest evidence for the avian foregut ectoderm. Transplanting a piece of quail foregut endoderm to a host chicken embryo caused ectopic beaks to form derived from chicken mesenchyme. The beak identity, whether upper or lower as well as orientation, was controlled by the original anterior-posterior position of the donor endoderm. There is also good evidence that the nasal pit is necessary and sufficient for lateral nasal patterning. Finally, we review signals that have organizer properties on their own without the need for tissue transplants. Mouse germline knockouts of the endothelin pathway result in transformation of identity of the mandible into a maxilla. Application of noggin-soaked beads to post-migratory neural crest cells transforms maxillary identity. This suggests that endothelin or noggin rich ectoderm could be organizers (not tested). In conclusion, craniofacial, neural crest-derived mesenchyme is competent to respond to tissues with organizer properties, also originating in the head. In future, we can exploit such well defined systems to dissect the molecular changes that ultimately lead to patterning of the upper and lower jaw.
Collapse
Affiliation(s)
- Shruti S Tophkhane
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Joy M Richman
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Kanai SM, Clouthier DE. Endothelin signaling in development. Development 2023; 150:dev201786. [PMID: 38078652 PMCID: PMC10753589 DOI: 10.1242/dev.201786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Since the discovery of endothelin 1 (EDN1) in 1988, the role of endothelin ligands and their receptors in the regulation of blood pressure in normal and disease states has been extensively studied. However, endothelin signaling also plays crucial roles in the development of neural crest cell-derived tissues. Mechanisms of endothelin action during neural crest cell maturation have been deciphered using a variety of in vivo and in vitro approaches, with these studies elucidating the basis of human syndromes involving developmental differences resulting from altered endothelin signaling. In this Review, we describe the endothelin pathway and its functions during the development of neural crest-derived tissues. We also summarize how dysregulated endothelin signaling causes developmental differences and how this knowledge may lead to potential treatments for individuals with gene variants in the endothelin pathway.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Li Q, Jiang Z, Zhang L, Cai S, Cai Z. Auriculocondylar syndrome: Pathogenesis, clinical manifestations and surgical therapies. J Formos Med Assoc 2023; 122:822-842. [PMID: 37208246 DOI: 10.1016/j.jfma.2023.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/09/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023] Open
Abstract
Auriculocondylar syndrome (ARCND) is a genetic and rare craniofacial condition caused by abnormal development of the first and second pharyngeal arches during the embryonic stage and is characterized by peculiar auricular malformations (question mark ears), mandibular condyle hypoplasia, micrognathia and other less-frequent features. GNAI3, PLCB4 and EDN1 have been identified as pathogenic genes in this syndrome so far, all of which are implicated in the EDN1-EDNRA signal pathway. Therefore, ARCND is genetically classified as ARCND1, ARCND2 and ARCND3 based on the mutations in GNAI3, PLCB4 and EDN1, respectively. ARCND is inherited in an autosomal dominant or recessive mode with significant intra- and interfamilial phenotypic variation and incomplete penetrance, rendering its diagnosis difficult and therapies individualized. To raise clinicians' awareness of the rare syndrome, we focused on the currently known pathogenesis, pathogenic genes, clinical manifestations and surgical therapies in this review.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Zhiyuan Jiang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Liyuan Zhang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Siyuan Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Zhen Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| |
Collapse
|
10
|
Kurihara Y, Ekimoto T, Gordon CT, Uchijima Y, Sugiyama R, Kitazawa T, Iwase A, Kotani R, Asai R, Pingault V, Ikeguchi M, Amiel J, Kurihara H. Mandibulofacial dysostosis with alopecia results from ETAR gain-of-function mutations via allosteric effects on ligand binding. J Clin Invest 2023; 133:151536. [PMID: 36637912 PMCID: PMC9927936 DOI: 10.1172/jci151536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Mutations of G protein-coupled receptors (GPCRs) cause various human diseases, but the mechanistic details are limited. Here, we establish p.E303K in the gene encoding the endothelin receptor type A (ETAR/EDNRA) as a recurrent mutation causing mandibulofacial dysostosis with alopecia (MFDA), with craniofacial changes similar to those caused by p.Y129F. Mouse models carrying either of these missense mutations exhibited a partial maxillary-to-mandibular transformation, which was rescued by deleting the ligand endothelin 3 (ET3/EDN3). Pharmacological experiments confirmed the causative ETAR mutations as gain of function, dependent on ET3. To elucidate how an amino acid substitution far from the ligand binding site can increase ligand affinity, we used molecular dynamics (MD) simulations. E303 is located at the intracellular end of transmembrane domain 6, and its replacement by a lysine increased flexibility of this portion of the helix, thus favoring G protein binding and leading to G protein-mediated enhancement of agonist affinity. The Y129F mutation located under the ligand binding pocket reduced the sodium-water network, thereby affecting the extracellular portion of helices in favor of ET3 binding. These findings provide insight into the pathogenesis of MFDA and into allosteric mechanisms regulating GPCR function, which may provide the basis for drug design targeting GPCRs.
Collapse
Affiliation(s)
- Yukiko Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | | | - Yasunobu Uchijima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Sugiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taro Kitazawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiyasu Iwase
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Risa Kotani
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Medical Science, Graduate School of Medicine, University of Hiroshima, Hiroshima, Japan
| | - Rieko Asai
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Véronique Pingault
- Department of Genomic Medicine for Rare Diseases, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,Center for Computational Science, RIKEN, Yokohama, Japan
| | - Jeanne Amiel
- INSERM UMR 1163, Institut Imagine and Université Paris-Cité, Paris, France.,Department of Genomic Medicine for Rare Diseases, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Sohail A, Bendall AJ. The insufficiency of Dlx5 for ventral patterning in post-migratory neural crest cells reveals a loss of plasticity in early jaw-forming tissue. Biochem Biophys Res Commun 2022; 631:110-114. [DOI: 10.1016/j.bbrc.2022.09.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/17/2022] [Indexed: 12/01/2022]
|
12
|
Kanai SM, Heffner C, Cox TC, Cunningham ML, Perez FA, Bauer AM, Reigan P, Carter C, Murray SA, Clouthier DE. Auriculocondylar syndrome 2 results from the dominant-negative action of PLCB4 variants. Dis Model Mech 2022; 15:dmm049320. [PMID: 35284927 PMCID: PMC9066496 DOI: 10.1242/dmm.049320] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
Auriculocondylar syndrome 2 (ARCND2) is a rare autosomal dominant craniofacial malformation syndrome linked to multiple genetic variants in the coding sequence of phospholipase C β4 (PLCB4). PLCB4 is a direct signaling effector of the endothelin receptor type A (EDNRA)-Gq/11 pathway, which establishes the identity of neural crest cells (NCCs) that form lower jaw and middle ear structures. However, the functional consequences of PLCB4 variants on EDNRA signaling is not known. Here, we show, using multiple signaling reporter assays, that known PLCB4 variants resulting from missense mutations exert a dominant-negative interference over EDNRA signaling. In addition, using CRISPR/Cas9, we find that F0 mouse embryos modeling one PLCB4 variant have facial defects recapitulating those observed in hypomorphic Ednra mouse models, including a bone that we identify as an atavistic change in the posterior palate/oral cavity. Remarkably, we have identified a similar osseous phenotype in a child with ARCND2. Our results identify the disease mechanism of ARCND2, demonstrate that the PLCB4 variants cause craniofacial differences and illustrate how minor changes in signaling within NCCs may have driven evolutionary changes in jaw structure and function. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Timothy C. Cox
- Departments of Oral and Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Michael L. Cunningham
- University of Washington, Department of Pediatrics, Division of Craniofacial Medicine and Seattle Children's Craniofacial Center, Seattle, WA 98105, USA
| | - Francisco A. Perez
- University of Washington, Department of Radiology and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Aaron M. Bauer
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Philip Reigan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cristan Carter
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Vegas N, Demir Z, Gordon CT, Breton S, Romanelli Tavares V, Moisset H, Zechi-Ceide R, Kokitsu-Nakata NM, Kido Y, Marlin S, Gherbi Halem S, Meerschaut I, Callewaert B, Chung B, Revencu N, Lehalle D, Petit F, Propst EJ, Papsin BC, Phillips JH, Jakobsen L, Le Tanno P, Thévenon J, McGaughran J, Gerkes EH, Leoni C, Kroisel P, Yang Tan T, Henderson A, Terhal P, Basel-Salmon L, Alkindy A, White SM, Passos Bueno MR, Pingault V, De Pontual L, Amiel J. Further delineation of Auriculocondylar syndrome based on 14 novel cases and reassessment of 25 published cases. Hum Mutat 2022; 43:582-594. [PMID: 35170830 DOI: 10.1002/humu.24349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
Auriculocondylar syndrome (ACS) is a rare craniofacial disorder characterized by mandibular hypoplasia and an auricular defect at the junction between the lobe and helix, known as a "Question Mark Ear" (QME). Several additional features, originating from the first and second branchial arches and other tissues, have also been reported. ACS is genetically heterogeneous with autosomal dominant and recessive modes of inheritance. The mutations identified to date are presumed to dysregulate the endothelin 1 signalling pathway. Here we describe 14 novel cases and reassess 25 published cases of ACS through a questionnaire for systematic data collection. All patients harbour mutation(s) in PLCB4, GNAI3 or EDN1. This series of patients contributes to the characterization of additional features occasionally associated with ACS such as respiratory, costal, neurodevelopmental and genital anomalies, and provides management and monitoring recommendations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nancy Vegas
