1
|
Paudel S, McLeod S, Gjorcheska S, Barske L. Pax9 drives development of the upper jaw but not teeth in zebrafish. Dev Biol 2025; 524:1-16. [PMID: 40306478 DOI: 10.1016/j.ydbio.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/07/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Loss of dentition has occurred repeatedly throughout vertebrate evolution. Cyprinid fish, including zebrafish, form teeth only deep within the pharynx, not on their oral jaws. However, zebrafish still robustly express transcription factors associated with mammalian tooth development in the neural crest-derived mesenchyme surrounding the mouth. We investigated whether this expression is vestigial or whether these factors contribute to the formation of non-tooth mesenchymal structures in the oral region, using Pax9 as a test case. Zebrafish homozygous for two different pax9 mutant alleles develop the normal complement of pharyngeal teeth but fail to form the premaxilla bone, most of the maxilla, and nasal and maxillary barbels. Lack of most of the upper jaw complex does not preclude effective feeding in the laboratory environment. We observe a significant deficit of sp7:EGFP + osteoblasts and adjacent alx4a:DsRed+ condensing mesenchyme around the maxilla, and no accumulation of either in the premaxillary domain. Loss of pax9 may prevent osteoprogenitors from maintaining the state of condensation required for full osteogenic differentiation. We conclude that Pax9 is not unequivocally required for all vertebrate tooth development but instead may be involved in the development of a variety of organs forming through mesenchymal condensation around the mouth.
Collapse
Affiliation(s)
- Sandhya Paudel
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sarah McLeod
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stefani Gjorcheska
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Lovely CB. Bone morphogenetic protein signaling pathway- Ethanol interactions disrupt palate formation independent of gata3. Reprod Toxicol 2025; 131:108754. [PMID: 39586481 PMCID: PMC11634638 DOI: 10.1016/j.reprotox.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of neurological defects and craniofacial malformations, associated with ethanol teratogenicity. While there is growing evidence for a genetic component to FASD, little is known of the genes underlying these ethanol-induced defects. Along with timing and dosage, genetic predispositions may help explain the variability within FASD. From a screen for gene-ethanol interactions, we found that mutants for Bmp signaling components are ethanol-sensitive leading to defects in the zebrafish palate. Loss of Bmp signaling results in reductions in gata3 expression in the maxillary domain of the neural crest in the 1st pharyngeal arch, leading to palate defects while upregulation of human GATA3 rescues these defects. Here, we show that ethanol-treated Bmp mutants exhibit misshaped and/or broken trabeculae. Surprisingly, up regulation of GATA3 does not rescue ethanol-induced palate defects and gata3 expression was not altered in ethanol-treated Bmp mutants or dorsomorphin-treated larvae. Timing of ethanol sensitivity shows that Bmp mutants are ethanol sensitive from 10 to 18 hours post-fertilization (hpf), prior to Bmp's regulation of gata3 in palate formation. This is consistent with our previous work with dorsomorphin-dependent knock down of Bmp signaling from 10 to 18 hpf disrupting endoderm formation and subsequent jaw development. Overall, this suggests that ethanol disrupts Bmp-dependent palate development independent of and earlier than the role of gata3 in palate formation by disrupting epithelial development. Ultimately, these data demonstrate that zebrafish is a useful model to identify and characterize gene-ethanol interactions and this work will directly inform our understanding of FASD.
Collapse
Affiliation(s)
- C Ben Lovely
- University of Louisville, School of Medicine, Department of Biochemistry and Molecular Genetics, 319 Abraham Flexner Way, Louisville, KY 40202, USA.
| |
Collapse
|
3
|
Lovely CB. Bone Morphogenetic Protein signaling pathway - ethanol interactions disrupt palate formation independent of gata3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623833. [PMID: 39605565 PMCID: PMC11601317 DOI: 10.1101/2024.11.15.623833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of neurological defects and craniofacial malformations, associated with ethanol teratogenicity. While there is growing evidence for a genetic component to FASD, little is known of the genes underlying these ethanol-induced defects. Along with timing and dosage, genetic predispositions may help explain the variability within FASD. From a screen for gene-ethanol interactions, we found that mutants for Bmp signaling components are ethanol-sensitive leading to defects in the zebrafish palate. Loss of Bmp signaling results in reductions in gata3 expression in the maxillary domain of the neural crest in the 1st pharyngeal arch, leading to palate defects while upregulation of human GATA3 rescues these defects. Here, we show that ethanol-treated Bmp mutants exhibit misshaped and/or broken trabeculae. Surprisingly, up regulation of GATA3 does not rescue ethanol-induced palate defects and gata3 expression was not altered in ethanol-treated Bmp mutants or dorsomorphin-treated larvae. Timing of ethanol sensitivity shows that Bmp mutants are ethanol sensitive from 10-18 hours post-fertilization (hpf), prior to Bmp's regulation of gata3 in palate formation. This is consistent with our previous work with dorsomorphin-dependent knock down of Bmp signaling from 10-18 hpf disrupting endoderm formation and subsequent jaw development. Overall, this suggests that ethanol disrupts Bmp-dependent palate development independent of and earlier than the role of gata3 in palate formation by disrupting epithelial development. Ultimately, these data demonstrate that zebrafish is a useful model to identify and characterize gene-ethanol interactions and this work will directly inform our understanding of FASD. Highlights Bmp pathway mutants are ethanol sensitive resulting in palate defects. Ethanol disrupts Bmp-dependent palate development independent of gata3 . Timing of ethanol sensitivity suggests ethanol disrupts Bmp-dependent epithelial morphogenesis.
Collapse
|
4
|
Klem JR, Schwantes-An TH, Abreu M, Suttie M, Gray R, Vo H, Conley G, Foroud TM, Wetherill L, Lovely CB. Mutations in the Bone Morphogenetic Protein signaling pathway sensitize zebrafish and humans to ethanol-induced jaw malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.28.546932. [PMID: 37425959 PMCID: PMC10327032 DOI: 10.1101/2023.06.28.546932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) describe ethanol-induced developmental defects including craniofacial malformations. While ethanol-sensitive genetic mutations contribute to facial malformations, the impacted cellular mechanisms remain unknown. Bmp signaling is a key regulator of epithelial morphogenesis driving facial development, providing a possible ethanol-sensitive mechanism. We found that zebrafish mutants for Bmp signaling components are ethanol-sensitive and affect anterior pharyngeal endoderm shape and gene expression, indicating ethanol-induced malformations of the anterior pharyngeal endoderm cause facial malformations. Integrating FASD patient data, we provide the first evidence that variants in the human Bmp receptor gene BMPR1B associate with ethanol-related differences in jaw volume. Our results show that ethanol exposure disrupts proper morphogenesis of, and tissue interactions between, facial epithelia that mirror overall viscerocranial shape changes and are predictive for Bmp-ethanol associations in human jaw development. Our data provide a mechanistic paradigm linking ethanol to disrupted epithelial cell behaviors that underlie facial defects in FASD. Summary Statement In this study, we apply a unique combination of zebrafish-based approaches and human genetic and facial dysmorphology analyses to resolve the cellular mechanisms driven by the ethanol-sensitive Bmp pathway.
Collapse
|
5
|
Abrar M, Ali S, Hussain I, Khatoon H, Batool F, Ghazanfar S, Corcoran D, Kawakami Y, Abbasi AA. Cis-regulatory control of mammalian Trps1 gene expression. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:85-100. [PMID: 38369890 PMCID: PMC10978278 DOI: 10.1002/jez.b.23246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
TRPS1 serves as the causative gene for tricho-rhino phalangeal syndrome, known for its craniofacial and skeletal abnormalities. The Trps1 gene encodes a protein that represses Wnt signaling through strong interactions with Wnt signaling inhibitors. The identification of genomic cis-acting regulatory sequences governing Trps1 expression is crucial for understanding its role in embryogenesis. Nevertheless, to date, no investigations have been conducted concerning these aspects of Trps1. To identify deeply conserved noncoding elements (CNEs) within the Trps1 locus, we employed a comparative genomics approach, utilizing slowly evolving fish such as coelacanth and spotted gar. These analyses resulted in the identification of eight CNEs in the intronic region of the Trps1 gene. Functional characterization of these CNEs in zebrafish revealed their regulatory potential in various tissues, including pectoral fins, heart, and pharyngeal arches. RNA in-situ hybridization experiments revealed concordance between the reporter expression pattern induced by the identified set of CNEs and the spatial expression pattern of the trps1 gene in zebrafish. Comparative in vivo data from zebrafish and mice for CNE7/hs919 revealed conserved functions of these enhancers. Each of these eight CNEs was further investigated in cell line-based reporter assays, revealing their repressive potential. Taken together, in vivo and in vitro assays suggest a context-dependent dual functionality for the identified set of Trps1-associated CNE enhancers. This functionally characterized set of CNE-enhancers will contribute to a more comprehensive understanding of the developmental roles of Trps1 and can aid in the identification of noncoding DNA variants associated with human diseases.
Collapse
Affiliation(s)
- Muhammad Abrar
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Shahid Ali
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Irfan Hussain
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
- Center of regenerative medicine and stem cells research Aga Khan University hospital Karachi
| | - Hizran Khatoon
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Fatima Batool
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agriculture Research Centre (NARC), Islamabad-45500, Pakistan
| | - Dylan Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 United States
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 United States
| | - Amir Ali Abbasi
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| |
Collapse
|
6
|
Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol 2024; 12:1338070. [PMID: 38385025 PMCID: PMC10879340 DOI: 10.3389/fcell.2024.1338070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.
Collapse
|
7
|
da Cunha JI, Barauna AMD, Garcez RC. Prechordal structures act cooperatively in early trabeculae development of gnathostome skull. Cells Dev 2023; 176:203879. [PMID: 37844659 DOI: 10.1016/j.cdev.2023.203879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The vertebrate skull is formed by mesoderm and neural crest (NC) cells. The mesoderm contributes to the skull chordal domain, with the notochord playing an essential role in this process. The NC contributes to the skull prechordal domain, prompting investigation into the embryonic structures involved in prechordal neurocranium cartilage formation. The trabeculae cartilage, a structure of the prechordal neurocranium, arises at the convergence of prechordal plate (PCP), ventral midline (VM) cells of the diencephalon, and dorsal oral ectoderm. This study examines the molecular participation of these embryonic structures in gnathostome trabeculae development. PCP-secreted SHH induces its expression in VM cells of the diencephalon, initiating a positive feedback loop involving SIX3 and GLI1. SHH secreted by the VM cells of the diencephalon acts on the dorsal oral ectoderm, stimulating condensation of NC cells to form trabeculae. SHH from the prechordal region affects the expression of SOX9 in NC cells. BMP7 and SHH secreted by PCP induce NKX2.1 expression in VM cells of the diencephalon, but this does not impact trabeculae formation. Molecular cooperation between PCP, VM cells of the diencephalon, and dorsal oral ectoderm is crucial for craniofacial development by NC cells in the prechordal domain.
Collapse
Affiliation(s)
- Jaqueline Isoppo da Cunha
- Graduate Program of Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Stem Cell and Tissue Regeneration Laboratory (LACERT), Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Alessandra Maria Duarte Barauna
- Graduate Program of Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Stem Cell and Tissue Regeneration Laboratory (LACERT), Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ricardo Castilho Garcez
- Graduate Program of Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Stem Cell and Tissue Regeneration Laboratory (LACERT), Federal University of Santa Catarina, Florianopolis, SC, Brazil; Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
8
|
Yang S, Xu X, Yin Z, Liu Y, Wang H, Guo J, Wang F, Bao Y, Zhang T, Sun S. nkx2.3 is responsible for posterior pharyngeal cartilage formation by inhibiting Fgf signaling. Heliyon 2023; 9:e21915. [PMID: 38034615 PMCID: PMC10682621 DOI: 10.1016/j.heliyon.2023.e21915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Nkx2.3, a transcription factor, plays important roles in various developmental processes. However, the mechanisms underlying nkx2.3's regulation of pouch and pharyngeal arch development in zebrafish remain unclear. In this study, we demonstrated that knockdown or knockout of nkx2.3 resulted in the absence of posterior ceratobranchial cartilages in zebrafish. The absence of posterior pharyngeal cartilages is a consequence of the compromised proliferation and differentiation and survival of cranial neural crest cells (CNCCs). Notably, we found that nkx2.3 was not involved in endoderm pouch formation. Additionally, our findings suggested that nkx2.3 negatively regulated Fibroblast growth factor (Fgf) signaling, as overexpression of fgf8 could mimic the phenotype observed in nkx2.3 morphants, suppressing CNCC differentiation. Moreover, inhibiting Fgf signaling restored the abnormalities in posterior cartilages induced by nkx2.3 knockdown. These findings establish the essential role of nkx2.3 in the development of posterior ceratobranchial cartilages through the inhibition of fgf8.
Collapse
Affiliation(s)
- Shuyan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xin Xu
- Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zheng Yin
- Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yuelin Liu
- Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Handong Wang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yihua Bao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| |
Collapse
|
9
|
Wei Z, Hong Q, Ding Z, Liu J. cxcl12a plays an essential role in pharyngeal cartilage development. Front Cell Dev Biol 2023; 11:1243265. [PMID: 37860819 PMCID: PMC10582265 DOI: 10.3389/fcell.2023.1243265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Background: Neural crest cells constitute a distinct set of multipotent cells that undergo migration along predefined pathways, culmination in the differentiation into a plethora of cell types, including components of the pharyngeal cartilage. The neurocranium is composite structure derived from both cranial neural crest and mesoderm cells, whereas the pharyngeal skeletal elements-including the mandibular and branchial arches-are exclusively formed by craniofacial neural crest cells. Previous studies have elucidated the critical involvement of the chemokine signaling axis Cxcl12b/Cxcr4a in craniofacial development in zebrafish (Danio rerio). Nonetheless, the function contribution of Cxcl12a and Cxcr4b-the homologous counterparts of Cxcl12b and Cxcr4a-remain largely unexplored. Methods: In the present study, mutant lines for cxcl12a and cxcr4b were generated employing CRISPR/Cas9 system. Temporal and spatial expression patterns of specific genes were assessed using in situ hybridization and dual-color fluorescence in situ hybridization techniques. High-resolution confocal microscopy was utilized for in vivo imaging to detect the pharyngeal arch or pouch patterning. Additionally, cartilage formation within the craniofacial region was analyzed via Alcian blue staining, and the proliferation and apoptosis rates of craniofacial neural crest cells were quantified through BrdU incorporation and TUNEL staining. Results: Our data reveals that the deletion of the chemokine gene cxcl12a results in a marked diminution of pharyngeal cartilage elements, attributable to compromised proliferation of post-migratory craniofacial neural crest cells. Subsequent experiments confirmed that Cxcl12a and Cxcl12b exhibit a synergistic influence on pharyngeal arch and pouch formation. Conclusion: Collectively, the present investigation furnishes compelling empirical evidence supporting the indispensable role of Cxcl2a in craniofacial cartilage morphogenesis, albeit cxcr4b mutants exert a minimal impact on this biological process. We delineate that Cxcl12a is essential for chondrogenesis in zebrafish, primarily by promoting the proliferation of craniofacial neural crest cells. Furthermore, we proposed a conceptual framework wherein Cxcl12a and Cxcl12b function synergistically in orchestrating both the pharyngeal arch and pouch morphogenesis.
Collapse
Affiliation(s)
- Zhaohui Wei
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiang Hong
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Zijiao Ding
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jingwen Liu
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Ulhaq ZS, Tse WKF. Perfluorohexanesulfonic acid (PFHxS) induces oxidative stress and causes developmental toxicities in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131722. [PMID: 37263022 DOI: 10.1016/j.jhazmat.2023.131722] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Perfluorohexanesulfonic acid (PFHxS) is a short-chain perfluoroalkyl substance widely used to replace the banned perfluorooctanesulfonic acid (PFOS) in different industrial and household products. It has currently been identified in the environment and human bodies; nonetheless, the possible toxicities are not well-known. Zebrafish have been used as a toxicant screening model due to their fast and transparent developmental processes. In this study, zebrafish embryos were exposed to PFHxS for five days, and various experiments were performed to monitor the developmental and cellular processes. Liquid chromatography-mass spectrometry (LC/MS) analysis confirmed that PFHxS was absorbed and accumulated in the zebrafish embryos. We reported that 2.5 µM or higher PFHxS exposure induced phenotypic abnormalities, marked by developmental delay in the mid-hind brain boundary and yolk sac edema. Additionally, larvae exposed to PFHxS displayed facial malformation due to the reduction of neural crest cell expression. RNA sequencing analysis further identified 4643 differentiated expressed transcripts in 5 µM PFHxS-exposed 5-days post fertilization (5-dpf) larvae. Bioinformatics analysis revealed that glucose metabolism, lipid metabolism, as well as oxidative stress were enriched in the PFHxS-exposed larvae. To validate these findings, a series of biological experiments were conducted. PFHxS exposure led to a nearly 4-fold increase in reactive oxygen species, possibly due to hyperglycemia and impaired glutathione balance. The Oil Red O' staining and qPCR analysis strengthens the notions that lipid metabolism was disrupted, leading to lipid accumulation, lipid peroxidation, and malondialdehyde formation. All these alterations ultimately affected cell cycle events, resulting in S and G2/M cell cycle arrest. In conclusion, our study demonstrated that PFHxS could accumulate and induce various developmental toxicities in aquatic life, and such data might assist the government to accelerate the regulatory policy on PFHxS usage.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 8190395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Republic of Indonesia, Cibinong 16911, Indonesia
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 8190395, Japan.
| |
Collapse
|
11
|
Mazumdar R, Eberhart JK. Loss of Nicotinamide nucleotide transhydrogenase sensitizes embryos to ethanol-induced neural crest and neural apoptosis via generation of reactive oxygen species. Front Neurosci 2023; 17:1154621. [PMID: 37360166 PMCID: PMC10289183 DOI: 10.3389/fnins.2023.1154621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/10/2023] [Indexed: 06/28/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are a continuum of birth defects caused by prenatal alcohol exposure. FASD are the most common environmentally induced birth defect and are highly variable. The genetics of an individual influence the severity of their FASD phenotype. However, the genes that sensitize an individual to ethanol-induced birth defects are largely unknown. The ethanol-sensitive mouse substrain, C57/B6J, carries several known mutations including one in Nicotinamide nucleotide transhydrogenase (Nnt). Nnt is a mitochondrial transhydrogenase thought to have an important role in detoxifying reactive oxygen species (ROS) and ROS has been implicated in ethanol teratogenesis. To directly test the role of Nnt in ethanol teratogenesis, we generated zebrafish nnt mutants via CRISPR/Cas9. Zebrafish embryos were dosed with varying concentrations of ethanol across different timepoints and assessed for craniofacial malformations. We utilized a ROS assay to determine if this could be a contributing factor of these malformations. We found that exposed and unexposed mutants had higher levels of ROS compared to their wildtype counterparts. When treated with ethanol, nnt mutants experienced elevated apoptosis in the brain and neural crest, a defect that was rescued by administration of the antioxidant, N-acetyl cysteine (NAC). NAC treatment also rescued most craniofacial malformations. Altogether this research demonstrates that ethanol-induced oxidative stress leads to craniofacial and neural defects due to apoptosis in nnt mutants. This research further supports the growing body of evidence implicating oxidative stress in ethanol teratogenesis. These findings suggest that antioxidants can be used as a potential therapeutic in the treatment of FASD.
Collapse
Affiliation(s)
- Rayna Mazumdar
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, TX, United States
- Waggoner Center for Alcohol and Addiction Research, School of Pharmacy, University of Texas at Austin, Austin, TX, United States
| | - Johann K. Eberhart
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, TX, United States
- Waggoner Center for Alcohol and Addiction Research, School of Pharmacy, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
12
|
Everson JL, Tseng YC, Eberhart JK. High-throughput detection of craniofacial defects in fluorescent zebrafish. Birth Defects Res 2023; 115:371-389. [PMID: 36369674 PMCID: PMC9898129 DOI: 10.1002/bdr2.2127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/14/2022]
Abstract
Losses and malformations of cranial neural crest cell (cNCC) derivatives are a hallmark of several common brain and face malformations. Nevertheless, the etiology of these cNCC defects remains unknown for many cases, suggesting a complex basis involving interactions between genetic and/or environmental factors. However, the sheer number of possible factors (thousands of genes and hundreds of thousands of toxicants) has hindered identification of specific interactions. Here, we develop a high-throughput analysis that will enable faster identification of multifactorial interactions in the genesis of craniofacial defects. Zebrafish embryos expressing a fluorescent marker of cNCCs (fli1:EGFP) were exposed to a pathway inhibitor standard or environmental toxicant, and resulting changes in fluorescence were measured in high-throughput using a fluorescent microplate reader to approximate cNCC losses. Embryos exposed to the environmental Hedgehog pathway inhibitor piperonyl butoxide (PBO), a Hedgehog pathway inhibitor standard, or alcohol (ethanol) exhibited reduced fli1:EGFP fluorescence at one day post fertilization, which corresponded with craniofacial defects at five days post fertilization. Combining PBO and alcohol in a co-exposure paradigm synergistically reduced fluorescence, demonstrating a multifactorial interaction. Using pathway reporter transgenics, we show that the plate reader assay is sensitive at detecting alterations in Hedgehog signaling, a critical regulator of craniofacial development. We go on to demonstrate that this technique readily detects defects in other important cell types, namely neurons. Together, these findings demonstrate this novel in vivo platform can predict developmental abnormalities and multifactorial interactions in high-throughput.
Collapse
Affiliation(s)
- Joshua L. Everson
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, Texas, USA,Waggoner Center for Alcohol and Addiction Research, School of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| | - Yung-Chia Tseng
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Johann K. Eberhart
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, Texas, USA,Waggoner Center for Alcohol and Addiction Research, School of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
13
|
Kar RD, Eberhart JK. Predicting Modifiers of Genotype-Phenotype Correlations in Craniofacial Development. Int J Mol Sci 2023; 24:1222. [PMID: 36674738 PMCID: PMC9864425 DOI: 10.3390/ijms24021222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Most human birth defects are phenotypically variable even when they share a common genetic basis. Our understanding of the mechanisms of this variation is limited, but they are thought to be due to complex gene-environment interactions. Loss of the transcription factor Gata3 associates with the highly variable human birth defects HDR syndrome and microsomia, and can lead to disruption of the neural crest-derived facial skeleton. We have demonstrated that zebrafish gata3 mutants model the variability seen in humans, with genetic background and candidate pathways modifying the resulting phenotype. In this study, we sought to use an unbiased bioinformatic approach to identify environmental modifiers of gata3 mutant craniofacial phenotypes. The LINCs L1000 dataset identifies chemicals that generate differential gene expression that either positively or negatively correlates with an input gene list. These chemicals are predicted to worsen or lessen the mutant phenotype, respectively. We performed RNA-seq on neural crest cells isolated from zebrafish across control, Gata3 loss-of-function, and Gata3 rescue groups. Differential expression analyses revealed 551 potential targets of gata3. We queried the LINCs database with the 100 most upregulated and 100 most downregulated genes. We tested the top eight available chemicals predicted to worsen the mutant phenotype and the top eight predicted to lessen the phenotype. Of these, we found that vinblastine, a microtubule inhibitor, and clofibric acid, a PPAR-alpha agonist, did indeed worsen the gata3 phenotype. The Topoisomerase II and RNA-pol II inhibitors daunorubicin and triptolide, respectively, lessened the phenotype. GO analysis identified Wnt signaling and RNA polymerase function as being enriched in our RNA-seq data, consistent with the mechanism of action of some of the chemicals. Our study illustrates multiple potential pathways for Gata3 function, and demonstrates a systematic, unbiased process to identify modifiers of genotype-phenotype correlations.
Collapse
Affiliation(s)
| | - Johann K. Eberhart
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
14
|
Lansdon LA, Dickinson A, Arlis S, Liu H, Hlas A, Hahn A, Bonde G, Long A, Standley J, Tyryshkina A, Wehby G, Lee NR, Daack-Hirsch S, Mohlke K, Girirajan S, Darbro BW, Cornell RA, Houston DW, Murray JC, Manak JR. Genome-wide analysis of copy-number variation in humans with cleft lip and/or cleft palate identifies COBLL1, RIC1, and ARHGEF38 as clefting genes. Am J Hum Genet 2023; 110:71-91. [PMID: 36493769 PMCID: PMC9892779 DOI: 10.1016/j.ajhg.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex, heterogeneous etiology. It is well established that common and rare sequence variants contribute to the formation of CL/P, but the contribution of copy-number variants (CNVs) to cleft formation remains relatively understudied. To fill this knowledge gap, we conducted a large-scale comparative analysis of genome-wide CNV profiles of 869 individuals from the Philippines and 233 individuals of European ancestry with CL/P with three primary goals: first, to evaluate whether differences in CNV number, amount of genomic content, or amount of coding genomic content existed within clefting subtypes; second, to assess whether CNVs in our cohort overlapped with known Mendelian clefting loci; and third, to identify unestablished Mendelian clefting genes. Significant differences in CNVs across cleft types or in individuals with non-syndromic versus syndromic clefts were not observed; however, several CNVs in our cohort overlapped with known syndromic and non-syndromic Mendelian clefting loci. Moreover, employing a filtering strategy relying on population genetics data that rare variants are on the whole more deleterious than common variants, we identify several CNV-associated gene losses likely driving non-syndromic clefting phenotypes. By prioritizing genes deleted at a rare frequency across multiple individuals with clefts yet enriched in our cohort of individuals with clefts compared to control subjects, we identify COBLL1, RIC1, and ARHGEF38 as clefting genes. CRISPR-Cas9 mutagenesis of these genes in Xenopus laevis and Danio rerio yielded craniofacial dysmorphologies, including clefts analogous to those seen in human clefting disorders.
Collapse
Affiliation(s)
- Lisa A Lansdon
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO 64108, USA; Department of Pathology, University of Missouri - Kansas City School of Medicine, Kansas City, MO 64108, USA
| | | | - Sydney Arlis
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Huan Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Arman Hlas
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Alyssa Hahn
- Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - Greg Bonde
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Abby Long
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Standley
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | | | - George Wehby
- College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Nanette R Lee
- Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
| | | | - Karen Mohlke
- University of North Carolina, Chapel Hill, NC 27514, USA
| | | | - Benjamin W Darbro
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - Robert A Cornell
- Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas W Houston
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - J Robert Manak
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
15
|
Everson JL, Eberhart JK. Gene-alcohol interactions in birth defects. Curr Top Dev Biol 2022; 152:77-113. [PMID: 36707215 PMCID: PMC9897481 DOI: 10.1016/bs.ctdb.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most human birth defects are thought to result from complex interactions between combinations of genetic and environmental factors. This is true even for conditions that, at face value, may appear simple and straightforward, like fetal alcohol spectrum disorders (FASD). FASD describe the full range of structural and neurological disruptions that result from prenatal alcohol exposure. While FASD require alcohol exposure, evidence from human and animal model studies demonstrate that additional genetic and/or environmental factors can influence the embryo's susceptibility to alcohol. Only a limited number of alcohol interactions in birth defects have been identified, with many sensitizing genetic and environmental factors likely yet to be identified. Because of this, while unsatisfying, there is no definitively "safe" dose of alcohol for all pregnancies. Determining these other factors, as well as mechanistically characterizing known interactions, is critical for better understanding and preventing FASD and requires combined scrutiny of human and model organism studies.
Collapse
Affiliation(s)
- Joshua L Everson
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, TX, United States; Waggoner Center for Alcohol and Addiction Research, School of Pharmacy, University of Texas at Austin, Austin, TX, United States.
| | - Johann K Eberhart
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, TX, United States; Waggoner Center for Alcohol and Addiction Research, School of Pharmacy, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
16
|
Cui R, Chen D, Li N, Cai M, Wan T, Zhang X, Zhang M, Du S, Ou H, Jiao J, Jiang N, Zhao S, Song H, Song X, Ma D, Zhang J, Li S. PARD3 gene variation as candidate cause of nonsyndromic cleft palate only. J Cell Mol Med 2022; 26:4292-4304. [PMID: 35789100 PMCID: PMC9344820 DOI: 10.1111/jcmm.17452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/16/2022] Open
Abstract
Nonsyndromic cleft palate only (NSCP) is a common congenital malformation worldwide. In this study, we report a three‐generation pedigree with NSCP following the autosomal‐dominant pattern. Whole‐exome sequencing and Sanger sequencing revealed that only the frameshift variant c.1012dupG [p. E338Gfs*26] in PARD3 cosegregated with the disease. In zebrafish embryos, ethmoid plate patterning defects were observed with PARD3 ortholog disruption or expression of patient‐derived N‐terminal truncating PARD3 (c.1012dupG), which implicated PARD3 in ethmoid plate morphogenesis. PARD3 plays vital roles in determining cellular polarity. Compared with the apical distribution of wild‐type PARD3, PARD3‐p. E338Gfs*26 mainly localized to the basal membrane in 3D‐cultured MCF‐10A epithelial cells. The interaction between PARD3‐p. E338Gfs*26 and endogenous PARD3 was identified by LC–MS/MS and validated by co‐IP. Immunofluorescence analysis showed that PARD3‐p. E338Gfs*26 substantially altered the localization of endogenous PARD3 to the basement membrane in 3D‐cultured MCF‐10A cells. Furthermore, seven variants, including one nonsense variant and six missense variants, were identified in the coding region of PARD3 in sporadic cases with NSCP. Subsequent analysis showed that PARD3‐p. R133*, like the insertion variant of c.1012dupG, also changed the localization of endogenous full‐length PARD3 and that its expression induced abnormal ethmoid plate morphogenesis in zebrafish. Based on these data, we reveal PARD3 gene variation as a novel candidate cause of nonsyndromic cleft palate only.
Collapse
Affiliation(s)
- Renjie Cui
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Dingli Chen
- Department of Clinical Laboratory, Central Hospital of Handan, Hebei, China
| | - Na Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Cai
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Teng Wan
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xueqiang Zhang
- Department of Clinical Laboratory, Central Hospital of Handan, Hebei, China.,Oral and Maxillofacial Surgery, Central Hospital of Handan, Hebei, China
| | - Meiqin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sichen Du
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huayuan Ou
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianjun Jiao
- Oral and Maxillofacial Surgery, Central Hospital of Handan, Hebei, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuangxia Zhao
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huaidong Song
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xuedong Song
- Department of Clinical Laboratory, Central Hospital of Handan, Hebei, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shouxia Li
- Department of Clinical Laboratory, Central Hospital of Handan, Hebei, China
| |
Collapse
|
17
|
Mutation of foxl1 Results in Reduced Cartilage Markers in a Zebrafish Model of Otosclerosis. Genes (Basel) 2022; 13:genes13071107. [PMID: 35885890 PMCID: PMC9319681 DOI: 10.3390/genes13071107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
Bone diseases such as otosclerosis (conductive hearing loss) and osteoporosis (low bone mineral density) can result from the abnormal expression of genes that regulate cartilage and bone development. The forkhead box transcription factor FOXL1 has been identified as the causative gene in a family with autosomal dominant otosclerosis and has been reported as a candidate gene in GWAS meta-analyses for osteoporosis. This potentially indicates a novel role for foxl1 in chondrogenesis, osteogenesis, and bone remodelling. We created a foxl1 mutant zebrafish strain as a model for otosclerosis and osteoporosis and examined jaw bones that are homologous to the mammalian middle ear bones, and mineralization of the axial skeleton. We demonstrate that foxl1 regulates the expression of collagen genes such as collagen type 1 alpha 1a and collagen type 11 alpha 2, and results in a delay in jawbone mineralization, while the axial skeleton remains unchanged. foxl1 may also act with other forkhead genes such as foxc1a, as loss of foxl1 in a foxc1a mutant background increases the severity of jaw calcification phenotypes when compared to each mutant alone. Our zebrafish model demonstrates atypical cartilage formation and mineralization in the zebrafish craniofacial skeleton in foxl1 mutants and demonstrates that aberrant collagen expression may underlie the development of otosclerosis.
Collapse
|
18
|
Dash S, Trainor PA. Nucleolin loss of function leads to aberrant Fibroblast Growth Factor signaling and craniofacial anomalies. Development 2022; 149:dev200349. [PMID: 35762670 PMCID: PMC9270975 DOI: 10.1242/dev.200349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
Ribosomal RNA (rRNA) transcription and ribosome biogenesis are global processes required for growth and proliferation of all cells, yet perturbation of these processes in vertebrates leads to tissue-specific defects termed ribosomopathies. Mutations in rRNA transcription and processing proteins often lead to craniofacial anomalies; however, the cellular and molecular reasons for these defects are poorly understood. Therefore, we examined the function of the most abundant nucleolar phosphoprotein, Nucleolin (Ncl), in vertebrate development. ncl mutant (ncl-/-) zebrafish present with craniofacial anomalies such as mandibulofacial hypoplasia. We observed that ncl-/- mutants exhibited decreased rRNA synthesis and p53-dependent apoptosis, consistent with a role in ribosome biogenesis. However, we found that Nucleolin also performs functions not associated with ribosome biogenesis. We discovered that the half-life of fgf8a mRNA was reduced in ncl-/- mutants, which perturbed Fgf signaling, resulting in misregulated Sox9a-mediated chondrogenesis and Runx2-mediated osteogenesis. Consistent with this model, exogenous FGF8 treatment significantly rescued the cranioskeletal phenotype in ncl-/- zebrafish, suggesting that Nucleolin regulates osteochondroprogenitor differentiation. Our work has therefore uncovered tissue-specific functions for Nucleolin in rRNA transcription and post-transcriptional regulation of growth factor signaling during embryonic craniofacial development.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
19
|
Huang W, Wu T, Wu K. Zebrafish (Danio rerio): A potential model to assess developmental toxicity of ketamine. CHEMOSPHERE 2022; 291:133033. [PMID: 34822872 DOI: 10.1016/j.chemosphere.2021.133033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 02/05/2023]
Abstract
Ketamine is a non-competitive antagonist of NMDA glutamate receptor. It is used as an anesthetic, analgesic, sedative, and anti-depressive agent in clinical practice and also an illegal recreational drug. The increasing use has contributed to the measurable levels of ketamine in both wastewaters and hospital effluents, thereby classified as an emergent contaminant. Lately, the potential toxicity of ketamine has raised serious concerns about its iatrogenic or illicit use during pregnancy, neonatal and childhood stages. However, to assess its long-term toxicity potentially by the use of early life stages in human and rodents is limited. In this regard, the zebrafish has been considered as excellent model organism for biosafety assessments of ketamine due to it boasts an in vivo model with the advantages of an in vitro assay. In this review, we summarize the current understanding of the reported toxicity studies with ketamine in early life stage of zebrafish. The adverse effects of ketamine are known to cause overall developmental and multi-organ toxicity, including cardio-, neuro-, and skeletal toxicity. Furthermore, multiple mechanisms are found to be responsible for perpetrating toxicity of ketamine. The current findings confluence to emphasize the zebrafish embryo as an appealing model system for developmental toxicity testing in higher vertebrates.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, PR China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, PR China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou, 515041, Guangdong, PR China
| |
Collapse
|
20
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
21
|
Burton DF, Boa-Amponsem OM, Dixon MS, Hopkins MJ, Herbin TA, Toney S, Tarpley M, Rodriguez BV, Fish EW, Parnell SE, Cole GJ, Williams KP. Pharmacological activation of the Sonic hedgehog pathway with a Smoothened small molecule agonist ameliorates the severity of alcohol-induced morphological and behavioral birth defects in a zebrafish model of fetal alcohol spectrum disorder. J Neurosci Res 2022; 100:1585-1601. [PMID: 35014067 PMCID: PMC9271529 DOI: 10.1002/jnr.25008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022]
Abstract
Ethanol exposure during the early stages of embryonic development can lead to a range of morphological and behavioral differences termed fetal alcohol spectrum disorders (FASDs). In a zebrafish model, we have shown that acute ethanol exposure at 8-10 hr postfertilization (hpf), a critical time of development, produces birth defects similar to those clinically characterized in FASD. Dysregulation of the Sonic hedgehog (Shh) pathway has been implicated as a molecular basis for many of the birth defects caused by prenatal alcohol exposure. We observed in zebrafish embryos that shh expression was significantly decreased by ethanol exposure at 8-10 hpf, while smo expression was much less affected. Treatment of zebrafish embryos with SAG or purmorphamine, small molecule Smoothened agonists that activate Shh signaling, ameliorated the severity of ethanol-induced developmental malformations including altered eye size and midline brain development. Furthermore, this rescue effect of Smo activation was dose dependent and occurred primarily when treatment was given after ethanol exposure. Markers of Shh signaling (gli1/2) and eye development (pax6a) were restored in embryos treated with SAG post-ethanol exposure. Since embryonic ethanol exposure has been shown to produce later-life neurobehavioral impairments, juvenile zebrafish were examined in the novel tank diving test. Our results further demonstrated that in zebrafish embryos exposed to ethanol, SAG treatment was able to mitigate long-term neurodevelopmental impairments related to anxiety and risk-taking behavior. Our results indicate that pharmacological activation of the Shh pathway at specific developmental timing markedly diminishes the severity of alcohol-induced birth defects.
Collapse
Affiliation(s)
- Derek F Burton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Oswald M Boa-Amponsem
- Integrated Biosciences PhD Program, North Carolina Central University, Durham, North Carolina, USA.,Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA
| | - Maria S Dixon
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Michael J Hopkins
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Te-Andre Herbin
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Shiquita Toney
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Blanca V Rodriguez
- Department of Biochemistry, Duke University, Durham, North Carolina, USA
| | - Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA.,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA.,Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
22
|
Dickinson AJG, Turner SD, Wahl S, Kennedy AE, Wyatt BH, Howton DA. E-liquids and vanillin flavoring disrupts retinoic acid signaling and causes craniofacial defects in Xenopus embryos. Dev Biol 2022; 481:14-29. [PMID: 34543654 PMCID: PMC8665092 DOI: 10.1016/j.ydbio.2021.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/03/2023]
Abstract
Environmental teratogens such as smoking are known risk factors for developmental disorders such as cleft palate. While smoking rates have declined, a new type of smoking, called vaping is on the rise. Vaping is the use of e-cigarettes to vaporize and inhale an e-liquid containing nicotine and food-like flavors. There is the potential that, like smoking, vaping could also pose a danger to the developing human. Rather than waiting for epidemiological and mammalian studies, we have turned to an aquatic developmental model, Xenopus laevis, to more quickly assess whether e-liquids contain teratogens that could lead to craniofacial malformations. Xenopus, like zebrafish, has the benefit of being a well-established developmental model and has also been effective in predicting whether a chemical could be a teratogen. We have determined that embryonic exposure to dessert flavored e-liquids can cause craniofacial abnormalities, including an orofacial cleft in Xenopus. To better understand the underlying mechanisms contributing to these defects, transcriptomic analysis of the facial tissues of embryos exposed to a representative dessert flavored e-liquid vapor extract was performed. Analysis of differentially expressed genes in these embryos revealed several genes associated with retinoic acid metabolism or the signaling pathway. Consistently, retinoic acid receptor inhibition phenocopied the craniofacial defects as those embryos exposed to the vapor extract of the e-liquid. Such malformations also correlated with a group of common differentially expressed genes, two of which are associated with midface birth defects in humans. Further, e-liquid exposure sensitized embryos to forming craniofacial malformations when they already had depressed retinoic acid signaling. Moreover, 13-cis-retinoic acid treatment could significantly reduce the e-liquid induced malformation in the midface. Such results suggest the possibility of an interaction between retinoic acid signaling and e-liquid exposure. One of the most popular and concentrated flavoring chemicals in dessert flavored e-liquids is vanillin. Xenopus embryos exposed to this chemical closely resembled embryos exposed to dessert-like e-liquids and a retinoic acid receptor antagonist. In summary, we determined that e-liquid chemicals, in particular vanillin, can cause craniofacial defects potentially by dysregulating retinoic acid signaling. This work warrants the evaluation of vanillin and other such flavoring additives in e-liquids on mammalian development.
Collapse
Affiliation(s)
| | - Stephen D Turner
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA; Signature Science LLC, Charlottesville, VA, USA
| | - Stacey Wahl
- Research and Education Department, Tompkins-McCaw Library for the Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Allyson E Kennedy
- Directorate for Computer and Information Science and Engineering, National Science Foundation, Alexandria, VA, USA
| | - Brent H Wyatt
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - Deborah A Howton
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
23
|
Wang B, Chen T, Wang A, Fang J, Wang J, Yao W, Wu Y. Anisodamine affects the pigmentation, mineral density, craniofacial area, and eye development in zebrafish embryos. J Appl Toxicol 2021; 42:1067-1077. [PMID: 34967033 DOI: 10.1002/jat.4278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022]
Abstract
Anisodamine is one of the major components of the tropine alkaloid family and is widely used in the treatment of pain, motion sickness, pupil dilatation, and detoxification of organophosphorus poisoning. As a muscarinic receptor antagonist, the low toxicity and moderate drug effect of anisodamine often result in high doses for clinical use, making it important to fully investigate its toxicity. In this study, zebrafish embryos were exposed to 1.3-, 2.6-, and 5.2-mM anisodamine for 7 days to study the toxic effects of drug exposure on pigmentation, mineral density, craniofacial area, and eye development. The results showed that exposure to anisodamine at 1.3 mM resulted in cranial malformations and abnormal pigmentation in zebrafish embryos; 2.6- and 5.2-mM anisodamine resulted in significant eye development defects and reduced bone density in zebrafish embryos. The associated toxicities were correlated with functional development of neural crest cells through gene expression (col1a2, ddb1, dicer1, mab21l1, mab21l2, sox10, tyrp1b, and mitfa) in the dose of 5.2-mM exposed group. In conclusion, this study provides new evidence of the developmental toxicity of high doses of anisodamine in aqueous solutions to organisms and provides a warning for the safe use of this drug.
Collapse
Affiliation(s)
- Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China
| | - Tianyi Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China
| | - Anli Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China.,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiakai Fang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China.,Thermo Fisher Scientific China Co Ltd, Hangzhou, Zhejiang, People's Republic of China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
24
|
Sanger TJ, Harding L, Kyrkos J, Turnquist AJ, Epperlein L, Nunez SA, Lachance D, Dhindsa S, Stroud JT, Diaz RE, Czesny B. Environmental Thermal Stress Induces Neuronal Cell Death and Developmental Malformations in Reptiles. Integr Org Biol 2021; 3:obab033. [PMID: 34877473 PMCID: PMC8643577 DOI: 10.1093/iob/obab033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 09/25/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Every stage of organismal life history is being challenged by global warming. Many species are already experiencing temperatures approaching their physiological limits; this is particularly true for ectothermic species, such as lizards. Embryos are markedly sensitive to thermal insult. Here, we demonstrate that temperatures currently experienced in natural nesting areas can modify gene expression levels and induce neural and craniofacial malformations in embryos of the lizard Anolis sagrei. Developmental abnormalities ranged from minor changes in facial structure to significant disruption of anterior face and forebrain. The first several days of postoviposition development are particularly sensitive to this thermal insult. These results raise new concern over the viability of ectothermic species under contemporary climate change. Herein, we propose and test a novel developmental hypothesis that describes the cellular and developmental origins of those malformations: cell death in the developing forebrain and abnormal facial induction due to disrupted Hedgehog signaling. Based on similarities in the embryonic response to thermal stress among distantly related species, we propose that this developmental hypothesis represents a common embryonic response to thermal insult among amniote embryos. Our results emphasize the importance of adopting a broad, multidisciplinary approach that includes both lab and field perspectives when trying to understand the future impacts of anthropogenic change on animal development.
Collapse
Affiliation(s)
- Thomas J Sanger
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - Laura Harding
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - Judith Kyrkos
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - Alexandrea J Turnquist
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - Lilian Epperlein
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - Sylvia A Nunez
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - Dryden Lachance
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - Seerat Dhindsa
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - James T Stroud
- Department of Biology, Washington University in St. Louis, Campus Box 1137. One Brookings Drive St. Louis, MO 63130-4899, USA
| | - Raul E Diaz
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Dr., Los Angeles, CA 90032, USA
| | - Beata Czesny
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| |
Collapse
|
25
|
Fernandes Y, Lovely CB. Zebrafish models of fetal alcohol spectrum disorders. Genesis 2021; 59:e23460. [PMID: 34739740 DOI: 10.1002/dvg.23460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) describes a wide range of structural deficits and cognitive impairments. FASD impacts up to 5% of children born in the United States each year, making ethanol one of the most common teratogens. Due to limitations and ethical concerns, studies in humans are limited in their ability to study FASD. Animal models have proven critical in identifying and characterizing the mechanisms underlying FASD. In this review, we will focus on the attributes of zebrafish that make it a strong model in which to study ethanol-induced developmental defects. Zebrafish have several attributes that make it an ideal model in which to study FASD. Zebrafish produced large numbers of externally fertilized, translucent embryos. With a high degree of genetic amenability, zebrafish are at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Work from multiple labs has shown that embryonic ethanol exposures result in defects in craniofacial, cardiac, ocular, and neural development. In addition to structural defects, ethanol-induced cognitive and behavioral impairments have been studied in zebrafish. Building upon these studies, work has identified ethanol-sensitive loci that underlie the developmental defects. However, analyses show there is still much to be learned of these gene-ethanol interactions. The zebrafish is ideally suited to expand our understanding of gene-ethanol interactions and their impact on FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.
Collapse
Affiliation(s)
- Yohaan Fernandes
- Department of Biology, University of South Dakota, Vermillion, South Dakota, USA
| | - C Ben Lovely
- Department of Biochemistry and Molecular Genetics, Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
26
|
Camacho-Macorra C, Sintes M, Tabanera N, Grasa I, Bovolenta P, Cardozo MJ. Mosmo Is Required for Zebrafish Craniofacial Formation. Front Cell Dev Biol 2021; 9:767048. [PMID: 34746155 PMCID: PMC8569894 DOI: 10.3389/fcell.2021.767048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022] Open
Abstract
Hedgehog (Hh) signaling is a highly regulated molecular pathway implicated in many developmental and homeostatic events. Mutations in genes encoding primary components or regulators of the pathway cause an array of congenital malformations or postnatal pathologies, the extent of which is not yet fully defined. Mosmo (Modulator of Smoothened) is a modulator of the Hh pathway, which encodes a membrane tetraspan protein. Studies in cell lines have shown that Mosmo promotes the internalization and degradation of the Hh signaling transducer Smoothened (Smo), thereby down-modulating pathway activation. Whether this modulation is essential for vertebrate embryonic development remains poorly explored. Here, we have addressed this question and show that in zebrafish embryos, the two mosmo paralogs, mosmoa and mosmob, are expressed in the head mesenchyme and along the entire ventral neural tube. At the cellular level, Mosmoa localizes at the plasma membrane, cytoplasmic vesicles and primary cilium in both zebrafish and chick embryos. CRISPR/Cas9 mediated inactivation of both mosmoa and mosmob in zebrafish causes frontonasal hypoplasia and craniofacial skeleton defects, which become evident in the adult fish. We thus suggest that MOSMO is a candidate to explain uncharacterized forms of human congenital craniofacial malformations, such as those present in the 16p12.1 chromosomal deletion syndrome encompassing the MOSMO locus.
Collapse
Affiliation(s)
- Carlos Camacho-Macorra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos Sintes
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noemí Tabanera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Grasa
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos J. Cardozo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
27
|
Kundrát M. Earliest migratory cephalic NC cells are potent to differentiate into dental ectomesenchyme of the two lungfish dentitions: tetrapodomorph ancestral condition of unconstrained capability of mesencephalic NC cells to form oral teeth. Naturwissenschaften 2021; 108:37. [PMID: 34448941 DOI: 10.1007/s00114-021-01750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/29/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
Reciprocal interactions between epithelial and neural crest-derived mesenchymal cells have been recognized in the evolutionary modulation of tetrapod odontodes, skeletal structures that include the teeth and tooth-integrated basal tissue. Using cell-tracking experiments, it has been demonstrated that mandibular neural crest cells, labelled during migration, extensively populate dental papillae of all tooth phenotypes of the lobe-finned fish, the Australian lungfish (Neoceratodus forsteri). Here, I report on an extension of this experimental study that earliest migrating NC cells are able to differentiate into odontogenic ectomesenchyme. Using vital dye cell-tracking to mark the mesencephalic neural crest prior to migration, I have found that the corresponding population of earliest migratory cells selectively relocated to dental papillae of both temporary and permanent dentitions of Neoceratodus. I noticed a gradient in distribution of the labelled cells which populated posterior teeth, pterygoid and prearticular (including associated trabecular and Meckelian cartilages; major relocation) much more densely than those in anterior marginal positions, temporary and vomeral permanent teeth (minor relocation). Contrary to mice and zebrafish, the odontogenic potency of mesencephalic neural crest cells is already programmed at the onset of the migration event in lungfish. This may imply that the morphogenic potential of mesencephalic neural crest cells to form teeth has been heterochronically shifted and constrained to later migratory populations of neural crest cells during the developmental evolution of derived tetrapods, or/and arrested in their expression in the oral development of some modern osteichthyans.
Collapse
Affiliation(s)
- Martin Kundrát
- Evolutionary Biodiversity Research Group, PaleoBioImaging Lab, Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Šafárik University, Jesenná 5, Košice, 04154, Slovak Republic.
| |
Collapse
|
28
|
Fabik J, Psutkova V, Machon O. The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage. Int J Mol Sci 2021; 22:7529. [PMID: 34299147 PMCID: PMC8303155 DOI: 10.3390/ijms22147529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The mandibular and hyoid arches collectively make up the facial skeleton, also known as the viscerocranium. Although all three germ layers come together to assemble the pharyngeal arches, the majority of tissue within viscerocranial skeletal components differentiates from the neural crest. Since nearly one third of all birth defects in humans affect the craniofacial region, it is important to understand how signalling pathways and transcription factors govern the embryogenesis and skeletogenesis of the viscerocranium. This review focuses on mouse and zebrafish models of craniofacial development. We highlight gene regulatory networks directing the patterning and osteochondrogenesis of the mandibular and hyoid arches that are actually conserved among all gnathostomes. The first part of this review describes the anatomy and development of mandibular and hyoid arches in both species. The second part analyses cell signalling and transcription factors that ensure the specificity of individual structures along the anatomical axes. The third part discusses the genes and molecules that control the formation of bone and cartilage within mandibular and hyoid arches and how dysregulation of molecular signalling influences the development of skeletal components of the viscerocranium. In conclusion, we notice that mandibular malformations in humans and mice often co-occur with hyoid malformations and pinpoint the similar molecular machinery controlling the development of mandibular and hyoid arches.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
| |
Collapse
|
29
|
Sidik A, Dixon G, Buckley DM, Kirby HG, Sun S, Eberhart JK. Exposure to ethanol leads to midfacial hypoplasia in a zebrafish model of FASD via indirect interactions with the Shh pathway. BMC Biol 2021; 19:134. [PMID: 34210294 PMCID: PMC8247090 DOI: 10.1186/s12915-021-01062-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Gene-environment interactions are likely to underlie most human birth defects. The most common known environmental contributor to birth defects is prenatal alcohol exposure. Fetal alcohol spectrum disorders (FASD) describe the full range of defects that result from prenatal alcohol exposure. Gene-ethanol interactions underlie susceptibility to FASD, but we lack a mechanistic understanding of these interactions. Here, we leverage the genetic tractability of zebrafish to address this problem. Results We first show that vangl2, a member of the Wnt/planar cell polarity (Wnt/PCP) pathway that mediates convergent extension movements, strongly interacts with ethanol during late blastula and early gastrula stages. Embryos mutant or heterozygous for vangl2 are sensitized to ethanol-induced midfacial hypoplasia. We performed single-embryo RNA-seq during early embryonic stages to assess individual variation in the transcriptional response to ethanol and determine the mechanism of the vangl2-ethanol interaction. To identify the pathway(s) that are disrupted by ethanol, we used these global changes in gene expression to identify small molecules that mimic the effects of ethanol via the Library of Integrated Network-based Cellular Signatures (LINCS L1000) dataset. Surprisingly, this dataset predicted that the Sonic Hedgehog (Shh) pathway inhibitor, cyclopamine, would mimic the effects of ethanol, despite ethanol not altering the expression levels of direct targets of Shh signaling. Indeed, we found that ethanol and cyclopamine strongly, but indirectly, interact to disrupt midfacial development. Ethanol also interacts with another Wnt/PCP pathway member, gpc4, and a chemical inhibitor of the Wnt/PCP pathway, blebbistatin, phenocopies the effect of ethanol. By characterizing membrane protrusions, we demonstrate that ethanol synergistically interacts with the loss of vangl2 to disrupt cell polarity required for convergent extension movements. Conclusions Our results show that the midfacial defects in ethanol-exposed vangl2 mutants are likely due to an indirect interaction between ethanol and the Shh pathway. Vangl2 functions as part of a signaling pathway that regulates coordinated cell movements during midfacial development. Ethanol exposure alters the position of a critical source of Shh signaling that separates the developing eye field into bilateral eyes, allowing the expansion of the midface. Collectively, our results shed light on the mechanism by which the most common teratogen can disrupt development. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01062-9.
Collapse
Affiliation(s)
- Alfire Sidik
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Institute for Neuroscience, Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, 78712, USA.
| | - Groves Dixon
- Department of Integrative Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Desire M Buckley
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Institute for Neuroscience, Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Hannah G Kirby
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Institute for Neuroscience, Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Shuge Sun
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Institute for Neuroscience, Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Johann K Eberhart
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Institute for Neuroscience, Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
30
|
Conservation of Zebrafish MicroRNA-145 and Its Role during Neural Crest Cell Development. Genes (Basel) 2021; 12:genes12071023. [PMID: 34209401 PMCID: PMC8306979 DOI: 10.3390/genes12071023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
The neural crest is a multipotent cell population that develops from the dorsal neural fold of vertebrate embryos in order to migrate extensively and differentiate into a variety of tissues. A number of gene regulatory networks coordinating neural crest cell specification and differentiation have been extensively studied to date. Although several publications suggest a common role for microRNA-145 (miR-145) in molecular reprogramming for cell cycle regulation and/or cellular differentiation, little is known about its role during in vivo cranial neural crest development. By modifying miR-145 levels in zebrafish embryos, abnormal craniofacial development and aberrant pigmentation phenotypes were detected. By whole-mount in situ hybridization, changes in expression patterns of col2a1a and Sry-related HMG box (Sox) transcription factors sox9a and sox9b were observed in overexpressed miR-145 embryos. In agreement, zebrafish sox9b expression was downregulated by miR-145 overexpression. In silico and in vivo analysis of the sox9b 3′UTR revealed a conserved potential miR-145 binding site likely involved in its post-transcriptional regulation. Based on these findings, we speculate that miR-145 participates in the gene regulatory network governing zebrafish chondrocyte differentiation by controlling sox9b expression.
Collapse
|
31
|
Swartz ME, Lovely CB, Eberhart JK. Variation in phenotypes from a Bmp-Gata3 genetic pathway is modulated by Shh signaling. PLoS Genet 2021; 17:e1009579. [PMID: 34033651 PMCID: PMC8184005 DOI: 10.1371/journal.pgen.1009579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/07/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
We sought to understand how perturbation of signaling pathways and their targets generates variable phenotypes. In humans, GATA3 associates with highly variable defects, such as HDR syndrome, microsomia and choanal atresia. We previously characterized a zebrafish point mutation in gata3 with highly variable craniofacial defects to the posterior palate. This variability could be due to residual Gata3 function, however, we observe the same phenotypic variability in gata3 null mutants. Using hsp:GATA3-GFP transgenics, we demonstrate that Gata3 function is required between 24 and 30 hpf. At this time maxillary neural crest cells fated to generate the palate express gata3. Transplantation experiments show that neural crest cells require Gata3 function for palatal development. Via a candidate approach, we determined if Bmp signaling was upstream of gata3 and if this pathway explained the mutant's phenotypic variation. Using BRE:d2EGFP transgenics, we demonstrate that maxillary neural crest cells are Bmp responsive by 24 hpf. We find that gata3 expression in maxillary neural crest requires Bmp signaling and that blocking Bmp signaling, in hsp:DN-Bmpr1a-GFP embryos, can phenocopy gata3 mutants. Palatal defects are rescued in hsp:DN-Bmpr1a-GFP;hsp:GATA3-GFP double transgenic embryos, collectively demonstrating that gata3 is downstream of Bmp signaling. However, Bmp attenuation does not alter phenotypic variability in gata3 loss-of-function embryos, implicating a different pathway. Due to phenotypes observed in hypomorphic shha mutants, the Sonic Hedgehog (Shh) pathway was a promising candidate for this pathway. Small molecule activators and inhibitors of the Shh pathway lessen and exacerbate, respectively, the phenotypic severity of gata3 mutants. Importantly, inhibition of Shh can cause gata3 haploinsufficiency, as observed in humans. We find that gata3 mutants in a less expressive genetic background have a compensatory upregulation of Shh signaling. These results demonstrate that the level of Shh signaling can modulate the phenotypes observed in gata3 mutants.
Collapse
Affiliation(s)
- Mary E. Swartz
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - C. Ben Lovely
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Johann K. Eberhart
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
32
|
Schnabl J, Litz MPH, Schneider C, PenkoffLidbeck N, Bashiruddin S, Schwartz MS, Alligood K, Devoto SH, Barresi MJF. Characterizing the diverse cells that associate with the developing commissures of the zebrafish forebrain. Dev Neurobiol 2021; 81:671-695. [PMID: 33314626 DOI: 10.1002/dneu.22801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/20/2020] [Accepted: 12/08/2020] [Indexed: 01/02/2023]
Abstract
During embryonic development of bilaterally symmetrical organisms, neurons send axons across the midline at specific points to connect the two halves of the nervous system with a commissure. Little is known about the cells at the midline that facilitate this tightly regulated process. We exploit the conserved process of vertebrate embryonic development in the zebrafish model system to elucidate the identity of cells at the midline that may facilitate postoptic (POC) and anterior commissure (AC) development. We have discovered that three different gfap+ astroglial cell morphologies persist in contact with pathfinding axons throughout commissure formation. Similarly, olig2+ progenitor cells occupy delineated portions of the postoptic and anterior commissures where they act as multipotent, neural progenitors. Moreover, we conclude that both gfap+ and olig2+ progenitor cells give rise to neuronal populations in both the telencephalon and diencephalon; however, these varied cell populations showed significant developmental timing differences between the telencephalon and diencephalon. Lastly, we also showed that fli1a+ mesenchymal cells migrate along the presumptive commissure regions before and during midline axon crossing. Furthermore, following commissure maturation, specific blood vessels formed at the midline of the POC and immediately ventral and parallel to the AC. This comprehensive account of the cellular populations that correlate with the timing and position of commissural axon pathfinding has supported the conceptual modeling and identification of the early forebrain architecture that may be necessary for proper commissure development.
Collapse
Affiliation(s)
- Jake Schnabl
- Department of Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Mackenzie P H Litz
- Department of Biological Sciences, Smith College, Northampton, MA, USA.,Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caitlin Schneider
- Department of Biological Sciences, Smith College, Northampton, MA, USA.,McGill University, Montreal, QC, Canada
| | | | - Sarah Bashiruddin
- Department of Biological Sciences, Smith College, Northampton, MA, USA.,Family Medicine Assoc, Westfield, MA, USA
| | - Morgan S Schwartz
- Department of Biological Sciences, Smith College, Northampton, MA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kristin Alligood
- Department of Biological Sciences, Smith College, Northampton, MA, USA.,Farmers Conservation Alliance, Hood River, OR, USA
| | | | - Michael J F Barresi
- Department of Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA.,Department of Biological Sciences, Smith College, Northampton, MA, USA
| |
Collapse
|
33
|
Mitchell JM, Sucharov J, Pulvino AT, Brooks EP, Gillen AE, Nichols JT. The alx3 gene shapes the zebrafish neurocranium by regulating frontonasal neural crest cell differentiation timing. Development 2021; 148:dev197483. [PMID: 33741714 PMCID: PMC8077506 DOI: 10.1242/dev.197483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/12/2021] [Indexed: 12/30/2022]
Abstract
During craniofacial development, different populations of cartilage- and bone-forming cells develop in precise locations in the head. Most of these cells are derived from pluripotent cranial neural crest cells and differentiate with distinct developmental timing and cellular morphologies. The mechanisms that divide neural crest cells into discrete populations are not fully understood. Here, we use single-cell RNA sequencing to transcriptomically define different populations of cranial neural crest cells. We discovered that the gene family encoding the Alx transcription factors is enriched in the frontonasal population of neural crest cells. Genetic mutant analyses indicate that alx3 functions to regulate the distinct differentiation timing and cellular morphologies among frontonasal neural crest cell subpopulations. This study furthers our understanding of how genes controlling developmental timing shape craniofacial skeletal elements.
Collapse
Affiliation(s)
- Jennyfer M. Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Juliana Sucharov
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anthony T. Pulvino
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elliott P. Brooks
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Austin E. Gillen
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Medicine, Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
34
|
Soukup V, Tazaki A, Yamazaki Y, Pospisilova A, Epperlein HH, Tanaka EM, Cerny R. Oral and Palatal Dentition of Axolotl Arises From a Common Tooth-Competent Zone Along the Ecto-Endodermal Boundary. Front Cell Dev Biol 2021; 8:622308. [PMID: 33505974 PMCID: PMC7829593 DOI: 10.3389/fcell.2020.622308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Vertebrate dentitions arise at various places within the oropharyngeal cavity including the jaws, the palate, or the pharynx. These dentitions develop in a highly organized way, where new tooth germs are progressively added adjacent to the initiator center, the first tooth. At the same time, the places where dentitions develop house the contact zones between the outer ectoderm and the inner endoderm, and this colocalization has instigated various suggestions on the roles of germ layers for tooth initiation and development. Here, we study development of the axolotl dentition, which is a complex of five pairs of tooth fields arranged into the typically tetrapod outer and inner dental arcades. By tracking the expression patterns of odontogenic genes, we reason that teeth of both dental arcades originate from common tooth-competent zones, one present on the mouth roof and one on the mouth floor. Progressive compartmentalization of these zones and a simultaneous addition of new tooth germs distinct for each prospective tooth field subsequently control the final shape and composition of the axolotl dentition. Interestingly, by following the fate of the GFP-labeled oral ectoderm, we further show that, in three out of five tooth field pairs, the first tooth develops right at the ecto-endodermal boundary. Our results thus indicate that a single tooth-competent zone gives rise to both dental arcades of a complex tetrapod dentition. Further, we propose that the ecto-endodermal boundary running through this zone should be accounted for as a potential source of instruction factors instigating the onset of the odontogenic program.
Collapse
Affiliation(s)
- Vladimír Soukup
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Akira Tazaki
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Yosuke Yamazaki
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Anna Pospisilova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | | | - Elly M Tanaka
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
35
|
Murillo-Rincón AP, Kaucka M. Insights Into the Complexity of Craniofacial Development From a Cellular Perspective. Front Cell Dev Biol 2020; 8:620735. [PMID: 33392208 PMCID: PMC7775397 DOI: 10.3389/fcell.2020.620735] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
The head represents the most complex part of the body and a distinctive feature of the vertebrate body plan. This intricate structure is assembled during embryonic development in the four-dimensional process of morphogenesis. The head integrates components of the central and peripheral nervous system, sensory organs, muscles, joints, glands, and other specialized tissues in the framework of a complexly shaped skull. The anterior part of the head is referred to as the face, and a broad spectrum of facial shapes across vertebrate species enables different feeding strategies, communication styles, and diverse specialized functions. The face formation starts early during embryonic development and is an enormously complex, multi-step process regulated on a genomic, molecular, and cellular level. In this review, we will discuss recent discoveries that revealed new aspects of facial morphogenesis from the time of the neural crest cell emergence till the formation of the chondrocranium, the primary design of the individual facial shape. We will focus on molecular mechanisms of cell fate specification, the role of individual and collective cell migration, the importance of dynamic and continuous cellular interactions, responses of cells and tissues to generated physical forces, and their morphogenetic outcomes. In the end, we will examine the spatiotemporal activity of signaling centers tightly regulating the release of signals inducing the formation of craniofacial skeletal elements. The existence of these centers and their regulation by enhancers represent one of the core morphogenetic mechanisms and might lay the foundations for intra- and inter-species facial variability.
Collapse
Affiliation(s)
| | - Marketa Kaucka
- Max Planck Research Group Craniofacial Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
36
|
Atukorala ADS, Ratnayake RK. Cellular and molecular mechanisms in the development of a cleft lip and/or cleft palate; insights from zebrafish (Danio rerio). Anat Rec (Hoboken) 2020; 304:1650-1660. [PMID: 33099891 DOI: 10.1002/ar.24547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Human cleft lip and/or palate (CLP) are immediately recognizable congenital abnormalities of the face. Lip and palate develop from facial primordia through the coordinated activities of ectodermal epithelium and neural crest cells (NCCs) derived from ectomesenchyme tissue. Subtle changes in the regulatory mechanisms of NCC or ectodermal epithelial cells can result in CLP. Genetic and environmental contributions or a combination of both play a significant role in the progression of CLP. Model organisms provide us with a wealth of information in understanding the pathophysiology and genetic etiology of this complex disease. Small teleost, zebrafish (Danio rerio) is one of the popular model in craniofacial developmental biology. The short generation time and large number of optically transparent, easily manipulated embryos increase the value of zebrafish to identify novel candidate genes and gene regulatory networks underlying craniofacial development. In addition, it is widely used to identify the mechanisms of environmental teratogens and in therapeutic drug screening. Here, we discuss the value of zebrafish as a model to understand epithelial and NCC induced ectomesenchymal cell activities during early palate morphogenesis and robustness of the zebrafish in modern research on identifying the genetic and environmental etiological factors of CLP.
Collapse
Affiliation(s)
- Atukorallaya Devi Sewvandini Atukorala
- Rady Faculty of Health Sciences, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ravindra Kumar Ratnayake
- Rady Faculty of Health Sciences, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
37
|
Pini J, Kueper J, Hu YD, Kawasaki K, Yeung P, Tsimbal C, Yoon B, Carmichael N, Maas RL, Cotney J, Grinblat Y, Liao EC. ALX1-related frontonasal dysplasia results from defective neural crest cell development and migration. EMBO Mol Med 2020; 12:e12013. [PMID: 32914578 PMCID: PMC7539331 DOI: 10.15252/emmm.202012013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
A pedigree of subjects presented with frontonasal dysplasia (FND). Genome sequencing and analysis identified a p.L165F missense variant in the homeodomain of the transcription factor ALX1 which was imputed to be pathogenic. Induced pluripotent stem cells (iPSC) were derived from the subjects and differentiated to neural crest cells (NCC). NCC derived from ALX1L165F/L165F iPSC were more sensitive to apoptosis, showed an elevated expression of several neural crest progenitor state markers, and exhibited impaired migration compared to wild-type controls. NCC migration was evaluated in vivo using lineage tracing in a zebrafish model, which revealed defective migration of the anterior NCC stream that contributes to the median portion of the anterior neurocranium, phenocopying the clinical presentation. Analysis of human NCC culture media revealed a change in the level of bone morphogenic proteins (BMP), with a low level of BMP2 and a high level of BMP9. Soluble BMP2 and BMP9 antagonist treatments were able to rescue the defective migration phenotype. Taken together, these results demonstrate a mechanistic requirement of ALX1 in NCC development and migration.
Collapse
Affiliation(s)
- Jonathan Pini
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| | - Janina Kueper
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
- Life and Brain CenterUniversity of BonnBonnGermany
| | - Yiyuan David Hu
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| | - Kenta Kawasaki
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| | - Pan Yeung
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| | - Casey Tsimbal
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| | - Baul Yoon
- Departments of Integrative Biology, Neuroscience, and Genetics Ph.D. Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Nikkola Carmichael
- Department of GeneticsBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Richard L Maas
- Department of GeneticsBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Justin Cotney
- Genetics and Genome SciencesUConn HealthFarmingtonCTUSA
| | - Yevgenya Grinblat
- Departments of Integrative Biology, Neuroscience, and Genetics Ph.D. Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Eric C Liao
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| |
Collapse
|
38
|
Everson JL, Batchu R, Eberhart JK. Multifactorial Genetic and Environmental Hedgehog Pathway Disruption Sensitizes Embryos to Alcohol-Induced Craniofacial Defects. Alcohol Clin Exp Res 2020; 44:1988-1996. [PMID: 32767777 PMCID: PMC7692922 DOI: 10.1111/acer.14427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is perhaps the most common environmental cause of human birth defects. These exposures cause a range of structural and neurological defects, including facial dysmorphologies, collectively known as fetal alcohol spectrum disorders (FASD). While PAE causes FASD, phenotypic outcomes vary widely. It is thought that multifactorial genetic and environmental interactions modify the effects of PAE. However, little is known of the nature of these modifiers. Disruption of the Hedgehog (Hh) signaling pathway has been suggested as a modifier of ethanol teratogenicity. In addition to regulating the morphogenesis of craniofacial tissues commonly disrupted in FASD, a core member of the Hh pathway, Smoothened, is susceptible to modulation by structurally diverse chemicals. These include environmentally prevalent teratogens like piperonyl butoxide (PBO), a synergist found in thousands of pesticide formulations. METHODS Here, we characterize multifactorial genetic and environmental interactions using a zebrafish model of craniofacial development. RESULTS We show that loss of a single allele of shha sensitized embryos to both alcohol- and PBO-induced facial defects. Co-exposure of PBO and alcohol synergized to cause more frequent and severe defects. The effects of this co-exposure were even more profound in the genetically susceptible shha heterozygotes. CONCLUSIONS Together, these findings shed light on the multifactorial basis of alcohol-induced craniofacial defects. In addition to further implicating genetic disruption of the Hh pathway in alcohol teratogenicity, our findings suggest that co-exposure to environmental chemicals that perturb Hh signaling may be important variables in FASD and related craniofacial disorders.
Collapse
Affiliation(s)
- Joshua L. Everson
- From the Department of Molecular BiosciencesSchool of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
- Waggoner Center for Alcohol and Addiction ResearchSchool of PharmacyUniversity of Texas at AustinAustinTexasUSA
| | - Rithik Batchu
- From the Department of Molecular BiosciencesSchool of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
| | - Johann K. Eberhart
- From the Department of Molecular BiosciencesSchool of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
- Waggoner Center for Alcohol and Addiction ResearchSchool of PharmacyUniversity of Texas at AustinAustinTexasUSA
| |
Collapse
|
39
|
Anderson RA, Schwalbach KT, Mui SR, LeClair EE, Topczewska JM, Topczewski J. Zebrafish models of skeletal dysplasia induced by cholesterol biosynthesis deficiency. Dis Model Mech 2020; 13:dmm042549. [PMID: 32430393 PMCID: PMC7328163 DOI: 10.1242/dmm.042549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/27/2020] [Indexed: 12/23/2022] Open
Abstract
Human disorders of the post-squalene cholesterol biosynthesis pathway frequently result in skeletal abnormalities, yet our understanding of the mechanisms involved is limited. In a forward-genetic approach, we have found that a late-onset skeletal mutant, named kolibernu7 , is the result of a cis-acting regulatory mutation leading to loss of methylsterol monooxygenase 1 (msmo1) expression within pre-hypertrophic chondrocytes. Generated msmo1nu81 knockdown mutation resulted in lethality at larval stage. We demonstrated that this is a result of both cholesterol deprivation and sterol intermediate accumulation by creating a mutation eliminating activity of Lanosterol synthase (Lss). Our results indicate that double lssnu60;msmo1nu81 and single lssnu60 mutants survive significantly longer than msmo1nu81 homozygotes. Liver-specific restoration of either Msmo1 or Lss in corresponding mutant backgrounds suppresses larval lethality. Rescued mutants develop dramatic skeletal abnormalities, with a loss of Msmo1 activity resulting in a more-severe patterning defect of a near-complete loss of hypertrophic chondrocytes marked by col10a1a expression. Our analysis suggests that hypertrophic chondrocytes depend on endogenous cholesterol synthesis, and blocking C4 demethylation exacerbates the cholesterol deficiency phenotype. Our findings offer new insight into the genetic control of bone development and provide new zebrafish models for human disorders of the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Rebecca A Anderson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin T Schwalbach
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Stephanie R Mui
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Elizabeth E LeClair
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Jolanta M Topczewska
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Jacek Topczewski
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| |
Collapse
|
40
|
Wu Y, Xu Z, Xu X, Fan L, Jiang X. Exposure to Metalaxyl Disturbs the Skeletal Development of Zebrafish Embryos. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:432-437. [PMID: 32072197 DOI: 10.1007/s00128-020-02806-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Metalaxyl is broadly applied in agriculture to control peronosporales-caused diseases in plant. To investigate the toxic effects, zebrafish embryos were exposed to metalaxyl at 5, 50 and 500 ng/L for 72 h, the development of larvae were assessed. A significant decreased survival rate, body length, hatching rate (48 h post-fertilization), and a significant increased spinal curvature rate were observed in the 500 ng/L treatment. The lengths of lower jaw, upper jaw and hyomandibular were significantly decreased in the 5, 50 and 500 ng/L groups; while the lower jaw width was significantly increased in the 500 ng/L group. The lengths of palatoquadrate, ceratohyal and ethmoid plate were reduced. Though cyp26a1 mRNA levels showed no significant change, the transcription of bmp2b (in the 500 ng/L group), ihh (in the 50 and 500 ng/L groups), shh (in the 5, 50 and 500 ng/L groups) were significantly up-regulated, which may be related to the abnormal development of the skeleton.
Collapse
Affiliation(s)
- Yuqiong Wu
- College of Tea and Food Science, Wuyi University, Wuyishan, 354300, Fujian, China.
| | - Zhenyi Xu
- College of Tea and Food Science, Wuyi University, Wuyishan, 354300, Fujian, China
| | - Xiaobin Xu
- College of Tea and Food Science, Wuyi University, Wuyishan, 354300, Fujian, China
| | - Li Fan
- College of Tea and Food Science, Wuyi University, Wuyishan, 354300, Fujian, China
| | - Xianbiao Jiang
- College of Tea and Food Science, Wuyi University, Wuyishan, 354300, Fujian, China
| |
Collapse
|
41
|
Ohshima H, Amizuka N. Oral biosciences: The annual review 2019. J Oral Biosci 2020; 62:1-8. [PMID: 32109566 DOI: 10.1016/j.job.2020.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Journal of Oral Biosciences is devoted to the advancement and dissemination of fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review features review articles in the fields of "Bone Cell Biology," "Microbiology," "Oral Heath," "Biocompatible Materials," "Mouth Neoplasm," and "Biological Evolution" in addition to the review articles by winners of the Lion Dental Research Award ("Role of nicotinic acetylcholine receptors for modulation of microcircuits in the agranular insular cortex" and "Phospholipase C-related catalytically inactive protein: A novel signaling molecule for modulating fat metabolism and energy expenditure") and the Rising Members Award ("Pain mechanism of oral ulcerative mucositis and the therapeutic traditional herbal medicine hangeshashinto," "Mechanisms underlying the induction of regulatory T cells by sublingual immunotherapy," and "Regulation of osteoclast function via Rho-Pkn3-c-Src pathways"), presented by the Japanese Association for Oral Biology. CONCLUSION These reviews in the Journal of Oral Biosciences have inspired the readers of the journal to broaden their knowledge regarding various aspects of oral biosciences. The current editorial review introduces these exciting review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Science, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo 060-8586, Japan
| |
Collapse
|
42
|
Lézot F, Corre I, Morice S, Rédini F, Verrecchia F. SHH Signaling Pathway Drives Pediatric Bone Sarcoma Progression. Cells 2020; 9:cells9030536. [PMID: 32110934 PMCID: PMC7140443 DOI: 10.3390/cells9030536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023] Open
Abstract
Primary bone tumors can be divided into two classes, benign and malignant. Among the latter group, osteosarcoma and Ewing sarcoma are the most prevalent malignant primary bone tumors in children and adolescents. Despite intensive efforts to improve treatments, almost 40% of patients succumb to the disease. Specifically, the clinical outcome for metastatic osteosarcoma or Ewing sarcoma remains poor; less than 30% of patients who present metastases will survive 5 years after initial diagnosis. One common and specific point of these bone tumors is their ability to deregulate bone homeostasis and remodeling and divert them to their benefit. Over the past years, considerable interest in the Sonic Hedgehog (SHH) pathway has taken place within the cancer research community. The activation of this SHH cascade can be done through different ways and, schematically, two pathways can be described, the canonical and the non-canonical. This review discusses the current knowledge about the involvement of the SHH signaling pathway in skeletal development, pediatric bone sarcoma progression and the related therapeutic options that may be possible for these tumors.
Collapse
|
43
|
Swartz ME, Lovely CB, McCarthy N, Kuka T, Eberhart JK. Novel Ethanol-Sensitive Mutants Identified in an F3 Forward Genetic Screen. Alcohol Clin Exp Res 2019; 44:56-65. [PMID: 31742718 PMCID: PMC6980918 DOI: 10.1111/acer.14240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/13/2019] [Indexed: 01/25/2023]
Abstract
Background Fetal alcohol spectrum disorders (FASD) collectively refer to all deleterious outcomes due to prenatal alcohol exposures. Alterations to the face are common phenotypes in FASD. While alcohol exposure is the underlying cause of FASD, many variables modify the outcomes of such exposures. Genetic risk is one such variable, yet we still have a limited understanding of the nature of the genetic loci mediating susceptibility to FASD. Methods We employed ENU‐based random mutagenesis in zebrafish to identify mutations that enhanced the teratogenicity of ethanol (EtOH). F3 embryos obtained from 126 inbred F2 families were exposed to 1% EtOH in the medium (approximately 41 mM tissue levels). Zebrafish stained with Alcian Blue and Alizarin Red were screened for qualitative alterations to the craniofacial skeleton between 4 and 7 days postfertilization (dpf). Results In all, we recovered 6 EtOH‐sensitive mutants, 5 from the genetic screen itself and one as a background mutation in one of our wild‐type lines. Each mutant has a unique EtOH‐induced phenotype relative to the other mutant lines. All but 1 mutation appears to be recessive in nature, and only 1 mutant, au29, has apparent craniofacial defects in the absence of EtOH. To validate the genetic screen, we genetically mapped au29 and found that it carries a mutation in a previously uncharacterized gene, si:dkey‐88l16.3. Conclusions The phenotypes of these EtOH‐sensitive mutants differ from those in previous characterizations of gene–EtOH interactions. Thus, each mutant is likely to provide novel insights into EtOH teratogenesis. Given that most of these mutants only have craniofacial defects in the presence of EtOH and our mapping of au29, it is also likely that many of the mutants will be previously uncharacterized. Collectively, our findings point to the importance of unbiased genetic screens in the identification, and eventual characterization, of risk alleles for FASD.
Collapse
Affiliation(s)
- Mary E Swartz
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research, Austin, Texas
| | - Charles Ben Lovely
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research, Austin, Texas
| | - Neil McCarthy
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research, Austin, Texas
| | - Tim Kuka
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research, Austin, Texas
| | - Johann K Eberhart
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research, Austin, Texas
| |
Collapse
|
44
|
Lovely CB. Animal models of gene-alcohol interactions. Birth Defects Res 2019; 112:367-379. [PMID: 31774246 DOI: 10.1002/bdr2.1623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/09/2019] [Indexed: 12/16/2022]
Abstract
Most birth defects arise from complex interactions between multiple genetic and environmental factors. However, our current understanding of how these interactions and their contributions affect birth defects remains incomplete. Human studies are limited in their ability to identify the fundamental causes of birth defects due to ethical and practical limitations. Animal models provide a great number of resources not available to human studies and they have been critical in advancing our understanding of birth defects and the complex interactions that underlie them. In this review, we discuss the use of animal models in the context of gene-environment interactions that underlie birth defects. We focus on alcohol which is the most common environmental factor associated with birth defects. Prenatal alcohol exposure leads to a wide range of cognitive impairments and structural deficits broadly termed fetal alcohol spectrum disorders (FASD). We discuss the broad impact of prenatal alcohol exposure on the developing embryo and elaborate on the current state of gene-alcohol interactions. Additionally, we discuss how animal models have informed our understanding of the genetics of FASD. Ultimately, these topics will provide insight into the use of animal models in understanding gene-environment interactions and their subsequent impact on birth defects.
Collapse
Affiliation(s)
- Charles Benjamin Lovely
- Department of Biochemistry and Molecular Genetics, Alcohol Research Center, University of Louisville, Louisville, Kentucky
| |
Collapse
|
45
|
Wu Z, Jung HS. How the diversity of the faces arises. J Oral Biosci 2019; 61:195-200. [PMID: 31751682 DOI: 10.1016/j.job.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND The evolution of the face is crucial for each species to adapt to different diets, environments, and in some species, to promote social interaction. The diversity in the shapes of the face results from divergence in the process of facial development that begins during early embryonic development. HIGHLIGHTS Here we review the recent advancements in the understanding of the genetic, epigenetic, molecular, and cellular basis of facial diversity. We also review the robustness of facial development and how it relates to the evolution of the face. Finally, we discuss the current challenges in achieving a deeper understanding of facial diversity. CONCLUSION We have gained much knowledge with respect to cis-regulatory elements, gene expression, cellular behavior, and the physical forces in facial development in the past two decades. Significant interdisciplinary work is needed to integrate these varied pieces of information into a complete picture of how the diversity of faces arises.
Collapse
Affiliation(s)
- Zhaoming Wu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
46
|
Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. Neural crest development: insights from the zebrafish. Dev Dyn 2019; 249:88-111. [PMID: 31591788 DOI: 10.1002/dvdy.122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the neural crest, a key vertebrate innovation, is built upon studies of multiple model organisms. Early research on neural crest cells (NCCs) was dominated by analyses of accessible amphibian and avian embryos, with mouse genetics providing complementary insights in more recent years. The zebrafish model is a relative newcomer to the field, yet it offers unparalleled advantages for the study of NCCs. Specifically, zebrafish provide powerful genetic and transgenic tools, coupled with rapidly developing transparent embryos that are ideal for high-resolution real-time imaging of the dynamic process of neural crest development. While the broad principles of neural crest development are largely conserved across vertebrate species, there are critical differences in anatomy, morphogenesis, and genetics that must be considered before information from one model is extrapolated to another. Here, our goal is to provide the reader with a helpful primer specific to neural crest development in the zebrafish model. We focus largely on the earliest events-specification, delamination, and migration-discussing what is known about zebrafish NCC development and how it differs from NCC development in non-teleost species, as well as highlighting current gaps in knowledge.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Kamil Ahsan
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Anastasia Beiriger
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois.,Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| |
Collapse
|
47
|
Zhang JN, Song FQ, Zhou SN, Zheng H, Peng LY, Zhang Q, Zhao WH, Zhang TW, Li WR, Zhou ZB, Lin JX, Chen F. [Analysis of single-nucleotide polymorphism of Sonic hedgehog signaling pathway in non-syndromic cleft lip and/or palate in the Chinese population]. JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2019; 51:556-563. [PMID: 31209431 DOI: 10.19723/j.issn.1671-167x.2019.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To study the relationship between Sonic hedgehog (Shh) associated single-nucleotide polymorphism (SNP) and non-syndromic cleft lip and/or palate (NSCL/P), and to explore the risk factors of cleft lip and/or palate. Many studies suggest that the pathogenesis of NSCL/P could be related to genes that control early development, in which the Shh signaling pathway plays an important role. METHODS Peripheral blood was collected from 197 individuals (100 patients with NSCL/P and 97 healthy controls). Haploview software was used for haplotype analysis and Tag SNP were selected, based on the population data of Han Chinese in Beijing of the international human genome haplotype mapping project. A total of 27 SNP were selected for the 4 candidate genes of SHH, PTCH1, SMO and GLI2 in the Shh signaling pathway. The genotypes of 27 SNP were detected and analyzed by Sequenom mass spectrometry. The data were analyzed by chi-squared test and an unconditional Logistic regression model. RESULTS The selected SNP basically covered the potential functional SNP of the target genes, and its minimum allele frequency (MAF) was >0.05: GLI2 73.5%, PTCH1 91.0%, SMO 100.0%, and SHH 75.0%. It was found that the genotype frequency of SNP (rs12674259) located in SMO gene and SNP (rs2066836) located in PTCH1 gene were significantly different between the NSCL/P group and the control group. Linkage disequilibrium was also found on 3 chromosomes (chromosomes 2, 7 and 9) where the 4 candidate genes were located. However, in the analysis of linkage imbalance haplotype, there was no significant difference between the disease group and the control group. CONCLUSION In China, NSCL/P is the most common congenital disease in orofacial region. However, as it is a multigenic disease and could be affected by multiple factors, such as the external environment, the etiology of NSCL/P has not been clearly defined. This study indicates that Shh signaling pathway is involved in the occurrence of NSCL/P, and some special SNP of key genes in this pathway are related to cleft lip and/or palate, which provides a new direction for the etiology research of NSCL/P and may provide help for the early screening and risk prediction of NSCL/P.
Collapse
Affiliation(s)
- J N Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - F Q Song
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - S N Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - H Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - L Y Peng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Q Zhang
- Department of Center Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - W H Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - T W Zhang
- Department of Orthodontics, Yantai Stomatological Hospital, Yantai 264000, Shandong, China
| | - W R Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Z B Zhou
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - J X Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - F Chen
- Department of Center Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
48
|
Leerberg DM, Hopton RE, Draper BW. Fibroblast Growth Factor Receptors Function Redundantly During Zebrafish Embryonic Development. Genetics 2019; 212:1301-1319. [PMID: 31175226 PMCID: PMC6707458 DOI: 10.1534/genetics.119.302345] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/29/2019] [Indexed: 01/08/2023] Open
Abstract
Fibroblast growth factor (Fgf) signaling regulates many processes during development. In most cases, one tissue layer secretes an Fgf ligand that binds and activates an Fgf receptor (Fgfr) expressed by a neighboring tissue. Although studies have identified the roles of specific Fgf ligands during development, less is known about the requirements for the receptors. We have generated null mutations in each of the five fgfr genes in zebrafish. Considering the diverse requirements for Fgf signaling throughout development, and that null mutations in the mouse Fgfr1 and Fgfr2 genes are embryonic lethal, it was surprising that all zebrafish homozygous mutants are viable and fertile, with no discernable embryonic defect. Instead, we find that multiple receptors are involved in coordinating most Fgf-dependent developmental processes. For example, mutations in the ligand fgf8a cause loss of the midbrain-hindbrain boundary, whereas, in the fgfr mutants, this phenotype is seen only in embryos that are triple mutant for fgfr1a;fgfr1b;fgfr2, but not in any single or double mutant combinations. We show that this apparent fgfr redundancy is also seen during the development of several other tissues, including posterior mesoderm, pectoral fins, viscerocranium, and neurocranium. These data are an essential step toward defining the specific Fgfrs that function with particular Fgf ligands to regulate important developmental processes in zebrafish.
Collapse
Affiliation(s)
- Dena M Leerberg
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Rachel E Hopton
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Bruce W Draper
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
49
|
Sun Z, da Fontoura CSG, Moreno M, Holton NE, Sweat M, Sweat Y, Lee MK, Arbon J, Bidlack FB, Thedens DR, Nopoulos P, Cao H, Eliason S, Weinberg SM, Martin JF, Moreno-Uribe L, Amendt BA. FoxO6 regulates Hippo signaling and growth of the craniofacial complex. PLoS Genet 2018; 14:e1007675. [PMID: 30286078 PMCID: PMC6197693 DOI: 10.1371/journal.pgen.1007675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/22/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
The mechanisms that regulate post-natal growth of the craniofacial complex and that ultimately determine the size and shape of our faces are not well understood. Hippo signaling is a general mechanism to control tissue growth and organ size, and although it is known that Hippo signaling functions in neural crest specification and patterning during embryogenesis and before birth, its specific role in postnatal craniofacial growth remains elusive. We have identified the transcription factor FoxO6 as an activator of Hippo signaling regulating neonatal growth of the face. During late stages of mouse development, FoxO6 is expressed specifically in craniofacial tissues and FoxO6-/- mice undergo expansion of the face, frontal cortex, olfactory component and skull. Enlargement of the mandible and maxilla and lengthening of the incisors in FoxO6-/- mice are associated with increases in cell proliferation. In vitro and in vivo studies demonstrated that FoxO6 activates Lats1 expression, thereby increasing Yap phosphorylation and activation of Hippo signaling. FoxO6-/- mice have significantly reduced Hippo Signaling caused by a decrease in Lats1 expression and decreases in Shh and Runx2 expression, suggesting that Shh and Runx2 are also linked to Hippo signaling. In vitro, FoxO6 activates Hippo reporter constructs and regulates cell proliferation. Furthermore PITX2, a regulator of Hippo signaling is associated with Axenfeld-Rieger Syndrome causing a flattened midface and we show that PITX2 activates FoxO6 expression. Craniofacial specific expression of FoxO6 postnatally regulates Hippo signaling and cell proliferation. Together, these results identify a FoxO6-Hippo regulatory pathway that controls skull growth, odontogenesis and face morphology.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Clarissa S. G. da Fontoura
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Myriam Moreno
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Nathan E. Holton
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Mason Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Yan Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Myoung Keun Lee
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh PA, United States of America
| | - Jed Arbon
- Private practice, Cary, North Carolina United States of America
| | | | - Daniel R. Thedens
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Peggy Nopoulos
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Huojun Cao
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Steven Eliason
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Seth M. Weinberg
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh PA, United States of America
| | - James F. Martin
- Department of Physiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Lina Moreno-Uribe
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
50
|
Wu Y, Yang Q, Chen M, Zhang Y, Zuo Z, Wang C. Fenbuconazole exposure impacts the development of zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:293-299. [PMID: 29715634 DOI: 10.1016/j.ecoenv.2018.04.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/16/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Fenbuconazole (FBZ), a triazole-containing fungicide, is widely used in agriculture and horticulture. In the present study, the development and cardiac functioning were observed and determined in zebrafish embryos exposed to FBZ at 5, 50 and 500 ng/L nominal concentrations for 72 h. The results showed that 500 ng/L FBZ significantly increased pericardial edema rate, spine curvature rate, disturbed cardiac function, and led a shortened lower jaw. The transcription of genes such as tbx5, nkx2.5, tnnt2, gata4, bmp2b, myl7 was altered, which might be responsible for the cardiac developmental and functioning defects in the larvae. The deformation in bone development might be related with the impaired transcription levels of shh and bmp2b. The transcription of cyp26a1 (encoding retinoic acid metabolism enzyme) was significantly up-regulated in the 500 ng/L group, which might be a reason causing the teratogenic effect of FBZ. These results suggest that FBZ could have toxic effects on embryonic development, which should be considered in the risk evaluation of FBZ application.
Collapse
Affiliation(s)
- Yuqiong Wu
- Wuyi University, College of Tea and Food Science, Wuyishan, Fujian 354300, China
| | - Qihong Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Meng Chen
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, Xiamen University, Xiamen, Fujian 361005, China
| | - Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|