1
|
Maxwell MWH, Causier BE, Chippendale J, Ault JR, Bell CA. Diet-regulated transcriptional plasticity of plant parasites in plant-mutualist environments. Proc Natl Acad Sci U S A 2025; 122:e2421367122. [PMID: 40244681 PMCID: PMC12037023 DOI: 10.1073/pnas.2421367122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Crop pathogens often lack exclusive access to their host and must interact with plants concurrently engaged with numerous other symbionts. Here, we demonstrate that the colonization of hosts by plant-mutualistic mycorrhizal fungi can indirectly induce transcriptional responses of a major plant parasite, the nematode Globodera pallida, via a modified host resource profile. A shift in the resource profile of the root, where the parasite feeds, is perceived and responded to by the parasite through transcriptional changes, potentially to optimize resource intake. Specifically, G. pallida react to reduced host-photosynthate influx due to concurrent mycorrhizal-host symbiosis by upregulating the expression of a sugar transporter (SWEET3) in the nematode intestine. We identify this gene's role in parasite growth and development, regulated by the putative diet-responsive transcription factor Gp-HBL1. Overall, our data unveil a mechanism by which a parasitic animal responds to fluctuations in host plant quality that is induced by a plant-mutualistic fungus, to enhance parasitism and reproduction.
Collapse
Affiliation(s)
- M. Willow H. Maxwell
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Barry E. Causier
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Jasper Chippendale
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - James R. Ault
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Chris A. Bell
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|
2
|
Sathee L, R S, Barman D, Adavi SB, Jha SK, Chinnusamy V. Nitrogen at the crossroads of light: integration of light signalling and plant nitrogen metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:803-818. [PMID: 39540633 DOI: 10.1093/jxb/erae437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Plants have developed complex mechanisms to perceive, transduce, and respond to environmental signals, such as light, which are essential for acquiring and allocating resources, including nitrogen (N). This review delves into the complex interaction between light signals and N metabolism, emphasizing light-mediated regulation of N uptake and assimilation. Firstly, we examine the details of light-mediated regulation of N uptake and assimilation, focusing on the light-responsive activity of nitrate reductase (NR) and nitrate transporters. Secondly, we discuss the influence of light on N-dependent developmental plasticity, elucidating how N availability regulates crucial developmental transitions such as flowering time, shoot branching, and root growth, as well as how light modulates these processes. Additionally, we consider the molecular interaction between light and N signalling, focusing on photoreceptors and transcription factors such as HY5, which are necessary for N uptake and assimilation under varying light conditions. A recent understanding of the nitrate signalling and perception of low N is also highlighted. The in silico transcriptome analysis suggests a reprogramming of N signalling genes by shade, and identifies NLP7, bZIP1, CPK30, CBL1, LBD37, LBD38, and HRS1 as crucial molecular regulators integrating light-regulated N metabolism.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Suriyaprakash R
- Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Dipankar Barman
- Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Sandeep B Adavi
- ICAR-National Institute of Biotic Stress Management, Raipur, Chhattishgarh, 493 225, India
| | - Shailendra K Jha
- Division of Genetics, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| |
Collapse
|
3
|
Does Birth Trigger Cell Death in the Developing Brain? eNeuro 2020; 7:ENEURO.0517-19.2020. [PMID: 32015098 PMCID: PMC7031855 DOI: 10.1523/eneuro.0517-19.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/27/2022] Open
Abstract
Developmental cell death eliminates half of the neurons initially generated in the mammalian brain, and occurs perinatally in many species. It is possible that the timing of neuronal cell death is developmentally programmed, and only coincidentally associated with birth. Alternatively, birth may play a role in shaping cell death. To test these competing hypotheses, we experimentally advanced or delayed birth by 1 d in mice (within the normal range of gestation for the species) and examined effects on the temporal pattern and magnitude (amount) of neuronal cell death, using immunohistochemical detection of activated caspase-3 as a cell death marker. In order to detect effects of subtle changes in birth timing, we focused on brain areas that exhibit sharp postnatal peaks in cell death. We find that advancing birth advances peak cell death, supporting the hypothesis that birth triggers cell death. However, a delay of birth does not delay cell death. Thus, birth can advance cell death, but if postponed, a developmental program governs. Advancing or delaying birth also caused region-specific changes in the overall magnitude of cell death. Our findings shed light on the long-standing question of what controls the timing and magnitude of developmental neuronal cell death, and position birth as an orchestrator of brain development. Because humans across the world now routinely alter birth timing, these findings may have implications for current obstetric practices.
Collapse
|
4
|
van der Horst SEM, Cravo J, Woollard A, Teapal J, van den Heuvel S. C. elegans Runx/CBFβ suppresses POP-1 TCF to convert asymmetric to proliferative division of stem cell-like seam cells. Development 2019; 146:dev.180034. [PMID: 31740621 PMCID: PMC6899014 DOI: 10.1242/dev.180034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023]
Abstract
A correct balance between proliferative and asymmetric cell divisions underlies normal development, stem cell maintenance and tissue homeostasis. What determines whether cells undergo symmetric or asymmetric cell division is poorly understood. To gain insight into the mechanisms involved, we studied the stem cell-like seam cells in the Caenorhabditis elegans epidermis. Seam cells go through a reproducible pattern of asymmetric divisions, instructed by divergent canonical Wnt/β-catenin signaling, and symmetric divisions that increase the seam cell number. Using time-lapse fluorescence microscopy we observed that symmetric cell divisions maintain asymmetric localization of Wnt/β-catenin pathway components. Our observations, based on lineage-specific knockout and GFP-tagging of endogenous pop-1, support the model that POP-1TCF induces differentiation at a high nuclear level, whereas low nuclear POP-1 promotes seam cell self-renewal. Before symmetric division, the transcriptional regulator RNT-1Runx and cofactor BRO-1CBFβ temporarily bypass Wnt/β-catenin asymmetry by downregulating pop-1 expression. Thereby, RNT-1/BRO-1 appears to render POP-1 below the level required for its repressor function, which converts differentiation into self-renewal. Thus, we found that conserved Runx/CBFβ-type stem cell regulators switch asymmetric to proliferative cell division by opposing TCF-related transcriptional repression. Summary: To switch asymmetric to proliferative cell division, the C. elegans RNT-1/BRO-1 transcriptional repressor opposes POP-1 TCF expression in seam stem cells, which turns POP-1-induced differentiation into self-renewal.
Collapse
Affiliation(s)
- Suzanne E M van der Horst
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Janine Cravo
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alison Woollard
- Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, UK
| | - Juliane Teapal
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sander van den Heuvel
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
5
|
Kim M, Civin CI, Kingsbury TJ. MicroRNAs as regulators and effectors of hematopoietic transcription factors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1537. [PMID: 31007002 DOI: 10.1002/wrna.1537] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a highly-regulated development process orchestrated by lineage-specific transcription factors that direct the generation of all mature blood cells types, including red blood cells, megakaryocytes, granulocytes, monocytes, and lymphocytes. Under homeostatic conditions, the hematopoietic system of the typical adult generates over 1011 blood cells daily throughout life. In addition, hematopoiesis must be responsive to acute challenges due to blood loss or infection. MicroRNAs (miRs) cooperate with transcription factors to regulate all aspects of hematopoiesis, including stem cell maintenance, lineage selection, cell expansion, and terminal differentiation. Distinct miR expression patterns are associated with specific hematopoietic lineages and stages of differentiation and functional analyses have elucidated essential roles for miRs in regulating cell transitions, lineage selection, maturation, and function. MiRs function as downstream effectors of hematopoietic transcription factors and as upstream regulators to control transcription factor levels. Multiple miRs have been shown to play essential roles. Regulatory networks comprised of differentially expressed lineage-specific miRs and hematopoietic transcription factors are involved in controlling the quiescence and self-renewal of hematopoietic stem cells as well as proliferation and differentiation of lineage-specific progenitor cells during erythropoiesis, myelopoiesis, and lymphopoiesis. This review focuses on hematopoietic miRs that function as upstream regulators of central hematopoietic transcription factors required for normal hematopoiesis. This article is categorized under: RNA in Disease and Development > RNA in Development Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Pediatrics, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I Civin
- Department of Pediatrics and Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tami J Kingsbury
- Department of Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Wersebe M, Blackwood P, Guo YT, Jaeger J, May D, Meindl G, Ryan SN, Wong V, Hua J. The effects of different cold-temperature regimes on development, growth, and susceptibility to an abiotic and biotic stressor. Ecol Evol 2019; 9:3355-3366. [PMID: 30962897 PMCID: PMC6434568 DOI: 10.1002/ece3.4957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 11/05/2022] Open
Abstract
Global climate change is expected to both increase average temperatures as well as temperature variability.Increased average temperatures have led to earlier breeding in many spring-breeding organisms. However, individuals breeding earlier will also face increased temperature fluctuations, including exposure to potentially harmful cold-temperature regimes during early developmental stages.Using a model spring-breeding amphibian, we investigated how embryonic exposure to different cold-temperature regimes (control, cold-pulse, and cold-press) affected (a) compensatory larval development and growth, (b) larval susceptibility to a common contaminant, and (c) larval susceptibility to parasites.We found: (a) no evidence of compensatory development or growth, (b) larvae exposed to the cold-press treatment were more susceptible to NaCl at 4-days post-hatching but recovered by 17-days post-hatching, and (c) larvae exposed to both cold treatments were less susceptible to parasites.These results demonstrate that variation in cold-temperature regimes can lead to unique direct and indirect effects on larval growth, development, and response to stressors. This underscores the importance of considering cold-temperature variability and not just increased average temperatures when examining the impacts of climate disruption.
Collapse
Affiliation(s)
- Matthew Wersebe
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Paradyse Blackwood
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Ying Tong Guo
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Jared Jaeger
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Dyllan May
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - George Meindl
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Sean N. Ryan
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Vivian Wong
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Jessica Hua
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| |
Collapse
|
7
|
Zhang F, Liu X, Zhang A, Jiang Z, Chen L, Zhang X. Genome-wide dynamic network analysis reveals a critical transition state of flower development in Arabidopsis. BMC PLANT BIOLOGY 2019; 19:11. [PMID: 30616516 PMCID: PMC6323737 DOI: 10.1186/s12870-018-1589-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/04/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND The flowering transition which is controlled by a complex and intricate gene regulatory network plays an important role in the reproduction for offspring of plants. It is a challenge to identify the critical transition state as well as the genes that control the transition of flower development. With the emergence of massively parallel sequencing, a great number of time-course transcriptome data greatly facilitate the exploration of the developmental phase transition in plants. Although some network-based bioinformatics analyses attempted to identify the genes that control the phase transition, they generally overlooked the dynamics of regulation and resulted in unreliable results. In addition, the results of these methods cannot be self-explained. RESULTS In this work, to reveal a critical transition state and identify the transition-specific genes of flower development, we implemented a genome-wide dynamic network analysis on temporal gene expression data in Arabidopsis by dynamic network biomarker (DNB) method. In the analysis, DNB model which can exploit collective fluctuations and correlations of different metabolites at a network level was used to detect the imminent critical transition state or the tipping point. The genes that control the phase transition can be identified by the difference of weighted correlations between the genes interested and the other genes in the global network. To construct the gene regulatory network controlling the flowering transition, we applied NARROMI algorithm which can reduce the noisy, redundant and indirect regulations on the expression data of the transition-specific genes. In the results, the critical transition state detected during the formation of flowers corresponded to the development of flowering on the 7th to 9th day in Arabidopsis. Among of 233 genes identified to be highly fluctuated at the transition state, a high percentage of genes with maximum expression in pollen was detected, and 24 genes were validated to participate in stress reaction process, as well as other floral-related pathways. Composed of three major subnetworks, a gene regulatory network with 150 nodes and 225 edges was found to be highly correlated with flowering transition. The gene ontology (GO) annotation of pathway enrichment analysis revealed that the identified genes are enriched in the catalytic activity, metabolic process and cellular process. CONCLUSIONS This study provides a novel insight to identify the real causality of the phase transition with genome-wide dynamic network analysis.
Collapse
Affiliation(s)
- Fuping Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specially Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 10049 China
| | - Xiaoping Liu
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Aidi Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specially Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Zhonglin Jiang
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xiujun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specially Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|
8
|
Zhang X, Chang H, Dong Z, Zhang Y, Zhao D, Ye L, Xia Q, Zhao P. Comparative Proteome Analysis Reveals that Cuticular Proteins Analogous to Peritrophin-Motif Proteins are Involved in the Regeneration of Chitin Layer in the Silk Gland of Bombyx mori at the Molting Stage. Proteomics 2018; 18:e1700389. [PMID: 29687606 DOI: 10.1002/pmic.201700389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/20/2018] [Indexed: 11/07/2022]
Abstract
The silk gland of silkworm produces silk proteins during larval development. Many studies have long focused on the silk gland of the fifth instar larvae, but few have investigated this gland at other larval stages. In the present study, the silk gland proteomes of the fourth instar and fourth molt are analyzed using liquid chromatography-tandem mass spectrometry. In total, 2654 proteins are identified from the silk gland. A high abundance of ribosomal proteins and RR-motif chitin-binding proteins is identified during day 2 of the fourth instar (IV-2) larval developmental stage, and the expression of cuticular proteins analogous to peritrophin (CPAP)-motif chitin-binding proteins is higher during the fourth molt (IV-M). In all, nine enzymes are found to be involved in the chitin regeneration pathway in the silk gland. Among them, two chitinase and two chitin deacetylases are identified as CPAP-motif proteins. Furthermore, the expression of CPAP3-G, the most abundant CPAP-motif cuticular protein in the silk gland during the IV-M stage, is investigated using western blot and immunofluorescence analyses; CPAP3-G shows a reverse changing trend with chitin in the silk gland. The findings of this study suggest that CPAP-motif chitin-binding proteins are involved in the degradation of the chitin layer in the silk gland. The data have been deposited to the ProteomeXchange with identifier PXD008677.
Collapse
Affiliation(s)
- Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Huaipu Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China.,College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Lin Ye
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China
| |
Collapse
|
9
|
Kucherenko MM, Shcherbata HR. miRNA targeting and alternative splicing in the stress response - events hosted by membrane-less compartments. J Cell Sci 2018; 131:131/4/jcs202002. [PMID: 29444950 DOI: 10.1242/jcs.202002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stress can be temporary or chronic, and mild or acute. Depending on its extent and severity, cells either alter their metabolism, and adopt a new state, or die. Fluctuations in environmental conditions occur frequently, and such stress disturbs cellular homeostasis, but in general, stresses are reversible and last only a short time. There is increasing evidence that regulation of gene expression in response to temporal stress happens post-transcriptionally in specialized subcellular membrane-less compartments called ribonucleoprotein (RNP) granules. RNP granules assemble through a concentration-dependent liquid-liquid phase separation of RNA-binding proteins that contain low-complexity sequence domains (LCDs). Interestingly, many factors that regulate microRNA (miRNA) biogenesis and alternative splicing are RNA-binding proteins that contain LCDs and localize to stress-induced liquid-like compartments. Consequently, gene silencing through miRNAs and alternative splicing of pre-mRNAs are emerging as crucial post-transcriptional mechanisms that function on a genome-wide scale to regulate the cellular stress response. In this Review, we describe the interplay between these two post-transcriptional processes that occur in liquid-like compartments as an adaptive cellular response to stress.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
10
|
Hu W, Liu C, Cheng T, Li W, Wang N, Xia Q. Histomorphometric and transcriptomic features characterize silk glands' development during the molt to intermolt transition process in silkworm. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:95-108. [PMID: 27395780 DOI: 10.1016/j.ibmb.2016.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
The molt-intermolt cycle is an essential feature in holometabolous and hemimetabolous insects' development. In the silkworm, silk glands are under dramatic morphological and functional changes with fibroin genes' transcription being repeatedly turned off and on during the molt-intermolt cycles. However, the molecular mechanisms controlling it are still unknown. Here, silk gland's histomorphology and transcriptome analysis were used to characterize changes in its structure and gene expression patterns from molt to intermolt stages. By using section staining and transmission electron microscope, a renewable cell damage was detected in the silk gland at the molt stage, and an increased number of autophagosomes and lysosomes were found in silk gland cells' cytoplasm. Next, by using RNA sequencing, 54,578,413 reads were obtained, of which 85% were mapped to the silkworm reference genome. The expression level analysis of silk protein genes and silk gland transcription factors revealed that fibroin heavy chain, fibroin light chain, P25/fhx, sericin1, sericin3 and Dimm had consistent alteration trends in temporal expression. In addition, differentially expressed genes (DEGs) were identified, and most of the DEGs associated with ecdysone signal transduction, mRNA degradation, protein proteolysis, and autophagy were significantly down-regulated in the transition from molt to intermolt, suggesting that these pathways were activated for the silk gland renewal. These findings provide insights into the molecular mechanisms of silk gland development and silk protein genes transcriptional regulation during the molt to intermolt transition process.
Collapse
Affiliation(s)
- Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Wei Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Niannian Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China.
| |
Collapse
|
11
|
Xu M, Jiang L, Zhu S, Zhou C, Ye M, Mao K, Sun L, Su X, Pan H, Zhang S, Huang M, Wu R. A computational framework for mapping the timing of vegetative phase change. THE NEW PHYTOLOGIST 2016; 211:750-60. [PMID: 26958803 DOI: 10.1111/nph.13907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/17/2016] [Indexed: 05/24/2023]
Abstract
Phase change plays a prominent role in determining the form of growth and development. Although considerable attention has been focused on identifying the regulatory control mechanisms of phase change, a detailed understanding of the genetic architecture of this phenomenon is still lacking. We address this issue by deriving a computational model. The model is founded on the framework of functional mapping aimed at characterizing the interplay between quantitative trait loci (QTLs) and development through biologically meaningful mathematical equations. A multiphasic growth equation was implemented into functional mapping, which, via a series of hypothesis tests, allows the quantification of how QTLs regulate the timing and pattern of vegetative phase transition between independently regulated, temporally coordinated processes. The model was applied to analyze stem radial growth data of an interspecific hybrid family derived from two Populus species during the first 24 yr of ontogeny. Several key QTLs related to phase change have been characterized, most of which were observed to be in the adjacent regions of candidate genes. The identification of phase transition QTLs, whose expression is regulated by endogenous and environmental signals, may enhance our understanding of the evolution of development in changing environments.
Collapse
Affiliation(s)
- Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Libo Jiang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Sheng Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Chunguo Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ke Mao
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lidan Sun
- Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Xiaohua Su
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100094, China
| | - Huixin Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Shougong Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100094, China
| | - Minren Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, 17033, USA
| |
Collapse
|
12
|
Niwa YS, Niwa R. Transcriptional regulation of insect steroid hormone biosynthesis and its role in controlling timing of molting and metamorphosis. Dev Growth Differ 2016; 58:94-105. [PMID: 26667894 PMCID: PMC11520982 DOI: 10.1111/dgd.12248] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/11/2015] [Accepted: 10/11/2015] [Indexed: 01/11/2023]
Abstract
The developmental transition from juvenile to adult is often accompanied by many systemic changes in morphology, metabolism, and reproduction. Curiously, both mammalian puberty and insect metamorphosis are triggered by a pulse of steroid hormones, which can harmonize gene expression profiles in the body and thus orchestrate drastic biological changes. However, understanding of how the timing of steroid hormone biosynthesis is regulated at the molecular level is poor. The principal insect steroid hormone, ecdysteroid, is biosynthesized from dietary cholesterol in the specialized endocrine organ called the prothoracic gland. The periodic pulses of ecdysteroid titers determine the timing of molting and metamorphosis. To date, at least nine families of ecdysteroidogenic enzyme genes have been identified. Expression levels of these genes correlate well with ecdysteroid titers, indicating that the transcriptional regulatory network plays a critical role in regulating the ecdysteroid biosynthesis pathway. In this article, we summarize the transcriptional regulation of ecdysteroid biosynthesis. We first describe the development of prothoracic gland cells during Drosophila embryogenesis, and then provide an overview of the transcription factors that act in ecdysteroid biosynthesis and signaling. We also discuss the external signaling pathways that target these transcriptional regulators. Furthermore, we describe conserved and/or diverse aspects of steroid hormone biosynthesis in insect species as well as vertebrates.
Collapse
Affiliation(s)
- Yuko S Niwa
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
- PRESTO, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, 332-0012, Saitama, Japan
| |
Collapse
|
13
|
Vidal EA, Moyano TC, Canales J, Gutiérrez RA. Nitrogen control of developmental phase transitions in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5611-8. [PMID: 25129132 DOI: 10.1093/jxb/eru326] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nitrogen (N) is an essential macronutrient and a key structural component of macromolecules in plants. N nutrients and metabolites can act as signals that impact on many aspects of plant biology. The plant life cycle involves a series of developmental phase transitions that must be tightly coordinated to external and internal cues in order to ensure plant survival and reproduction. N availability is one of the factors controlling phase changes. In this review, we integrate and summarize the known effects of N over different developmental stages in plants. Substantial advances have been made in our understanding of signalling and N-responsive gene regulatory networks. We focus on the molecular mechanisms underlying N regulation of developmental transitions and the role of putative new regulators that might link N availability to pathways controlling Arabidopsis growth and development from seed germination through the plant reproductive transition.
Collapse
Affiliation(s)
- Elena A Vidal
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás C Moyano
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Canales
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
The miRNA-mediated cross-talk between transcripts provides a novel layer of posttranscriptional regulation. ADVANCES IN GENETICS 2014; 85:149-99. [PMID: 24880735 DOI: 10.1016/b978-0-12-800271-1.00003-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Endogenously expressed transcripts that are posttranscriptionally regulated by the same microRNAs (miRNAs) will, in principle, compete for the binding of their shared small noncoding RNA regulators and modulate each other's abundance. Recently, the levels of some coding as well as noncoding transcripts have indeed been found to be regulated in this way. Transcripts that engage in such regulatory interactions are referred to as competitive endogenous RNAs (ceRNAs). This novel layer of posttranscriptional regulation has been shown to contribute to diverse aspects of organismal and cellular biology, despite the number of functionally characterized ceRNAs being as yet relatively low. Importantly, increasing evidence suggests that the dysregulation of some ceRNA interactions is associated with disease etiology, most preeminently with cancer. Here we review how posttranscriptional regulation by miRNAs contributes to the cross-talk between transcripts and review examples of known ceRNAs by highlighting the features underlying their interactions and what might be their biological relevance.
Collapse
|
15
|
Kim DH, Grün D, van Oudenaarden A. Dampening of expression oscillations by synchronous regulation of a microRNA and its target. Nat Genet 2013; 45:1337-44. [PMID: 24036951 PMCID: PMC3812263 DOI: 10.1038/ng.2763] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 08/22/2013] [Indexed: 11/09/2022]
Abstract
The complexity of multicellular organisms requires precise spatiotemporal regulation of gene expression during development. We find that in the nematode Caenorhabditis elegans approximately 2,000 transcripts undergo expression oscillations synchronized with larval transitions while thousands of genes are expressed in temporal gradients, similar to known timing regulators. By counting transcripts in individual worms, we show that pulsatile expression of the microRNA (miRNA) lin-4 maintains the temporal gradient of its target lin-14 by dampening its expression oscillations. Our results demonstrate that this insulation is optimal when pulsatile expression of the miRNA and its target is synchronous. We propose that such a miRNA-mediated incoherent feed-forward loop is a potent filter that prevents the propagation of potentially deleterious fluctuations in gene expression during the development of an organism.
Collapse
Affiliation(s)
- Dong hyun Kim
- 1] Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [3]
| | | | | |
Collapse
|
16
|
Monsalve GC, Frand AR. Toward a unified model of developmental timing: A "molting" approach. WORM 2013; 1:221-30. [PMID: 24058853 PMCID: PMC3670223 DOI: 10.4161/worm.20874] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 05/24/2012] [Indexed: 02/06/2023]
Abstract
Animal development requires temporal coordination between recurrent processes and sequential events, but the underlying timing mechanisms are not yet understood. The molting cycle of C. elegans provides an ideal system to study this basic problem. We recently characterized LIN-42, which is related to the circadian clock protein PERIOD, as a key component of the developmental timer underlying rhythmic molting cycles. In this context, LIN-42 coordinates epithelial stem cell dynamics with progression of the molting cycle. Repeated actions of LIN-42 may enable the reprogramming of seam cell temporal fates, while stage-specific actions of LIN-42 and other heterochronic genes select fates appropriate for upcoming, rather than passing, life stages. Here, we discuss the possible configuration of the molting timer, which may include interconnected positive and negative regulatory loops among lin-42, conserved nuclear hormone receptors such as NHR-23 and -25, and the let-7 family of microRNAs. Physiological and environmental conditions may modulate the activities of particular components of this molting timer. Finding that LIN-42 regulates both a sleep-like behavioral state and epidermal stem cell dynamics further supports the model of functional conservation between LIN-42 and mammalian PERIOD proteins. The molting timer may therefore represent a primitive form of a central biological clock and provide a general paradigm for the integration of rhythmic and developmental processes.