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France
| | - Zeynep Demir
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Unité d'hépatologie pédiatrie et transplantation, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France
| | - Sylvain Breton
- Service d'imagerie pédiatrie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Vanessa Romanelli Tavares
- Centro de Pesquisas do Genoma Humano e Celulas Tronco, Departamento de Genetica e Biología Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Hugo Moisset
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France
| | - Roseli Zechi-Ceide
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo, Bauru, Brazil
| | - Nancy M Kokitsu-Nakata
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo, Bauru, Brazil
| | - Yasuhiro Kido
- Department of Pediatrics, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Sandrine Marlin
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Reference center for genetic hearing loss, Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| | - Souad Gherbi Halem
- Reference center for genetic hearing loss, Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| | - Ilse Meerschaut
- Center for Medical Genetics, Ghent University Hospital, and Department of Biomolecular Medicine, Ghent University, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, and Department of Biomolecular Medicine, Ghent University, Belgium
| | - Brian Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong
| | - Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
| | - Daphné Lehalle
- Centre de génétique- centre de référence des maladies rares, anomalies du développement et syndrome malformatifs, Centre Hospitalo-Universitaire de Dijon, Bourgogne, France.,UF de Génétique Médicale, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP Sorbonne Université, Paris, France
| | - Florence Petit
- CHU Lille, clinique de Génétique Guy Fontaine, F-59000, Lille, France
| | - Evan J Propst
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Canada
| | - Blake C Papsin
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Canada
| | - John H Phillips
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Canada
| | - Linda Jakobsen
- Department of Plastic Surgery, Copenhagen University Hospital, Herlev, Denmark
| | - Pauline Le Tanno
- Service de Génétique et Université Grenoble-Alpes, Grenoble, France
| | - Julien Thévenon
- Service de Génétique et Université Grenoble-Alpes, Grenoble, France
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston and the University of Queensland, St Lucia, Brisbane, Australia
| | - Erica H Gerkes
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico A. Gemelli, IRCCS, Italy
| | - Peter Kroisel
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Alex Henderson
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Paulien Terhal
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Lina Basel-Salmon
- Pediatric Genetics, Schneider Children's Medical Center of Israel and Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Adila Alkindy
- Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Maria Rita Passos Bueno
- Centro de Pesquisas do Genoma Humano e Celulas Tronco, Departamento de Genetica e Biología Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Véronique Pingault
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| | - Loïc De Pontual
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Service de pédiatrie, Hôpital Jean Verdier, Bondy, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| |
Collapse
|
14
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
15
|
Meng L, Yuan L, Ni J, Fang M, Guo S, Cai H, Qin J, Cai Q, Zhang M, Hu F, Ma J, Zhang Y. Mir24-2-5p suppresses the osteogenic differentiation with Gnai3 inhibition presenting a direct target via inactivating JNK-p38 MAPK signaling axis. Int J Biol Sci 2021; 17:4238-4253. [PMID: 34803495 PMCID: PMC8579458 DOI: 10.7150/ijbs.60536] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Congenital anomalies are increasingly becoming a global pediatric health concern, which requires immediate attention to its early diagnosis, preventive strategies, and efficient treatments. Guanine nucleotide binding protein, alpha inhibiting activity polypeptide 3 (Gnai3) gene mutation has been demonstrated to cause congenital small jaw deformity, but the functions of Gnai3 in the disease-specific microRNA (miRNA) upregulations and their downstream signaling pathways during osteogenesis have not yet been reported. Our previous studies found that the expression of Mir24-2-5p was significantly downregulated in the serum of young people with overgrowing mandibular, and bioinformatics analysis suggested possible binding sites of Mir24-2-5p in the Gnai3 3'UTR region. Therefore, this study was designed to investigate the mechanism of Mir24-2-5p-mediated regulation of Gnai3 gene expression and explore the possibility of potential treatment strategies for bone defects. Methods: Synthetic miRNA mimics and inhibitors were transduced into osteoblast precursor cells to regulate Mir24-2-5p expression. Dual-luciferase reporter assay was utilized to identify the direct binding of Gnai3 and its regulator Mir24-2-5p. Gnai3 levels in osteoblast precursor cells were downregulated by shRNA (shGnai3). Agomir, Morpholino Oligo (MO), and mRNA were microinjected into zebrafish embryos to control mir24-2-5p and gnai3 expression. Relevant expression levels were determined by the qRT-PCR and Western blotting. CCK-8 assay, flow cytometry, and transwell migration assays were performed to assess cell proliferation, apoptosis, and migration. ALP, ARS and Von Kossa staining were performed to observe osteogenic differentiation. Alcian blue staining and calcein immersions were performed to evaluate the embryonic development and calcification of zebrafish. Results: The expression of Mir24-2-5p was reduced throughout the mineralization process of osteoblast precursor cells. miRNA inhibitors and mimics were transfected into osteoblast precursor cells. Cell proliferation, migration, osteogenic differentiation, and mineralization processes were measured, which showed a reverse correlation with the expression of Mir24-2-5p. Dual-luciferase reporter gene detection assay confirmed the direct interaction between Mir24-2-5p and Gnai3 mRNA. Moreover, in osteoblast precursor cells treated with Mir24-2-5p inhibitor, the expression of Gnai3 gene was increased, suggesting that Mir24-2-5p negatively targeted Gnai3. Silencing of Gnai3 inhibited osteoblast precursor cells proliferation, migration, osteogenic differentiation, and mineralization. Promoting effects of osteoblast precursor cells proliferation, migration, osteogenic differentiation, and mineralization by low expression of Mir24-2-5p was partially rescued upon silencing of Gnai3. In vivo, mir24-2-5p Agomir microinjection into zebrafish embryo resulted in shorter body length, smaller and retruded mandible, decreased cartilage development, and vertebral calcification, which was partially rescued by microinjecting gnai3 mRNA. Notably, quite similar phenotypic outcomes were observed in gnai3 MO embryos, which were also partially rescued by mir24-2-5p MO. Besides, the expression of phospho-JNK (p-JNK) and p-p38 were increased upon Mir24-2-5p inhibitor treatment and decreased upon shGnai3-mediated Gnai3 downregulation in osteoblast precursor cells. Osteogenic differentiation and mineralization abilities of shGnai3-treated osteoblast precursor cells were promoted by p-JNK and p-p38 pathway activators, suggesting that Gnai3 might regulate the differentiation and mineralization processes in osteoblast precursor cells through the MAPK signaling pathway. Conclusions: In this study, we investigated the regulatory mechanism of Mir24-2-5p on Gnai3 expression regulation in osteoblast precursor cells and provided a new idea of improving the prevention and treatment strategies for congenital mandibular defects and mandibular protrusion.
Collapse
Affiliation(s)
- Li Meng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Lichan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Jieli Ni
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Mengru Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Huayang Cai
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Jinwei Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Qi Cai
- Department of Stomatology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Mengnan Zhang
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Fang Hu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
16
|
Romanelli Tavares VL, Guimarães-Ramos SL, Zhou Y, Masotti C, Ezquina S, Moreira DDP, Buermans H, Freitas RS, Den Dunnen JT, Twigg SRF, Passos-Bueno MR. New locus underlying auriculocondylar syndrome (ARCND): 430 kb duplication involving TWIST1 regulatory elements. J Med Genet 2021; 59:895-905. [PMID: 34750192 PMCID: PMC9411924 DOI: 10.1136/jmedgenet-2021-107825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022]
Abstract
Background Auriculocondylar syndrome (ARCND) is a rare genetic disease that affects structures derived from the first and second pharyngeal arches, mainly resulting in micrognathia and auricular malformations. To date, pathogenic variants have been identified in three genes involved in the EDN1-DLX5/6 pathway (PLCB4, GNAI3 and EDN1) and some cases remain unsolved. Here we studied a large unsolved four-generation family. Methods We performed linkage analysis, resequencing and Capture-C to investigate the causative variant of this family. To test the pathogenicity of the CNV found, we modelled the disease in patient craniofacial progenitor cells, including induced pluripotent cell (iPSC)-derived neural crest and mesenchymal cells. Results This study highlights a fourth locus causative of ARCND, represented by a tandem duplication of 430 kb in a candidate region on chromosome 7 defined by linkage analysis. This duplication segregates with the disease in the family (LOD score=2.88) and includes HDAC9, which is located over 200 kb telomeric to the top candidate gene TWIST1. Notably, Capture-C analysis revealed multiple cis interactions between the TWIST1 promoter and possible regulatory elements within the duplicated region. Modelling of the disease revealed an increased expression of HDAC9 and its neighbouring gene, TWIST1, in neural crest cells. We also identified decreased migration of iPSC-derived neural crest cells together with dysregulation of osteogenic differentiation in iPSC-affected mesenchymal stem cells. Conclusion Our findings support the hypothesis that the 430 kb duplication is causative of the ARCND phenotype in this family and that deregulation of TWIST1 expression during craniofacial development can contribute to the phenotype.
Collapse
Affiliation(s)
| | | | - Yan Zhou
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Cibele Masotti
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil.,Molecular Oncology Center, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Suzana Ezquina
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil.,Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Danielle de Paula Moreira
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil
| | - Henk Buermans
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Renato S Freitas
- Centro de Atendimento Integral ao Fissurado Lábio Palatal, Curitiba, Brazil
| | - Johan T Den Dunnen
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Maria Rita Passos-Bueno
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil
| |
Collapse
|
17
|
Abe M, Cox TC, Firulli AB, Kanai SM, Dahlka J, Lim KC, Engel JD, Clouthier DE. GATA3 is essential for separating patterning domains during facial morphogenesis. Development 2021; 148:dev199534. [PMID: 34383890 PMCID: PMC8451945 DOI: 10.1242/dev.199534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
Neural crest cells (NCCs) within the mandibular and maxillary prominences of the first pharyngeal arch are initially competent to respond to signals from either region. However, mechanisms that are only partially understood establish developmental tissue boundaries to ensure spatially correct patterning. In the 'hinge and caps' model of facial development, signals from both ventral prominences (the caps) pattern the adjacent tissues whereas the intervening region, referred to as the maxillomandibular junction (the hinge), maintains separation of the mandibular and maxillary domains. One cap signal is GATA3, a member of the GATA family of zinc-finger transcription factors with a distinct expression pattern in the ventral-most part of the mandibular and maxillary portions of the first arch. Here, we show that disruption of Gata3 in mouse embryos leads to craniofacial microsomia and syngnathia (bony fusion of the upper and lower jaws) that results from changes in BMP4 and FGF8 gene regulatory networks within NCCs near the maxillomandibular junction. GATA3 is thus a crucial component in establishing the network of factors that functionally separate the upper and lower jaws during development.
Collapse
Affiliation(s)
- Makoto Abe
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Timothy C. Cox
- Departments of Oral & Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Anthony B. Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob Dahlka
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Kurosaka H, Mushiake J, Mithun S, Wu Y, Wang Q, Kikuchi M, Nakaya A, Yamamoto S, Inubushi T, Koga S, Sandell LL, Trainor P, Yamashiro T. Synergistic role of retinoic acid signaling and Gata3 during primitive choanae formation. Hum Mol Genet 2021; 30:2383-2392. [PMID: 34272563 DOI: 10.1093/hmg/ddab205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/16/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Developmental defects of primitive choanae, an anatomical path to connect the embryonic nasal and oral cavity, result in disorders called choanal atresia, which are associated with many congenital diseases and require immediate clinical intervention after birth. Previous studies revealed that reduced retinoid signaling underlies the etiology of choanal atresia. In the present study, by using multiple mouse models which conditionally deleted Rdh10 and Gata3 during embryogenesis, we showed that Gata3 expression is regulated by retinoid signaling during embryonic craniofacial development and plays crucial roles for development of the primitive choanae. Interestingly, Gata3 loss of function is known to cause hypoparathyroidism, sensorineural deafness and renal disease (HDR) syndrome, which exhibits choanal atresia as one of the phenotypes in humans. Our model partially phenocopies HDR syndrome with choanal atresia, and is thus a useful tool for investigating the molecular and cellular mechanisms of HDR syndrome. We further uncovered critical synergy of Gata3 and retinoid signaling during embryonic development, which will shed light on novel molecular and cellular etiology of congenital defects in primitive choanae formation.
Collapse
Affiliation(s)
- Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Jin Mushiake
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Saha Mithun
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Yanran Wu
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Qi Wang
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University
| | - Akihiro Nakaya
- Department of Genome Informatics, Graduate School of Medicine, Osaka University.,Laboratory of Genome Data Science Graduate School of Frontier Sciences, The University of Tokyo
| | - Sayuri Yamamoto
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Satoshi Koga
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry
| | - Paul Trainor
- Stowers Institute for Medical Research.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| |
Collapse
|
19
|
Fabik J, Psutkova V, Machon O. The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage. Int J Mol Sci 2021; 22:7529. [PMID: 34299147 PMCID: PMC8303155 DOI: 10.3390/ijms22147529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The mandibular and hyoid arches collectively make up the facial skeleton, also known as the viscerocranium. Although all three germ layers come together to assemble the pharyngeal arches, the majority of tissue within viscerocranial skeletal components differentiates from the neural crest. Since nearly one third of all birth defects in humans affect the craniofacial region, it is important to understand how signalling pathways and transcription factors govern the embryogenesis and skeletogenesis of the viscerocranium. This review focuses on mouse and zebrafish models of craniofacial development. We highlight gene regulatory networks directing the patterning and osteochondrogenesis of the mandibular and hyoid arches that are actually conserved among all gnathostomes. The first part of this review describes the anatomy and development of mandibular and hyoid arches in both species. The second part analyses cell signalling and transcription factors that ensure the specificity of individual structures along the anatomical axes. The third part discusses the genes and molecules that control the formation of bone and cartilage within mandibular and hyoid arches and how dysregulation of molecular signalling influences the development of skeletal components of the viscerocranium. In conclusion, we notice that mandibular malformations in humans and mice often co-occur with hyoid malformations and pinpoint the similar molecular machinery controlling the development of mandibular and hyoid arches.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
| |
Collapse
|
20
|
Swartz ME, Lovely CB, Eberhart JK. Variation in phenotypes from a Bmp-Gata3 genetic pathway is modulated by Shh signaling. PLoS Genet 2021; 17:e1009579. [PMID: 34033651 PMCID: PMC8184005 DOI: 10.1371/journal.pgen.1009579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/07/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
We sought to understand how perturbation of signaling pathways and their targets generates variable phenotypes. In humans, GATA3 associates with highly variable defects, such as HDR syndrome, microsomia and choanal atresia. We previously characterized a zebrafish point mutation in gata3 with highly variable craniofacial defects to the posterior palate. This variability could be due to residual Gata3 function, however, we observe the same phenotypic variability in gata3 null mutants. Using hsp:GATA3-GFP transgenics, we demonstrate that Gata3 function is required between 24 and 30 hpf. At this time maxillary neural crest cells fated to generate the palate express gata3. Transplantation experiments show that neural crest cells require Gata3 function for palatal development. Via a candidate approach, we determined if Bmp signaling was upstream of gata3 and if this pathway explained the mutant's phenotypic variation. Using BRE:d2EGFP transgenics, we demonstrate that maxillary neural crest cells are Bmp responsive by 24 hpf. We find that gata3 expression in maxillary neural crest requires Bmp signaling and that blocking Bmp signaling, in hsp:DN-Bmpr1a-GFP embryos, can phenocopy gata3 mutants. Palatal defects are rescued in hsp:DN-Bmpr1a-GFP;hsp:GATA3-GFP double transgenic embryos, collectively demonstrating that gata3 is downstream of Bmp signaling. However, Bmp attenuation does not alter phenotypic variability in gata3 loss-of-function embryos, implicating a different pathway. Due to phenotypes observed in hypomorphic shha mutants, the Sonic Hedgehog (Shh) pathway was a promising candidate for this pathway. Small molecule activators and inhibitors of the Shh pathway lessen and exacerbate, respectively, the phenotypic severity of gata3 mutants. Importantly, inhibition of Shh can cause gata3 haploinsufficiency, as observed in humans. We find that gata3 mutants in a less expressive genetic background have a compensatory upregulation of Shh signaling. These results demonstrate that the level of Shh signaling can modulate the phenotypes observed in gata3 mutants.
Collapse
Affiliation(s)
- Mary E. Swartz
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - C. Ben Lovely
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Johann K. Eberhart
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
21
|
Mandibulofacial Dysostosis Attributed to a Recessive Mutation of CYP26C1 in Hereford Cattle. Genes (Basel) 2020; 11:genes11111246. [PMID: 33105751 PMCID: PMC7690606 DOI: 10.3390/genes11111246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022] Open
Abstract
In spring 2020, six Hereford calves presented with congenital facial deformities attributed to a condition we termed mandibulofacial dysostosis (MD). Affected calves shared hallmark features of a variably shortened and/or asymmetric lower mandible and bilateral skin tags present 2–10 cm caudal to the commissure of the lips. Pedigree analysis revealed a single common ancestor shared by the sire and dam of each affected calf. Whole-genome sequencing (WGS) of 20 animals led to the discovery of a variant (Chr26 g. 14404993T>C) in Exon 3 of CYP26C1 associated with MD. This missense mutation (p.L188P), is located in an α helix of the protein, which the identified amino acid substitution is predicted to break. The implication of this mutation was further validated through genotyping 2 additional affected calves, 760 other Herefords, and by evaluation of available WGS data from over 2500 other individuals. Only the affected individuals were homozygous for the variant and all heterozygotes had at least one pedigree tie to the suspect founder. CYP26C1 plays a vital role in tissue-specific regulation of retinoic acid (RA) during embryonic development. Dysregulation of RA can result in teratogenesis by altering the endothelin-1 signaling pathway affecting the expression of Dlx genes, critical to mandibulofacial development. We postulate that this recessive missense mutation in CYP26C1 impacts the catalytic activity of the encoded enzyme, leading to excess RA resulting in the observed MD phenotype.
