1
|
Rajan S, Yoon J, Wu H, Srapyan S, Baskar R, Ahmed G, Yang T, Grintsevich EE, Reisler E, Terman JR. Disassembly of bundled F-actin and cellular remodeling via an interplay of Mical, cofilin, and F-actin crosslinkers. Proc Natl Acad Sci U S A 2023; 120:e2309955120. [PMID: 37725655 PMCID: PMC10523612 DOI: 10.1073/pnas.2309955120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
Cellular form and function are controlled by the assembly and stability of actin cytoskeletal structures-but disassembling/pruning these structures is equally essential for the plasticity and remodeling that underlie behavioral adaptations. Importantly, the mechanisms of actin assembly have been well-defined-including that it is driven by actin's polymerization into filaments (F-actin) and then often bundling by crosslinking proteins into stable higher-order structures. In contrast, it remains less clear how these stable bundled F-actin structures are rapidly disassembled. We now uncover mechanisms that rapidly and extensively disassemble bundled F-actin. Using biochemical, structural, and imaging assays with purified proteins, we show that F-actin bundled with one of the most prominent crosslinkers, fascin, is extensively disassembled by Mical, the F-actin disassembly enzyme. Furthermore, the product of this Mical effect, Mical-oxidized actin, is poorly bundled by fascin, thereby further amplifying Mical's disassembly effects on bundled F-actin. Moreover, another critical F-actin regulator, cofilin, also affects fascin-bundled filaments, but we find herein that it synergizes with Mical to dramatically amplify its disassembly of bundled F-actin compared to the sum of their individual effects. Genetic and high-resolution cellular assays reveal that Mical also counteracts crosslinking proteins/bundled F-actin in vivo to control cellular extension, axon guidance, and Semaphorin/Plexin cell-cell repulsion. Yet, our results also support the idea that fascin-bundling serves to dampen Mical's F-actin disassembly in vitro and in vivo-and that physiologically relevant cellular remodeling requires a fine-tuned interplay between the factors that build bundled F-actin networks and those that disassemble them.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jimok Yoon
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Heng Wu
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Sargis Srapyan
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA90840
| | - Raju Baskar
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Giasuddin Ahmed
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Taehong Yang
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Elena E. Grintsevich
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA90840
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - Jonathan R. Terman
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
2
|
Prieur DS, Francius C, Gaspar P, Mason CA, Rebsam A. Semaphorin-6D and Plexin-A1 Act in a Non-Cell-Autonomous Manner to Position and Target Retinal Ganglion Cell Axons. J Neurosci 2023; 43:5769-5778. [PMID: 37344233 PMCID: PMC10423046 DOI: 10.1523/jneurosci.0072-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/04/2023] [Accepted: 05/01/2023] [Indexed: 06/23/2023] Open
Abstract
Semaphorins and Plexins form ligand/receptor pairs that are crucial for a wide range of developmental processes from cell proliferation to axon guidance. The ability of semaphorins to act both as signaling receptors and ligands yields a multitude of responses. Here, we describe a novel role for Semaphorin-6D (Sema6D) and Plexin-A1 in the positioning and targeting of retinogeniculate axons. In Plexin-A1 or Sema6D mutant mice of either sex, the optic tract courses through, rather than along, the border of the dorsal lateral geniculate nucleus (dLGN), and some retinal axons ectopically arborize adjacent and lateral to the optic tract rather than defasciculating and entering the target region. We find that Sema6D and Plexin-A1 act together in a dose-dependent manner, as the number of the ectopic retinal projections is altered in proportion to the level of Sema6D or Plexin-A1 expression. Moreover, using retinal in utero electroporation of Sema6D or Plexin-A1 shRNA, we show that Sema6D and Plexin-A1 are both required in retinal ganglion cells for axon positioning and targeting. Strikingly, nonelectroporated retinal ganglion cell axons also mistarget in the tract region, indicating that Sema6D and Plexin-A1 can act non-cell-autonomously, potentially through axon-axon interactions. These data provide novel evidence for a dose-dependent and non-cell-autonomous role for Sema6D and Plexin-A1 in retinal axon organization in the optic tract and dLGN.SIGNIFICANCE STATEMENT Before innervating their central brain targets, retinal ganglion cell axons fasciculate in the optic tract and then branch and arborize in their target areas. Upon deletion of the guidance molecules Plexin-A1 or Semaphorin-6D, the optic tract becomes disorganized near and extends within the dorsal lateral geniculate nucleus. In addition, some retinal axons form ectopic aggregates within the defasciculated tract. Sema6D and Plexin-A1 act together as a receptor-ligand pair in a dose-dependent manner, and non-cell-autonomously, to produce this developmental aberration. Such a phenotype highlights an underappreciated role for axon guidance molecules in tract cohesion and appropriate defasciculation near, and arborization within, targets.
Collapse
Affiliation(s)
- Delphine S Prieur
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, Paris, 75005, France
- Sorbonne Université, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
| | - Cédric Francius
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, Paris, 75005, France
- Sorbonne Université, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, Paris, 75005, France
- Sorbonne Université, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
| | - Carol A Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - Alexandra Rebsam
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, Paris, 75005, France
- Sorbonne Université, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, F-75012, France
| |
Collapse
|
3
|
Chen CY, Chao YM, Cho CC, Chen CS, Lin WY, Chen YH, Cassar M, Lu CS, Yang JL, Chan JYH, Juo SHH. Cerebral Semaphorin3D is a novel risk factor for age-associated cognitive impairment. Cell Commun Signal 2023; 21:140. [PMID: 37316917 DOI: 10.1186/s12964-023-01158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND We previously reported that miR-195 exerts neuroprotection by inhibiting Sema3A and cerebral miR-195 levels decreased with age, both of which urged us to explore the role of miR-195 and miR-195-regulated Sema3 family members in age-associated dementia. METHODS miR-195a KO mice were used to assess the effect of miR-195 on aging and cognitive functions. Sema3D was predicted as a miR-195 target by TargetScan and then verified by luciferase reporter assay, while effects of Sema3D and miR-195 on neural senescence were assessed by beta-galactosidase and dendritic spine density. Cerebral Sema3D was over-expressed by lentivirus and suppressed by si-RNA, and effects of over-expression of Sema3D and knockdown of miR-195 on cognitive functions were assessed by Morris Water Maze, Y-maze, and open field test. The effect of Sema3D on lifespan was assessed in Drosophila. Sema3D inhibitor was developed using homology modeling and virtual screening. One-way and two-way repeated measures ANOVA were applied to assess longitudinal data on mouse cognitive tests. RESULTS Cognitive impairment and reduced density of dendritic spine were observed in miR-195a knockout mice. Sema3D was identified to be a direct target of miR-195 and a possible contributor to age-associated neurodegeneration as Sema3D levels showed age-dependent increase in rodent brains. Injection of Sema3D-expressing lentivirus caused significant memory deficits while silencing hippocampal Sema3D improved cognition. Repeated injections of Sema3D-expressing lentivirus to elevate cerebral Sema3D for 10 weeks revealed a time-dependent decline of working memory. More importantly, analysis of the data on the Gene Expression Omnibus database showed that Sema3D levels were significantly higher in dementia patients than normal controls (p < 0.001). Over-expression of homolog Sema3D gene in the nervous system of Drosophila reduced locomotor activity and lifespan by 25%. Mechanistically, Sema3D might reduce stemness and number of neural stem cells and potentially disrupt neuronal autophagy. Rapamycin restored density of dendritic spines in the hippocampus from mice injected with Sema3D lentivirus. Our novel small molecule increased viability of Sema3D-treated neurons and might improve autophagy efficiency, which suggested Sema3D could be a potential drug target. Video Abstract CONCLUSION: Our results highlight the importance of Sema3D in age-associated dementia. Sema3D could be a novel drug target for dementia treatment.
Collapse
Affiliation(s)
- Chien-Yuan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Mei Chao
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ching-Chang Cho
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Yong Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Brain Diseases Research Center, China Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Marlène Cassar
- Formation and Regulation of Neuronal Connectivity Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Institut du Cerveau Et de La Moelle Epinière (ICM)-Sorbonne, UniversitéInserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cecilia S Lu
- Formation and Regulation of Neuronal Connectivity Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Suh-Hang H Juo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
4
|
Dowdell A, Paschke PI, Thomason PA, Tweedy L, Insall RH. Competition between chemoattractants causes unexpected complexity and can explain negative chemotaxis. Curr Biol 2023; 33:1704-1715.e3. [PMID: 37001521 DOI: 10.1016/j.cub.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 05/11/2023]
Abstract
Negative chemotaxis, where eukaryotic cells migrate away from repellents, is important throughout biology, for example, in nervous system patterning and resolution of inflammation. However, the mechanisms by which molecules repel migrating cells are unknown. Here, we use predictive modeling and experiments with Dictyostelium cells to show that competition between different ligands that bind to the same receptor leads to effective chemorepulsion. 8-CPT-cAMP, widely described as a simple chemorepellent, is inactive on its own and only repels cells when it acts in combination with the attractant cAMP. If cells degrade either competing ligand, the pattern of migration becomes more complex; cells may be repelled in one part of a gradient but attracted elsewhere, leading to populations moving in different directions in the same assay or converging in an arbitrary place. More counterintuitively still, two chemicals that normally attract cells can become repellent when combined. Computational models of chemotaxis are now accurate enough to predict phenomena that have not been anticipated by experiments. We have used them to identify new mechanisms that drive reverse chemotaxis, which we have confirmed through experiments with real cells. These findings are important whenever multiple ligands compete for the same receptors.
Collapse
Affiliation(s)
- Adam Dowdell
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK; CRUK Beatson Institute, Switchback Road, Glasgow G63 9AE, UK
| | - Peggy I Paschke
- CRUK Beatson Institute, Switchback Road, Glasgow G63 9AE, UK
| | | | - Luke Tweedy
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK; CRUK Beatson Institute, Switchback Road, Glasgow G63 9AE, UK
| | - Robert H Insall
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK; CRUK Beatson Institute, Switchback Road, Glasgow G63 9AE, UK.
| |
Collapse
|
5
|
Jidigam VK, Sawant OB, Fuller RD, Wilcots K, Singh R, Lang RA, Rao S. Neuronal Bmal1 regulates retinal angiogenesis and neovascularization in mice. Commun Biol 2022; 5:792. [PMID: 35933488 PMCID: PMC9357084 DOI: 10.1038/s42003-022-03774-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks in the mammalian retina regulate a diverse range of retinal functions that allow the retina to adapt to the light-dark cycle. Emerging evidence suggests a link between the circadian clock and retinopathies though the causality has not been established. Here we report that clock genes are expressed in the mouse embryonic retina, and the embryonic retina requires light cues to maintain robust circadian expression of the core clock gene, Bmal1. Deletion of Bmal1 and Per2 from the retinal neurons results in retinal angiogenic defects similar to when animals are maintained under constant light conditions. Using two different models to assess pathological neovascularization, we show that neuronal Bmal1 deletion reduces neovascularization with reduced vascular leakage, suggesting that a dysregulated circadian clock primarily drives neovascularization. Chromatin immunoprecipitation sequencing analysis suggests that semaphorin signaling is the dominant pathway regulated by Bmal1. Our data indicate that therapeutic silencing of the retinal clock could be a common approach for the treatment of certain retinopathies like diabetic retinopathy and retinopathy of prematurity.
Collapse
Affiliation(s)
- Vijay K Jidigam
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Onkar B Sawant
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Eversight, Cleveland, OH, 44103, USA
| | - Rebecca D Fuller
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kenya Wilcots
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, 44115, USA
| | - Rupesh Singh
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Richard A Lang
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
| |
Collapse
|
6
|
Retinal Pigment Epithelium and Neural Retinal Progenitors Interact via Semaphorin 6D to Facilitate Optic Cup Morphogenesis. eNeuro 2021; 8:ENEURO.0053-21.2021. [PMID: 33811086 PMCID: PMC8116109 DOI: 10.1523/eneuro.0053-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
Cell movement propels embryonic tissues to acquire shapes required for mature function. The movements are driven both by acto-myosin signaling and by cells interacting with the extracellular matrix (ECM). Unknown is whether cell-cell interactions within a tissue are also required, and the molecular mechanisms by which such communication might occur. Here, we use the developing visual system of zebrafish as a model to understand the role cell-cell communication plays in tissue morphogenesis in the embryonic nervous system. We identify that cell-cell-mediated contact between two distinct cell populations, progenitors of the neural retina and retinal pigment epithelium (RPE), facilitates epithelial flow to produce the mature cupped retina. We identify for the first time the need in eye morphogenesis for distinct populations of progenitors to interact, and suggest a novel role for a member of a key developmental signaling family, the transmembrane Semaphorin6d, as mediating communication between distinct cell types to control tissue morphogenesis.
Collapse
|
7
|
Knickmeyer MD, Mateo JL, Heermann S. BMP Signaling Interferes with Optic Chiasm Formation and Retinal Ganglion Cell Pathfinding in Zebrafish. Int J Mol Sci 2021; 22:ijms22094560. [PMID: 33925390 PMCID: PMC8123821 DOI: 10.3390/ijms22094560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
Decussation of axonal tracts is an important hallmark of vertebrate neuroanatomy resulting in one brain hemisphere controlling the contralateral side of the body and also computing the sensory information originating from that respective side. Here, we show that BMP interferes with optic chiasm formation and RGC pathfinding in zebrafish. Experimental induction of BMP4 at 15 hpf results in a complete ipsilateral projection of RGC axons and failure of commissural connections of the forebrain, in part as the result of an interaction with shh signaling, transcriptional regulation of midline guidance cues and an affected optic stalk morphogenesis. Experimental induction of BMP4 at 24 hpf, resulting in only a mild repression of forebrain shh ligand expression but in a broad expression of pax2a in the diencephalon, does not per se prevent RGC axons from crossing the midline. It nevertheless shows severe pathologies of RGC projections e.g., the fasciculation of RGC axons with the ipsilateral optic tract resulting in the innervation of one tectum by two eyes or the projection of RGC axons in the direction of the contralateral eye.
Collapse
Affiliation(s)
- Max D. Knickmeyer
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany;
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Juan L. Mateo
- Departamento de Informática, Universidad de Oviedo, Jesús Arias de Velasco, 33005 Oviedo, Spain;
| | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany;
- Correspondence:
| |
Collapse
|
8
|
Slit2 is necessary for optic axon organization in the zebrafish ventral midline. Cells Dev 2021; 166:203677. [PMID: 33994352 DOI: 10.1016/j.cdev.2021.203677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Slit-Robo signaling has been implicated in regulating several steps of retinal ganglion cell axon guidance, with a central role assigned to Slit2. We report here the phenotypical characterization of a CRISPR-Cas9-generated zebrafish null mutant for this gene, along with a detailed analysis of its expression pattern by WM-FISH. All evident defects in the optic axons in slit2-/- mutants were detected outside the retina, coincident with the major sites of expression at the ventral forebrain, around the developing optic nerve and anterior to the optic chiasm/proximal tract. Anterograde axon tracing experiments in zygotic and maternal-zygotic mutants, as well as morphants, showed the occurrence of axon sorting defects, which appeared mild at the optic nerve level, but more severe in the optic chiasm and the proximal tract. A remarkable sorting defect was the usual splitting of one of the optic nerves in two branches that surrounded the contralateral nerve at the chiasm. Although all axons eventually crossed the midline, the retinotopic order appeared lost at the proximal optic tract, to eventually correct distally. Time-lapse analysis demonstrated the sporadic occurrence of axon misrouting at the chiasm level, which could be responsible for the sorting errors. Our results support previous evidence of a channeling role for Slit molecules in retinal ganglion cell axons at the optic nerve, in addition to a function in the segregation of axons coming from each nerve and from different retinal regions at the medio-ventral area of the forebrain.
Collapse
|
9
|
Oswald J, Kegeles E, Minelli T, Volchkov P, Baranov P. Transplantation of miPSC/mESC-derived retinal ganglion cells into healthy and glaucomatous retinas. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:180-198. [PMID: 33816648 PMCID: PMC7994731 DOI: 10.1016/j.omtm.2021.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/06/2021] [Indexed: 12/11/2022]
Abstract
Optic neuropathies, including glaucoma, are a group of neurodegenerative diseases, characterized by the progressive loss of retinal ganglion cells (RGCs), leading to irreversible vision loss. While previous studies demonstrated the potential to replace RGCs with primary neurons from developing mouse retinas, their use is limited clinically. We demonstrate successful transplantation of mouse induced pluripotent stem cell (miPSC)/mouse embryonic stem cell (mESC)-derived RGCs into healthy and glaucomatous mouse retinas, at a success rate exceeding 65% and a donor cell survival window of up to 12 months. Transplanted Thy1-GFP+ RGCs were able to polarize within the host retina and formed axonal processes that followed host axons along the retinal surface and entered the optic nerve head. RNA sequencing of donor RGCs re-isolated from host retinas at 24 h and 1 week post-transplantation showed upregulation of cellular pathways mediating axonal outgrowth, extension, and guidance. Additionally, we provide evidence of subtype-specific diversity within miPSC-derived RGCs prior to transplantation.
Collapse
Affiliation(s)
- Julia Oswald
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Evgenii Kegeles
- Life Sciences Research Center, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| | - Tomas Minelli
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Pavel Volchkov
- Life Sciences Research Center, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
- Research Institute of Personalized Medicine, National Center for Personalized Medicine of Endocrine Diseases, The National Medical Research Center for Endocrinology, Moscow 117036, Russia
| | - Petr Baranov
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Corresponding author: Petr Baranov, The Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Conceição R, Evans RS, Pearson CS, Hänzi B, Osborne A, Deshpande SS, Martin KR, Barber AC. Expression of Developmentally Important Axon Guidance Cues in the Adult Optic Chiasm. Invest Ophthalmol Vis Sci 2019; 60:4727-4739. [PMID: 31731293 PMCID: PMC6859889 DOI: 10.1167/iovs.19-26732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Regeneration of optic nerve axons after injury can be facilitated by several approaches, but misguidance at the optic chiasm is often observed. We characterized guidance cues in the embryonic visual system and adult optic chiasm before and after optic nerve crush (ONC) injury to better understand barriers to optic nerve regeneration in adults. Methods Radial glial (RC2/BLBP/Slit1), developmental (Pax2) and extracellular markers (CSPG: H2B/CS-56) were assessed in C57BL/6J mice by immunohistochemistry. RC2, BLBP, Slit1, and CSPG are known inhibitory guidance cues while Pax2 is a permissive guidance cue. Results At embryonic day 15.5 (E.15.5), RC2 and BLBP were identified superior to, and extending through, the optic chiasm. The optic chiasm was BLBP-ve in adult uninjured mice but BLBP+ve in adult mice 10 days after ONC injury. The reverse was true for RC2. Both BLBP and RC2 were absent in adult mice 6 weeks post-ONC. Slit1 was present in the optic chiasm midline and optic tracts in embryonic samples but was absent in uninjured adult tissue. Slit1 was observed superior to and at the midline of the optic chiasm 10 days post-ONC but absent 6 weeks after injury. Pax2 was expressed at the junction between the optic nerve and optic chiasm in embryonic brain tissue. In embryonic sections, CS-56 was observed at the junction between the optic chiasm and optic tract, and immediately superior to the optic chiasm. Both 2H6 and CS-56 staining was absent in uninjured and ONC-injured adult brains. Conclusion Differences in guidance cue expression during development, in adulthood and after injury may contribute to misguidance of regenerating RGC axons in the adult optic chiasm.
Collapse
Affiliation(s)
- Raquel Conceição
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Rachel S Evans
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Craig S Pearson
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, United Kingdom.,Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Barbara Hänzi
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Sarita S Deshpande
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Keith R Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, United Kingdom.,Centre for Eye Research Australia, Melbourne, Australia.,University of Melbourne, Melbourne, Australia.,Department of Ophthalmology, NIHR Biomedical Research Centre and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, United Kingdom
| | - Amanda C Barber
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| |
Collapse
|
11
|
Murcia-Belmonte V, Erskine L. Wiring the Binocular Visual Pathways. Int J Mol Sci 2019; 20:ijms20133282. [PMID: 31277365 PMCID: PMC6651880 DOI: 10.3390/ijms20133282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal ganglion cells (RGCs) extend axons out of the retina to transmit visual information to the brain. These connections are established during development through the navigation of RGC axons along a relatively long, stereotypical pathway. RGC axons exit the eye at the optic disc and extend along the optic nerves to the ventral midline of the brain, where the two nerves meet to form the optic chiasm. In animals with binocular vision, the axons face a choice at the optic chiasm—to cross the midline and project to targets on the contralateral side of the brain, or avoid crossing the midline and project to ipsilateral brain targets. Ipsilaterally and contralaterally projecting RGCs originate in disparate regions of the retina that relate to the extent of binocular overlap in the visual field. In humans virtually all RGC axons originating in temporal retina project ipsilaterally, whereas in mice, ipsilaterally projecting RGCs are confined to the peripheral ventrotemporal retina. This review will discuss recent advances in our understanding of the mechanisms regulating specification of ipsilateral versus contralateral RGCs, and the differential guidance of their axons at the optic chiasm. Recent insights into the establishment of congruent topographic maps in both brain hemispheres also will be discussed.
Collapse
Affiliation(s)
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| |
Collapse
|
12
|
Retinal ganglion cell axon sorting at the optic chiasm requires dystroglycan. Dev Biol 2018; 442:210-219. [PMID: 30149005 DOI: 10.1016/j.ydbio.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/19/2023]
Abstract
In the developing visual system, retinal ganglion cell (RGC) axons project from the retina to several distal retinorecipient regions in the brain. Several molecules have been implicated in guiding RGC axons in vivo, but the role of extracellular matrix molecules in this process remains poorly understood. Dystroglycan is a laminin-binding transmembrane protein important for formation and maintenance of the extracellular matrix and basement membranes and has previously been implicated in axon guidance in the developing spinal cord. Using two genetic models of functional dystroglycan loss, we show that dystroglycan is necessary for correct sorting of contralateral and ipsilateral RGC axons at the optic chiasm. Mis-sorted axons still target retinorecipient brain regions and persist in adult mice, even after axon pruning is complete. Our results highlight the importance of the extracellular matrix for axon sorting at an intermediate choice point in the developing visual circuit.
Collapse
|
13
|
CRMP2 and CRMP4 Are Differentially Required for Axon Guidance and Growth in Zebrafish Retinal Neurons. Neural Plast 2018; 2018:8791304. [PMID: 30034463 PMCID: PMC6032661 DOI: 10.1155/2018/8791304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/17/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
Axons are directed to their correct targets by guidance cues during neurodevelopment. Many axon guidance cues have been discovered; however, much less known is about how the growth cones transduce the extracellular guidance cues to intracellular responses. Collapsin response mediator proteins (CRMPs) are a family of intracellular proteins that have been found to mediate growth cone behavior in vitro; however, their roles in vivo in axon development are much less explored. In zebrafish embryos, we find that CRMP2 and CRMP4 are expressed in the retinal ganglion cell layer when retinal axons are crossing the midline. Knocking down CRMP2 causes reduced elongation and premature termination of the retinal axons, while knocking down CRMP4 results in ipsilateral misprojections of retinal axons that would normally project to the contralateral brain. Furthermore, CRMP4 synchronizes with neuropilin 1 in retinal axon guidance, suggesting that CRMP4 might mediate the semaphorin/neuropilin signaling pathway. These results demonstrate that CRMP2 and CRMP4 function differentially in axon development in vivo.
Collapse
|
14
|
Abstract
Although much is known about the regenerative capacity of retinal ganglion cells, very significant barriers remain in our ability to restore visual function following traumatic injury or disease-induced degeneration. Here we summarize our current understanding of the factors regulating axon guidance and target engagement in regenerating axons, and review the state of the field of neural regeneration, focusing on the visual system and highlighting studies using other model systems that can inform analysis of visual system regeneration. This overview is motivated by a Society for Neuroscience Satellite meeting, "Reconnecting Neurons in the Visual System," held in October 2015 sponsored by the National Eye Institute as part of their "Audacious Goals Initiative" and co-organized by Carol Mason (Columbia University) and Michael Crair (Yale University). The collective wisdom of the conference participants pointed to important gaps in our knowledge and barriers to progress in promoting the restoration of visual system function. This article is thus a summary of our existing understanding of visual system regeneration and provides a blueprint for future progress in the field.
Collapse
|
15
|
Ipsilateral and Contralateral Retinal Ganglion Cells Express Distinct Genes during Decussation at the Optic Chiasm. eNeuro 2016; 3:eN-NWR-0169-16. [PMID: 27957530 PMCID: PMC5136615 DOI: 10.1523/eneuro.0169-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/18/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022] Open
Abstract
The increasing availability of transcriptomic technologies within the last decade has facilitated high-throughput identification of gene expression differences that define distinct cell types as well as the molecular pathways that drive their specification. The retinal projection neurons, retinal ganglion cells (RGCs), can be categorized into distinct morphological and functional subtypes and by the laterality of their projections. Here, we present a method for purifying the sparse population of ipsilaterally projecting RGCs in mouse retina from their contralaterally projecting counterparts during embryonic development through rapid retrograde labeling followed by fluorescence-activated cell sorting. Through microarray analysis, we uncovered the distinct molecular signatures that define and distinguish ipsilateral and contralateral RGCs during the critical period of axonal outgrowth and decussation, with more than 300 genes differentially expressed within these two cell populations. Among the differentially expressed genes confirmed through in vivo expression validation, several genes that mark “immaturity” are expressed within postmitotic ipsilateral RGCs. Moreover, at least one complementary pair, Igf1 and Igfbp5, is upregulated in contralateral or ipsilateral RGCs, respectively, and may represent signaling pathways that determine ipsilateral versus contralateral RGC identity. Importantly, the cell cycle regulator cyclin D2 is highly expressed in peripheral ventral retina with a dynamic expression pattern that peaks during the period of ipsilateral RGC production. Thus, the molecular signatures of ipsilateral and contralateral RGCs and the mechanisms that regulate their differentiation are more diverse than previously expected.
Collapse
|
16
|
Samuel A, Rubinstein AM, Azar TT, Ben-Moshe Livne Z, Kim SH, Inbal A. Six3 regulates optic nerve development via multiple mechanisms. Sci Rep 2016; 6:20267. [PMID: 26822689 PMCID: PMC4731751 DOI: 10.1038/srep20267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/30/2015] [Indexed: 12/05/2022] Open
Abstract
Malformations of the optic nerve lead to reduced vision or even blindness. During optic nerve development, retinal ganglion cell (RGC) axons navigate across the retina, exit the eye to the optic stalk (OS), and cross the diencephalon midline at the optic chiasm en route to their brain targets. Many signalling molecules have been implicated in guiding various steps of optic nerve pathfinding, however much less is known about transcription factors regulating this process. Here we show that in zebrafish, reduced function of transcription factor Six3 results in optic nerve hypoplasia and a wide repertoire of RGC axon pathfinding errors. These abnormalities are caused by multiple mechanisms, including abnormal eye and OS patterning and morphogenesis, abnormal expression of signalling molecules both in RGCs and in their environment and anatomical deficiency in the diencephalic preoptic area, where the optic chiasm normally forms. Our findings reveal new roles for Six3 in eye development and are consistent with known phenotypes of reduced SIX3 function in humans. Hence, the new zebrafish model for Six3 loss of function furthers our understanding of the mechanisms governing optic nerve development and Six3-mediated eye and forebrain malformations.
Collapse
Affiliation(s)
- Anat Samuel
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ariel M. Rubinstein
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tehila T. Azar
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Zohar Ben-Moshe Livne
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Seok-Hyung Kim
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
17
|
Panza P, Sitko AA, Maischein HM, Koch I, Flötenmeyer M, Wright GJ, Mandai K, Mason CA, Söllner C. The LRR receptor Islr2 is required for retinal axon routing at the vertebrate optic chiasm. Neural Dev 2015; 10:23. [PMID: 26492970 PMCID: PMC4618557 DOI: 10.1186/s13064-015-0050-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the visual system of most binocular vertebrates, the axons of retinal ganglion cells (RGCs) diverge at the diencephalic midline and extend to targets on both ipsi- and contralateral sides of the brain. While a molecular mechanism explaining ipsilateral guidance decisions has been characterized, less is known of how RGC axons cross the midline. RESULTS Here, we took advantage of the zebrafish, in which all RGC axons project contralaterally at the optic chiasm, to characterize Islr2 as an RGC receptor required for complete retinal axon midline crossing. We used a systematic extracellular protein-protein interaction screening assay to identify two Vasorin paralogs, Vasna and Vasnb, as specific Islr2 ligands. Antibodies against Vasna and Vasnb reveal cellular populations surrounding the retinal axon pathway, suggesting the involvement of these proteins in guidance decisions made by axons of the optic nerve. Specifically, Vasnb marks the membranes of a cellular barricade located anteriorly to the optic chiasm, a structure termed the "glial knot" in higher vertebrates. Loss of function mutations in either vasorin paralog, individually or combined, however, do not exhibit an overt retinal axon projection phenotype, suggesting that additional midline factors, acting either independently or redundantly, compensate for their loss. Analysis of Islr2 knockout mice supports a scenario in which Islr2 controls the coherence of RGC axons through the ventral midline and optic tract. CONCLUSIONS Although stereotypic guidance of RGC axons at the vertebrate optic chiasm is controlled by multiple, redundant mechanisms, and despite the differences in ventral diencephalic tissue architecture, we identify a novel role for the LRR receptor Islr2 in ensuring proper axon navigation at the optic chiasm of both zebrafish and mouse.
Collapse
Affiliation(s)
- Paolo Panza
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Genetik, Spemannstraße 35, 72076, Tübingen, Germany.
| | - Austen A Sitko
- Department of Neuroscience, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY, 10032, USA
| | - Hans-Martin Maischein
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Genetik, Spemannstraße 35, 72076, Tübingen, Germany.,Present address: Max-Planck-Institut für Herz- und Lungenforschung, Abteilung Genetik der Entwicklung, Ludwigstraße 43, 61231, Bad Nauheim, Germany
| | - Iris Koch
- Max-Planck-Institut für Entwicklungsbiologie, Elektronenmikroskopie, Spemannstraße 35, 72076, Tübingen, Germany
| | - Matthias Flötenmeyer
- Max-Planck-Institut für Entwicklungsbiologie, Elektronenmikroskopie, Spemannstraße 35, 72076, Tübingen, Germany
| | - Gavin J Wright
- Wellcome Trust Sanger Institute, Cell Surface Signalling Laboratory, Hinxton, Cambridge, CB10 1HH, UK
| | - Kenji Mandai
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Carol A Mason
- Department of Pathology & Cell Biology, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY, 10032, USA.,Department of Neuroscience, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY, 10032, USA
| | - Christian Söllner
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Genetik, Spemannstraße 35, 72076, Tübingen, Germany
| |
Collapse
|
18
|
Jiang Q, Arnold S, Heanue T, Kilambi K, Doan B, Kapoor A, Ling A, Sosa M, Guy M, Jiang Q, Burzynski G, West K, Bessling S, Griseri P, Amiel J, Fernandez R, Verheij J, Hofstra R, Borrego S, Lyonnet S, Ceccherini I, Gray J, Pachnis V, McCallion A, Chakravarti A. Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability. Am J Hum Genet 2015; 96:581-96. [PMID: 25839327 DOI: 10.1016/j.ajhg.2015.02.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/20/2015] [Indexed: 10/23/2022] Open
Abstract
Innervation of the gut is segmentally lost in Hirschsprung disease (HSCR), a consequence of cell-autonomous and non-autonomous defects in enteric neuronal cell differentiation, proliferation, migration, or survival. Rare, high-penetrance coding variants and common, low-penetrance non-coding variants in 13 genes are known to underlie HSCR risk, with the most frequent variants in the ret proto-oncogene (RET). We used a genome-wide association (220 trios) and replication (429 trios) study to reveal a second non-coding variant distal to RET and a non-coding allele on chromosome 7 within the class 3 Semaphorin gene cluster. Analysis in Ret wild-type and Ret-null mice demonstrates specific expression of Sema3a, Sema3c, and Sema3d in the enteric nervous system (ENS). In zebrafish embryos, sema3 knockdowns show reduction of migratory ENS precursors with complete ablation under conjoint ret loss of function. Seven candidate receptors of Sema3 proteins are also expressed within the mouse ENS and their expression is also lost in the ENS of Ret-null embryos. Sequencing of SEMA3A, SEMA3C, and SEMA3D in 254 HSCR-affected subjects followed by in silico protein structure modeling and functional analyses identified five disease-associated alleles with loss-of-function defects in semaphorin dimerization and binding to their cognate neuropilin and plexin receptors. Thus, semaphorin 3C/3D signaling is an evolutionarily conserved regulator of ENS development whose dys-regulation is a cause of enteric aganglionosis.
Collapse
|
19
|
Kita EM, Scott EK, Goodhill GJ. Topographic wiring of the retinotectal connection in zebrafish. Dev Neurobiol 2015; 75:542-56. [PMID: 25492632 DOI: 10.1002/dneu.22256] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 11/08/2022]
Abstract
The zebrafish retinotectal projection provides an attractive model system for studying many aspects of topographic map formation and maintenance. Visual connections initially start to form between 3 and 5 days postfertilization, and remain plastic throughout the life of the fish. Zebrafish are easily manipulated surgically, genetically, and chemically, and a variety of molecular tools exist to enable visualization and control of various aspects of map development. Here, we review zebrafish retinotectal map formation, focusing particularly on the detailed structure and dynamics of the connections, the molecules that are important in map creation, and how activity regulates the maintenance of the map.
Collapse
Affiliation(s)
- Elizabeth M Kita
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| | - Ethan K Scott
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
20
|
Abstract
The visual system is beautifully crafted to transmit information of the external world to visual processing and cognitive centers in the brain. For visual information to be relayed to the brain, a series of axon pathfinding events must take place to ensure that the axons of retinal ganglion cells, the only neuronal cell type in the retina that sends axons out of the retina, find their way out of the eye to connect with targets in the brain. In the past few decades, the power of molecular and genetic tools, including the generation of genetically manipulated mouse lines, have multiplied our knowledge about the molecular mechanisms involved in the sculpting of the visual system. Here, we review major advances in our understanding of the mechanisms controlling the differentiation of RGCs, guidance of their axons from the retina to the primary visual centers, and the refinement processes essential for the establishment of topographic maps and eye-specific axon segregation. Human disorders, such as albinism and achiasmia, that impair RGC axon growth and guidance and, thus, the establishment of a fully functioning visual system will also be discussed.
Collapse
Affiliation(s)
- Lynda Erskine
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Scotland, UK
| | - Eloisa Herrera
- Instituto de Neurosciencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain
| |
Collapse
|
21
|
Sharma A, LeVaillant CJ, Plant GW, Harvey AR. Changes in expression of Class 3 Semaphorins and their receptors during development of the rat retina and superior colliculus. BMC DEVELOPMENTAL BIOLOGY 2014; 14:34. [PMID: 25062604 PMCID: PMC4121511 DOI: 10.1186/s12861-014-0034-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022]
Abstract
Background Members of the Semaphorin 3 family (Sema3s) influence the development of the central nervous system, and some are implicated in regulating aspects of visual system development. However, we lack information about the timing of expression of the Sema3s with respect to different developmental epochs in the mammalian visual system. In this time-course study in the rat, we document for the first time changes in the expression of RNAs for the majority of Class 3 Semaphorins (Sema3s) and their receptor components during the development of the rat retina and superior colliculus (SC). Results During retinal development, transcript levels changed for all of the Sema3s examined, as well as Nrp2, Plxna2, Plxna3, and Plxna4a. In the SC there were also changes in transcript levels for all Sema3s tested, as well as Nrp1, Nrp2, Plxna1, Plxna2, Plxna3, and Plxna4a. These changes correlate with well-established epochs, and our data suggest that the Sema3s could influence retinal ganglion cell (RGC) apoptosis, patterning and connectivity in the maturing retina and SC, and perhaps guidance of RGC and cortical axons in the SC. Functionally we found that SEMA3A, SEMA3C, SEMA3E, and SEMA3F proteins collapsed purified postnatal day 1 RGC growth cones in vitro. Significantly this is a developmental stage when RGCs are growing into and within the SC and are exposed to Sema3 ligands. Conclusion These new data describing the overall temporal regulation of Sema3 expression in the rat retina and SC provide a platform for further work characterising the functional impact of these proteins on the development and maturation of mammalian visual pathways.
Collapse
Affiliation(s)
- Anil Sharma
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia.
| | | | | | | |
Collapse
|
22
|
cAMP-induced expression of neuropilin1 promotes retinal axon crossing in the zebrafish optic chiasm. J Neurosci 2013; 33:11076-88. [PMID: 23825413 DOI: 10.1523/jneurosci.0197-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growing axons navigate a complex environment as they respond to attractive and repellent guidance cues. Axons can modulate their responses to cues through a G-protein-coupled, cAMP-dependent signaling pathway. To examine the role of G-protein signaling in axon guidance in vivo, we used the GAL4/UAS system to drive expression of dominant-negative heterotrimeric G-proteins (DNG) in retinal ganglion cells (RGCs) of embryonic zebrafish. Retinal axons normally cross at the ventral midline and project to the contralateral tectum. Expression of DNGα(S) in RGCs causes retinal axons to misproject to the ipsilateral tectum. These errors resemble misprojections in adcy1, adcy8, nrp1a, sema3D, or sema3E morphant embryos, as well as in sema3D mutant embryos. nrp1a is expressed in RGCs as their axons extend toward and across the midline. sema3D and sema3E are expressed adjacent to the chiasm, suggesting that they facilitate retinal midline crossing. We demonstrate synergistic induction of ipsilateral misprojections between adcy8 knockdown and transgenic DNGα(S) expression, adcy8 and nrp1a morphants, or nrp1a morphants and transgenic DNGα(S) expression. Using qPCR analysis, we show that either transgenic DNGα(S)-expressing embryos or adcy8 morphant embryos have decreased levels of nrp1a and nrp1b mRNA. Ipsilateral misprojections in adcy8 morphants are corrected by the expression of an nrp1a rescue construct expressed in RGCs. These findings are consistent with the idea that elevated cAMP levels promote Neuropilin1a expression in RGCs, increasing the sensitivity of retinal axons to Sema3D, Sema3E, or other neuropilin ligands at the midline, and consequently facilitate retinal axon crossing in the chiasm.
Collapse
|
23
|
Davies-Thompson J, Scheel M, Jane Lanyon L, Sinclair Barton JJ. Functional organisation of visual pathways in a patient with no optic chiasm. Neuropsychologia 2013; 51:1260-72. [PMID: 23563109 DOI: 10.1016/j.neuropsychologia.2013.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/19/2013] [Accepted: 03/24/2013] [Indexed: 11/26/2022]
Abstract
Congenital achiasma offers a rare opportunity to study reorganization and inter-hemispheric communication in the face of anomalous inputs to striate cortex. We report neuroimaging studies of a patient with seesaw nystagmus, achiasma, and full visual fields. The subject underwent structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI) studies, and functional MRI (fMRI) using monocular stimulation with checkerboards, motion, objects and faces, as well as retinotopic quadrantic mapping. Structural MRI confirmed the absence of an optic chiasm, which was corroborated by DTI tractography. Lack of a functioning decussation was confirmed by fMRI that showed activation of only ipsilateral medial occipital cortex by monocular stimulation. The corpus callosum was normal in size and anterior and posterior commissures were identifiable. In terms of the hierarchy of visual areas, V5 was the lowest level region to be activated binocularly, as were regions in the fusiform gyri responding to faces and objects. The retinotopic organization of striate cortex was studied with quadrantic stimulation. This showed that, in support of recent findings, rather than projecting to an ectopic location contiguous with the normal retinotopic map of the ipsilateral temporal hemi-retina, the nasal hemi-retina's representation overlapped that of the temporal hemi-retina. These findings show that congenital achiasma can be an isolated midline crossing defect, that information transfer does not occur in early occipital cortex but at intermediate and higher levels of the visual hierarchy, and that the functional reorganisation of striate cortex in this condition is consistent with normal axon guidance by a chemoaffinity gradient.
Collapse
Affiliation(s)
- Jodie Davies-Thompson
- Departments of Medicine Neurology, and Ophthalmology and Visual Sciences, University of British Columbia, BC, Canada.
| | | | | | | |
Collapse
|
24
|
Simpson HD, Kita EM, Scott EK, Goodhill GJ. A quantitative analysis of branching, growth cone turning, and directed growth in zebrafish retinotectal axon guidance. J Comp Neurol 2013; 521:1409-29. [DOI: 10.1002/cne.23248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/27/2012] [Accepted: 10/25/2012] [Indexed: 01/22/2023]
|
25
|
Optic chiasm presentation of Semaphorin6D in the context of Plexin-A1 and Nr-CAM promotes retinal axon midline crossing. Neuron 2012; 74:676-90. [PMID: 22632726 DOI: 10.1016/j.neuron.2012.03.025] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2012] [Indexed: 01/23/2023]
Abstract
At the optic chiasm, retinal ganglion cells (RGCs) project ipsi- or contralaterally to establish the circuitry for binocular vision. Ipsilateral guidance programs have been characterized, but contralateral guidance programs are not well understood. Here, we identify a tripartite molecular system for contralateral RGC projections: Semaphorin6D (Sema6D) and Nr-CAM are expressed on midline radial glia and Plexin-A1 on chiasm neurons, and Plexin-A1 and Nr-CAM are also expressed on contralateral RGCs. Sema6D is repulsive to contralateral RGCs, but Sema6D in combination with Nr-CAM and Plexin-A1 converts repulsion to growth promotion. Nr-CAM functions as a receptor for Sema6D. Sema6D, Plexin-A1, and Nr-CAM are all required for efficient RGC decussation at the optic chiasm. These findings suggest a mechanism by which a complex of Sema6D, Nr-CAM, and Plexin-A1 at the chiasm midline alters the sign of Sema6D and signals Nr-CAM/Plexin-A1 receptors on RGCs to implement the contralateral RGC projection.
Collapse
|
26
|
Atkinson-Leadbeater K, McFarlane S. Extrinsic factors as multifunctional regulators of retinal ganglion cell morphogenesis. Dev Neurobiol 2011; 71:1170-85. [DOI: 10.1002/dneu.20924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Erskine L, Reijntjes S, Pratt T, Denti L, Schwarz Q, Vieira JM, Alakakone B, Shewan D, Ruhrberg C. VEGF signaling through neuropilin 1 guides commissural axon crossing at the optic chiasm. Neuron 2011; 70:951-65. [PMID: 21658587 PMCID: PMC3114076 DOI: 10.1016/j.neuron.2011.02.052] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2011] [Indexed: 01/13/2023]
Abstract
During development, the axons of retinal ganglion cell (RGC) neurons must decide whether to cross or avoid the midline at the optic chiasm to project to targets on both sides of the brain. By combining genetic analyses with in vitro assays, we show that neuropilin 1 (NRP1) promotes contralateral RGC projection in mammals. Unexpectedly, the NRP1 ligand involved is not an axon guidance cue of the class 3 semaphorin family, but VEGF164, the neuropilin-binding isoform of the classical vascular growth factor VEGF-A. VEGF164 is expressed at the chiasm midline and is required for normal contralateral growth in vivo. In outgrowth and growth cone turning assays, VEGF164 acts directly on NRP1-expressing contralateral RGCs to provide growth-promoting and chemoattractive signals. These findings have identified a permissive midline signal for axons at the chiasm midline and provide in vivo evidence that VEGF-A is an essential axon guidance cue.
Collapse
Affiliation(s)
- Lynda Erskine
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dickendesher TL, Giger RJ. VEGF shows its attractive side at the midline. Neuron 2011; 70:808-12. [PMID: 21658576 DOI: 10.1016/j.neuron.2011.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Vascular endothelial growth factor (VEGF) family members are best known for their powerful mitotic and angiogenic activities toward endothelial cells. Two independent studies in this issue of Neuron now provide compelling evidence that VEGF-A secreted at the CNS midline functions as an attractant for developing axons of spinal commissural neurons and contralaterally projecting retinal ganglion cells.
Collapse
Affiliation(s)
- Travis L Dickendesher
- Neuroscience Program, University of Michigan School of Medicine, 3065 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
29
|
Hung RJ, Terman JR. Extracellular inhibitors, repellents, and semaphorin/plexin/MICAL-mediated actin filament disassembly. Cytoskeleton (Hoboken) 2011; 68:415-33. [PMID: 21800438 PMCID: PMC3612987 DOI: 10.1002/cm.20527] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023]
Abstract
Multiple extracellular signals have been identified that regulate actin dynamics within motile cells, but how these instructive cues present on the cell surface exert their precise effects on the internal actin cytoskeleton is still poorly understood. One particularly interesting class of these cues is a group of extracellular proteins that negatively alter the movement of cells and their processes. Over the years, these types of events have been described using a variety of terms and herein we provide an overview of inhibitory/repulsive cellular phenomena and highlight the largest known protein family of repulsive extracellular cues, the Semaphorins. Specifically, the Semaphorins (Semas) utilize Plexin cell-surface receptors to dramatically collapse the actin cytoskeleton and we summarize what is known of the direct molecular and biochemical mechanisms of Sema-triggered actin filament (F-actin) disassembly. We also discuss new observations from our lab that reveal that the multidomain oxidoreductase (Redox) enzyme Molecule Interacting with CasL (MICAL), an important mediator of Sema/Plexin repulsion, is a novel F-actin disassembly factor. Our results indicate that MICAL triggers Sema/Plexin-mediated reorganization of the F-actin cytoskeleton and suggest a role for specific Redox signaling events in regulating actin dynamics.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Departments of Neuroscience and Pharmacology, and Neuroscience Graduate Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R. Terman
- Departments of Neuroscience and Pharmacology, and Neuroscience Graduate Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
30
|
Fujii T, Uchiyama H, Yamamoto N, Hori H, Tatsumi M, Ishikawa M, Arima K, Higuchi T, Kunugi H. Possible association of the semaphorin 3D gene (SEMA3D) with schizophrenia. J Psychiatr Res 2011; 45:47-53. [PMID: 20684831 DOI: 10.1016/j.jpsychires.2010.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/01/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Semaphorins are ligands of plexins, and the plexin-semaphorin signaling system is widely involved in many neuronal events including axon guidance, cell migration, axon pruning, and synaptic plasticity. The plexin A2 gene (PLXNA2) has been reported to be associated with schizophrenia. This finding prompted us to examine the possible association between the semaphorin 3D gene (SEMA3D) and schizophrenia in a Japanese population. We genotyped 9 tagging single nucleotide polymorphisms (SNPs) of SEMA3D including a non-synonymous variation, Lys701Gln (rs7800072), in a sample of 506 patients with schizophrenia and 941 healthy control subjects. The Gln701 allele showed a significant protective effect against the development of schizophrenia (p = 0.0069, odds ratio = 0.76, 95% confidence interval 0.63 to 0.93). Furthermore, the haplotype-based analyses revealed a significant association. The four-marker analysis (rs2190208-rs1029564-rs17159614-rs12176601), in particular, not including the Lys701Gln, revealed a highly significant association (p = 0.00001, global permutation), suggesting that there may be other functional polymorphisms within SEMA3D. Our findings provide strong evidence that SEMA3D confers susceptibility to schizophrenia, which could contribute to the neurodevelopmental impairments in the disorder.
Collapse
Affiliation(s)
- Takashi Fujii
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Axons follow highly stereotyped and reproducible trajectories to their targets. In this review we address the properties of the first pioneer neurons to grow in the developing nervous system and what has been learned over the past several decades about the extracellular and cell surface substrata on which axons grow. We then discuss the types of guidance cues and their receptors that influence axon extension, what determines where cues are expressed, and how axons respond to the cues they encounter in their environment.
Collapse
Affiliation(s)
- Jonathan Raper
- Department of Neurosciences, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
32
|
The calmodulin-stimulated adenylate cyclase ADCY8 sets the sensitivity of zebrafish retinal axons to midline repellents and is required for normal midline crossing. J Neurosci 2010; 30:7423-33. [PMID: 20505109 DOI: 10.1523/jneurosci.0699-10.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The chemokine SDF1 activates a cAMP-mediated signaling pathway that antagonizes retinal responses to the midline repellent slit. We show that knocking down the calmodulin-activated adenylate cyclase ADCY8 makes retinal axons insensitive to SDF1. Experiments in vivo using male and female zebrafish (Danio rerio) confirm a mutual antagonism between slit signaling and ADCY8-mediated signaling. Unexpectedly, knockdown of ADCY8 or another calmodulin-activated cyclase, ADCY1, induces ipsilateral misprojections of retinal axons that would normally cross the ventral midline. We demonstrate a cell-autonomous requirement for ADCY8 in retinal neurons for normal midline crossing. These findings are the first to show that ADCY8 is required for axonal pathfinding before axons reach their targets. They support a model in which ADCY8 is an essential component of a signaling pathway that opposes repellent signaling. Finally, they demonstrate that ADCY8 helps regulate retinal sensitivity to midline guidance cues.
Collapse
|
33
|
Hung RJ, Yazdani U, Yoon J, Wu H, Yang T, Gupta N, Huang Z, van Berkel WJH, Terman JR. Mical links semaphorins to F-actin disassembly. Nature 2010; 463:823-7. [PMID: 20148037 DOI: 10.1038/nature08724] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 11/26/2009] [Indexed: 12/22/2022]
Abstract
How instructive cues present on the cell surface have their precise effects on the actin cytoskeleton is poorly understood. Semaphorins are one of the largest families of these instructive cues and are widely studied for their effects on cell movement, navigation, angiogenesis, immunology and cancer. Semaphorins/collapsins were characterized in part on the basis of their ability to drastically alter actin cytoskeletal dynamics in neuronal processes, but despite considerable progress in the identification of semaphorin receptors and their signalling pathways, the molecules linking them to the precise control of cytoskeletal elements remain unknown. Recently, highly unusual proteins of the Mical family of enzymes have been found to associate with the cytoplasmic portion of plexins, which are large cell-surface semaphorin receptors, and to mediate axon guidance, synaptogenesis, dendritic pruning and other cell morphological changes. Mical enzymes perform reduction-oxidation (redox) enzymatic reactions and also contain domains found in proteins that regulate cell morphology. However, nothing is known of the role of Mical or its redox activity in mediating morphological changes. Here we report that Mical directly links semaphorins and their plexin receptors to the precise control of actin filament (F-actin) dynamics. We found that Mical is both necessary and sufficient for semaphorin-plexin-mediated F-actin reorganization in vivo. Likewise, we purified Mical protein and found that it directly binds F-actin and disassembles both individual and bundled actin filaments. We also found that Mical utilizes its redox activity to alter F-actin dynamics in vivo and in vitro, indicating a previously unknown role for specific redox signalling events in actin cytoskeletal regulation. Mical therefore is a novel F-actin-disassembly factor that provides a molecular conduit through which actin reorganization-a hallmark of cell morphological changes including axon navigation-can be precisely achieved spatiotemporally in response to semaphorins.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Department of Neuroscience, Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sanek NA, Taylor AA, Nyholm MK, Grinblat Y. Zebrafish zic2a patterns the forebrain through modulation of Hedgehog-activated gene expression. Development 2009; 136:3791-800. [PMID: 19855021 PMCID: PMC2766342 DOI: 10.1242/dev.037820] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2009] [Indexed: 11/20/2022]
Abstract
Holoprosencephaly (HPE) is the most common congenital malformation of the forebrain in human. Several genes with essential roles during forebrain development have been identified because they cause HPE when mutated. Among these are genes that encode the secreted growth factor Sonic hedgehog (Shh) and the transcription factors Six3 and Zic2. In the mouse, Six3 and Shh activate each other's transcription, but a role for Zic2 in this interaction has not been tested. We demonstrate that in zebrafish, as in mouse, Hh signaling activates transcription of six3b in the developing forebrain. zic2a is also activated by Hh signaling, and represses six3b non-cell-autonomously, i.e. outside of its own expression domain, probably through limiting Hh signaling. Zic2a repression of six3b is essential for the correct formation of the prethalamus. The diencephalon-derived optic stalk (OS) and neural retina are also patterned in response to Hh signaling. We show that zebrafish Zic2a limits transcription of the Hh targets pax2a and fgf8a in the OS and retina. The effects of Zic2a depletion in the forebrain and in the OS and retina are rescued by blocking Hh signaling or by increasing levels of the Hh antagonist Hhip, suggesting that in both tissues Zic2a acts to attenuate the effects of Hh signaling. These data uncover a novel, essential role for Zic2a as a modulator of Hh-activated gene expression in the developing forebrain and advance our understanding of a key gene regulatory network that, when disrupted, causes HPE.
Collapse
Affiliation(s)
- Nicholas A Sanek
- Department of Zoology and Anatomy, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
35
|
Claudepierre T, Koncina E, Pfrieger FW, Bagnard D, Aunis D, Reber M. Implication of neuropilin 2/semaphorin 3F in retinocollicular map formation. Dev Dyn 2009; 237:3394-403. [PMID: 18942144 DOI: 10.1002/dvdy.21759] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neural representations of the environment within the brain take the form of topographic maps whose formation relies on graded expression of axon guidance molecules. Retinocollicular map formation, from retinal ganglion cells (RGCs) to the superior colliculus (SC) in the midbrain, is mainly driven by Eph receptors and their ligands ephrins. However, other guidance molecules participate in the formation of this map. Here we demonstrate that the receptor Neuropilin-2 is expressed in an increasing nasal-temporal gradient in RGCs, whereas one of its ligands, Semaphorin3F, but not other Sema3 molecules, presents a graded low-rostral to high-caudal expression in the SC when mapping is underway. Neuropilin-2 and its coreceptor Plexin A1 are present on RGC growth cones. Collapse assays demonstrate that Semaphorin3F induces significant growth cone collapse of temporal, but not nasal, RGCs expressing high levels of Neuropilin-2. Our results suggest that Neuropilin-2/Semaphorin3F are new candidates involved in retinotopy formation within the SC.
Collapse
Affiliation(s)
- T Claudepierre
- Department of Neurotransmission/Neuroendocrine Secretion, Inst. Cell. Integ. Neurosci. (INCI) UMR 7168/L2 CNRS/ULP, Centre de Neurochimie, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
36
|
Sema4C Expression in Neural Stem/Progenitor Cells and in Adult Neurogenesis Induced by Cerebral Ischemia. J Mol Neurosci 2009; 39:27-39. [DOI: 10.1007/s12031-009-9177-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 01/07/2009] [Indexed: 12/28/2022]
|
37
|
Petros TJ, Rebsam A, Mason CA. Retinal axon growth at the optic chiasm: to cross or not to cross. Annu Rev Neurosci 2008; 31:295-315. [PMID: 18558857 DOI: 10.1146/annurev.neuro.31.060407.125609] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At the optic chiasm, retinal ganglion cell axons from each eye converge and segregate into crossed and uncrossed projections, a pattern critical for binocular vision. Here, we review recent findings on optic chiasm development, highlighting the specific transcription factors and guidance cues that implement retinal axon divergence into crossed and uncrossed pathways. Although mechanisms underlying the formation of the uncrossed projection have been identified, the means by which retinal axons are guided across the midline are still unclear. In addition to directives provided by transcription factors and receptors in the retina, gene expression in the ventral diencephalon influences chiasm formation. Throughout this review, we compare guidance mechanisms at the optic chiasm with those in other midline models and highlight unanswered questions both for retinal axon growth and axon guidance in general.
Collapse
Affiliation(s)
- Timothy J Petros
- Department of Pathology and Cell Biology, Department of Neuroscience, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
38
|
Callander DC, Lamont RE, Childs SJ, McFarlane S. Expression of multiple class three semaphorins in the retina and along the path of zebrafish retinal axons. Dev Dyn 2008; 236:2918-24. [PMID: 17879313 DOI: 10.1002/dvdy.21315] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retinal ganglion cells (RGCs) extend axons that exit the eye, cross the midline at the optic chiasm, and synapse on target cells in the optic tectum. Class three semaphorins (Sema3s) are a family of molecules known to direct axon growth. We undertook an expression screen to identify sema3s expressed in the retina and/or brain close to in-growing RGC axons, which might therefore influence retinal-tectal pathfinding. We find that sema3Aa, 3Fa, 3Ga, and 3Gb are expressed in the retina, although only sema3Fa is present during the time window when the axons extend. Also, we show that sema3Aa and sema3E are present near or at the optic chiasm. Furthermore, sema3C, 3Fa, 3Ga, and 3Gb are expressed in regions of the diencephalon near the path taken by RGC axons. Finally, the optic tectum expresses sema3Aa, 3Fa, 3Fb, and 3Gb. Thus, sema3s are spatiotemporally placed to influence RGC axon growth.
Collapse
|
39
|
Erskine L, Herrera E. The retinal ganglion cell axon's journey: insights into molecular mechanisms of axon guidance. Dev Biol 2007; 308:1-14. [PMID: 17560562 DOI: 10.1016/j.ydbio.2007.05.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/02/2007] [Accepted: 05/10/2007] [Indexed: 02/02/2023]
Abstract
The developing visual system has proven to be one of the most informative models for studying axon guidance decisions. The pathway is composed of the axons of a single neuronal cell type, the retinal ganglion cell (RGC), that navigate through a series of intermediate targets on route to their final destination. The molecular basis of optic pathway development is beginning to be elucidated with cues such as netrins, Slits and ephrins playing a key role. Other factors best characterised for their role as morphogens in patterning developing tissues, such as sonic hedgehog (Shh) and Wnts, also act directly on RGC axons to influence guidance decisions. The transcriptional basis of the spatial-temporal expression of guidance cues and their cognate receptors within the developing optic pathway as well as mechanisms underlying the plasticity of guidance responses also are starting to be understood. This review will focus on our current understanding of the molecular mechanisms directing the early development of functional connections in the developing visual system and the insights these studies have provided into general mechanisms of axon guidance.
Collapse
Affiliation(s)
- Lynda Erskine
- Division of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | |
Collapse
|
40
|
Chalasani SH, Sabol A, Xu H, Gyda MA, Rasband K, Granato M, Chien CB, Raper JA. Stromal cell-derived factor-1 antagonizes slit/robo signaling in vivo. J Neurosci 2007; 27:973-80. [PMID: 17267551 PMCID: PMC6673187 DOI: 10.1523/jneurosci.4132-06.2007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinal ganglion cell axons exit the eye, enter the optic stalk, cross the ventral midline at the optic chiasm, and terminate in the optic tectum of the zebrafish. While in the optic stalk, they grow immediately adjacent to cells expressing the powerful retinal axon repellent slit2. The chemokine stromal cell-derived factor-1 (SDF1) is expressed within the optic stalk and its receptor CXCR4 is expressed in retinal ganglion cells. SDF1 makes cultured retinal axons less responsive to slit2. Here, we show that reducing SDF1 signaling in vivo rescues retinal axon pathfinding errors in zebrafish mutants that have a partial functional loss of the slit receptor robo2. In contrast, reducing SDF1 signaling in animals that completely lack the robo2 receptor does not rescue retinal guidance errors. These results demonstrate that endogenous levels of SDF1 antagonize the repellent effects of slit/robo signaling in vivo and that this antagonism is important during axonal pathfinding.
Collapse
Affiliation(s)
| | | | | | - Michael A. Gyda
- Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Kendall Rasband
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, Utah 84132
| | - Michael Granato
- Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, Utah 84132
| | | |
Collapse
|
41
|
Kuan YS, Yu HH, Moens CB, Halpern ME. Neuropilin asymmetry mediates a left-right difference in habenular connectivity. Development 2007; 134:857-65. [PMID: 17251263 DOI: 10.1242/dev.02791] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The medial habenular nuclei of the zebrafish diencephalon, which lie bilateral to the pineal complex, exhibit left-right differences in their neuroanatomy, gene expression profiles and axonal projections to the unpaired midbrain target--the interpeduncular nucleus (IPN). Efferents from the left habenula terminate along the entire dorsoventral extent of the IPN, whereas axons from the right habenula project only to the ventral IPN. How this left-right difference in connectivity is established and the factors involved in differential target recognition are unknown. Prior to IPN innervation, we find that only the left habenula expresses the zebrafish homologue of Neuropilin1a (Nrp1a), a receptor for class III Semaphorins (Sema3s). Directional asymmetry of nrp1a expression relies on Nodal signaling and the presence of the left-sided parapineal organ. Loss of Nrp1a, through parapineal ablation or depletion by antisense morpholinos, prevents left habenular neurons from projecting to the dorsal IPN. Selective depletion of Sema3D, but not of other Sema family members, similarly disrupts innervation of the dorsal IPN. Conversely, Sema3D overexpression results in left habenular projections that extend to the dorsal IPN, as well as beyond the target. The results indicate that Sema3D acts in concert with Nrp1a to guide neurons on the left side of the brain to innervate the target nucleus differently than those on the right side.
Collapse
Affiliation(s)
- Yung-Shu Kuan
- Carnegie Institution of Washington, Department of Embryology, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
42
|
Berndt JD, Halloran MC. Semaphorin 3d promotes cell proliferation and neural crest cell development downstream of TCF in the zebrafish hindbrain. Development 2006; 133:3983-92. [PMID: 16971468 DOI: 10.1242/dev.02583] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neural crest cells (NCCs) are pluripotent migratory cells that are crucial to the development of the peripheral nervous system, pigment cells and craniofacial cartilage and bone. NCCs are specified within the dorsal ectoderm and undergo an epithelial to mesenchymal transition (EMT) in order to migrate to target destinations where they differentiate. Here we report a role for a member of the semaphorin family of cell guidance molecules in NCC development. Morpholino-mediated knockdown of Sema3d inhibits the proliferation of hindbrain neuroepithelial cells. In addition, Sema3d knockdown reduces markers of migratory NCCs and disrupts NCC-derived tissues. Similarly, expression of a dominant-repressor form of TCF (DeltaTCF) reduces hindbrain cell proliferation and leads to a disruption of migratory NCC markers. Moreover, expression of DeltaTCF downregulates sema3d RNA expression. Finally, Sema3d overexpression rescues reduced proliferation caused by DeltaTCF expression, suggesting that Sema3d lies downstream of Wnt/TCF signaling in the molecular pathway thought to control cell cycle in NCC precursors.
Collapse
Affiliation(s)
- Jason D Berndt
- Department of Zoology and Anatomy and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
43
|
Piechotta K, Dudanova I, Missler M. The resilient synapse: insights from genetic interference of synaptic cell adhesion molecules. Cell Tissue Res 2006; 326:617-42. [PMID: 16855838 DOI: 10.1007/s00441-006-0267-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 05/31/2006] [Indexed: 01/05/2023]
Abstract
Synaptic cell adhesion molecules (SCAMs) are mostly membrane-anchored molecules with extracellular domains that extend into the synaptic cleft. Prototypical SCAMs interact with homologous or heterologous molecules on the surface of adjacent cells, ensuring the precise apposition of pre- and postsynaptic elements. More recent definitions of SCAMs often include molecules involved in axon pathfinding, cell recognition and synaptic differentiation events, making SCAMs functionally and molecularly a highly diverse group. In this review, we summarize the proposed in vivo functions of a large variety of SCAMs. We mainly focus on results obtained from analyses of genetic model organisms, mostly mouse knockout mutants, lacking expression of the respective candidate genes. In contrast to the substantial effect yielded by some knockouts of molecules involved in synaptic vesicle release, no SCAM mutant has been reported thus far that shows a prominently altered structure of the majority of synapses or even lacks synapses altogether. This surprising resilience of synaptic structure might be explained by a high redundancy between different SCAMs, by the assumption that the crucial molecular players in synapse structure have yet to be discovered or by a grand variability in the mechanisms of synapse formation that underlies the diversity of synapses. Whatever the final answer turns out to be, the genetic dissection of the SCAM superfamilies has led to a much better understanding of the different steps required to form, differentiate and modify a synapse.
Collapse
Affiliation(s)
- Kerstin Piechotta
- Center for Physiology and Pathophysiology, Georg-August University, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | |
Collapse
|
44
|
Williams SE, Grumet M, Colman DR, Henkemeyer M, Mason CA, Sakurai T. A role for Nr-CAM in the patterning of binocular visual pathways. Neuron 2006; 50:535-47. [PMID: 16701205 DOI: 10.1016/j.neuron.2006.03.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 02/23/2006] [Accepted: 03/28/2006] [Indexed: 01/06/2023]
Abstract
Retinal ganglion cell (RGC) axons diverge within the optic chiasm to project to opposite sides of the brain. In mouse, contralateral RGCs are distributed throughout the retina, whereas ipsilateral RGCs are restricted to the ventrotemporal crescent (VTC). While repulsive guidance mechanisms play a major role in the formation of the ipsilateral projection, little is known about the contribution of growth-promoting interactions to the formation of binocular visual projections. Here, we show that the cell adhesion molecule Nr-CAM is expressed by RGCs that project contralaterally and is critical for the guidance of late-born RGCs within the VTC. Blocking Nr-CAM function causes an increase in the size of the ipsilateral projection and reduces neurite outgrowth on chiasm cells in an age- and region-specific manner. Finally, we demonstrate that EphB1/ephrin-B2-mediated repulsion and Nr-CAM-mediated attraction comprise distinct molecular programs that each contributes to the proper formation of binocular visual pathways.
Collapse
Affiliation(s)
- Scott E Williams
- Center for Neurobiology and Behavior and Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Binocular vision relies upon the existence of contralateral and ispilateral projections from retinal ganglion cells. Contacts between visual axons and optic chiasm cells are critical for the sorting of crossed and uncrossed projections during development. In this issue of Neuron, a study by Williams et al. shows that the cell adhesion molecule Nr-CAM facilitates/promotes the decussation of contralateral axons across the chiasm.
Collapse
|