Collapse
Affiliation(s)
- Gabriela C Monsalve
- Department of Biological Chemistry; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | | |
Collapse
|
17
|
Yang L, Xu M, Koo Y, He J, Poethig RS. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife 2013; 2:e00260. [PMID: 23538384 PMCID: PMC3608266 DOI: 10.7554/elife.00260] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 02/05/2013] [Indexed: 11/15/2022] Open
Abstract
Nutrients shape the growth, maturation, and aging of plants and animals. In plants, the juvenile to adult transition (vegetative phase change) is initiated by a decrease in miR156. In Arabidopsis, we found that exogenous sugar decreased the abundance of miR156, whereas reduced photosynthesis increased the level of this miRNA. This effect was correlated with a change in the timing of vegetative phase change, and was primarily attributable to a change in the expression of two genes, MIR156A and MIR156C, which were found to play dominant roles in this transition. The glucose-induced repression of miR156 was dependent on the signaling activity of HEXOKINASE1. We also show that the defoliation-induced increase in miR156 levels can be suppressed by exogenous glucose. These results provide a molecular link between nutrient availability and developmental timing in plants, and suggest that sugar is a component of the leaf signal that mediates vegetative phase change. DOI:http://dx.doi.org/10.7554/eLife.00260.001.
Collapse
Affiliation(s)
- Li Yang
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Mingli Xu
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Yeonjong Koo
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jia He
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
18
|
Abstract
The significance of noncoding RNAs in animal biology is being increasingly recognized. The nematode Caenorhabditis elegans has an extensive system of short RNAs that includes microRNAs, piRNAs, and endogenous siRNAs, which regulate development, control life span, provide resistance to viruses and transposons, and monitor gene duplications. Progress in our understanding of short RNAs was stimulated by the discovery of RNA interference, a phenomenon of sequence-specific gene silencing induced by exogenous double-stranded RNA, at the turn of the twenty-first century. This chapter provides a broad overview of the exogenous and endogenous RNAi processes in C. elegans and describes recent advances in genetic, genomic, and molecular analyses of nematode's short RNAs and proteins involved in the RNAi-related pathways.
Collapse
Affiliation(s)
- Alla Grishok
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
| |
Collapse
|
19
|
Russel S, Frand AR, Ruvkun G. Regulation of the C. elegans molt by pqn-47. Dev Biol 2011; 360:297-309. [PMID: 21989027 PMCID: PMC3618673 DOI: 10.1016/j.ydbio.2011.09.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/14/2011] [Accepted: 09/23/2011] [Indexed: 11/20/2022]
Abstract
C. elegans molts at the end of each of its four larval stages but this cycle ceases at the reproductive adult stage. We have identified a regulator of molting, pqn-47. Null mutations in pqn-47 cause a developmental arrest at the first larval molt, showing that this gene activity is required to transit the molt. Mutants with weak alleles of pqn-47 complete the larval molts but fail to exit the molting cycle at the adult stage. These phenotypes suggest that pqn-47 executes key aspects of the molting program including the cessation of molting cycles. The pqn-47 gene encodes a protein that is highly conserved in animal phylogeny but probably misannotated in genome sequences due to much less significant homology to a yeast transcription factor. A PQN-47::GFP fusion gene is expressed in many neurons, vulval precursor cells, the distal tip cell (DTC), intestine, and the lateral hypodermal seam cells but not in the main body hypodermal syncytium (hyp7) that underlies, synthesizes, and releases most of the collagenous cuticle. A functional PQN-47::GFP fusion protein localizes to the cytoplasm rather than the nucleus at all developmental stages, including the periods preceding and during ecdysis when genetic analysis suggests that pqn-47 functions. The cytoplasmic localization of PQN-47::GFP partially overlaps with the endoplasmic reticulum, suggesting that PQN-47 is involved in the extensive secretion of cuticle components or hormones that occurs during molts. The mammalian and insect homologues of pqn-47 may serve similar roles in regulated secretion.
Collapse
Affiliation(s)
- Sascha Russel
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Alison R. Frand
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
20
|
Stipp D. Linking nutrition, maturation and aging: from thrifty genes to the spendthrift phenotype. Aging (Albany NY) 2011; 3:85-93. [PMID: 21386133 PMCID: PMC3082018 DOI: 10.18632/aging.100286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David Stipp
- Aging/Impact Journals LLC, Arlington, MA, USA.
| |
Collapse
|
21
|
Rubio-Somoza I, Weigel D. MicroRNA networks and developmental plasticity in plants. TRENDS IN PLANT SCIENCE 2011; 16:258-64. [PMID: 21466971 DOI: 10.1016/j.tplants.2011.03.001] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 05/18/2023]
Abstract
Plant microRNAs (miRNAs) are embedded in regulatory networks that coordinate different gene expression programs in support of developmental plasticity. Modification of miRNA-target nodes during evolution might in turn underlie morphological and physiological diversity. A survey of the literature indicates that miRNA-target nodes themselves are organized in networks, and here we discuss some of the developmental traits they control along with possible interactions between miRNA and their targets. Because miRNAs and their interactions are not only at the heart of regulating many aspects of developmental plasticity, but because they also have an inherently quantitative mode of action, they present important targets for biotechnology applications.
Collapse
Affiliation(s)
- Ignacio Rubio-Somoza
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 37-39, 72076 Tübingen, Germany.
| | | |
Collapse
|
22
|
Abstract
Micro-ribonucleic acids (miRNAs) are small (21-24 nucleotide), endogenously expressed, noncoding RNAs that have emerged as important posttranscriptional regulators of gene expression. MiRNAs have been identified and cloned from diverse eukaryotic organisms where they have been shown to control important physiological and developmental processes such as apoptosis, cell division, and differentiation. A high level of conservation of some miRNAs across phyla further emphasizes their importance as posttranscriptional regulators. Research in a variety of model systems has been instrumental in dissecting the biological functions of miRNAs. In this chapter, we discuss the current literature on the role of miRNAs as developmental regulators in Drosophila.
Collapse
|
23
|
Huang X, Zhang H, Zhang H. The zinc-finger protein SEA-2 regulates larval developmental timing and adult lifespan in C. elegans. Development 2011; 138:2059-68. [PMID: 21471153 DOI: 10.1242/dev.057109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Like other biological processes, aging is regulated by genetic pathways. However, it remains largely unknown whether aging is determined by an innate programmed timing mechanism and, if so, how this timer is linked to the mechanisms that control developmental timing. Here, we demonstrate that sea-2, which encodes a zinc-finger protein, controls developmental timing in C. elegans larvae by regulating expression of the heterochronic gene lin-28 at the post-transcriptional level. lin-28 is also essential for the autosomal signal element (ASE) function of sea-2 in X:A signal assessment. We also show that sea-2 modulates aging in adulthood. Loss of function of sea-2 slows the aging process and extends the adult lifespan in a DAF-16/FOXO-dependent manner. Mutation of sea-2 promotes nuclear translocation of DAF-16 and subsequent activation of daf-16 targets. We further demonstrate that insulin/IGF-1 signaling functions in the larval heterochronic circuit. Loss of function of the insulin/IGF-1 receptor gene daf-2, which extends lifespan, also greatly enhances the retarded heterochronic defects in sea-2 mutants. Regulation of developmental timing by daf-2 requires daf-16 activity. Our study provides evidence for intricate interplay between the heterochronic circuit that controls developmental timing in larvae and the timing mechanism that modulates aging in adults.
Collapse
Affiliation(s)
- Xinxin Huang
- National Institute of Biological Sciences, Beijing, 102206 Beijing, People's Republic of China
| | | | | |
Collapse
|
24
|
Poulton JS, Huang YC, Smith L, Sun J, Leake N, Schleede J, Stevens LM, Deng WM. The microRNA pathway regulates the temporal pattern of Notch signaling in Drosophila follicle cells. Development 2011; 138:1737-45. [PMID: 21447549 DOI: 10.1242/dev.059352] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multicellular development requires the correct spatial and temporal regulation of cell division and differentiation. These processes are frequently coordinated by the activities of various signaling pathways such as Notch signaling. From a screen for modifiers of Notch signaling in Drosophila we have identified the RNA helicase Belle, a recently described component of the RNA interference pathway, as an important regulator of the timing of Notch activity in follicle cells. We found that loss of Belle delays activation of Notch signaling, which results in delayed follicle cell differentiation and defects in the cell cycle. Because mutations in well-characterized microRNA components phenocopied the Notch defects observed in belle mutants, Belle might be functioning in the microRNA pathway in follicle cells. The effect of loss of microRNAs on Notch signaling occurs upstream of Notch cleavage, as expression of the constitutively active intracellular domain of Notch in microRNA-defective cells restored proper activation of Notch. Furthermore, we present evidence that the Notch ligand Delta is an important target of microRNA regulation in follicle cells and regulates the timing of Notch activation through cis inhibition of Notch. Here we have uncovered a complex regulatory process in which the microRNA pathway promotes Notch activation by repressing Delta-mediated inhibition of Notch in follicle cells.