Collapse
|
22
|
Square TA, Jandzik D, Massey JL, Romášek M, Stein HP, Hansen AW, Purkayastha A, Cattell MV, Medeiros DM. Evolution of the endothelin pathway drove neural crest cell diversification. Nature 2020; 585:563-568. [PMID: 32939088 DOI: 10.1038/s41586-020-2720-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Neural crest cells (NCCs) are migratory, multipotent embryonic cells that are unique to vertebrates and form an array of clade-defining adult features. The evolution of NCCs has been linked to various genomic events, including the evolution of new gene-regulatory networks1,2, the de novo evolution of genes3 and the proliferation of paralogous genes during genome-wide duplication events4. However, conclusive functional evidence linking new and/or duplicated genes to NCC evolution is lacking. Endothelin ligands (Edns) and endothelin receptors (Ednrs) are unique to vertebrates3,5,6, and regulate multiple aspects of NCC development in jawed vertebrates7-10. Here, to test whether the evolution of Edn signalling was a driver of NCC evolution, we used CRISPR-Cas9 mutagenesis11 to disrupt edn, ednr and dlx genes in the sea lamprey, Petromyzon marinus. Lampreys are jawless fishes that last shared a common ancestor with modern jawed vertebrates around 500 million years ago12. Thus, comparisons between lampreys and gnathostomes can identify deeply conserved and evolutionarily flexible features of vertebrate development. Using the frog Xenopus laevis to expand gnathostome phylogenetic representation and facilitate side-by-side analyses, we identify ancient and lineage-specific roles for Edn signalling. These findings suggest that Edn signalling was activated in NCCs before duplication of the vertebrate genome. Then, after one or more genome-wide duplications in the vertebrate stem, paralogous Edn pathways functionally diverged, resulting in NCC subpopulations with different Edn signalling requirements. We posit that this new developmental modularity facilitated the independent evolution of NCC derivatives in stem vertebrates. Consistent with this, differences in Edn pathway targets are associated with differences in the oropharyngeal skeleton and autonomic nervous system of lampreys and modern gnathostomes. In summary, our work provides functional genetic evidence linking the origin and duplication of new vertebrate genes with the stepwise evolution of a defining vertebrate novelty.
Collapse
Affiliation(s)
- Tyler A Square
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA. .,Department of Molecular and Cellular Biology, University of California, Berkeley, CA, USA.
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA. .,Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia. .,Department of Zoology, Charles University in Prague, Prague, Czech Republic.
| | - James L Massey
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Marek Romášek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Gymnázium Jiřího Wolkera, Prostějov, Czech Republic
| | - Haley P Stein
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Andrew W Hansen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Amrita Purkayastha
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Maria V Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Department of Biology, Metropolitan State University, Denver, CO, USA
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
23
|
Dash S, Trainor PA. The development, patterning and evolution of neural crest cell differentiation into cartilage and bone. Bone 2020; 137:115409. [PMID: 32417535 DOI: 10.1016/j.bone.2020.115409] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Neural crest cells are a vertebrate-specific migratory, multipotent cell population that give rise to a diverse array of cells and tissues during development. Cranial neural crest cells, in particular, generate cartilage, bone, tendons and connective tissue in the head and face as well as neurons, glia and melanocytes. In this review, we focus on the chondrogenic and osteogenic potential of cranial neural crest cells and discuss the roles of Sox9, Runx2 and Msx1/2 transcription factors and WNT, FGF and TGFβ signaling pathways in regulating neural crest cell differentiation into cartilage and bone. We also describe cranioskeletal defects and disorders arising from gain or loss-of-function of genes that are required for patterning and differentiation of cranial neural crest cells. Finally, we discuss the evolution of skeletogenic potential in neural crest cells and their function as a conduit for intraspecies and interspecies variation, and the evolution of craniofacial novelties.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
24
|
Pritchard AB, Kanai SM, Krock B, Schindewolf E, Oliver-Krasinski J, Khalek N, Okashah N, Lambert NA, Tavares ALP, Zackai E, Clouthier DE. Loss-of-function of Endothelin receptor type A results in Oro-Oto-Cardiac syndrome. Am J Med Genet A 2020; 182:1104-1116. [PMID: 32133772 PMCID: PMC7202054 DOI: 10.1002/ajmg.a.61531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/14/2023]
Abstract
Craniofacial morphogenesis is regulated in part by signaling from the Endothelin receptor type A (EDNRA). Pathogenic variants in EDNRA signaling pathway components EDNRA, GNAI3, PCLB4, and EDN1 cause Mandibulofacial Dysostosis with Alopecia (MFDA), Auriculocondylar syndrome (ARCND) 1, 2, and 3, respectively. However, cardiovascular development is normal in MFDA and ARCND individuals, unlike Ednra knockout mice. One explanation may be that partial EDNRA signaling remains in MFDA and ARCND, as mice with reduced, but not absent, EDNRA signaling also lack a cardiovascular phenotype. Here we report an individual with craniofacial and cardiovascular malformations mimicking the Ednra -/- mouse phenotype, including a distinctive micrognathia with microstomia and a hypoplastic aortic arch. Exome sequencing found a novel homozygous missense variant in EDNRA (c.1142A>C; p.Q381P). Bioluminescence resonance energy transfer assays revealed that this amino acid substitution in helix 8 of EDNRA prevents recruitment of G proteins to the receptor, abrogating subsequent receptor activation by its ligand, Endothelin-1. This homozygous variant is thus the first reported loss-of-function EDNRA allele, resulting in a syndrome we have named Oro-Oto-Cardiac Syndrome. Further, our results illustrate that EDNRA signaling is required for both normal human craniofacial and cardiovascular development, and that limited EDNRA signaling is likely retained in ARCND and MFDA individuals. This work illustrates a straightforward approach to identifying the functional consequence of novel genetic variants in signaling molecules associated with malformation syndromes.
Collapse
Affiliation(s)
- Amanda Barone Pritchard
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Stanley M Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bryan Krock
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Erica Schindewolf
- Center for Fetal Diagnosis and Treatment, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Nahla Khalek
- Center for Fetal Diagnosis and Treatment, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Najeah Okashah
- Department of Pharmacology and Toxicology, Medical College of Georgia-Augusta University, Augusta, Georgia, USA
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia-Augusta University, Augusta, Georgia, USA
| | - Andre L P Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elaine Zackai
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
25
|
Vincentz JW, Clouthier DE, Firulli AB. Mis-Expression of a Cranial Neural Crest Cell-Specific Gene Program in Cardiac Neural Crest Cells Modulates HAND Factor Expression, Causing Cardiac Outflow Tract Phenotypes. J Cardiovasc Dev Dis 2020; 7:jcdd7020013. [PMID: 32325975 PMCID: PMC7344951 DOI: 10.3390/jcdd7020013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Congenital heart defects (CHDs) occur with such a frequency that they constitute a significant cause of morbidity and mortality in both children and adults. A significant portion of CHDs can be attributed to aberrant development of the cardiac outflow tract (OFT), and of one of its cellular progenitors known as the cardiac neural crest cells (NCCs). The gene regulatory networks that identify cardiac NCCs as a distinct NCC population are not completely understood. Heart and neural crest derivatives (HAND) bHLH transcription factors play essential roles in NCC morphogenesis. The Hand1PA/OFT enhancer is dependent upon bone morphogenic protein (BMP) signaling in both cranial and cardiac NCCs. The Hand1PA/OFT enhancer is directly repressed by the endothelin-induced transcription factors DLX5 and DLX6 in cranial but not cardiac NCCs. This transcriptional distinction offers the unique opportunity to interrogate NCC specification, and to understand why, despite similarities, cranial NCC fate determination is so diverse. We generated a conditionally active transgene that can ectopically express DLX5 within the developing mouse embryo in a Cre-recombinase-dependent manner. Ectopic DLX5 expression represses cranial NCC Hand1PA/OFT-lacZ reporter expression more effectively than cardiac NCC reporter expression. Ectopic DLX5 expression induces broad domains of NCC cell death within the cranial pharyngeal arches, but minimal cell death in cardiac NCC populations. This study shows that transcription control of NCC gene regulatory programs is influenced by their initial specification at the dorsal neural tube.
Collapse
Affiliation(s)
- Joshua W. Vincentz
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA
- Correspondence: (J.W.V.); (A.B.F.)
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Anthony B. Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA
- Correspondence: (J.W.V.); (A.B.F.)
| |
Collapse
|
26
|
Brăescu R, Săvinescu SD, Tatarciuc MS, Zetu IN, Giuşcă SE, Căruntu ID. Pointing on the early stages of maxillary bone and tooth development - histological findings. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:167-174. [PMID: 32747908 PMCID: PMC7728135 DOI: 10.47162/rjme.61.1.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022]
Abstract
Although the morphological stages of tooth development, in parallel with maxillary bone construction, are known for decades, the intimate mechanisms of early development of the oral cavity structures and tooth's proper and associated tissues are still incompletely elucidated. Nowadays, the research in embryology was shifted from the morphological to the molecular and genetic approach. This new approach is accomplished by using in vivo and in vitro experimental studies performed on animal models and cell lines. The interest in the knowledge of these events at gene and molecular level is still current, aiming to sustain the progress in the endorsement of novel regenerative and restorative therapies. However, the morphological standpoint maintains its interest, because the extrapolation of the results of experimental studies in humans requires a strong confirmation. Within this context, our work aims to analyze the histological characteristics of the maxillary bone and integrated tooth germs during the early stages of embryonic development. The study group consisted in mandible fragments obtained by dissection of the cephalic extremities collected from fetuses aged from 10 to 24 weeks, after medical or spontaneous abortions. The tissue specimens were processed for the histological exam. The histoarchitectonic traits of the initial stages of mandibular bone tissue and tooth development were assessed. The results revealed the dynamics of the ossification stages, from stages of early-dispersed intramembranous ossification to the organization of the dental alveoli, incorporated step-by-step in the maxillary body, and the simultaneous presence of tooth germs with different sizes and shapes, in accordance with the development stage. Our study complements the existing data regarding the embryonic period, bringing an important contribution for the enlargement of existing morphological, visual information for maxillary bone and tooth development.
Collapse
Affiliation(s)
- Radu Brăescu
- Department of Morphofunctional Sciences I - Pathology, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania; ,
| | | | | | | | | | | |
Collapse
|
27
|
Sucharov J, Ray K, Brooks EP, Nichols JT. Selective breeding modifies mef2ca mutant incomplete penetrance by tuning the opposing Notch pathway. PLoS Genet 2019; 15:e1008507. [PMID: 31790396 PMCID: PMC6907857 DOI: 10.1371/journal.pgen.1008507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/12/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Deleterious genetic mutations allow developmental biologists to understand how genes control development. However, not all loss of function genetic mutants develop phenotypic changes. Many deleterious mutations only produce a phenotype in a subset of mutant individuals, a phenomenon known as incomplete penetrance. Incomplete penetrance can confound analyses of gene function and our understanding of this widespread phenomenon remains inadequate. To better understand what controls penetrance, we capitalized on the zebrafish mef2ca mutant which produces craniofacial phenotypes with variable penetrance. Starting with a characterized mef2ca loss of function mutant allele, we used classical selective breeding methods to generate zebrafish strains in which mutant-associated phenotypes consistently appear with low or high penetrance. Strikingly, our selective breeding for low penetrance converted the mef2ca mutant allele behavior from homozygous lethal to homozygous viable. Meanwhile, selective breeding for high penetrance converted the mef2ca mutant allele from fully recessive to partially dominant. Comparing the selectively-bred low- and high-penetrance strains revealed that the strains initially respond similarly to the mutation, but then gene expression differences between strains emerge during development. Thus, altered temporal genetic circuitry can manifest through selective pressure to modify mutant penetrance. Specifically, we demonstrate differences in Notch signaling between strains, and further show that experimental manipulation of the Notch pathway phenocopies penetrance changes occurring through selective breeding. This study provides evidence that penetrance is inherited as a liability-threshold trait. Our finding that vertebrate animals can overcome a deleterious mutation by tuning genetic circuitry complements other reported mechanisms of overcoming deleterious mutations such as transcriptional adaptation of compensatory genes, alternative mRNA splicing, and maternal deposition of wild-type transcripts, which are not observed in our system. The selective breeding approach and the resultant genetic circuitry change we uncovered advances and expands our current understanding of genetic and developmental resilience. Some deleterious gene mutations only affect a subset of genetically mutant animals. This widespread phenomenon, known as mutant incomplete penetrance, complicates discovery of causative gene mutations in both model organisms and human disease. This study utilized the zebrafish mef2ca transcription factor mutant that produces craniofacial skeleton defects with incomplete penetrance. Selectively breeding zebrafish families for low- or high-penetrance mutants for many generations created different zebrafish strains with consistently low or high penetrance. Comparing these strains allowed us to gain insight into the mechanisms that control penetrance. Specifically, genes under the control of mef2ca are initially similarly expressed between the two strains, but differences between strains emerge during development. We found that genetic manipulation of these downstream genes mimics the effects of our selective breeding. Thus, selective breeding for penetrance can change the genetic circuitry downstream of the mutated gene. We propose that small differences in gene circuitry between individuals is one mechanism underlying susceptibility or resilience to genetic mutations.
Collapse
Affiliation(s)
- Juliana Sucharov
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kuval Ray
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Elliott P. Brooks
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - James T. Nichols
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
28
|
Woronowicz KC, Schneider RA. Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. EvoDevo 2019; 10:17. [PMID: 31417668 PMCID: PMC6691539 DOI: 10.1186/s13227-019-0131-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/22/2019] [Indexed: 01/16/2023] Open
Abstract
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA.,2Present Address: Department of Genetics, Harvard Medical School, Orthopaedic Research Laboratories, Children's Hospital Boston, Boston, MA 02115 USA
| | - Richard A Schneider
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA
| |
Collapse
|
29
|
Cdc42 activation by endothelin regulates neural crest cell migration in the cardiac outflow tract. Dev Dyn 2019; 248:795-812. [DOI: 10.1002/dvdy.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
|
30
|
Williams AL, Bohnsack BL. What's retinoic acid got to do with it? Retinoic acid regulation of the neural crest in craniofacial and ocular development. Genesis 2019; 57:e23308. [PMID: 31157952 DOI: 10.1002/dvg.23308] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 12/21/2022]
Abstract
Retinoic acid (RA), the active derivative of vitamin A (retinol), is an essential morphogen signaling molecule and major regulator of embryonic development. The dysregulation of RA levels during embryogenesis has been associated with numerous congenital anomalies, including craniofacial, auditory, and ocular defects. These anomalies result from disruptions in the cranial neural crest, a vertebrate-specific transient population of stem cells that contribute to the formation of diverse cell lineages and embryonic structures during development. In this review, we summarize our current knowledge of the RA-mediated regulation of cranial neural crest induction at the edge of the neural tube and the migration of these cells into the craniofacial region. Further, we discuss the role of RA in the regulation of cranial neural crest cells found within the frontonasal process, periocular mesenchyme, and pharyngeal arches, which eventually form the bones and connective tissues of the head and neck and contribute to structures in the anterior segment of the eye. We then review our understanding of the mechanisms underlying congenital craniofacial and ocular diseases caused by either the genetic or toxic disruption of RA signaling. Finally, we discuss the role of RA in maintaining neural crest-derived structures in postembryonic tissues and the implications of these studies in creating new treatments for degenerative craniofacial and ocular diseases.
Collapse
Affiliation(s)
- Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
31
|
Abstract
Jaw bones and teeth originate from the first pharyngeal arch and develop in closely related ways. Reciprocal epithelial-mesenchymal interactions are required for the early patterning and morphogenesis of both tissues. Here we review the cellular contribution during the development of the jaw bones and teeth. We also highlight signaling networks as well as transcription factors mediating tissue-tissue interactions that are essential for jaw bone and tooth development. Finally, we discuss the potential for stem cell mediated regenerative therapies to mitigate disorders and injuries that affect these organs.
Collapse
Affiliation(s)
- Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States.
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
32
|
Xu J, Liu H, Lan Y, Adam M, Clouthier DE, Potter S, Jiang R. Hedgehog signaling patterns the oral-aboral axis of the mandibular arch. eLife 2019; 8:40315. [PMID: 30638444 PMCID: PMC6347453 DOI: 10.7554/elife.40315] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
Development of vertebrate jaws involves patterning neural crest-derived mesenchyme cells into distinct subpopulations along the proximal-distal and oral-aboral axes. Although the molecular mechanisms patterning the proximal-distal axis have been well studied, little is known regarding the mechanisms patterning the oral-aboral axis. Using unbiased single-cell RNA-seq analysis followed by in situ analysis of gene expression profiles, we show that Shh and Bmp4 signaling pathways are activated in a complementary pattern along the oral-aboral axis in mouse embryonic mandibular arch. Tissue-specific inactivation of hedgehog signaling in neural crest-derived mandibular mesenchyme led to expansion of BMP signaling activity to throughout the oral-aboral axis of the distal mandibular arch and subsequently duplication of dentary bone in the oral side of the mandible at the expense of tongue formation. Further studies indicate that hedgehog signaling acts through the Foxf1/2 transcription factors to specify the oral fate and pattern the oral-aboral axis of the mandibular mesenchyme.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Han Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States.,Shriners Hospitals for Children - Cincinnati, Cincinnati, United States
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - David E Clouthier
- Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, University of Colorado, Aurora, United States
| | - Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States.,Shriners Hospitals for Children - Cincinnati, Cincinnati, United States
| |
Collapse
|
33
|
Meinecke L, Sharma PP, Du H, Zhang L, Nie Q, Schilling TF. Modeling craniofacial development reveals spatiotemporal constraints on robust patterning of the mandibular arch. PLoS Comput Biol 2018; 14:e1006569. [PMID: 30481168 PMCID: PMC6258504 DOI: 10.1371/journal.pcbi.1006569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
How does pattern formation occur accurately when confronted with tissue growth and stochastic fluctuations (noise) in gene expression? Dorso-ventral (D-V) patterning of the mandibular arch specifies upper versus lower jaw skeletal elements through a combination of Bone morphogenetic protein (Bmp), Endothelin-1 (Edn1), and Notch signaling, and this system is highly robust. We combine NanoString experiments of early D-V gene expression with live imaging of arch development in zebrafish to construct a computational model of the D-V mandibular patterning network. The model recapitulates published genetic perturbations in arch development. Patterning is most sensitive to changes in Bmp signaling, and the temporal order of gene expression modulates the response of the patterning network to noise. Thus, our integrated systems biology approach reveals non-intuitive features of the complex signaling system crucial for craniofacial development, including novel insights into roles of gene expression timing and stochasticity in signaling and gene regulation.
Collapse
Affiliation(s)
- Lina Meinecke
- Department of Mathematics, University of California, Irvine, CA, United States of America
- Center for Complex Biological Systems, University of California, Irvine, CA, United States of America
| | - Praveer P. Sharma
- Center for Complex Biological Systems, University of California, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| | - Huijing Du
- Department of Mathematics, University of Nebraska, Lincoln, NE, United States of America
| | - Lei Zhang
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, United States of America
- Center for Complex Biological Systems, University of California, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| | - Thomas F. Schilling
- Center for Complex Biological Systems, University of California, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| |
Collapse
|
34
|
Kitazawa T, Rijli FM. Barrelette map formation in the prenatal mouse brainstem. Curr Opin Neurobiol 2018; 53:210-219. [PMID: 30342228 DOI: 10.1016/j.conb.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/03/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
The rodent whiskers are topographically mapped in brainstem sensory nuclei as neuronal modules known as barrelettes. Little is known about how the facial whisker pattern is copied into a brainstem barrelette topographic pattern, which serves as a template for the establishment of thalamic barreloid and, in turn, cortical barrel maps, and how precisely is the whisker pattern mapped in the brainstem during prenatal development. Here, we review recent insights advancing our understanding of the intrinsic and extrinsic patterning mechanisms contributing to establish topographical equivalence between the facial whisker pattern and the mouse brainstem during prenatal development and their relative importance.
Collapse
Affiliation(s)
- Taro Kitazawa
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4051 Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4051 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland.
| |
Collapse
|
35
|
Probing the origin of matching functional jaws: roles of Dlx5/6 in cranial neural crest cells. Sci Rep 2018; 8:14975. [PMID: 30297736 PMCID: PMC6175850 DOI: 10.1038/s41598-018-33207-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
Gnathostome jaws derive from the first pharyngeal arch (PA1), a complex structure constituted by Neural Crest Cells (NCCs), mesodermal, ectodermal and endodermal cells. Here, to determine the regionalized morphogenetic impact of Dlx5/6 expression, we specifically target their inactivation or overexpression to NCCs. NCC-specific Dlx5/6 inactivation (NCC∆Dlx5/6) generates severely hypomorphic lower jaws that present typical maxillary traits. Therefore, differently from Dlx5/6 null-embryos, the upper and the lower jaws of NCC∆Dlx5/6 mice present a different size. Reciprocally, forced Dlx5 expression in maxillary NCCs provokes the appearance of distinct mandibular characters in the upper jaw. We conclude that: (1) Dlx5/6 activation in NCCs invariably determines lower jaw identity; (2) the morphogenetic processes that generate functional matching jaws depend on the harmonization of Dlx5/6 expression in NCCs and in distinct ectodermal territories. The co-evolution of synergistic opposing jaws requires the coordination of distinct regulatory pathways involving the same transcription factors in distant embryonic territories.
Collapse
|
36
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
37
|
Logjes RJH, Breugem CC, Van Haaften G, Paes EC, Sperber GH, van den Boogaard MJH, Farlie PG. The ontogeny of Robin sequence. Am J Med Genet A 2018; 176:1349-1368. [PMID: 29696787 DOI: 10.1002/ajmg.a.38718] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/17/2017] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Abstract
The triad of micrognathia, glossoptosis, and concomitant airway obstruction defined as "Robin sequence" (RS) is caused by oropharyngeal developmental events constrained by a reduced stomadeal space. This sequence of abnormal embryonic development also results in an anatomical configuration that might predispose the fetus to a cleft palate. RS is heterogeneous and many different etiologies have been described including syndromic, RS-plus, and isolated forms. For an optimal diagnosis, subsequent treatment and prognosis, a thorough understanding of the embryology and pathogenesis is necessary. This manuscript provides an update about our current understanding of the development of the mandible, tongue, and palate and possible mechanisms involved in the development of RS. Additionally, we provide the reader with an up-to-date summary of the different etiologies of this phenotype and link this to the embryologic, developmental, and genetic mechanisms.
Collapse
Affiliation(s)
- Robrecht J H Logjes
- Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Wilhelmina Children's Hospital Utrecht, Utrecht, The Netherlands
| | - Corstiaan C Breugem
- Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Wilhelmina Children's Hospital Utrecht, Utrecht, The Netherlands
| | - Gijs Van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emma C Paes
- Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Wilhelmina Children's Hospital Utrecht, Utrecht, The Netherlands
| | - Geoffrey H Sperber
- Faculty of Medicine and Dentistry, University of Alberta, Alberta, Canada
| | | | - Peter G Farlie
- Royal Children's Hospital, Murdoch Children's Research Institute, Parkville, Australia
| |
Collapse
|
38
|
Furutera T, Takechi M, Kitazawa T, Takei J, Yamada T, Vu Hoang T, Rijli FM, Kurihara H, Kuratani S, Iseki S. Differing contributions of the first and second pharyngeal arches to tympanic membrane formation in the mouse and chick. Development 2017; 144:3315-3324. [PMID: 28807901 DOI: 10.1242/dev.149765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022]
Abstract
We have proposed that independent origins of the tympanic membrane (TM), consisting of the external auditory meatus (EAM) and first pharyngeal pouch, are linked with distinctive middle ear structures in terms of dorsal-ventral patterning of the pharyngeal arches during amniote evolution. However, previous studies have suggested that the first pharyngeal arch (PA1) is crucial for TM formation in both mouse and chick. In this study, we compare TM formation along the anterior-posterior axis in these animals using Hoxa2 expression as a marker of the second pharyngeal arch (PA2). In chick, the EAM begins to invaginate at the surface ectoderm of PA2, not at the first pharyngeal cleft, and the entire TM forms in PA2. Chick-quail chimera that have lost PA2 and duplicated PA1 suggest that TM formation is achieved by developmental interaction between a portion of the EAM and the columella auris in PA2, and that PA1 also contributes to formation of the remaining part of the EAM. By contrast, in mouse, TM formation is highly associated with an interdependent relationship between the EAM and tympanic ring in PA1.
Collapse
Affiliation(s)
- Toshiko Furutera
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Masaki Takechi
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Taro Kitazawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan.,Friedrich Miescher Institute for Biomedical Research, Affiliated to the Novartis Institutes for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Junko Takei
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Takahiko Yamada
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Tri Vu Hoang
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Affiliated to the Novartis Institutes for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.,University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan.,Institute for Biology and Mathematics of Dynamical Cell Processes (iBMath), The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe, 650-0047, Japan
| | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
39
|
Powell SK, Gregory J, Akbarian S, Brennand KJ. Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease. Mol Cell Neurosci 2017; 82:157-166. [PMID: 28549865 DOI: 10.1016/j.mcn.2017.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022] Open
Abstract
CRISPR/Cas9 technology has transformed our ability to manipulate the genome and epigenome, from efficient genomic editing to targeted localization of effectors to specific loci. Through the manipulation of DNA- and histone-modifying enzyme activities, activation or repression of gene expression, and targeting of transcriptional regulators, the role of gene-regulatory and epigenetic pathways in basic biology and disease processes can be directly queried. Here, we discuss emerging CRISPR-based methodologies, with specific consideration of neurobiological applications of human induced pluripotent stem cell (hiPSC)-based models.
Collapse
Affiliation(s)
- S K Powell
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - J Gregory
- Instructional Technology Group, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - S Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - K J Brennand
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
40
|
Tavares ALP, Cox TC, Maxson RM, Ford HL, Clouthier DE. Negative regulation of endothelin signaling by SIX1 is required for proper maxillary development. Development 2017; 144:2021-2031. [PMID: 28455376 DOI: 10.1242/dev.145144] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
Jaw morphogenesis is a complex event mediated by inductive signals that establish and maintain the distinct developmental domains required for formation of hinged jaws, the defining feature of gnathostomes. The mandibular portion of pharyngeal arch 1 is patterned dorsally by Jagged-Notch signaling and ventrally by endothelin receptor A (EDNRA) signaling. Loss of EDNRA signaling disrupts normal ventral gene expression, the result of which is homeotic transformation of the mandible into a maxilla-like structure. However, loss of Jagged-Notch signaling does not result in significant changes in maxillary development. Here we show in mouse that the transcription factor SIX1 regulates dorsal arch development not only by inducing dorsal Jag1 expression but also by inhibiting endothelin 1 (Edn1) expression in the pharyngeal endoderm of the dorsal arch, thus preventing dorsal EDNRA signaling. In the absence of SIX1, but not JAG1, aberrant EDNRA signaling in the dorsal domain results in partial duplication of the mandible. Together, our results illustrate that SIX1 is the central mediator of dorsal mandibular arch identity, thus ensuring separation of bone development between the upper and lower jaws.
Collapse
Affiliation(s)
- Andre L P Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy C Cox
- Department of Pediatrics (Craniofacial Medicine), University of Washington, and Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Robert M Maxson
- Department of Biochemistry and Molecular Biology and Norris Cancer Center, University of Southern California, Los Angeles, CA 87654, USA
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
41
|
Iklé JM, Tavares ALP, King M, Ding H, Colombo S, Firulli BA, Firulli AB, Targoff KL, Yelon D, Clouthier DE. Nkx2.5 regulates endothelin converting enzyme-1 during pharyngeal arch patterning. Genesis 2017; 55. [PMID: 28109039 DOI: 10.1002/dvg.23021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022]
Abstract
In gnathostomes, dorsoventral (D-V) patterning of neural crest cells (NCC) within the pharyngeal arches is crucial for the development of hinged jaws. One of the key signals that mediate this process is Endothelin-1 (EDN1). Loss of EDN1 binding to the Endothelin-A receptor (EDNRA) results in loss of EDNRA signaling and subsequent facial birth defects in humans, mice and zebrafish. A rate-limiting step in this crucial signaling pathway is the conversion of immature EDN1 into a mature active form by Endothelin converting enzyme-1 (ECE1). However, surprisingly little is known about how Ece1 transcription is induced or regulated. We show here that Nkx2.5 is required for proper craniofacial development in zebrafish and acts in part by upregulating ece1 expression. Disruption of nkx2.5 in zebrafish embryos results in defects in both ventral and dorsal pharyngeal arch-derived elements, with changes in ventral arch gene expression consistent with a disruption in Ednra signaling. ece1 mRNA rescues the nkx2.5 morphant phenotype, indicating that Nkx2.5 functions through modulating Ece1 expression or function. These studies illustrate a new function for Nkx2.5 in embryonic development and provide new avenues with which to pursue potential mechanisms underlying human facial disorders.
Collapse
Affiliation(s)
- Jennifer M Iklé
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| | - Andre L P Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| | - Marisol King
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| | - Hailei Ding
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| | - Sophie Colombo
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, 10032
| | - Beth A Firulli
- Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Indianapolis, 46202
| | - Anthony B Firulli
- Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Indianapolis, 46202
| | - Kimara L Targoff
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, 10032
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, 92093
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| |
Collapse
|
42
|
Alvarado E, Yousefelahiyeh M, Alvarado G, Shang R, Whitman T, Martinez A, Yu Y, Pham A, Bhandari A, Wang B, Nissen RM. Wdr68 Mediates Dorsal and Ventral Patterning Events for Craniofacial Development. PLoS One 2016; 11:e0166984. [PMID: 27880803 PMCID: PMC5120840 DOI: 10.1371/journal.pone.0166984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
Birth defects are among the leading causes of infant mortality and contribute substantially to illness and long-term disability. Defects in Bone Morphogenetic Protein (BMP) signaling are associated with cleft lip/palate. Many craniofacial syndromes are caused by defects in signaling pathways that pattern the cranial neural crest cells (CNCCs) along the dorsal-ventral axis. For example, auriculocondylar syndrome is caused by impaired Endothelin-1 (Edn1) signaling, and Alagille syndrome is caused by defects in Jagged-Notch signaling. The BMP, Edn1, and Jag1b pathways intersect because BMP signaling is required for ventral edn1 expression that, in turn, restricts jag1b to dorsal CNCC territory. In zebrafish, the scaffolding protein Wdr68 is required for edn1 expression and subsequent formation of the ventral Meckel’s cartilage as well as the dorsal Palatoquadrate. Here we report that wdr68 activity is required between the 17-somites and prim-5 stages, that edn1 functions downstream of wdr68, and that wdr68 activity restricts jag1b, hey1, and grem2 expression from ventral CNCC territory. Expression of dlx1a and dlx2a was also severely reduced in anterior dorsal and ventral 1st arch CNCC territory in wdr68 mutants. We also found that the BMP agonist isoliquiritigenin (ISL) can partially rescue lower jaw formation and edn1 expression in wdr68 mutants. However, we found no significant defects in BMP reporter induction or pSmad1/5 accumulation in wdr68 mutant cells or zebrafish. The Transforming Growth Factor Beta (TGF-β) signaling pathway is also known to be important for craniofacial development and can interfere with BMP signaling. Here we further report that TGF-β interference with BMP signaling was greater in wdr68 mutant cells relative to control cells. To determine whether interference might also act in vivo, we treated wdr68 mutant zebrafish embryos with the TGF-β signaling inhibitor SB431542 and found partial rescue of edn1 expression and craniofacial development. While ISL treatment failed, SB431542 partially rescued dlx2a expression in wdr68 mutants. Together these findings reveal an indirect role for Wdr68 in the BMP-Edn1-Jag1b signaling hierarchy and dorso-anterior expression of dlx1a/2a.
Collapse
Affiliation(s)
- Estibaliz Alvarado
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Mina Yousefelahiyeh
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Greg Alvarado
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Robin Shang
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Taryn Whitman
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Andrew Martinez
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Yang Yu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Annie Pham
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Anish Bhandari
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Bingyan Wang
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Robert M. Nissen
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Hayashi S, Akiyama R, Wong J, Tahara N, Kawakami H, Kawakami Y. Gata6-Dependent GLI3 Repressor Function is Essential in Anterior Limb Progenitor Cells for Proper Limb Development. PLoS Genet 2016; 12:e1006138. [PMID: 27352137 PMCID: PMC4924869 DOI: 10.1371/journal.pgen.1006138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/31/2016] [Indexed: 01/20/2023] Open
Abstract
Gli3 is a major regulator of Hedgehog signaling during limb development. In the anterior mesenchyme, GLI3 is proteolytically processed into GLI3R, a truncated repressor form that inhibits Hedgehog signaling. Although numerous studies have identified mechanisms that regulate Gli3 function in vitro, it is not completely understood how Gli3 function is regulated in vivo. In this study, we show a novel mechanism of regulation of GLI3R activities in limb buds by Gata6, a member of the GATA transcription factor family. We show that conditional inactivation of Gata6 prior to limb outgrowth by the Tcre deleter causes preaxial polydactyly, the formation of an anterior extra digit, in hindlimbs. A recent study suggested that Gata6 represses Shh transcription in hindlimb buds. However, we found that ectopic Hedgehog signaling precedes ectopic Shh expression. In conjunction, we observed Gata6 and Gli3 genetically interact, and compound heterozygous mutants develop preaxial polydactyly without ectopic Shh expression, indicating an additional prior mechanism to prevent polydactyly. These results support the idea that Gata6 possesses dual roles during limb development: enhancement of Gli3 repressor function to repress Hedgehog signaling in the anterior limb bud, and negative regulation of Shh expression. Our in vitro and in vivo studies identified that GATA6 physically interacts with GLI3R to facilitate nuclear localization of GLI3R and repressor activities of GLI3R. Both the genetic and biochemical data elucidates a novel mechanism by Gata6 to regulate GLI3R activities in the anterior limb progenitor cells to prevent polydactyly and attain proper development of the mammalian autopod. Gli3 is a major regulator of Hedgehog signaling in the limb, where Gli3 counteracts Sonic hedgehog (Shh) for patterning and proliferative expansion of limb progenitor cells. In the anterior limb mesenchyme, GLI3 is proteolytically processed into GLI3R, a truncated repressor form that inhibits Hedgehog signaling. In this study, we show a novel mechanism of regulation of GLI3R activities in limb buds by Gata6, a member of GATA transcription factor family. Conditional inactivation of Gata6 in mice caused formation of an extra digit in the anterior hindlimbs, a common congenital limb malformation. This phenotype was associated with ectopic Hedgehog signaling activation, and later ectopic Shh expression, in the anterior of hindlimb buds. We show that Gata6; Gli3 compound heterozygous mutants developed anterior extradigit without ectopic Shh expression, indicating there to be an additional and prior mechanism before ectopic Shh activation that induces extradigit formation. We identified that GATA6 physically interacts with GLI3R and that the interaction facilitates nuclear localization of GLI3R and repressor activities of GLI3R. Therefore, our study identified a novel mechanism by Gata6 to regulate GLI3R activities in the anterior limb mesenchyme to prevent extra digit formation and proper development of the mammalian autopod.
Collapse
Affiliation(s)
- Shinichi Hayashi
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ryutaro Akiyama
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Julia Wong
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Naoyuki Tahara
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
44
|
Exclusion of Dlx5/6 expression from the distal-most mandibular arches enables BMP-mediated specification of the distal cap. Proc Natl Acad Sci U S A 2016; 113:7563-8. [PMID: 27335460 DOI: 10.1073/pnas.1603930113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cranial neural crest cells (crNCCs) migrate from the neural tube to the pharyngeal arches (PAs) of the developing embryo and, subsequently, differentiate into bone and connective tissue to form the mandible. Within the PAs, crNCCs respond to local signaling cues to partition into the proximo-distally oriented subdomains that convey positional information to these developing tissues. Here, we show that the distal-most of these subdomains, the distal cap, is marked by expression of the transcription factor Hand1 (H1) and gives rise to the ectomesenchymal derivatives of the lower incisors. We uncover a H1 enhancer sufficient to drive reporter gene expression within the crNCCs of the distal cap. We show that bone morphogenic protein (BMP) signaling and the transcription factor HAND2 (H2) synergistically regulate H1 distal cap expression. Furthermore, the homeodomain proteins distal-less homeobox 5 (DLX5) and DLX6 reciprocally inhibit BMP/H2-mediated H1 enhancer regulation. These findings provide insights into how multiple signaling pathways direct transcriptional outcomes that pattern the developing jaw.
Collapse
|
45
|
Funato N, Kokubo H, Nakamura M, Yanagisawa H, Saga Y. Specification of jaw identity by the Hand2 transcription factor. Sci Rep 2016; 6:28405. [PMID: 27329940 PMCID: PMC4916603 DOI: 10.1038/srep28405] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/02/2016] [Indexed: 12/23/2022] Open
Abstract
Acquisition of the lower jaw (mandible) was evolutionarily important for jawed vertebrates. In humans, syndromic craniofacial malformations often accompany jaw anomalies. The basic helix-loop-helix transcription factor Hand2, which is conserved among jawed vertebrates, is expressed in the neural crest in the mandibular process but not in the maxillary process of the first branchial arch. Here, we provide evidence that Hand2 is sufficient for upper jaw (maxilla)-to-mandible transformation by regulating the expression of homeobox transcription factors in mice. Altered Hand2 expression in the neural crest transformed the maxillae into mandibles with duplicated Meckel's cartilage, which resulted in an absence of the secondary palate. In Hand2-overexpressing mutants, non-Hox homeobox transcription factors were dysregulated. These results suggest that Hand2 regulates mandibular development through downstream genes of Hand2 and is therefore a major determinant of jaw identity. Hand2 may have influenced the evolutionary acquisition of the mandible and secondary palate.
Collapse
Affiliation(s)
- Noriko Funato
- Research Center for Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroki Kokubo
- Division of Mammalian Development, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Masataka Nakamura
- Research Center for Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9148, USA.,Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Yumiko Saga
- Division of Mammalian Development, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
46
|
Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face. PLoS Genet 2016; 12:e1005967. [PMID: 27058748 PMCID: PMC4825933 DOI: 10.1371/journal.pgen.1005967] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/09/2016] [Indexed: 11/25/2022] Open
Abstract
The intricate shaping of the facial skeleton is essential for function of the vertebrate jaw and middle ear. While much has been learned about the signaling pathways and transcription factors that control facial patterning, the downstream cellular mechanisms dictating skeletal shapes have remained unclear. Here we present genetic evidence in zebrafish that three major signaling pathways − Jagged-Notch, Endothelin1 (Edn1), and Bmp − regulate the pattern of facial cartilage and bone formation by controlling the timing of cartilage differentiation along the dorsoventral axis of the pharyngeal arches. A genomic analysis of purified facial skeletal precursors in mutant and overexpression embryos revealed a core set of differentiation genes that were commonly repressed by Jagged-Notch and induced by Edn1. Further analysis of the pre-cartilage condensation gene barx1, as well as in vivo imaging of cartilage differentiation, revealed that cartilage forms first in regions of high Edn1 and low Jagged-Notch activity. Consistent with a role of Jagged-Notch signaling in restricting cartilage differentiation, loss of Notch pathway components resulted in expanded barx1 expression in the dorsal arches, with mutation of barx1 rescuing some aspects of dorsal skeletal patterning in jag1b mutants. We also identified prrx1a and prrx1b as negative Edn1 and positive Bmp targets that function in parallel to Jagged-Notch signaling to restrict the formation of dorsal barx1+ pre-cartilage condensations. Simultaneous loss of jag1b and prrx1a/b better rescued lower facial defects of edn1 mutants than loss of either pathway alone, showing that combined overactivation of Jagged-Notch and Bmp/Prrx1 pathways contribute to the absence of cartilage differentiation in the edn1 mutant lower face. These findings support a model in which Notch-mediated restriction of cartilage differentiation, particularly in the second pharyngeal arch, helps to establish a distinct skeletal pattern in the upper face. The exquisite functions of the vertebrate face require the precise formation of its underlying bones. Remarkably, many of the genes required to shape the facial skeleton are the same from fish to man. In this study, we use the powerful zebrafish system to understand how the skeletal components of the face acquire different shapes during development. To do so, we analyze a series of mutants that disrupt patterning of the facial skeleton, and then assess how the genes affected in these mutants control cell fate in skeletal progenitor cells. From these genetic studies, we found that several pathways converge to control when and where progenitor cells commit to a cartilage fate, thus controlling the size and shape of cartilage templates for the later-arising bones. Our work thus reveals how regulating the timing of when progenitor cells make skeleton helps to shape the bones of the zebrafish face. As mutations in many of the genes studied are implicated in human craniofacial defects, differences in the timing of progenitor cell differentiation may also explain the wonderful diversity of human faces.
Collapse
|
47
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|
48
|
Lei R, Zhang K, Wei Y, Chen M, Weinstein LS, Hong Y, Zhu M, Li H, Li H. G-Protein α-Subunit Gsα Is Required for Craniofacial Morphogenesis. PLoS One 2016; 11:e0147535. [PMID: 26859889 PMCID: PMC4747491 DOI: 10.1371/journal.pone.0147535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/05/2016] [Indexed: 02/05/2023] Open
Abstract
The heterotrimeric G protein subunit Gsα couples receptors to activate adenylyl cyclase and is required for the intracellular cAMP response and protein kinase A (PKA) activation. Gsα is ubiquitously expressed in many cell types; however, the role of Gsα in neural crest cells (NCCs) remains unclear. Here we report that NCCs-specific Gsα knockout mice die within hours after birth and exhibit dramatic craniofacial malformations, including hypoplastic maxilla and mandible, cleft palate and craniofacial skeleton defects. Histological and anatomical analysis reveal that the cleft palate in Gsα knockout mice is a secondary defect resulting from craniofacial skeleton deficiencies. In Gsα knockout mice, the morphologies of NCCs-derived cranial nerves are normal, but the development of dorsal root and sympathetic ganglia are impaired. Furthermore, loss of Gsα in NCCs does not affect cranial NCCs migration or cell proliferation, but significantly accelerate osteochondrogenic differentiation. Taken together, our study suggests that Gsα is required for neural crest cells-derived craniofacial development.
Collapse
Affiliation(s)
- Run Lei
- West China Developmental & Stem Cell Institute, West China Second Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative biology, Institute of Biomedicine & Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Chinese Academy of Sciences, Shanghai, China
| | - Ke Zhang
- West China Developmental & Stem Cell Institute, West China Second Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative biology, Institute of Biomedicine & Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Chinese Academy of Sciences, Shanghai, China
| | - Yanxia Wei
- West China Developmental & Stem Cell Institute, West China Second Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lee S. Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yang Hong
- Department of Cell Biology & Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Minyan Zhu
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Chinese Academy of Sciences, Shanghai, China
| | - Hongchang Li
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative biology, Institute of Biomedicine & Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- * E-mail: Hongchang Li (HCL); Huashun Li (HSL)
| | - Huashun Li
- West China Developmental & Stem Cell Institute, West China Second Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Chinese Academy of Sciences, Shanghai, China
- * E-mail: Hongchang Li (HCL); Huashun Li (HSL)
| |
Collapse
|
49
|
Nimmagadda S, Buchtová M, Fu K, Geetha-Loganathan P, Hosseini-Farahabadi S, Trachtenberg AJ, Kuo WP, Vesela I, Richman JM. Identification and functional analysis of novel facial patterning genes in the duplicated beak chicken embryo. Dev Biol 2015; 407:275-88. [DOI: 10.1016/j.ydbio.2015.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 01/18/2023]
|
50
|
Tavares ALP, Artinger KB, Clouthier DE. Regulating Craniofacial Development at the 3' End: MicroRNAs and Their Function in Facial Morphogenesis. Curr Top Dev Biol 2015; 115:335-75. [PMID: 26589932 DOI: 10.1016/bs.ctdb.2015.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Defects in craniofacial development represent a majority of observed human birth defects, occurring at a rate as high as 1:800 live births. These defects often occur due to changes in neural crest cell (NCC) patterning and development and can affect non-NCC-derived structures due to interactions between NCCs and the surrounding cell types. Proper craniofacial development requires an intricate array of gene expression networks that are tightly controlled spatiotemporally by a number of regulatory mechanisms. One of these mechanisms involves the action of microRNAs (miRNAs), a class of noncoding RNAs that repress gene expression by binding to miRNA recognition sequences typically located in the 3' UTR of target mRNAs. Recent evidence illustrates that miRNAs are crucial for vertebrate facial morphogenesis, with changes in miRNA expression leading to facial birth defects, including some in complex human syndromes such as 22q11 (DiGeorge Syndrome). In this review, we highlight the current understanding of miRNA biogenesis, the roles of miRNAs in overall craniofacial development, the impact that loss of miRNAs has on normal development and the requirement for miRNAs in the development of specific craniofacial structures, including teeth. From these studies, it is clear that miRNAs are essential for normal facial development and morphogenesis, and a potential key in establishing new paradigms for repair and regeneration of facial defects.
Collapse
Affiliation(s)
- Andre L P Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristin B Artinger
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|