1
|
Paudel S, McLeod S, Gjorcheska S, Barske L. Pax9 drives development of the upper jaw but not teeth in zebrafish. Dev Biol 2025; 524:1-16. [PMID: 40306478 DOI: 10.1016/j.ydbio.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/07/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Loss of dentition has occurred repeatedly throughout vertebrate evolution. Cyprinid fish, including zebrafish, form teeth only deep within the pharynx, not on their oral jaws. However, zebrafish still robustly express transcription factors associated with mammalian tooth development in the neural crest-derived mesenchyme surrounding the mouth. We investigated whether this expression is vestigial or whether these factors contribute to the formation of non-tooth mesenchymal structures in the oral region, using Pax9 as a test case. Zebrafish homozygous for two different pax9 mutant alleles develop the normal complement of pharyngeal teeth but fail to form the premaxilla bone, most of the maxilla, and nasal and maxillary barbels. Lack of most of the upper jaw complex does not preclude effective feeding in the laboratory environment. We observe a significant deficit of sp7:EGFP + osteoblasts and adjacent alx4a:DsRed+ condensing mesenchyme around the maxilla, and no accumulation of either in the premaxillary domain. Loss of pax9 may prevent osteoprogenitors from maintaining the state of condensation required for full osteogenic differentiation. We conclude that Pax9 is not unequivocally required for all vertebrate tooth development but instead may be involved in the development of a variety of organs forming through mesenchymal condensation around the mouth.
Collapse
Affiliation(s)
- Sandhya Paudel
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sarah McLeod
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stefani Gjorcheska
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Healey HM, Penn HB, Small CM, Bassham S, Goyal V, Woods MA, Cresko WA. Single-cell sequencing provides clues about the developmental genetic basis of evolutionary adaptations in syngnathid fishes. eLife 2025; 13:RP97764. [PMID: 39898521 PMCID: PMC11790252 DOI: 10.7554/elife.97764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.
Collapse
Affiliation(s)
- Hope M Healey
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- Knight Campus for Accelerating Scientific Impact, University of OregonEugeneUnited States
| | - Hayden B Penn
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Clayton M Small
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- School of Computer and Data Science, University of OregonEugeneUnited States
| | - Susan Bassham
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Vithika Goyal
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Micah A Woods
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - William A Cresko
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- Knight Campus for Accelerating Scientific Impact, University of OregonEugeneUnited States
| |
Collapse
|
3
|
Larionova D, Huysseune A. Differential retinoic acid sensitivity of oral and pharyngeal teeth in medaka (Oryzias latipes) supports the importance of pouch-cleft contacts in pharyngeal tooth initiation. Dev Dyn 2024; 253:1094-1105. [PMID: 38940489 DOI: 10.1002/dvdy.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Previous studies have claimed that pharyngeal teeth in medaka (Oryzias latipes) are induced independent of retinoic acid (RA) signaling, unlike in zebrafish (Danio rerio). In zebrafish, pharyngeal tooth formation depends on a proper physical contact between the embryonic endodermal pouch anterior to the site of tooth formation, and the adjacent ectodermal cleft, an RA-dependent process. Here, we test the hypothesis that a proper pouch-cleft contact is required for pharyngeal tooth formation in embryonic medaka, as it is in zebrafish. We used 4-[diethylamino]benzaldehyde (DEAB) to pharmacologically inhibit RA production, and thus pouch-cleft contacts, in experiments strictly controlled in time, and analyzed these using high-resolution imaging. RESULTS Pharyngeal teeth in medaka were present only when the corresponding anterior pouch had reached the ectoderm (i.e., a physical pouch-cleft contact established), similar to the situation in zebrafish. Oral teeth were present even when the treatment started approximately 4 days before normal oral tooth appearance. CONCLUSIONS RA dependency for pharyngeal tooth formation is not different between zebrafish and medaka. We propose that the differential response to DEAB of oral versus pharyngeal teeth in medaka could be ascribed to the distinct germ layer origin of the epithelia involved in tooth formation in these two regions.
Collapse
Affiliation(s)
- D Larionova
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - A Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Healey HM, Penn HB, Small CM, Bassham S, Goyal V, Woods MA, Cresko WA. Single Cell Sequencing Provides Clues about the Developmental Genetic Basis of Evolutionary Adaptations in Syngnathid Fishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588518. [PMID: 38645265 PMCID: PMC11030337 DOI: 10.1101/2024.04.08.588518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provide the opportunity for detailed genetic analyses. We created a single cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how their novelties evolved.
Collapse
Affiliation(s)
- Hope M Healey
- Institute of Ecology and Evolution, University of Oregon
| | - Hayden B Penn
- Institute of Ecology and Evolution, University of Oregon
| | - Clayton M Small
- Institute of Ecology and Evolution, University of Oregon
- School of Computer and Data Science, University of Oregon
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon
| | - Vithika Goyal
- Institute of Ecology and Evolution, University of Oregon
| | - Micah A Woods
- Institute of Ecology and Evolution, University of Oregon
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon
- Knight Campus for Accelerating Scientific Impact, University of Oregon
| |
Collapse
|
5
|
Jackman WR, Miranda Portillo LS, Cox CK, Ambrosio A, Gibert Y. Reply to Huysseune and Witten: Oral tooth bud formation in zebrafish. Proc Natl Acad Sci U S A 2024; 121:e2413644121. [PMID: 39150774 PMCID: PMC11363285 DOI: 10.1073/pnas.2413644121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024] Open
Affiliation(s)
| | | | - Carol K. Cox
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS39216
| | | | - Yann Gibert
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS39216
| |
Collapse
|
6
|
Ponnimbaduge Perera P, Perez Guerra D, Riddle MR. The Mexican Tetra, Astyanax mexicanus, as a Model System in Cell and Developmental Biology. Annu Rev Cell Dev Biol 2023; 39:23-44. [PMID: 37437210 DOI: 10.1146/annurev-cellbio-012023-014003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Our understanding of cell and developmental biology has been greatly aided by a focus on a small number of model organisms. However, we are now in an era where techniques to investigate gene function can be applied across phyla, allowing scientists to explore the diversity and flexibility of developmental mechanisms and gain a deeper understanding of life. Researchers comparing the eyeless cave-adapted Mexican tetra, Astyanax mexicanus, with its river-dwelling counterpart are revealing how the development of the eyes, pigment, brain, cranium, blood, and digestive system evolves as animals adapt to new environments. Breakthroughs in our understanding of the genetic and developmental basis of regressive and constructive trait evolution have come from A. mexicanus research. They include understanding the types of mutations that alter traits, which cellular and developmental processes they affect, and how they lead to pleiotropy. We review recent progress in the field and highlight areas for future investigations that include evolution of sex differentiation, neural crest development, and metabolic regulation of embryogenesis.
Collapse
Affiliation(s)
| | | | - Misty R Riddle
- Department of Biology, University of Nevada, Reno, Nevada, USA;
| |
Collapse
|
7
|
Atukorallaya D, Bhatia V, Gonzales J. Divergent tooth development mechanisms of Mexican tetra fish (Astyanax mexicanus) of Pachón cave origin. Cells Dev 2023; 173:203823. [PMID: 36496080 DOI: 10.1016/j.cdev.2022.203823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
The Mexican tetra (Astyanax mexicanus) is one of the fresh water teleost fish models in evolutionary developmental biology. The existence of two morphs: eyed, pigmented surface fish and blind depigmented cavefish from multiple cave populations, provides a unique system to study adaptive radiation. