1
|
Qian W, Zhang X, Yuan D, Wu Y, Li H, Wei L, Li Z, Dai Z, Song P, Sun Q, Zhou Z, Xia Q, Cheng D. USP8 and Hsp70 regulate endoreplication by synergistically promoting Fzr deubiquitination and stabilization. SCIENCE ADVANCES 2025; 11:eadq9111. [PMID: 40106570 PMCID: PMC11922063 DOI: 10.1126/sciadv.adq9111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Endoreplication is characterized by multiple rounds of DNA replication without cell division and determines the growth and final size of endoreplicating cells and tissues in eukaryotes. The cyclic ubiquitination and degradation of several cell cycle regulators are required for endoreplication progression. However, the deubiquitinase that deubiquitinates and stabilizes key factors to modulate endoreplication remains unknown. Here, we found in the endoreplicating Drosophila salivary gland and Bombyx silk gland that the depletion of ubiquitin-specific peptidase 8 (USP8) led to endoreplication arrest and a decrease in gland size. Mechanistically, we showed that USP8 interacted with the Fizzy-related (Fzr) protein, a conserved master regulator of endoreplication, thereby deubiquitinating and stabilizing Fzr to modulate endoreplication. Moreover, the molecular chaperone heat shock protein 70 (Hsp70) mediated proper folding of Fzr and increased the interaction between Fzr and USP8, thereby promoting the deubiquitination and stabilization of Fzr. Together, our study demonstrates that USP8 and Hsp70 regulate endoreplication by synergistically maintaining Fzr stability though deubiquitination.
Collapse
Affiliation(s)
- Wenliang Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xing Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Dongqin Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yuting Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Hao Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Ling Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zheng Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Zongcai Dai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Pei Song
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Qiaoling Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Daojun Cheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Gao H, Yuan X, Wang J, Yan Y, Zhang X, He T, Lin X, Zhang H, Liu Z. Knockdown of Fzr inhibited the growth of Nilaparvata lugens by blocking endocycle. PEST MANAGEMENT SCIENCE 2025; 81:36-43. [PMID: 39229824 DOI: 10.1002/ps.8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND The endocycle can generate cells referred to as 'polyploid'. Fizzy-related protein (Fzr) plays an important role in driving the mitosis-to-endocycle transition. The brown planthopper (BPH), Nilaparvata lugens (Stål), a serious insect pest, feeds exclusively on rice. However, polyploidy and its regulatory mechanisms are poorly understood in BPH. RESULTS Here, we found that the ploidy levels of follicles H (FH) and accessory gland (AG) significantly increased with BPH age when examining the polyploidy of FH and AG of salivary glands. Fzr was identified as an important regulator for polyploidy in BPH salivary gland. Knockdown of Fzr resulted in a decrease in cell size and DNA content in nymph salivary glands. Fzr knockdown transcriptionally upregulated cyclin-dependent kinase 1 (CDK1), CDK2, cyclin A (CycA) and CycB, and downregulated CycD, CycE, Myc and mini-chromosome maintenance protein 2-7 (MCM2-7). Phenotypically, Fzr knockdown significantly suppressed salivary protein production, feeding and survival in BPH nymphs. CONCLUSION Our results show that BPH salivary glands exhibit obvious polyploidy, and Fzr positively regulates the endocycle in nymph salivary gland. These findings provide clues for the study of the regulatory mechanisms of insect polyploidy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaowei Yuan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jingting Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Tianshun He
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, China
| | - Xumin Lin
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huihui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Box AM, Ramesh NA, Nandakumar S, Church SJ, Prasad D, Afrakhteh A, Taichman RS, Buttitta L. Cell cycle variants during Drosophila male accessory gland development. G3 (BETHESDA, MD.) 2024; 14:jkae089. [PMID: 38683731 PMCID: PMC11228851 DOI: 10.1093/g3journal/jkae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
The Drosophila melanogaster male accessory gland (AG) is a functional analog of the mammalian prostate and seminal vesicles containing two secretory epithelial cell types, termed main and secondary cells. This tissue is responsible for making and secreting seminal fluid proteins and other molecules that contribute to successful reproduction. The cells of this tissue are binucleate and polyploid, due to variant cell cycles that include endomitosis and endocycling during metamorphosis. Here, we provide evidence of additional cell cycle variants in this tissue. We show that main cells of the gland are connected by ring canals that form after the penultimate mitosis, and we describe an additional post-eclosion endocycle required for gland maturation that is dependent on juvenile hormone signaling. We present evidence that the main cells of the D. melanogaster AG undergo a unique cell cycle reprogramming throughout organ development that results in step-wise cell cycle truncations culminating in cells containing two octoploid nuclei with under-replicated heterochromatin in the mature gland. We propose this tissue as a model to study developmental and hormonal temporal control of cell cycle variants in terminally differentiating tissues.
Collapse
Affiliation(s)
- Allison M Box
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Navyashree A Ramesh
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Shyama Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Samuel Jaimian Church
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Dilan Prasad
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Ariana Afrakhteh
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Russell S Taichman
- Department of Periodontology, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Herriage HC, Huang YT, Calvi BR. The antagonistic relationship between apoptosis and polyploidy in development and cancer. Semin Cell Dev Biol 2024; 156:35-43. [PMID: 37331841 PMCID: PMC10724375 DOI: 10.1016/j.semcdb.2023.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
One of the important functions of regulated cell death is to prevent cells from inappropriately acquiring extra copies of their genome, a state known as polyploidy. Apoptosis is the primary cell death mechanism that prevents polyploidy, and defects in this apoptotic response can result in polyploid cells whose subsequent error-prone chromosome segregation are a major contributor to genome instability and cancer progression. Conversely, some cells actively repress apoptosis to become polyploid as part of normal development or regeneration. Thus, although apoptosis prevents polyploidy, the polyploid state can actively repress apoptosis. In this review, we discuss progress in understanding the antagonistic relationship between apoptosis and polyploidy in development and cancer. Despite recent advances, a key conclusion is that much remains unknown about the mechanisms that link apoptosis to polyploid cell cycles. We suggest that drawing parallels between the regulation of apoptosis in development and cancer could help to fill this knowledge gap and lead to more effective therapies.
Collapse
Affiliation(s)
- Hunter C Herriage
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
5
|
Huguet MD, Robin S, Hudaverdian S, Tanguy S, Leterme-Prunier N, Cloteau R, Baulande S, Legoix-Né P, Legeai F, Simon JC, Jaquiéry J, Tagu D, Le Trionnaire G. Transcriptomic basis of sex loss in the pea aphid. BMC Genomics 2024; 25:202. [PMID: 38383295 PMCID: PMC10882735 DOI: 10.1186/s12864-023-09776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/31/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Transitions from sexual to asexual reproduction are common in eukaryotes, but the underlying mechanisms remain poorly known. The pea aphid-Acyrthosiphon pisum-exhibits reproductive polymorphism, with cyclical parthenogenetic and obligate parthenogenetic lineages, offering an opportunity to decipher the genetic basis of sex loss. Previous work on this species identified a single 840 kb region controlling reproductive polymorphism and carrying 32 genes. With the aim of identifying the gene(s) responsible for sex loss and the resulting consequences on the genetic programs controlling sexual or asexual embryogenesis, we compared the transcriptomic response to photoperiod shortening-the main sex-inducing cue-of a sexual and an obligate asexual lineage of the pea aphid, focusing on heads (where the photoperiodic cue is detected) and embryos (the final target of the cue). RESULTS Our analyses revealed that four genes (one expressed in the head, and three in the embryos) of the region responded differently to photoperiod in the two lineages. We also found that the downstream genetic programs expressed during embryonic development of a future sexual female encompass ∼1600 genes, among which miRNAs, piRNAs and histone modification pathways are overrepresented. These genes mainly co-localize in two genomic regions enriched in transposable elements (TEs). CONCLUSIONS Our results suggest that the causal polymorphism(s) in the 840 kb region somehow impair downstream epigenetic and post-transcriptional regulations in obligate asexual lineages, thereby sustaining asexual reproduction.
Collapse
Affiliation(s)
- M D Huguet
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - S Robin
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
- Institut National de Recherche en Informatique et en Automatique, Institut de Recherche en Informatique et Systèmes Aléatoires, Genscale, Campus Beaulieu, Rennes, 35042, France
| | - S Hudaverdian
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - S Tanguy
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - N Leterme-Prunier
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - R Cloteau
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - S Baulande
- Centre de Recherche, Genomics of Excellence Platform, Institut Curie, PSL Research University, Paris Cedex 05, France
| | - P Legoix-Né
- Centre de Recherche, Genomics of Excellence Platform, Institut Curie, PSL Research University, Paris Cedex 05, France
| | - F Legeai
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
- Institut National de Recherche en Informatique et en Automatique, Institut de Recherche en Informatique et Systèmes Aléatoires, Genscale, Campus Beaulieu, Rennes, 35042, France
| | - J-C Simon
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - J Jaquiéry
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - D Tagu
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - G Le Trionnaire
- Institute for Genetics, Environment and Plant Protection, IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France.
| |
Collapse
|
6
|
Wang Y, Tamori Y. Polyploid Cancer Cell Models in Drosophila. Genes (Basel) 2024; 15:96. [PMID: 38254985 PMCID: PMC10815460 DOI: 10.3390/genes15010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Cells with an abnormal number of chromosomes have been found in more than 90% of solid tumors, and among these, polyploidy accounts for about 40%. Polyploidized cells most often have duplicate centrosomes as well as genomes, and thus their mitosis tends to promote merotelic spindle attachments and chromosomal instability, which produces a variety of aneuploid daughter cells. Polyploid cells have been found highly resistant to various stress and anticancer therapies, such as radiation and mitogenic inhibitors. In other words, common cancer therapies kill proliferative diploid cells, which make up the majority of cancer tissues, while polyploid cells, which lurk in smaller numbers, may survive. The surviving polyploid cells, prompted by acute environmental changes, begin to mitose with chromosomal instability, leading to an explosion of genetic heterogeneity and a concomitant cell competition and adaptive evolution. The result is a recurrence of the cancer during which the tenacious cells that survived treatment express malignant traits. Although the presence of polyploid cells in cancer tissues has been observed for more than 150 years, the function and exact role of these cells in cancer progression has remained elusive. For this reason, there is currently no effective therapeutic treatment directed against polyploid cells. This is due in part to the lack of suitable experimental models, but recently several models have become available to study polyploid cells in vivo. We propose that the experimental models in Drosophila, for which genetic techniques are highly developed, could be very useful in deciphering mechanisms of polyploidy and its role in cancer progression.
Collapse
Affiliation(s)
| | - Yoichiro Tamori
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Chowdhury SR, Koley T, Singh M, Samath EA, Kaur P. Association of Hsp90 with p53 and Fizzy related homolog (Fzr) synchronizing Anaphase Promoting Complex (APC/C): An unexplored ally towards oncogenic pathway. Biochim Biophys Acta Rev Cancer 2023; 1878:188883. [PMID: 36972769 DOI: 10.1016/j.bbcan.2023.188883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
The intricate molecular interactions leading to the oncogenic pathway are the consequence of cell cycle modification controlled by a bunch of cell cycle regulatory proteins. The tumor suppressor and cell cycle regulatory proteins work in coordination to maintain a healthy cellular environment. The integrity of this cellular protein pool is perpetuated by heat shock proteins/chaperones, which assist in proper protein folding during normal and cellular stress conditions. Among these versatile groups of chaperone proteins, Hsp90 is one of the significant ATP-dependent chaperones that aid in stabilizing many tumor suppressors and cell cycle regulator protein targets. Recently, studies have revealed that in cancerous cell lines, Hsp90 stabilizes mutant p53, 'the guardian of the genome.' Hsp90 also has a significant impact on Fzr, an essential regulator of the cell cycle having an important role in the developmental process of various organisms, including Drosophila, yeast, Caenorhabditis elegans, and plants. During cell cycle progression, p53 and Fzr coordinately regulate the Anaphase Promoting Complex (APC/C) from metaphase to anaphase transition up to cell cycle exit. APC/C mediates proper centrosome function in the dividing cell. The centrosome acts as the microtubule organizing center for the correct segregation of the sister chromatids to ensure perfect cell division. This review examines the structure of Hsp90 and its co-chaperones, which work in synergy to stabilize proteins such as p53 and Fizzy-related homolog (Fzr) to synchronize the Anaphase Promoting Complex (APC/C). Dysfunction of this process activates the oncogenic pathway leading to the development of cancer. Additionally, an overview of current drugs targeting Hsp90 at various phases of clinical trials has been included.
Collapse
Affiliation(s)
- Sanghati Roy Chowdhury
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tirthankar Koley
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
8
|
Coordination between cell proliferation and apoptosis after DNA damage in Drosophila. Cell Death Differ 2022; 29:832-845. [PMID: 34824391 PMCID: PMC8989919 DOI: 10.1038/s41418-021-00898-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
Exposure to genotoxic stress promotes cell cycle arrest and DNA repair or apoptosis. These "life" or "death" cell fate decisions often rely on the activity of the tumor suppressor gene p53. Therefore, the precise regulation of p53 is essential to maintain tissue homeostasis and to prevent cancer development. However, how cell cycle progression has an impact on p53 cell fate decision-making is mostly unknown. In this work, we demonstrate that Drosophila p53 proapoptotic activity can be impacted by the G2/M kinase Cdk1. We find that cell cycle arrested or endocycle-induced cells are refractory to ionizing radiation-induced apoptosis. We show that p53 binding to the regulatory elements of the proapoptotic genes and its ability to activate their expression is compromised in experimentally arrested cells. Our results indicate that p53 genetically and physically interacts with Cdk1 and that p53 proapoptotic role is regulated by the cell cycle status of the cell. We propose a model in which cell cycle progression and p53 proapoptotic activity are molecularly connected to coordinate the appropriate response after DNA damage.
Collapse
|
9
|
Almeida Machado Costa C, Wang XF, Ellsworth C, Deng WM. Polyploidy in development and tumor models in Drosophila. Semin Cancer Biol 2021; 81:106-118. [PMID: 34562587 DOI: 10.1016/j.semcancer.2021.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
Polyploidy, a cell status defined as more than two sets of genomic DNA, is a conserved strategy across species that can increase cell size and biosynthetic production, but the functional aspects of polyploidy are nuanced and vary across cell types. Throughout Drosophila developmental stages (embryo, larva, pupa and adult), polyploid cells are present in numerous organs and help orchestrate development while contributing to normal growth, well-being and homeostasis of the organism. Conversely, increasing evidence has shown that polyploid cells are prevalent in Drosophila tumors and play important roles in tumor growth and invasiveness. Here, we summarize the genes and pathways involved in polyploidy during normal and tumorigenic development, the mechanisms underlying polyploidization, and the functional aspects of polyploidy in development, homeostasis and tumorigenesis in the Drosophila model.
Collapse
Affiliation(s)
- Caique Almeida Machado Costa
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Calder Ellsworth
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States.
| |
Collapse
|
10
|
Kim M, Delos Santos K, Moon NS. Proper CycE-Cdk2 activity in endocycling tissues requires regulation of the cyclin-dependent kinase inhibitor Dacapo by dE2F1b in Drosophila. Genetics 2021; 217:1-15. [PMID: 33683365 DOI: 10.1093/genetics/iyaa029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/06/2020] [Indexed: 01/05/2023] Open
Abstract
Polyploidy is an integral part of development and is associated with cellular stress, aging, and pathological conditions. The endocycle, comprised of successive rounds of G and S phases without mitosis, is widely employed to produce polyploid cells in plants and animals. In Drosophila, maintenance of the endocycle is dependent on E2F-governed oscillations of Cyclin E (CycE)-Cdk2 activity, which is known to be largely regulated at the level of transcription. In this study, we report an additional level of E2F-dependent control of CycE-Cdk2 activity during the endocycle. Genetic experiments revealed that an alternative isoform of Drosophila de2f1, dE2F1b, regulates the expression of the p27CIP/KIP-like Cdk inhibitor Dacapo (Dap). We provide evidence showing that dE2F1b-dependent Dap expression in endocycling tissues is necessary for setting proper CycE-Cdk2 activity. Furthermore, we demonstrate that dE2F1b is required for proliferating cell nuclear antigen expression that establishes a negative feedback loop in S phase. Overall, our study reveals previously unappreciated E2F-dependent regulatory networks that are critical for the periodic transition between G and S phases during the endocycle.
Collapse
Affiliation(s)
- Minhee Kim
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec H3A 1B1 Canada
| | - Keemo Delos Santos
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec H3A 1B1 Canada
| | - Nam-Sung Moon
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec H3A 1B1 Canada
| |
Collapse
|
11
|
Qian W, Li Z, Song W, Zhao T, Wang W, Peng J, Wei L, Xia Q, Cheng D. A novel transcriptional cascade is involved in Fzr-mediated endoreplication. Nucleic Acids Res 2020; 48:4214-4229. [PMID: 32182338 PMCID: PMC7192621 DOI: 10.1093/nar/gkaa158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/29/2020] [Indexed: 01/08/2023] Open
Abstract
Endoreplication, known as endocycle, is a variant of the cell cycle that differs from mitosis and occurs in specific tissues of different organisms. Endoreplicating cells generally undergo multiple rounds of genome replication without chromosome segregation. Previous studies demonstrated that Drosophila fizzy-related protein (Fzr) and its mammalian homolog Cdh1 function as key regulators of endoreplication entrance by activating the anaphase-promoting complex/cyclosome to initiate the ubiquitination and subsequent degradation of cell cycle factors such as Cyclin B (CycB). However, the molecular mechanism underlying Fzr-mediated endoreplication is not completely understood. In this study, we demonstrated that the transcription factor Myc acts downstream of Fzr during endoreplication in Drosophila salivary gland. Mechanistically, Fzr interacts with chromatin-associated histone H2B to enhance H2B ubiquitination in the Myc promoter and promotes Myc transcription. In addition to negatively regulating CycB transcription, the Fzr-ubiquitinated H2B (H2Bub)-Myc signaling cascade also positively regulates the transcription of the MCM6 gene that is involved in DNA replication by directly binding to specific motifs within their promoters. We further found that the Fzr-H2Bub-Myc signaling cascade regulating endoreplication progression is conserved between insects and mammalian cells. Altogether, our work uncovers a novel transcriptional cascade that is involved in Fzr-mediated endoreplication.
Collapse
Affiliation(s)
- Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Wei Song
- Medical Research Institute, Wuhan University, Wuhan 430071, China.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tujing Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Weina Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Ling Wei
- School of Life Science, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Ly PT, Wang H. Fzr/Cdh1 Promotes the Differentiation of Neural Stem Cell Lineages in Drosophila. Front Cell Dev Biol 2020; 8:60. [PMID: 32117986 PMCID: PMC7026481 DOI: 10.3389/fcell.2020.00060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
How stem cells and progenitors balance between self-renewal and differentiation is a central issue of stem cell biology. Here, we describe a novel and essential function of Drosophila Fzr/Cdh1, an evolutionary conserved protein, during the differentiation of neural stem cell (NSC) lineages in the central nervous system. We show that Fzr, a known co-activator of Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase, promotes the production of neurons from neural progenitors called ganglion mother cells (GMCs). However, knockdown of APC/C subunit Ida or another APC/C co-activator CDC20 does not similarly impair GMC-neuron transition. We also observe a concomitant loss of differentiation factor Prospero expression and ectopic accumulation of mitotic kinase Polo in fzr mutant clones, strongly supporting the impairment of GMC to neuron differentiation. Besides functioning in GMCs, Fzr is also present in NSCs to facilitate the production of intermediate neural progenitors from NSCs. Taken together, Fzr plays a novel function in promoting differentiation programs during Drosophila NSC lineage development. Given that human Fzr is inactivated in multiple types of human cancers including brain tumors and that Fzr regulates neurotoxicity in various models of neurodegenerative diseases, our study on the role of Fzr in turning off proliferation in neuronal cells may provide insights into how Fzr deficits may contribute to human neurodegenerative diseases and tumors.
Collapse
Affiliation(s)
- Phuong Thao Ly
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Rotelli MD, Policastro RA, Bolling AM, Killion AW, Weinberg AJ, Dixon MJ, Zentner GE, Walczak CE, Lilly MA, Calvi BR. A Cyclin A-Myb-MuvB-Aurora B network regulates the choice between mitotic cycles and polyploid endoreplication cycles. PLoS Genet 2019; 15:e1008253. [PMID: 31291240 PMCID: PMC6645565 DOI: 10.1371/journal.pgen.1008253] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/22/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
Endoreplication is a cell cycle variant that entails cell growth and periodic genome duplication without cell division, and results in large, polyploid cells. Cells switch from mitotic cycles to endoreplication cycles during development, and also in response to conditional stimuli during wound healing, regeneration, aging, and cancer. In this study, we use integrated approaches in Drosophila to determine how mitotic cycles are remodeled into endoreplication cycles, and how similar this remodeling is between induced and developmental endoreplicating cells (iECs and devECs). Our evidence suggests that Cyclin A / CDK directly activates the Myb-MuvB (MMB) complex to induce transcription of a battery of genes required for mitosis, and that repression of CDK activity dampens this MMB mitotic transcriptome to promote endoreplication in both iECs and devECs. iECs and devECs differed, however, in that devECs had reduced expression of E2F1-dependent genes that function in S phase, whereas repression of the MMB transcriptome in iECs was sufficient to induce endoreplication without a reduction in S phase gene expression. Among the MMB regulated genes, knockdown of AurB protein and other subunits of the chromosomal passenger complex (CPC) induced endoreplication, as did knockdown of CPC-regulated cytokinetic, but not kinetochore, proteins. Together, our results indicate that the status of a CycA-Myb-MuvB-AurB network determines the decision to commit to mitosis or switch to endoreplication in both iECs and devECs, and suggest that regulation of different steps of this network may explain the known diversity of polyploid cycle types in development and disease.
Collapse
Affiliation(s)
- Michael D. Rotelli
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Robert A. Policastro
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Anna M. Bolling
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Andrew W. Killion
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Abraham J. Weinberg
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Michael J. Dixon
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Gabriel E. Zentner
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Claire E. Walczak
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
- Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Mary A. Lilly
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian R. Calvi
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
- Indiana University School of Medicine, Bloomington, Indiana, United States of America
| |
Collapse
|
14
|
Ohhara Y, Nakamura A, Kato Y, Yamakawa-Kobayashi K. Chaperonin TRiC/CCT supports mitotic exit and entry into endocycle in Drosophila. PLoS Genet 2019; 15:e1008121. [PMID: 31034473 PMCID: PMC6508744 DOI: 10.1371/journal.pgen.1008121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 05/09/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022] Open
Abstract
Endocycle is a commonly observed cell cycle variant through which cells undergo repeated rounds of genome DNA replication without mitosis. Endocycling cells arise from mitotic cells through a switch of the cell cycle mode, called the mitotic-to-endocycle switch (MES), to initiate cell growth and terminal differentiation. However, the underlying regulatory mechanisms of MES remain unclear. Here we used the Drosophila steroidogenic organ, called the prothoracic gland (PG), to study regulatory mechanisms of MES, which is critical for the PG to upregulate biosynthesis of the steroid hormone ecdysone. We demonstrate that PG cells undergo MES through downregulation of mitotic cyclins, which is mediated by Fizzy-related (Fzr). Moreover, we performed a RNAi screen to further elucidate the regulatory mechanisms of MES, and identified the evolutionarily conserved chaperonin TCP-1 ring complex (TRiC) as a novel regulator of MES. Knockdown of TRiC subunits in the PG caused a prolonged mitotic period, probably due to impaired nuclear translocation of Fzr, which also caused loss of ecdysteroidogenic activity. These results indicate that TRiC supports proper MES and endocycle progression by regulating Fzr folding. We propose that TRiC-mediated protein quality control is a conserved mechanism supporting MES and endocycling, as well as subsequent terminal differentiation.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- * E-mail:
| | - Aki Nakamura
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuki Kato
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
15
|
Abstract
Polyploid cells, which contain multiple copies of the typically diploid genome, are widespread in plants and animals. Polyploidization can be developmentally programmed or stress induced, and arises from either cell-cell fusion or a process known as endoreplication, in which cells replicate their DNA but either fail to complete cytokinesis or to progress through M phase entirely. Polyploidization offers cells several potential fitness benefits, including the ability to increase cell size and biomass production without disrupting cell and tissue structure, and allowing improved cell longevity through higher tolerance to genomic stress and apoptotic signals. Accordingly, recent studies have uncovered crucial roles for polyploidization in compensatory cell growth during tissue regeneration in the heart, liver, epidermis and intestine. Here, we review current knowledge of the molecular pathways that generate polyploidy and discuss how polyploidization is used in tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Bruce A Edgar
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| |
Collapse
|
16
|
Regulation of Mammalian DNA Replication via the Ubiquitin-Proteasome System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:421-454. [PMID: 29357069 DOI: 10.1007/978-981-10-6955-0_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proper regulation of DNA replication ensures the faithful transmission of genetic material essential for optimal cellular and organismal physiology. Central to this regulation is the activity of a set of enzymes that induce or reverse posttranslational modifications of various proteins critical for the initiation, progression, and termination of DNA replication. This is particularly important when DNA replication proceeds in cancer cells with elevated rates of genomic instability and increased proliferative capacities. Here, we describe how DNA replication in mammalian cells is regulated via the activity of the ubiquitin-proteasome system as well as the consequence of derailed ubiquitylation signaling involved in this important cellular activity.
Collapse
|
17
|
DNA Replication Control During Drosophila Development: Insights into the Onset of S Phase, Replication Initiation, and Fork Progression. Genetics 2017; 207:29-47. [PMID: 28874453 PMCID: PMC5586379 DOI: 10.1534/genetics.115.186627] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Proper control of DNA replication is critical to ensure genomic integrity during cell proliferation. In addition, differential regulation of the DNA replication program during development can change gene copy number to influence cell size and gene expression. Drosophila melanogaster serves as a powerful organism to study the developmental control of DNA replication in various cell cycle contexts in a variety of differentiated cell and tissue types. Additionally, Drosophila has provided several developmentally regulated replication models to dissect the molecular mechanisms that underlie replication-based copy number changes in the genome, which include differential underreplication and gene amplification. Here, we review key findings and our current understanding of the developmental control of DNA replication in the contexts of the archetypal replication program as well as of underreplication and differential gene amplification. We focus on the use of these latter two replication systems to delineate many of the molecular mechanisms that underlie the developmental control of replication initiation and fork elongation.
Collapse
|
18
|
EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration. Nat Commun 2017; 8:15125. [PMID: 28485389 PMCID: PMC5436070 DOI: 10.1038/ncomms15125] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair. In response to gut epithelial damage, Drosophila stem cells proliferate to produce large polyploid enterocytes (EC), which comprise the bulk of the epithelium. Here, the authors show that stress-dependent EGFR/MAP kinase signalling drives both endoreplication and cell growth in newborn ECs.
Collapse
|
19
|
Differential Regulation of Cyclin E by Yorkie-Scalloped Signaling in Organ Development. G3-GENES GENOMES GENETICS 2017; 7:1049-1060. [PMID: 28143945 PMCID: PMC5345706 DOI: 10.1534/g3.117.039065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue integrity and homeostasis are accomplished through strict spatial and temporal regulation of cell growth and proliferation during development. Various signaling pathways have emerged as major growth regulators across metazoans; yet, how differential growth within a tissue is spatiotemporally coordinated remains largely unclear. Here, we report a role of a growth modulator Yorkie (Yki), the Drosophila homolog of Yes-associated protein (YAP), that differentially regulates its targets in Drosophila wing imaginal discs; whereby Yki interacts with its transcriptional partner, Scalloped (Sd), the homolog of the TEAD/TEF family transcription factor in mammals, to control an essential cell cycle regulator Cyclin E (CycE). Interestingly, when Yki was coexpressed with Fizzy-related (Fzr), a Drosophila endocycle inducer and homolog of Cdh1 in mammals, surrounding hinge cells displayed larger nuclear size than distal pouch cells. The observed size difference is attributable to differential regulation of CycE, a target of Yki and Sd, the latter of which can directly bind to CycE regulatory sequences, and is expressed only in the pouch region of the wing disc starting from the late second-instar larval stage. During earlier stages of larval development, when Sd expression was not detected in the wing disc, coexpression of Fzr and Yki did not cause size differences between cells along the proximal–distal axis of the disc. We show that ectopic CycE promoted cell proliferation and apoptosis, and inhibited transcriptional activity of Yki targets. These findings suggest that spatiotemporal expression of transcription factor Sd induces differential growth regulation by Yki during wing disc development, highlighting coordination between Yki and CycE to control growth and maintain homeostasis.
Collapse
|
20
|
Zhang M, Yao F, Luan H, Zhao W, Jing T, Zhang S, Hou L, Zou X. APC/C CDC20 and APC/C play pivotal roles in the process of embryonic development in Artemia sinica. Sci Rep 2016; 6:39047. [PMID: 27991546 PMCID: PMC5171921 DOI: 10.1038/srep39047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/17/2016] [Indexed: 11/09/2022] Open
Abstract
Anaphase Promoting Complex or Cyclosome (APC/C) is a representative E3 ubiquitin ligase, triggering the transition of metaphase to anaphase by regulating degradation and ensures the exit from mitosis. Cell division cycle 20 (CDC20) and Cell division cycle 20 related protein 1 (CDH1), as co-activators of APC/C, play significant roles in the spindle assembly checkpoint, guiding ubiquitin-mediated degradation, together with CDC23. During the embryonic development of the brine shrimp, Artemia sinica, CDC20, CDH1 and CDC23 participate in cell cycle regulation, but the specific mechanisms of their activities remain unknown. Herein, the full-length cDNAs of cdc20 and cdc23 from A. sinica were cloned. Real-time PCR analyzed the expression levels of As-cdc20 and As-cdc23. The locations of CDH1, CDC20 and CDC23 showed no tissue or organ specificity. Furthermore, western blotting showed that the levels of As-CDC20, securin, cyclin B, CDK1, CDH1, CDC14B, CDC23 and geminin proteins conformed to their complicated degradation relationships during different embryo stages. Our research revealed that As-CDC20, As-CDH1 and APC mediate the mitotic progression, downstream proteins degradation and cellular differentiation in the process of embryonic development in A. sinica.
Collapse
Affiliation(s)
- Mengchen Zhang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Feng Yao
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Hong Luan
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Wei Zhao
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Ting Jing
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Shuang Zhang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Lin Hou
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Xiangyang Zou
- Department of Biology, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
21
|
Zhang J, Tian M, Yan GX, Shodhan A, Miao W. E2fl1 is a meiosis-specific transcription factor in the protist Tetrahymena thermophila. Cell Cycle 2016; 16:123-135. [PMID: 27892792 DOI: 10.1080/15384101.2016.1259779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Members of the E2F family of transcription factors have been reported to regulate the expression of genes involved in cell cycle control, DNA replication, and DNA repair in multicellular eukaryotes. Here, E2FL1, a meiosis-specific E2F transcription factor gene, was identified in the model ciliate Tetrahymena thermophila. Loss of this gene resulted in meiotic arrest prior to anaphase I. The cytological experiments revealed that the meiotic homologous pairing was not affected in the absence of E2FL1, but the paired homologous chromosomes did not separate and assumed a peculiar tandem arrangement. This is the first time that an E2F family member has been shown to regulate meiotic events. Moreover, BrdU incorporation showed that DSB processing during meiosis was abnormal upon the deletion of E2FL1. Transcriptome sequencing analysis revealed that E2FL1 knockout decreased the expression of genes involved in DNA replication and DNA repair in T. thermophila, suggesting that the function of E2F is highly conserved in eukaryotes. In addition, E2FL1 deletion inhibited the expression of related homologous chromosome segregation genes in T. thermophila. The result may explain the meiotic arrest phenotype at anaphase I. Finally, by searching for E2F DNA-binding motifs in the entire T. thermophila genome, we identified 714 genes containing at least one E2F DNA-binding motif; of these, 235 downregulated represent putative E2FL1 target genes.
Collapse
Affiliation(s)
- Jing Zhang
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Miao Tian
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China.,c Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna , Vienna , Austria
| | - Guan-Xiong Yan
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Anura Shodhan
- c Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna , Vienna , Austria
| | - Wei Miao
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China
| |
Collapse
|
22
|
APC/C and retinoblastoma interaction: cross-talk of retinoblastoma protein with the ubiquitin proteasome pathway. Biosci Rep 2016; 36:BSR20160152. [PMID: 27402801 PMCID: PMC5025812 DOI: 10.1042/bsr20160152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin (Ub) ligase anaphase promoting complex/cyclosome (APC/C) and the tumour suppressor retinoblastoma protein (pRB) play key roles in cell cycle regulation. APC/C is a critical regulator of mitosis and G1-phase of the cell cycle whereas pRB keeps a check on proliferation by inhibiting transition to the S-phase. APC/C and pRB interact with each other via the co-activator of APC/C, FZR1, providing an alternative pathway of regulation of G1 to S transition by pRB using a post-translational mechanism. Both pRB and FZR1 have complex roles and are implicated not only in regulation of cell proliferation but also in differentiation, quiescence, apoptosis, maintenance of chromosomal integrity and metabolism. Both are also targeted by transforming viruses. We discuss recent advances in our understanding of the involvement of APC/C and pRB in cell cycle based decisions and how these insights will be useful for development of anti-cancer and anti-viral drugs.
Collapse
|
23
|
Djabrayan NJV, Casanova J. Snoo and Dpp Act as Spatial and Temporal Regulators Respectively of Adult Progenitor Cells in the Drosophila Trachea. PLoS Genet 2016; 12:e1005909. [PMID: 26942411 PMCID: PMC4778947 DOI: 10.1371/journal.pgen.1005909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/10/2016] [Indexed: 11/21/2022] Open
Abstract
Clusters of differentiated cells contributing to organ structures retain the potential to re-enter the cell cycle and replace cells lost during development or upon damage. To do so, they must be designated spatially and respond to proper activation cues. Here we show that in the case of Drosophila differentiated larval tracheal cells, progenitor potential is conferred by the spatially restricted activity of the Snoo transcription cofactor. Furthermore, Dpp signalling regulated by endocrine hormonal cues provides the temporal trigger for their activation. Finally, we elucidate the genetic network elicited by Snoo and Dpp activity. These results illustrate a regulatory mechanism that translates intrinsic potential and extrinsic cues into the facultative stem cell features of differentiated progenitors. An important feature of organs is their ability to maintain their structure and function in spite of natural or accidental cell loss. This capacity is often sustained by so-called stem cells, which are able to provide new cells of the different types in the organ. In addition, some specialized cells, known as facultative stem cells, also retain the ability to re-enter the cell cycle and replace lost tissue. This process has to be very precisely regulated to provide for the maintenance of the tissues and organs while preventing uncontrolled cellular growth. We have analysed this mechanism in the Drosophila trachea; there, a group of Differentiated Adult Progenitor cells (or DAP cells) share the features of facultative stem cells as they remain quiescent during larval growth, reactivate their proliferation at the last larval stage and give rise to the different cell types of the adult tracheal network during metamorphosis. The DAP cells, conversely to the majority of the larval cells, do not enter endocycle and by doing so they acquire the features of adult progenitor cells. In this paper we identify the regulatory mechanism that integrates spatial and temporal cues to precisely activate the tracheal adult progenitor program.
Collapse
Affiliation(s)
- Nareg J.-V. Djabrayan
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
- * E-mail: (NJVD); (JC)
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
- * E-mail: (NJVD); (JC)
| |
Collapse
|
24
|
Øvrebø JI, Campsteijn C, Kourtesis I, Hausen H, Raasholm M, Thompson EM. Functional specialization of chordate CDK1 paralogs during oogenic meiosis. Cell Cycle 2015; 14:880-93. [PMID: 25714331 DOI: 10.1080/15384101.2015.1006000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are central regulators of eukaryotic cell cycle progression. In contrast to interphase CDKs, the mitotic phase CDK1 is the only CDK capable of driving the entire cell cycle and it can do so from yeast to mammals. Interestingly, plants and the marine chordate, Oikopleura dioica, possess paralogs of the highly conserved CDK1 regulator. However, whereas in plants the 2 CDK1 paralogs replace interphase CDK functions, O. dioica has a full complement of interphase CDKs in addition to its 5 odCDK1 paralogs. Here we show specific sub-functionalization of odCDK1 paralogs during oogenesis. Differential spatiotemporal dynamics of the odCDK1a, d and e paralogs and the meiotic polo-like kinase 1 (Plk1) and aurora kinase determine the subset of meiotic nuclei in prophase I arrest that will seed growing oocytes and complete meiosis. Whereas we find odCDK1e to be non-essential, knockdown of the odCDK1a paralog resulted in the spawning of non-viable oocytes of reduced size. Knockdown of odCDK1d also resulted in the spawning of non-viable oocytes. In this case, the oocytes were of normal size, but were unable to extrude polar bodies upon exposure to sperm, because they were unable to resume meiosis from prophase I arrest, a classical function of the sole CDK1 during meiosis in other organisms. Thus, we reveal specific sub-functionalization of CDK1 paralogs, during the meiotic oogenic program.
Collapse
Key Words
- CDK, Cyclin Dependent Kinase
- DMYPT, Drosophila myosin phosphatase
- GVBD, germinal vesicle breakdown
- MAPK, Mitogen-Activated Protein Kinase
- MTOC
- MTOC, microtubule organizing center
- NEBD, nuclear envelope breakdown
- NPC, Nuclear Pore Complex
- OC, Organizing Center
- Plk1, Polo-like kinase 1
- aurora kinase
- centrosome
- cmRNA, capped messenger RNA
- dsRNA, double-stranded RNA
- endocycle
- polo-like kinase
- syncytium
- urochordate
Collapse
Affiliation(s)
- Jan Inge Øvrebø
- a Department of Biology ; University of Bergen ; Bergen , Norway
| | | | | | | | | | | |
Collapse
|
25
|
Cdk5-mediated inhibition of APC/C-Cdh1 switches on the cyclin D1-Cdk4-pRb pathway causing aberrant S-phase entry of postmitotic neurons. Sci Rep 2015; 5:18180. [PMID: 26658992 PMCID: PMC4674757 DOI: 10.1038/srep18180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/16/2015] [Indexed: 12/15/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that regulates cell cycle progression in proliferating cells. To enter the S-phase, APC/C must be inactivated by phosphorylation of its cofactor, Cdh1. In post-mitotic cells such as neurons APC/C-Cdh1 complex is highly active and responsible for the continuous degradation of mitotic cyclins. However, the specific molecular pathway that determines neuronal cell cycle blockade in post-mitotic neurons is unknown. Here, we show that activation of glutamatergic receptors in rat cortical primary neurons endogenously triggers cyclin-dependent kinase-5 (Cdk5)-mediated phosphorylation of Cdh1 leading to its cytoplasmic accumulation and disassembly from the APC3 core protein, causing APC/C inactivation. Conversely, pharmacological or genetic inhibition of Cdk5 promotes Cdh1 ubiquitination and proteasomal degradation. Furthermore, we show that Cdk5-mediated phosphorylation and inactivation of Cdh1 leads to p27 depletion, which switches on the cyclin D1-cyclin-dependent kinase-4 (Cdk4)-retinoblastoma protein (pRb) pathway to allow the S-phase entry of neurons. However, neurons do not proceed through the cell cycle and die by apoptosis. These results indicate that APC/C-Cdh1 actively suppresses an aberrant cell cycle entry and death of neurons, highlighting its critical function in neuroprotection.
Collapse
|
26
|
Gérard C, Goldbeter A. Dynamics of the mammalian cell cycle in physiological and pathological conditions. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 8:140-56. [PMID: 26613368 DOI: 10.1002/wsbm.1325] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/22/2015] [Accepted: 10/08/2015] [Indexed: 01/01/2023]
Abstract
A network of cyclin-dependent kinases (Cdks) controls progression along the successive phases G1, S, G2, and M of the mammalian cell cycle. Deregulations in the expression of molecular components in this network often lead to abusive cell proliferation and cancer. Given the complex nature of the Cdk network, it is fruitful to resort to computational models to grasp its dynamical properties. Investigated by means of bifurcation diagrams, a detailed computational model for the Cdk network shows how the balance between quiescence and proliferation is affected by activators (oncogenes) and inhibitors (tumor suppressors) of cell cycle progression, as well as by growth factors and other external factors such as the extracellular matrix (ECM) and cell contact inhibition. Suprathreshold changes in all these factors can trigger a switch in the dynamical behavior of the network corresponding to a bifurcation between a stable steady state, associated with cell cycle arrest, and sustained oscillations of the various cyclin/Cdk complexes, corresponding to cell proliferation. The model for the Cdk network accounts for the dependence or independence of cell proliferation on serum and/or cell anchorage to the ECM. Such computational approach provides an integrated view of the control of cell proliferation in physiological or pathological conditions. Whether the balance is tilted toward cell cycle arrest or cell proliferation depends on the direction in which the threshold associated with the bifurcation is passed once the cell integrates the multiple signals, internal or external to the Cdk network, that promote or impede progression in the cell cycle.
Collapse
Affiliation(s)
- Claude Gérard
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Albert Goldbeter
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Marais Street, Stellenbosch, South Africa
| |
Collapse
|
27
|
Zhu H, Mao Y. Robustness of cell cycle control and flexible orders of signaling events. Sci Rep 2015; 5:14627. [PMID: 26419873 PMCID: PMC4588580 DOI: 10.1038/srep14627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/01/2015] [Indexed: 11/10/2022] Open
Abstract
The highly robust control of cell cycles in eukaryotes enables cells to undergo strictly ordered G1/S/G2/M phases and respond adaptively to regulatory signals; however the nature of the robustness remains obscure. Specifically, it is unclear whether events of signaling should be strictly ordered and whether some events are more robust than others. To quantitatively address the two questions, we have developed a novel cell cycle model upon experimental observations. It contains positive and negative E2F proteins and two Cdk inhibitors, and is parameterized, for the first time, to generate not only oscillating protein concentrations but also periodic signaling events. Events and their orders reconstructed under varied conditions indicate that proteolysis of cyclins and Cdk complexes by APC and Skp2 occurs highly robustly in a strict order, but many other events are either dispensable or can occur in flexible orders. These results suggest that strictly ordered proteolytic events are essential for irreversible cell cycle progression and the robustness of cell cycles copes with flexible orders of signaling events, and unveil a new and important dimension to the robustness of cell cycle control in particular and to biological signaling in general.
Collapse
Affiliation(s)
- Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Shatai Road, Guangzhou, 510515, China
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
28
|
Moreno SP, Gambus A. Regulation of Unperturbed DNA Replication by Ubiquitylation. Genes (Basel) 2015; 6:451-68. [PMID: 26121093 PMCID: PMC4584310 DOI: 10.3390/genes6030451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023] Open
Abstract
Posttranslational modification of proteins by means of attachment of a small globular protein ubiquitin (i.e., ubiquitylation) represents one of the most abundant and versatile mechanisms of protein regulation employed by eukaryotic cells. Ubiquitylation influences almost every cellular process and its key role in coordination of the DNA damage response is well established. In this review we focus, however, on the ways ubiquitylation controls the process of unperturbed DNA replication. We summarise the accumulated knowledge showing the leading role of ubiquitin driven protein degradation in setting up conditions favourable for replication origin licensing and S-phase entry. Importantly, we also present the emerging major role of ubiquitylation in coordination of the active DNA replication process: preventing re-replication, regulating the progression of DNA replication forks, chromatin re-establishment and disassembly of the replisome at the termination of replication forks.
Collapse
Affiliation(s)
- Sara Priego Moreno
- School of Cancer Sciences, University of Birmingham, Vincent Drive, B15 2TT, Birmingham, UK
| | - Agnieszka Gambus
- School of Cancer Sciences, University of Birmingham, Vincent Drive, B15 2TT, Birmingham, UK.
| |
Collapse
|
29
|
Harney E, Plaistow SJ, Paterson S. Transcriptional changes during Daphnia pulex development indicate that the maturation decision resembles a rate more than a threshold. J Evol Biol 2015; 28:944-58. [PMID: 25786891 DOI: 10.1111/jeb.12624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 01/05/2023]
Abstract
Maturation is a critical developmental process, and the age and size at which it occurs have important fitness consequences. Although maturation is remarkably variable, certain mechanisms, including a minimum size or state threshold, are proposed to underlie the process across a broad diversity of taxa. Recent evidence suggests that thresholds may themselves be developmentally plastic, and in the crustacean Daphnia pulex it is unclear whether maturation follows a threshold or is a gradual process more akin to a rate. Changes in gene expression across four instars before and during maturation were compared in a cDNA microarray experiment. Developmental stage was treated statistically both as a discontinuous and as a continuous variable, to determine whether genes showed gradual or discrete changes in expression. The continuous analysis identified a greater number of genes with significant differential expression (45) than the discontinuous analysis (11). The majority of genes, including those coding for histones, factors relating to transcription and cell cycle processes, and a putative developmental hormone showed continuous increases or decreases in expression from the first to the fourth instars that were studied, suggestive of a prolonged and gradual maturation process. Three genes coding for a fused vitellogenin/superoxide dismutase showed increases in expression following the second instar and coincided with the posited maturation threshold, but even their expression increased in a continuous fashion.
Collapse
Affiliation(s)
- E Harney
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
30
|
Djabrayan NV, Cruz J, de Miguel C, Franch-Marro X, Casanova J. Specification of Differentiated Adult Progenitors via Inhibition of Endocycle Entry in the Drosophila Trachea. Cell Rep 2014; 9:859-65. [DOI: 10.1016/j.celrep.2014.09.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/16/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022] Open
|
31
|
Schoenfelder KP, Montague RA, Paramore SV, Lennox AL, Mahowald AP, Fox DT. Indispensable pre-mitotic endocycles promote aneuploidy in the Drosophila rectum. Development 2014; 141:3551-60. [PMID: 25142462 DOI: 10.1242/dev.109850] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The endocycle is a modified cell cycle that lacks M phase. Endocycles are well known for enabling continued growth of post-mitotic tissues. By contrast, we discovered pre-mitotic endocycles in precursors of Drosophila rectal papillae (papillar cells). Unlike all known proliferative Drosophila adult precursors, papillar cells endocycle before dividing. Furthermore, unlike diploid mitotic divisions, these polyploid papillar divisions are frequently error prone, suggesting papillar structures may accumulate long-term aneuploidy. Here, we demonstrate an indispensable requirement for pre-mitotic endocycles during papillar development and also demonstrate that such cycles seed papillar aneuploidy. We find blocking pre-mitotic endocycles disrupts papillar morphogenesis and causes organismal lethality under high-salt dietary stress. We further show that pre-mitotic endocycles differ from post-mitotic endocycles, as we find only the M-phase-capable polyploid cells of the papillae and female germline can retain centrioles. In papillae, this centriole retention contributes to aneuploidy, as centrioles amplify during papillar endocycles, causing multipolar anaphase. Such aneuploidy is well tolerated in papillae, as it does not significantly impair cell viability, organ formation or organ function. Together, our results demonstrate that pre-mitotic endocycles can enable specific organ construction and are a mechanism that promotes highly tolerated aneuploidy.
Collapse
Affiliation(s)
- Kevin P Schoenfelder
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, NC 27710, USA
| | - Ruth A Montague
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarah V Paramore
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashley L Lennox
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, NC 27710, USA
| | - Anthony P Mahowald
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Donald T Fox
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
32
|
Genschik P, Marrocco K, Bach L, Noir S, Criqui MC. Selective protein degradation: a rheostat to modulate cell-cycle phase transitions. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2603-15. [PMID: 24353246 DOI: 10.1093/jxb/ert426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant growth control has become a major focus due to economic reasons and results from a balance of cell proliferation in meristems and cell elongation that occurs during differentiation. Research on plant cell proliferation over the last two decades has revealed that the basic cell-cycle machinery is conserved between human and plants, although specificities exist. While many regulatory circuits control each step of the cell cycle, the ubiquitin proteasome system (UPS) appears in fungi and metazoans as a major player. In particular, the UPS promotes irreversible proteolysis of a set of regulatory proteins absolutely required for cell-cycle phase transitions. Not unexpectedly, work over the last decade has brought the UPS to the forefront of plant cell-cycle research. In this review, we will summarize our knowledge of the function of the UPS in the mitotic cycle and in endoreduplication, and also in meiosis in higher plants.
Collapse
Affiliation(s)
- Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier Cedex, France
| | - Katia Marrocco
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier Cedex, France
| | - Lien Bach
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier Cedex, France
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Marie-Claire Criqui
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
33
|
Ayuda-Durán P, Devesa F, Gomes F, Sequeira-Mendes J, Avila-Zarza C, Gómez M, Calzada A. The CDK regulators Cdh1 and Sic1 promote efficient usage of DNA replication origins to prevent chromosomal instability at a chromosome arm. Nucleic Acids Res 2014; 42:7057-68. [PMID: 24753426 PMCID: PMC4066753 DOI: 10.1093/nar/gku313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Robustness and completion of DNA replication rely on redundant DNA replication origins. Reduced efficiency of origin licensing is proposed to contribute to chromosome instability in CDK-deregulated cell cycles, a frequent alteration in oncogenesis. However, the mechanism by which this instability occurs is largely unknown. Current models suggest that limited origin numbers would reduce fork density favouring chromosome rearrangements, but experimental support in CDK-deregulated cells is lacking. We have investigated the pattern of origin firing efficiency in budding yeast cells lacking the CDK regulators Cdh1 and Sic1. We show that each regulator is required for efficient origin activity, and that both cooperate non-redundantly. Notably, origins are differentially sensitive to CDK deregulation. Origin sensitivity is independent on normal origin efficiency, firing timing or chromosomal location. Interestingly, at a chromosome arm, there is a shortage of origin firing involving active and dormant origins, and the extent of shortage correlates with the severity of CDK deregulation and chromosome instability. We therefore propose that CDK deregulation in G1 phase compromises origin redundancy by decreasing the number of active and dormant origins, leading to origin shortage and increased chromosome instability.
Collapse
Affiliation(s)
- Pilar Ayuda-Durán
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CNB-CSIC, Darwin 3, Madrid 28049, Spain
| | - Fernando Devesa
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CNB-CSIC, Darwin 3, Madrid 28049, Spain
| | - Fábia Gomes
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CNB-CSIC, Darwin 3, Madrid 28049, Spain
| | - Joana Sequeira-Mendes
- Centro de Biología Molecular Severo Ochoa CBMSO-CSIC/UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | | | - María Gómez
- Centro de Biología Molecular Severo Ochoa CBMSO-CSIC/UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | - Arturo Calzada
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CNB-CSIC, Darwin 3, Madrid 28049, Spain
| |
Collapse
|
34
|
Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat Rev Mol Cell Biol 2014; 15:197-210. [PMID: 24556841 DOI: 10.1038/nrm3756] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In endoreplication cell cycles, known as endocycles, cells successively replicate their genomes without segregating chromosomes during mitosis and thereby become polyploid. Such cycles, for which there are many variants, are widespread in protozoa, plants and animals. Endocycling cells can achieve ploidies of >200,000 C (chromatin-value); this increase in genomic DNA content allows a higher genomic output, which can facilitate the construction of very large cells or enhance macromolecular secretion. These cells execute normal S phases, using a G1-S regulatory apparatus similar to the one used by mitotic cells, but their capability to segregate chromosomes has been suppressed, typically by downregulation of mitotic cyclin-dependent kinase activity. Endocycles probably evolved many times, and the various endocycle mechanisms found in nature highlight the versatility of the cell cycle control machinery.
Collapse
|
35
|
The dual roles of geminin during trophoblast proliferation and differentiation. Dev Biol 2014; 387:49-63. [PMID: 24412371 DOI: 10.1016/j.ydbio.2013.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/11/2013] [Accepted: 12/22/2013] [Indexed: 11/21/2022]
Abstract
Geminin is a protein involved in both DNA replication and cell fate acquisition. Although it is essential for mammalian preimplantation development, its role remains unclear. In one study, ablation of the geminin gene (Gmnn) in mouse preimplantation embryos resulted in apoptosis, suggesting that geminin prevents DNA re-replication, whereas in another study it resulted in differentiation of blastomeres into trophoblast giant cells (TGCs), suggesting that geminin regulates trophoblast specification and differentiation. Other studies concluded that trophoblast differentiation into TGCs is regulated by fibroblast growth factor-4 (FGF4), and that geminin is required to maintain endocycles. Here we show that ablation of Gmnn in trophoblast stem cells (TSCs) proliferating in the presence of FGF4 closely mimics the events triggered by FGF4 deprivation: arrest of cell proliferation, formation of giant cells, excessive DNA replication in the absence of DNA damage and apoptosis, and changes in gene expression that include loss of Chk1 with up-regulation of p57 and p21. Moreover, FGF4 deprivation of TSCs reduces geminin to a basal level that is required for maintaining endocycles in TGCs. Thus, geminin acts both like a component of the FGF4 signal transduction pathway that governs trophoblast proliferation and differentiation, and geminin is required to maintain endocycles.
Collapse
|
36
|
Takahashi N, Umeda M. Cytokinins promote onset of endoreplication by controlling cell cycle machinery. PLANT SIGNALING & BEHAVIOR 2014; 9:e29396. [PMID: 25763620 PMCID: PMC4203642 DOI: 10.4161/psb.29396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 05/26/2023]
Abstract
The endocycle is a modified cell cycle in which DNA replication is repeated without mitosis or cytokinesis. The resultant DNA polyploidization, termed endoreplication, is usually associated with an increase in cell volume, and it plays an important role in sustaining plant growth and development. The onset the endocycle is caused by a reduction of mitotic CDK activity through selective degradation of mitotic cyclins. In Arabidopsis, CCS52A1 is a substrate-specific activator of an E3 ubiquitin ligase that mediates proteasomal degradation of mitotic cyclins, thereby playing an essential role in transition from the mitotic cell cycle to the endocycle. We have recently reported that the cytokinin-activated transcription factor ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2) binds to and activates the CCS52A1 promoter, and promotes the onset of the endocycle in roots. This regulation is not associated with auxin signaling, demonstrating that cytokinins have a crucial function in programmed induction of endoreplication by directly controlling the cell cycle machinery.
Collapse
Affiliation(s)
- Naoki Takahashi
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Takayama, Ikoma, Nara, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Takayama, Ikoma, Nara, Japan
- JST; CREST; Takayama, Nara, Japan
| |
Collapse
|
37
|
Hassel C, Zhang B, Dixon M, Calvi BR. Induction of endocycles represses apoptosis independently of differentiation and predisposes cells to genome instability. Development 2013; 141:112-23. [PMID: 24284207 DOI: 10.1242/dev.098871] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The endocycle is a common developmental cell cycle variation wherein cells become polyploid through repeated genome duplication without mitosis. We previously showed that Drosophila endocycling cells repress the apoptotic cell death response to genotoxic stress. Here, we investigate whether it is differentiation or endocycle remodeling that promotes apoptotic repression. We find that when nurse and follicle cells switch into endocycles during oogenesis they repress the apoptotic response to DNA damage caused by ionizing radiation, and that this repression has been conserved in the genus Drosophila over 40 million years of evolution. Follicle cells defective for Notch signaling failed to switch into endocycles or differentiate and remained apoptotic competent. However, genetic ablation of mitosis by knockdown of Cyclin A or overexpression of fzr/Cdh1 induced follicle cell endocycles and repressed apoptosis independently of Notch signaling and differentiation. Cells recovering from these induced endocycles regained apoptotic competence, showing that repression is reversible. Recovery from fzr/Cdh1 overexpression also resulted in an error-prone mitosis with amplified centrosomes and high levels of chromosome loss and fragmentation. Our results reveal an unanticipated link between endocycles and the repression of apoptosis, with broader implications for how endocycles may contribute to genome instability and oncogenesis.
Collapse
Affiliation(s)
- Christiane Hassel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
38
|
Sakaue-Sawano A, Hoshida T, Yo M, Takahashi R, Ohtawa K, Arai T, Takahashi E, Noda S, Miyoshi H, Miyawaki A. Visualizing developmentally programmed endoreplication in mammals using ubiquitin oscillators. Development 2013; 140:4624-32. [DOI: 10.1242/dev.099226] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The majority of mammalian somatic cells maintain a diploid genome. However, some mammalian cell types undergo multiple rounds of genome replication (endoreplication) as part of normal development and differentiation. For example, trophoblast giant cells (TGCs) in the placenta become polyploid through endoreduplication (bypassed mitosis), and megakaryocytes (MKCs) in the bone marrow become polyploid through endomitosis (abortive mitosis). During the normal mitotic cell cycle, geminin and Cdt1 are involved in ‘licensing’ of replication origins, which ensures that replication occurs only once in a cell cycle. Their protein accumulation is directly regulated by two E3 ubiquitin ligase activities, APCCdh1 and SCFSkp2, which oscillate reciprocally during the cell cycle. Although proteolysis-mediated, oscillatory accumulation of proteins has been documented in endoreplicating Drosophila cells, it is not known whether the ubiquitin oscillators that control normal cell cycle transitions also function during mammalian endoreplication. In this study, we used transgenic mice expressing Fucci fluorescent cell-cycle probes that report the activity of APCCdh1 and SCFSkp2. By performing long-term, high temporal-resolution Fucci imaging, we were able to visualize reciprocal activation of APCCdh1 and SCFSkp2 in differentiating TGCs and MKCs grown in our custom-designed culture wells. We found that TGCs and MKCs both skip cytokinesis, but in different ways, and that the reciprocal activation of the ubiquitin oscillators in MKCs varies with the polyploidy level. We also obtained three-dimensional reconstructions of highly polyploid TGCs in whole, fixed mouse placentas. Thus, the Fucci technique is able to reveal the spatiotemporal regulation of the endoreplicative cell cycle during differentiation.
Collapse
Affiliation(s)
- Asako Sakaue-Sawano
- Lab for Cell Function Dynamics, BSI, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
- Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Tetsushi Hoshida
- Lab for Cell Function Dynamics, BSI, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
- Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Masahiro Yo
- Subteam for Manipulation of Cell Fate, RIKEN BRC, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Reiko Takahashi
- Lab for Cell Function Dynamics, BSI, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Kenji Ohtawa
- Research Resource Center, BSI, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Takashi Arai
- Research Resource Center, BSI, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Eiki Takahashi
- Research Resource Center, BSI, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Shinichi Noda
- Subteam for Manipulation of Cell Fate, RIKEN BRC, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Hiroyuki Miyoshi
- Subteam for Manipulation of Cell Fate, RIKEN BRC, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsushi Miyawaki
- Lab for Cell Function Dynamics, BSI, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
- Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| |
Collapse
|
39
|
Lee E, Liu X, Eglit Y, Sack F. FOUR LIPS and MYB88 conditionally restrict the G1/S transition during stomatal formation. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5207-19. [PMID: 24123248 PMCID: PMC3830495 DOI: 10.1093/jxb/ert313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Consistent with their valve-like function in shoot-atmosphere gas exchange, guard cells are smaller than other epidermal cells and usually harbour 2C DNA levels in diploid plants. The paralogous Arabidopsis R2R3 MYB transcription factors, FOUR LIPS and MYB88, ensure that stomata contain just two guard cells by restricting mitosis. The loss of both FLP and MYB88 function in flp myb88 double mutants induces repeated mitotic divisions that lead to the formation of clusters of stomata in direct contact. By contrast, CYCLIN DEPENDENT KINASE B1 function is required for the symmetric division that precedes stomatal maturation. It was found that blocking mitosis by chemically disrupting microtubules or by the combined loss of FLP/MYB88 and CDKB1 function, causes single (undivided) guard cells (sGCs) to enlarge and attain mean DNA levels of up to 10C. The loss of both FLP and CDKB1 function also dramatically increased plastid number, led to the formation of multiple nuclei in GCs, altered GC and stomatal shape, and disrupted the fate of lineage-specific stem cells. Thus, in addition to respectively restricting and promoting symmetric divisions, FLP and CDKB1 together also conditionally restrict the G1/S transition and chloroplast and nuclear number, and normally maintain fate and developmental progression throughout the stomatal cell lineage.
Collapse
Affiliation(s)
- EunKyoung Lee
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada
- * These authors contributed equally to the article
| | - Xuguang Liu
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada
- * These authors contributed equally to the article
| | - Yana Eglit
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada
- Present address: Department of Biology, Life Science Centre, 1355 Oxford Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Fred Sack
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Gentric G, Desdouets C. Polyploidization in liver tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:322-31. [PMID: 24140012 DOI: 10.1016/j.ajpath.2013.06.035] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 12/14/2022]
Abstract
Polyploidy (alias whole genome amplification) refers to organisms containing more than two basic sets of chromosomes. Polyploidy was first observed in plants more than a century ago, and it is known that such processes occur in many eukaryotes under a variety of circumstances. In mammals, the development of polyploid cells can contribute to tissue differentiation and, therefore, possibly a gain of function; alternately, it can be associated with development of disease, such as cancer. Polyploidy can occur because of cell fusion or abnormal cell division (endoreplication, mitotic slippage, or cytokinesis failure). Polyploidy is a common characteristic of the mammalian liver. Polyploidization occurs mainly during liver development, but also in adults with increasing age or because of cellular stress (eg, surgical resection, toxic exposure, or viral infections). This review will explore the mechanisms that lead to the development of polyploid cells, our current state of understanding of how polyploidization is regulated during liver growth, and its consequence on liver function.
Collapse
Affiliation(s)
- Géraldine Gentric
- French Institute of Health and Medical Research (INSERM), U1016, Cochin Institute, Department of Development, Reproduction and Cancer, Paris, France; French National Centre for Scientific Research (CNRS), UMR 8104, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Chantal Desdouets
- French Institute of Health and Medical Research (INSERM), U1016, Cochin Institute, Department of Development, Reproduction and Cancer, Paris, France; French National Centre for Scientific Research (CNRS), UMR 8104, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
41
|
Clijsters L, Ogink J, Wolthuis R. The spindle checkpoint, APC/C(Cdc20), and APC/C(Cdh1) play distinct roles in connecting mitosis to S phase. ACTA ACUST UNITED AC 2013; 201:1013-26. [PMID: 23775192 PMCID: PMC3691463 DOI: 10.1083/jcb.201211019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The spindle checkpoint, APC/C-Cdc20, and APC/C-Cdh1 act successively to connect disappearance of geminin and cyclin B1 to a peak of Cdt1 and Cdc6. DNA replication depends on a preceding licensing event by Cdt1 and Cdc6. In animal cells, relicensing after S phase but before mitosis is prevented by the Cdt1 inhibitor geminin and mitotic cyclin activity. Here, we show that geminin, like cyclin B1 and securin, is a bona fide target of the spindle checkpoint and APC/CCdc20. Cyclin B1 and geminin are degraded simultaneously during metaphase, which directs Cdt1 accumulation on segregating sister chromatids. Subsequent activation of APC/CCdh1 leads to degradation of Cdc6 well before Cdt1 becomes unstable in a replication-coupled manner. In mitosis, the spindle checkpoint supports Cdt1 accumulation, which promotes S phase onset. We conclude that the spindle checkpoint, APC/CCdc20, and APC/CCdh1 act successively to ensure that the disappearance of licensing inhibitors coincides exactly with a peak of Cdt1 and Cdc6. Whereas cell cycle entry from quiescence requires Cdc6 resynthesis, our results indicate that proliferating cells use a window of time in mitosis, before Cdc6 is degraded, as an earlier opportunity to direct S phase.
Collapse
Affiliation(s)
- Linda Clijsters
- Division of Cell Biology I (B5), The Netherlands Cancer Institute (NKI-AvL), 1066 CX Amsterdam, Netherlands.
| | | | | |
Collapse
|
42
|
|
43
|
Fox DT, Duronio RJ. Endoreplication and polyploidy: insights into development and disease. Development 2013; 140:3-12. [PMID: 23222436 DOI: 10.1242/dev.080531] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyploid cells have genomes that contain multiples of the typical diploid chromosome number and are found in many different organisms. Studies in a variety of animal and plant developmental systems have revealed evolutionarily conserved mechanisms that control the generation of polyploidy and have recently begun to provide clues to its physiological function. These studies demonstrate that cellular polyploidy plays important roles during normal development and also contributes to human disease, particularly cancer.
Collapse
Affiliation(s)
- Donald T Fox
- Department of Pharmacology and Cancer Biology, and Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | | |
Collapse
|
44
|
Abstract
Developmentally programmed polyploidy occurs by at least four different mechanisms, two of which (endoreduplication and endomitosis) involve switching from mitotic cell cycles to endocycles by the selective loss of mitotic cyclin-dependent kinase (CDK) activity and bypassing many of the processes of mitosis. Here we review the mechanisms of endoreplication, focusing on recent results from Drosophila and mice.
Collapse
Affiliation(s)
- Norman Zielke
- Deutsches Krebsforschungszentrum (DKFZ)-Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
45
|
Transcriptional repression of the APC/C activator CCS52A1 promotes active termination of cell growth. EMBO J 2012; 31:4488-501. [PMID: 23143274 DOI: 10.1038/emboj.2012.294] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/02/2012] [Indexed: 11/08/2022] Open
Abstract
Spatial and temporal control of cell growth is central for the morphogenesis of multicellular organisms. For some cell types that undergo extensive post-mitotic cell growth, such as neurons and hair cells, orchestrating the extent of post-mitotic cell growth with development is vital for their physiology and function. Previous studies suggested that the extent of cell growth is linked with an increase in ploidy by endoreduplication but how developmental signals control endocycling and cell growth is not understood in both animals and plants. In this study we show that a trihelix transcription factor, GT2-LIKE 1 (GTL1), actively terminates ploidy-dependent cell growth and its developmentally regulated expression is one of the key determinants of cell size in Arabidopsis leaf hair cells (trichomes). Through genome-wide chromatin-binding studies (ChIP-chip) coupled with transcriptional profiling, we further demonstrate that GTL1 directly represses the transcription of CDH1/FZR/CCS52, an activator of the anaphase-promoting complex/cyclosome (APC/C), to stop the endocycle progression and ploidy-dependent cell growth. Thus, our findings uncover a previously uncharacterised key molecular link between developmental programming and cell-size control, highlighting the central role of APC/C in post-mitotic cell growth.
Collapse
|
46
|
Depamphilis ML, de Renty CM, Ullah Z, Lee CY. "The Octet": Eight Protein Kinases that Control Mammalian DNA Replication. Front Physiol 2012; 3:368. [PMID: 23055977 PMCID: PMC3458233 DOI: 10.3389/fphys.2012.00368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 08/27/2012] [Indexed: 01/12/2023] Open
Abstract
Development of a fertilized human egg into an average sized adult requires about 29 trillion cell divisions, thereby producing enough DNA to stretch to the Sun and back 200 times (DePamphilis and Bell, 2011)! Even more amazing is the fact that throughout these mitotic cell cycles, the human genome is duplicated once and only once each time a cell divides. If a cell accidentally begins to re-replicate its nuclear DNA prior to cell division, checkpoint pathways trigger apoptosis. And yet, some cells are developmentally programmed to respond to environmental cues by switching from mitotic cell cycles to endocycles, a process in which multiple S phases occur in the absence of either mitosis or cytokinesis. Endocycles allow production of viable, differentiated, polyploid cells that no longer proliferate. What is surprising is that among the 516 (Manning et al., 2002) to 557 (BioMart web site) protein kinases encoded by the human genome, only eight regulate nuclear DNA replication directly. These are Cdk1, Cdk2, Cdk4, Cdk6, Cdk7, Cdc7, Checkpoint kinase-1 (Chk1), and Checkpoint kinase-2. Even more remarkable is the fact that only four of these enzymes (Cdk1, Cdk7, Cdc7, and Chk1) are essential for mammalian development. Here we describe how these protein kinases determine when DNA replication occurs during mitotic cell cycles, how mammalian cells switch from mitotic cell cycles to endocycles, and how cancer cells can be selectively targeted for destruction by inducing them to begin a second S phase before mitosis is complete.
Collapse
Affiliation(s)
- Melvin L Depamphilis
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | | | | | | |
Collapse
|
47
|
Rice APC/C(TE) controls tillering by mediating the degradation of MONOCULM 1. Nat Commun 2012; 3:752. [PMID: 22434195 PMCID: PMC3316886 DOI: 10.1038/ncomms1716] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/31/2012] [Indexed: 12/30/2022] Open
Abstract
Rice MONOCULM 1 (MOC1) and its orthologues LS/LAS (lateral suppressor in tomato and Arabidopsis) are key promoting factors of shoot branching and tillering in higher plants. However, the molecular mechanisms regulating MOC1/LS/LAS have remained elusive. Here we show that the rice tiller enhancer (te) mutant displays a drastically increased tiller number. We demonstrate that TE encodes a rice homologue of Cdh1, and that TE acts as an activator of the anaphase promoting complex/cyclosome (APC/C) complex. We show that TE coexpresses with MOC1 in the axil of leaves, where the APC/CTE complex mediates the degradation of MOC1 by the ubiquitin–26S proteasome pathway, and consequently downregulates the expression of the meristem identity gene Oryza sativa homeobox 1, thus repressing axillary meristem initiation and formation. We conclude that besides having a conserved role in regulating cell cycle, APC/CTE has a unique function in regulating the plant-specific postembryonic shoot branching and tillering, which are major determinants of plant architecture and grain yield. The protein complex APC/C is an E3 ubiquitin ligase and its subunit Cdh1 determines substrate recognition. Lin et al. show that the transcriptional regulator MONOCULM1 is a substrate of the rice homologue of Cdh1 and that APC/C-mediated degradation of MONOCULM1 controls rice tillering, a determinant of grain yield.
Collapse
|
48
|
Sallé J, Campbell SD, Gho M, Audibert A. CycA is involved in the control of endoreplication dynamics in the Drosophila bristle lineage. Development 2012; 139:547-57. [PMID: 22223681 DOI: 10.1242/dev.069823] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endocycles, which are characterised by repeated rounds of DNA replication without intervening mitosis, are involved in developmental processes associated with an increase in metabolic cell activity and are part of terminal differentiation. Endocycles are currently viewed as a restriction of the canonical cell cycle. As such, mitotic cyclins have been omitted from the endocycle mechanism and their role in this process has not been specifically analysed. In order to study such a role, we focused on CycA, which has been described to function exclusively during mitosis in Drosophila. Using developing mechanosensory organs as model system and PCNA::GFP to follow endocycle dynamics, we show that (1) CycA proteins accumulate during the last period of endoreplication, (2) both CycA loss and gain of function induce changes in endoreplication dynamics and reduce the number of endocycles, and (3) heterochromatin localisation of ORC2, a member of the Pre-RC complex, depends on CycA. These results show for the first time that CycA is involved in endocycle dynamics in Drosophila. As such, CycA controls the final ploidy that cells reached during terminal differentiation. Furthermore, our data suggest that the control of endocycles by CycA involves the subnuclear relocalisation of pre-RC complex members. Our work therefore sheds new light on the mechanism underlying endocycles, implicating a process that involves remodelling of the entire cell cycle network rather than simply a restriction of the canonical cell cycle.
Collapse
Affiliation(s)
- Jérémy Sallé
- Université Pierre et Marie Curie-Paris 6, UMR 7622, Paris, France
| | | | | | | |
Collapse
|
49
|
Heyman J, Van den Daele H, De Wit K, Boudolf V, Berckmans B, Verkest A, Kamei CLA, De Jaeger G, Koncz C, De Veylder L. Arabidopsis ULTRAVIOLET-B-INSENSITIVE4 maintains cell division activity by temporal inhibition of the anaphase-promoting complex/cyclosome. THE PLANT CELL 2011; 23:4394-410. [PMID: 22167059 PMCID: PMC3269873 DOI: 10.1105/tpc.111.091793] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that regulates progression through the cell cycle by marking key cell division proteins for destruction. To ensure correct cell cycle progression, accurate timing of APC/C activity is important, which is obtained through its association with both activating and inhibitory subunits. However, although the APC/C is highly conserved among eukaryotes, no APC/C inhibitors are known in plants. Recently, we have identified ULTRAVIOLET-B-INSENSITIVE4 (UVI4) as a plant-specific component of the APC/C. Here, we demonstrate that UVI4 uses conserved APC/C interaction motifs to counteract the activity of the CELL CYCLE SWITCH52 A1 (CCS52A1) activator subunit, inhibiting the turnover of the A-type cyclin CYCA2;3. UVI4 is expressed in an S phase-dependent fashion, likely through the action of E2F transcription factors. Correspondingly, uvi4 mutant plants failed to accumulate CYCA2;3 during the S phase and prematurely exited the cell cycle, triggering the onset of the endocycle. We conclude that UVI4 regulates the temporal inactivation of APC/C during DNA replication, allowing CYCA2;3 to accumulate above the level required for entering mitosis, and thereby regulates the meristem size and plant growth rate.
Collapse
Affiliation(s)
- Jefri Heyman
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Hilde Van den Daele
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Kevin De Wit
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Véronique Boudolf
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Barbara Berckmans
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Aurine Verkest
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Claire Lessa Alvim Kamei
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Csaba Koncz
- Max-Planck-Institut für Züchtungsforschung, D–50829 Cologne, Germany
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H–6723 Szeged, Hungary
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
50
|
Iwata E, Ikeda S, Matsunaga S, Kurata M, Yoshioka Y, Criqui MC, Genschik P, Ito M. GIGAS CELL1, a novel negative regulator of the anaphase-promoting complex/cyclosome, is required for proper mitotic progression and cell fate determination in Arabidopsis. THE PLANT CELL 2011; 23:4382-93. [PMID: 22167058 PMCID: PMC3269872 DOI: 10.1105/tpc.111.092049] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Increased cellular ploidy is widespread during developmental processes of multicellular organisms, especially in plants. Elevated ploidy levels are typically achieved either by endoreplication or endomitosis, which are often regarded as modified cell cycles that lack an M phase either entirely or partially. We identified GIGAS CELL1 (GIG1)/OMISSION OF SECOND DIVISION1 (OSD1) and established that mutation of this gene triggered ectopic endomitosis. On the other hand, it has been reported that a paralog of GIG1/OSD1, UV-INSENSITIVE4 (UVI4), negatively regulates endoreplication onset in Arabidopsis thaliana. We showed that GIG1/OSD1 and UVI4 encode novel plant-specific inhibitors of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. These proteins physically interact with APC/C activators, CDC20/FZY and CDH1/FZR, in yeast two-hybrid assays. Overexpression of CDC20.1 and CCS52B/FZR3 differentially promoted ectopic endomitosis in gig1/osd1 and premature occurrence of endoreplication in uvi4. Our data suggest that GIG1/OSD1 and UVI4 may prevent an unscheduled increase in cellular ploidy by preferentially inhibiting APC/C(CDC20) and APC/C(FZR), respectively. Generation of cells with a mixed identity in gig1/osd1 further suggested that the APC/C may have an unexpected role for cell fate determination in addition to its role for proper mitotic progression.
Collapse
Affiliation(s)
- Eriko Iwata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Saki Ikeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Tokyo University of Science, Noda Chiba 278-8510, Japan
| | - Mariko Kurata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yasushi Yoshioka
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Marie-Claire Criqui
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, 67084 Strasbourg, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, 67084 Strasbourg, France
| | - Masaki Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Address correspondence to
| |
Collapse
|