Collapse
Affiliation(s)
- John S Poulton
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hurschler BA, Harris DT, Grosshans H. The type II poly(A)-binding protein PABP-2 genetically interacts with the let-7 miRNA and elicits heterochronic phenotypes in Caenorhabditis elegans. Nucleic Acids Res 2011; 39:5647-57. [PMID: 21415013 PMCID: PMC3141255 DOI: 10.1093/nar/gkr145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The type II poly(A)-binding protein PABP2/PABPN1 functions in general mRNA metabolism by promoting poly(A) tail formation in mammals and flies. It also participates in poly(A) tail shortening of specific mRNAs in flies, and snoRNA biogenesis in yeast. We have identified Caenorhabditis elegans pabp-2 as a genetic interaction partner of the let-7 miRNA, a widely conserved regulator of animal stem cell fates. Depletion of PABP-2 by RNAi suppresses loss of let-7 activity, and, in let-7 wild-type animals, leads to precocious differentiation of seam cells. This is not due to an effect on let-7 biogenesis and activity, which remain unaltered. Rather, PABP-2 levels are developmentally regulated in a let-7-dependent manner. Moreover, using RNAi PABP-2 can be depleted by >80% without significantly impairing larval viability, mRNA levels or global translation. Thus, it unexpectedly appears that the bulk of PABP-2 is dispensable for general mRNA metabolism in the larva and may instead have more restricted, developmental functions. This observation may be relevant to our understanding of why the phenotypes associated with human PABP2 mutation in oculopharyngeal muscular dystrophy (OPMD) seem to selectively affect only muscle cells.
Collapse
Affiliation(s)
- Benjamin A Hurschler
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, WRO-1066.1.38, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|
26
|
Heterochronic control of AFF-1-mediated cell-to-cell fusion in C. elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:5-11. [PMID: 21432011 DOI: 10.1007/978-94-007-0763-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In normal development cell fusion is essential for organ formation and sexual reproduction. The nematode Caenorhabditis elegans has become an excellent system to study the mechanisms and developmental functions of cell-to-cell fusion. In this review we focus on the heterochronic regulation of cell fusion. Heterochronic genes control the timing of specific developmental events in C. elegans. The first microRNAs discovered were found as mutations that affect heterochronic development and cell-cell fusions. In addition numerous heterochronic transcription factors also control specific cell fusion events in C. elegans. We describe what is known about the heterochronic regulation of cell fusion of the epidermal seam cells. The fusogen AFF-1 was previously shown to mediate the fusion of the lateral epidermal seam cells. Here we provide evidence supporting the model in which LIN-29, the heterochronic Zinc-finger transcription factor that controls the terminal fusion of the seam cells, stimulates AFF-1 expression in the seam cells before they fuse. Therefore, the heterochronic gene LIN-29 controls AFF-1-mediated cell-cell fusion as part of the terminal differentiation program of the epidermal seam cells.
Collapse
|
27
|
O'Malley MA, Elliott KC, Burian RM. From genetic to genomic regulation: iterativity in microRNA research. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2010; 41:407-417. [PMID: 21112015 DOI: 10.1016/j.shpsc.2010.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 05/09/2010] [Indexed: 05/30/2023]
Abstract
The discovery and ongoing investigation of microRNAs (miRNAs) suggest important conceptual and methodological lessons for philosophers and historians of biology. This paper provides an account of miRNA research and the shift from viewing these tiny regulatory entities as minor curiosities to seeing them as major players in the post-transcriptional regulation of genes. Conceptually, the study of miRNAs is part of a broader change in understandings of genetic regulation, in which simple switch-like mechanisms were reinterpreted as aspects of complex cellular and genome-wide processes. Among them are the activities of small RNAs, previously regarded as non-functional. Methodologically, the miRNA story suggests new ways of characterizing biological research that should prove helpful to philosophers of science who seek to develop more pluralistic, pragmatic models of scientific inquiry. miRNA research displays iterative movements between multiple modes of investigation that include not only the proposal and testing of hypotheses but also exploratory, technology-oriented and question-driven modes of research. As an exemplary story of scientific discovery and development, the miRNA case illustrates transitions from genetics to genomics and systems biology, and it shows how diverse configurations of research practice are related to major scientific advances.
Collapse
|
28
|
Wilmink GJ, Roth CL, Ibey BL, Ketchum N, Bernhard J, Cerna CZ, Roach WP. Identification of microRNAs associated with hyperthermia-induced cellular stress response. Cell Stress Chaperones 2010; 15:1027-38. [PMID: 20352393 PMCID: PMC3024070 DOI: 10.1007/s12192-010-0189-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small RNAs that play a critical role in the coordination of fundamental cellular processes. Recent studies suggest that miRNAs participate in the cellular stress response (CSR), but their specific involvement remains unclear. In this study, we identify a group of thermally regulated miRNAs (TRMs) that are associated with the CSR. Using miRNA microarrays, we show that dermal fibroblasts differentially express 123 miRNAs when exposed to hyperthermia. Interestingly, only 27 of these miRNAs are annotated in the current Sanger registry. We validated the expression of the annotated miRNAs using qPCR techniques, and we found that the qPCR and microarray data was in well agreement. Computational target-prediction studies revealed that putative targets for the TRMs are heat shock proteins and Argonaute-2-the core functional unit of RNA silencing. These results indicate that cells express a specific group of miRNAs when exposed to hyperthermia, and these miRNAs may function in the regulation of the CSR. Future studies will be conducted to determine if other cells lines differentially express these miRNAs when exposed to hyperthermia.
Collapse
Affiliation(s)
- Gerald J Wilmink
- National Academy of Sciences, NRC Research Associate Program, 500 Fifth Street, N.W., Washington, DC, 20001, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Tennessen JM, Opperman KJ, Rougvie AE. The C. elegans developmental timing protein LIN-42 regulates diapause in response to environmental cues. Development 2010; 137:3501-11. [PMID: 20843862 DOI: 10.1242/dev.048850] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Environmental conditions can have a major impact on developmental progression in animals. For example, when C. elegans larvae encounter harsh conditions they can reversibly halt the passage of developmental time by forming a long-lived dauer larva at the end of the second larval stage. Here, we show that the period homolog lin-42, known to control developmental time, also acts as a component of a switch that mediates dauer entry. Loss of lin-42 function renders animals hypersensitive to dauer formation under stressful conditions, whereas misexpression of lin-42 in the pre-dauer stage inhibits dauer formation, indicating that lin-42 acts as a negative regulator of this life history decision. These phenotypes place LIN-42 in opposition to the ligand-free form of the nuclear receptor DAF-12, which indirectly senses environmental conditions and helps to integrate external cues into developmental decisions. Mutations that impair DAF-12 ligand binding are exquisitely sensitive to the absence of lin-42, whereas overexpression of LIN-42 can suppress the dauer constitutive phenotype of a ligand-insensitive daf-12 mutant, suggesting that LIN-42 and DAF-12 are intimate partners in controlling the decision to become a dauer larva. The functional outputs of Period family proteins and nuclear receptors also converge in other organisms, suggesting that the relationship between lin-42 and daf-12 represents an ancient genetic framework for responding to environmental stimuli.
Collapse
Affiliation(s)
- Jason M Tennessen
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
30
|
Barnett M, Bermingham E, McNabb W, Bassett S, Armstrong K, Rounce J, Roy N. Investigating micronutrients and epigenetic mechanisms in relation to inflammatory bowel disease. Mutat Res 2010; 690:71-80. [PMID: 20188748 DOI: 10.1016/j.mrfmmm.2010.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 01/26/2010] [Accepted: 02/19/2010] [Indexed: 05/28/2023]
Abstract
Epigenomic regulation, via DNA methylation, histone modification and non-coding RNA, is increasingly recognised as having a key role in normal development and function of an organism, acting to control cellular and tissue growth and differentiation. It is also thought to be involved in many complex diseases now common in the Western world, including cardiovascular disease, type 2 diabetes, obesity and inflammatory bowel disease (IBD). There is a range of evidence to suggest that nutrition plays a vital role in the protection from such diseases. However, there is little information about the role of nutrition on the epigenetic regulation of IBD. This review aims to elucidate the interactions of nutrients and the epigenome in IBD. More specifically, the plasticity of epigenetic modifications that occur due to low selenium and folate levels in the diet during gestation and lactation will be discussed. A better understanding of this plasticity, and of nutrient-epigenome interactions, will have important implications for enhancing human health through foods.
Collapse
Affiliation(s)
- Matthew Barnett
- Food, Metabolism & Microbiology Section, AgResearch Grasslands, Tennent Drive, Palmerston North 4474, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
31
|
Ren H, Zhang H. Wnt signaling controls temporal identities of seam cells in Caenorhabditis elegans. Dev Biol 2010; 345:144-55. [PMID: 20624379 DOI: 10.1016/j.ydbio.2010.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/04/2010] [Accepted: 07/01/2010] [Indexed: 01/07/2023]
Abstract
The Wnt signaling pathway regulates multiple aspects of the development of stem cell-like epithelial seam cells in Caenorhabditis elegans, including cell fate specification and symmetric/asymmetric division. In this study, we demonstrate that lit-1, encoding the Nemo-like kinase in the Wnt/beta-catenin asymmetry pathway, plays a role in specifying temporal identities of seam cells. Loss of function of lit-1 suppresses defects in retarded heterochronic mutants and enhances defects in precocious heterochronic mutants. Overexpressing lit-1 causes heterochronic defects opposite to those in lit-1(lf) mutants. LIT-1 exhibits a periodic expression pattern in seam cells within each larval stage. The kinase activity of LIT-1 is essential for its role in the heterochronic pathway. lit-1 specifies the temporal fate of seam cells likely by modulating miRNA-mediated silencing of target heterochronic genes. We further show that loss of function of other components of Wnt signaling, including mom-4, wrm-1, apr-1, and pop-1, also causes heterochronic defects in sensitized genetic backgrounds. Our study reveals a novel function of Wnt signaling in controlling the timing of seam cell development in C. elegans.
Collapse
Affiliation(s)
- Haiyan Ren
- Graduate Program in Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | | |
Collapse
|
32
|
Hada K, Asahina M, Hasegawa H, Kanaho Y, Slack FJ, Niwa R. The nuclear receptor gene nhr-25 plays multiple roles in the Caenorhabditis elegans heterochronic gene network to control the larva-to-adult transition. Dev Biol 2010; 344:1100-9. [PMID: 20678979 DOI: 10.1016/j.ydbio.2010.05.508] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/16/2010] [Accepted: 05/24/2010] [Indexed: 11/20/2022]
Abstract
Developmental timing in the nematode Caenorhabditis elegans is controlled by heterochronic genes, mutations in which cause changes in the relative timing of developmental events. One of the heterochronic genes, let-7, encodes a microRNA that is highly evolutionarily conserved, suggesting that similar genetic pathways control developmental timing across phyla. Here we report that the nuclear receptor nhr-25, which belongs to the evolutionarily conserved fushi tarazu-factor 1/nuclear receptor NR5A subfamily, interacts with heterochronic genes that regulate the larva-to-adult transition in C. elegans. We identified nhr-25 as a regulator of apl-1, a homolog of the Alzheimer's amyloid precursor protein-like gene that is downstream of let-7 family microRNAs. NHR-25 controls not only apl-1 expression but also regulates developmental progression in the larva-to-adult transition. NHR-25 negatively regulates the expression of the adult-specific collagen gene col-19 in lateral epidermal seam cells. In contrast, NHR-25 positively regulates the larva-to-adult transition for other timed events in seam cells, such as cell fusion, cell division and alae formation. The genetic relationships between nhr-25 and other heterochronic genes are strikingly varied among several adult developmental events. We propose that nhr-25 has multiple roles in both promoting and inhibiting the C. elegans heterochronic gene pathway controlling adult differentiation programs.
Collapse
Affiliation(s)
- Kazumasa Hada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Dolatshad H, Cary AJ, Davis FC. Differential expression of the circadian clock in maternal and embryonic tissues of mice. PLoS One 2010; 5:e9855. [PMID: 20352049 PMCID: PMC2844431 DOI: 10.1371/journal.pone.0009855] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 02/22/2010] [Indexed: 11/19/2022] Open
Abstract
Background Molecular feedback loops involving transcription and translation and several key genes are at the core of circadian regulatory cycles affecting cellular pathways and metabolism. These cycles are active in most adult animal cells but little is known about their expression or influence during development. Methodology/Principal Findings To determine if circadian cycles are active during mammalian development we measured the expression of key circadian genes during embryogenesis in mice using quantitative real-time RT-PCR. All of the genes examined were expressed in whole embryos beginning at the earliest age examined, embryonic day 10. In contrast to adult tissues, circadian variation was absent for all genes at all of the embryonic ages examined in either whole embryos or individual tissues. Using a bioluminescent fusion protein that tracks translation of the circadian gene, per2, we also analyzed protein levels. Similar to mRNA, a protein rhythm was observed in adult tissue but not in embryonic tissues collected in-vivo. In contrast, when tissues were placed in culture for the continuous assay of bioluminescence, rhythms were observed in embryonic (E18) tissues. We found that placing embryonic tissues in culture set the timing (phase) of these rhythms, suggesting the importance of a synchronizing signal for the expression of circadian cycles in developing tissues. Conclusions/Significance These results show that embryonic tissues express key circadian genes and have the capacity to express active circadian regulatory cycles. In vivo, circadian cycles are not expressed in embryonic tissues as they are in adult tissues. Individual cells might express oscillations, but are not synchronized until later in development.
Collapse
Affiliation(s)
- Hamid Dolatshad
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Andrew J. Cary
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Fred C. Davis
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Lehrbach NJ, Miska EA. Regulation of pre-miRNA Processing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 700:67-75. [PMID: 21755474 DOI: 10.1007/978-1-4419-7823-3_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
microRNAs are endogenously expressed ∼21 nucleotide noncoding RNAs. microRNA-mediated regulation of the translation of specific mRNA is implicated in a range of developmental processes and pathologies. As such, miRNA expression is tightly controlled in normal development by both transcriptional and post-transcriptional mechanisms. This chapter is concerned with the control of pre-miRNA processing of individual miRNAs by specific factors. It is focussed on the regulation of a subset of miRNAs by the RNA-binding protein Lin28/LIN-28. We discuss how Lin28/LIN-28 can sequester pre-let-7 miRNA precursor to prevent Dicer-mediated processing. We describe how interaction of pre-let-7 with Lin28/ LIN-28 leads to pre-let-7 uridylation and subsequent degradation. Finally, we analyze how let-7 and Lin28/LIN-28 together act as a highly conserved developmental switch that controls stem cell differentiation in C. elegans and mammals.
Collapse
|
35
|
Niwa R, Hada K, Moliyama K, Ohniwa RL, Tan YM, Olsson-Carter K, Chi W, Reinke V, Slack FJ. C. elegans sym-1 is a downstream target of the hunchback-like-1 developmental timing transcription factor. Cell Cycle 2009; 8:4147-54. [PMID: 19923914 DOI: 10.4161/cc.8.24.10292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the nematode Caenorhabditis elegans, the let-7 microRNA (miRNA) and its family members control the timing of key developmental events in part by directly regulating expression of hunchback-like-1 (hbl-1). C. elegans hbl-1 mutants display multiple developmental timing deficiencies, including cell cycle defects during larval development. While hbl-1 is predicted to encode a transcriptional regulator, downstream targets of HBL-1 have not been fully elucidated. Here we report using microarray analysis to uncover genes downstream of HBL-1. We established a transgenic strain that overexpresses hbl-1 under the control of a heat shock promoter. Heat shock-induced hbl-1 overexpression led to retarded hypodermal structures at the adult stage, opposite to the effect seen in loss of function (lf) hbl-1 mutants. The microarray screen identified numerous potential genes that are upregulated or downregulated by HBL-1, including sym-1, which encodes a leucine-rich repeat protein with a signal sequence. We found an increase in sym-1 transcription in the heat shock-induced hbl-1 overexpression strain, while loss of hbl-1 function caused a decrease in sym-1 expression levels. Furthermore, we found that sym-1(lf) modified the hypodermal abnormalities in hbl-1 mutants. Given that SYM-1 is a protein secreted from hypodermal cells to the surrounding cuticle, we propose that the adult-specific cuticular structures may be under the temporal control of HBL-1 through regulation of sym-1 transcription.
Collapse
Affiliation(s)
- Ryusuke Niwa
- Initiative for the Promotion of Young Scientists' Independent Research, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu S, Zhang L, Li Q, Zhao P, Duan J, Cheng D, Xiang Z, Xia Q. MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori). BMC Genomics 2009; 10:455. [PMID: 19785751 PMCID: PMC2761947 DOI: 10.1186/1471-2164-10-455] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 09/28/2009] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in Bombyx mori, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm. RESULTS Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3rd instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275). CONCLUSION We present the full-scale expression profiles of miRNAs throughout the life cycle of Bombyx mori. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal.
Collapse
Affiliation(s)
- Shiping Liu
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Liang Zhang
- National Engineering Center for Beijing Biochip Technology, Life Science Parkway, Changping District, Beijing 102206, PR China
| | - Qibin Li
- Beijing Genomics Institute at Shenzhen, Shenzhen 518083, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100000, PR China
| | - Ping Zhao
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Jun Duan
- Institute of Agricultural and Life Sciences, Chongqing University, Chongqing, 400030, PR China
| | - Daojun Cheng
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Zhonghuai Xiang
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Qingyou Xia
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, PR China
- Institute of Agricultural and Life Sciences, Chongqing University, Chongqing, 400030, PR China
| |
Collapse
|
37
|
Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 2009; 138:750-9. [PMID: 19703400 DOI: 10.1016/j.cell.2009.06.031] [Citation(s) in RCA: 1130] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 05/08/2009] [Accepted: 06/12/2009] [Indexed: 12/01/2022]
Abstract
The transition from the juvenile to the adult phase of shoot development in plants is accompanied by changes in vegetative morphology and an increase in reproductive potential. Here, we describe the regulatory mechanism of this transition. We show that miR156 is necessary and sufficient for the expression of the juvenile phase, and regulates the timing of the juvenile-to-adult transition by coordinating the expression of several pathways that control different aspects of this process. miR156 acts by repressing the expression of functionally distinct SPL transcription factors. miR172 acts downstream of miR156 to promote adult epidermal identity. miR156 regulates the expression of miR172 via SPL9 which, redundantly with SPL10, directly promotes the transcription of miR172b. Thus, like the larval-to-adult transition in Caenorhabditis elegans, the juvenile-to-adult transition in Arabidopsis is mediated by sequentially operating miRNAs. miR156 and miR172 are positively regulated by the transcription factors they target, suggesting that negative feedback loops contribute to the stability of the juvenile and adult phases.
Collapse
Affiliation(s)
- Gang Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
MicroRNAs (miRNAs) posttranscriptionally regulate gene expression, but the factors that direct transcription of miRNAs are not well characterized. Activation versus repression of key developmental miRNAs in Caenorhabditis elegans is directly mediated by ligand occupancy of a nuclear hormone receptor that acts to couple nutrient availability to developmental programs.
Collapse
Affiliation(s)
- Ann E Rougvie
- University of Minnesota, Department of Genetics, Cell Biology and Development, Minneapolis, 55455, USA.
| |
Collapse
|
39
|
Huang X, Tian E, Xu Y, Zhang H. The C. elegans engrailed homolog ceh-16 regulates the self-renewal expansion division of stem cell-like seam cells. Dev Biol 2009; 333:337-47. [PMID: 19607822 DOI: 10.1016/j.ydbio.2009.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/01/2009] [Accepted: 07/06/2009] [Indexed: 12/24/2022]
Abstract
Stem cells undergo symmetric and asymmetric division to maintain the dynamic equilibrium of the stem cell pool and also to generate a variety of differentiated cells. The homeostatic mechanism controlling the choice between self-renewal and differentiation of stem cells is poorly understood. We show here that ceh-16, encoding the C. elegans ortholog of the transcription factor Engrailed, controls symmetric and asymmetric division of stem cell-like seam cells. Loss of function of ceh-16 causes certain seam cells, which normally undergo symmetric self-renewal expansion division with both daughters adopting the seam cell fate, to divide asymmetrically with only one daughter retaining the seam cell fate. The human engrailed homolog En2 functionally substitutes the role of ceh-16 in promoting self-renewal expansion division of seam cells. Loss of function of apr-1, encoding the C. elegans homolog of the Wnt signaling component APC, results in transformation of self-renewal maintenance seam cell division to self-renewal expansion division, leading to seam cell hyperplasia. The apr-1 mutation suppresses the seam cell division defect in ceh-16 mutants. Our study reveals that ceh-16 interacts with the Wnt signaling pathway to control the choice between self-renewal expansion and maintenance division and also demonstrates an evolutionarily conserved function of engrailed in promoting cell proliferation.
Collapse
Affiliation(s)
- Xinxin Huang
- College of Life Sciences, Beijing Normal University, Beijing, 100875, PR China
| | | | | | | |
Collapse
|
40
|
Johnson RW, Liu LY, Hanna-Rose W, Chamberlin HM. The Caenorhabditis elegans heterochronic gene lin-14 coordinates temporal progression and maturation in the egg-laying system. Dev Dyn 2009; 238:394-404. [PMID: 19161245 DOI: 10.1002/dvdy.21837] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Heterochronic genes function to ensure the timing of stage-specific developmental events in C. elegans. Mutations in these genes cause certain developmental programs to be executed in a precocious or retarded manner. Canonical precocious (loss-of-function) and retarded (gain-of-function) mutations in the lin-14 gene lead to elimination or reiteration of larval stage-specific cellular events. Here, we describe a hypomorphic, missense allele of lin-14, sa485. lin-14(sa485) hermaphrodites pass through normal larval stages, but exhibit asynchrony between vulval and gonadal maturation in the L4 larval stage. We show that a subtly precocious morphogenetic event in the vulva disrupts tissue synchrony and is followed by retarded vulval eversion. Additionally, uterine uv1 cell differentiation is retarded in lin-14(sa485) animals that exhibit delayed vulval eversion. Together, these experiments outline a function for LIN-14 in coordinating the temporal progression of development, which is separable from its role in regulating stage-specific events during C. elegans postembryonic development.
Collapse
Affiliation(s)
- Ryan W Johnson
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
41
|
Xia D, Huang X, Zhang H. The temporally regulated transcription factor sel-7 controls developmental timing in C. elegans. Dev Biol 2009; 332:246-57. [PMID: 19500563 DOI: 10.1016/j.ydbio.2009.05.574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
The temporal sequence of cell division and differentiation is explicitly controlled for succession and synchrony of developmental events. In this study we describe how the Caenorhabditis elegans gene sel-7 specifies the L3 stage-specific fate of seam cells, which adopt temporal specificities at each of four larval stages. Loss of function of sel-7 causes reiteration of the L2 stage fate at the L3 stage. sel-7 is involved in regulating the temporal expression pattern of hbl-1, which is a key factor in specifying the L2/L3 progression. We also show that sel-7 functions redundantly with other retarded heterochronic genes, including lin-46, daf-12 and the let-7 family miRNAs, in preventing adoption of the L2 fate at later stages. Expression of sel-7 in seam cells is temporally regulated through an evolutionarily conserved regulatory element located in intron 4 of sel-7. We further demonstrate that reiteration of the L2 proliferative seam cell division at the L3 stage in sel-7 mutants requires activity of the transcriptional mediator complex. Our study reveals that sel-7 functions as a novel heterochronic gene in controlling temporal cell identities and also demonstrates a role of the transcriptional mediator complex in integrating temporal information to specify seam cell division patterns in C. elegans.
Collapse
Affiliation(s)
- Dan Xia
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, PR China
| | | | | |
Collapse
|
42
|
Bethke A, Fielenbach N, Wang Z, Mangelsdorf DJ, Antebi A. Nuclear hormone receptor regulation of microRNAs controls developmental progression. Science 2009; 324:95-8. [PMID: 19342589 DOI: 10.1126/science.1164899] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In response to small-molecule signals such as retinoids or steroids, nuclear receptors activate gene expression to regulate development in different tissues. MicroRNAs turn off target gene expression within cells by binding complementary regions in messenger RNA transcripts, and they have been broadly implicated in development and disease. Here we show that the Caenorhabditis elegans nuclear receptor DAF-12 and its steroidal ligand directly activate promoters of let-7 microRNA family members to down-regulate the microRNA target hbl-1, which drives progression of epidermal stem cells from second to third larval stage patterns of cell division. Conversely, the receptor without the ligand represses microRNA expression during developmental arrest. These findings identify microRNAs as components of a hormone-coupled molecular switch that shuts off earlier developmental programs to allow for later ones.
Collapse
Affiliation(s)
- Axel Bethke
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
43
|
Nimmo RA, Slack FJ. An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma 2009; 118:405-18. [PMID: 19340450 DOI: 10.1007/s00412-009-0210-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 03/17/2009] [Accepted: 03/17/2009] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) were first discovered in genetic screens for regulators of developmental timing in the stem-cell-like seam cell lineage in Caenorhabditis elegans. As members of the heterochronic pathway, the lin-4 and let-7 miRNAs are required in the seam cells for the correct progression of stage-specific events and to ensure that cell cycle exit and terminal differentiation occur at the correct time. Other heterochronic genes such as lin-28 and lin-41 are direct targets of the lin-4 and let-7 miRNAs. Recent findings on the functions of the let-7 and lin-4/mir-125 miRNA families and lin-28 and lin-41 orthologs from a variety of organisms suggest that core elements of the heterochronic pathway are retained in mammalian stem cells and development. In particular, these genes appear to form bistable switches via double-negative feedback loops in both nematode and mammalian stem cell development, the functional relevance of which is finally becoming clear. let-7 inhibits stem cell self-renewal in both normal and cancer stem cells of the breast and acts as a tumor suppressor in lung and breast cancer. let-7 also promotes terminal differentiation at the larval to adult transition in both nematode stem cells and fly wing imaginal discs and inhibits proliferation of human lung and liver cancer cells. Conversely, LIN-28 is a highly specific embryonic stem cell marker and is one of four "stemness" factors used to reprogram adult fibroblasts into induced pluripotent stem cells; furthermore, lin-28 is oncogenic in hepatocellular carcinomas. Therefore, a core module of heterochronic genes--lin-28, lin-41, let-7, and lin-4/mir-125-acts as an ancient regulatory switch for differentiation in stem cells (and in some cancers), illustrating that nematode seam cells mirror miRNA regulatory networks in mammalian stem cells during both normal development and cancer.
Collapse
Affiliation(s)
- Rachael A Nimmo
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520, USA
| | | |
Collapse
|
44
|
Tennessen JM, Thummel CS. Developmental timing: let-7 function conserved through evolution. Curr Biol 2008; 18:R707-8. [PMID: 18727906 DOI: 10.1016/j.cub.2008.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Expression of the heterochronic microRNA let-7 is tightly correlated with the onset of adult development in many animals, suggesting that it functions as an evolutionarily conserved developmental timer. This hypothesis has now been confirmed by studies in Drosophila.
Collapse
Affiliation(s)
- Jason M Tennessen
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112-5330, USA
| | | |
Collapse
|
45
|
Sokol NS, Xu P, Jan YN, Ambros V. Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev 2008; 22:1591-6. [PMID: 18559475 DOI: 10.1101/gad.1671708] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Drosophila let-7-Complex (let-7-C) is a polycistronic locus encoding three ancient microRNAs: let-7, miR-100, and fly lin-4 (miR-125). We find that the let-7-C locus is principally expressed in the pupal and adult neuromusculature. let-7-C knockout flies appear normal externally but display defects in adult behaviors (e.g., flight, motility, and fertility) as well as clear juvenile features in their neuromusculature. We find that the function of let-7-C to ensure the appropriate remodeling of the abdominal neuromusculature during the larval-to-adult transition is carried out predominantly by let-7 alone. This heterochronic role of let-7 is likely just one of the ways in which let-7-C promotes adult behavior.
Collapse
Affiliation(s)
- Nicholas S Sokol
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
46
|
Magner DB, Antebi A. Caenorhabditis elegans nuclear receptors: insights into life traits. Trends Endocrinol Metab 2008; 19:153-60. [PMID: 18406164 PMCID: PMC2744080 DOI: 10.1016/j.tem.2008.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 02/13/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
Nuclear receptors are a class of hormone-gated transcription factors found in metazoans that regulate global changes in gene expression when bound to their cognate ligands. Despite species diversification, nuclear receptors function similarly across taxa, having fundamental roles in detecting intrinsic and environmental signals, and subsequently in coordinating transcriptional cascades that direct reproduction, development, metabolism and homeostasis. These endocrine receptors function in vivo in part as molecular switches and timers that regulate transcriptional cascades. Several Caenorhabditis elegans nuclear receptors integrate intrinsic and extrinsic signals to regulate the dauer diapause and longevity, molting, and heterochronic circuits of development, and are comparable to similar in vivo endocrine regulated processes in other animals.
Collapse
Affiliation(s)
| | - Adam Antebi
- Corresponding author: Antebi, A. (), Tel: 713-798-6661; Fax: 713-798-4161
| |
Collapse
|
47
|
The Caenorhabditis elegans PcG-like gene sop-2 regulates the temporal and sexual specificities of cell fates. Genetics 2008; 178:1445-56. [PMID: 18245856 DOI: 10.1534/genetics.108.086678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How spatial, temporal, and sexual specific cues are integrated to specify distinct cell fates during multicellular organism development is largely unknown. Here we demonstrate that the Caenorhabditis elegans PcG-like gene sop-2 determines the temporal and sexual specificities of a row of hypodermal seam cells, in addition to specifying their positional identities. Loss-of-function of sop-2 causes premature expression of adult fates at larval stages. sop-2 acts upstream of lin-29 in the heterochronic pathway and genetically interacts with other heterochronic genes in specifying the temporal fates of seam cells at different larval stages. We show that the number of ALG-1-containing P bodies is increased in seam cells in sop-2 mutants. Furthermore, the microRNA-mediated repression of a heterochronic gene reporter is enhanced in sop-2 mutants. Mutations in sop-2 also cause partial hermaphrodite-to-male sexual transformations. The homeotic transformations, heterochronic defects, and sexual transformations can occur concomitantly in sop-2 mutants. In summary, our studies reveal that sop-2 integrates spatial, temporal, and sexual cues during C. elegans development.
Collapse
|
48
|
The expression of the Alzheimer's amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans. Dev Biol 2008; 315:418-25. [PMID: 18262516 DOI: 10.1016/j.ydbio.2007.12.044] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 12/12/2007] [Accepted: 12/31/2007] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of dense plaques in the brain, resulting in progressive dementia. A major plaque component is the beta-amyloid peptide, which is a cleavage product of the amyloid precursor protein (APP). Studies of dominant inheritable familial AD support the hypothesis that APP is critical for AD development. On the other hand, the pathogenesis of amyloid plaque deposition in AD is thought to be the result of age-related changes with unknown mechanisms. Here we show that the Caenorhabditis elegans homolog of APP, APP-like-1 (apl-1), functions with and is under the control of molecules regulating developmental progression. In C. elegans, the timing of cell fate determination is controlled by the heterochronic genes, including let-7 microRNAs. C. elegans apl-1 shows significant genetic interactions with let-7 family microRNAs and let-7-targeted heterochronic genes, hbl-1, lin-41 and lin-42. apl-1 expression is upregulated during the last larval stage in hypodermal seam cells which is transcriptionally regulated by hbl-1, lin-41 and lin-42. Moreover, the levels of the apl-1 transcription are modulated by the activity of let-7 family microRNAs. Our work places apl-1 in a developmental timing pathway and may provide new insights into the time-dependent progression of AD.
Collapse
|
49
|
Blenkiron C, Miska EA. miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet 2007; 16 Spec No 1:R106-13. [PMID: 17613543 DOI: 10.1093/hmg/ddm056] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are causing tremendous excitement in cancer research. MiRNAs are a large class of short non-coding RNAs that are found in many plants, animals and DNA viruses and often act to inhibit gene expression post-transcriptionally. Approximately 500 miRNA genes have been identified in the human genome. Their function is largely unknown, but data from worms, flies, fish and mice suggest that they have important roles in animal growth, development, homeostasis and disease. MiRNA expression profiles demonstrate that many miRNAs are deregulated in human cancers. MiRNAs have been shown to regulate oncogenes, tumour suppressors and a number of cancer-related genes controlling cell cycle, apoptosis, cell migration and angiogenesis. MiRNAs encoded by the mir-17-92 cluster have oncogenic potential and others may act as tumour suppressors. Some miRNAs and their target sites were found to be mutated in cancer. MiRNAs may have great diagnostic potential for human cancer and even miRNA-based cancer therapies may be on the horizon.
Collapse
Affiliation(s)
- Cherie Blenkiron
- The Wellcome Trust/Cancer Research, UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
50
|
|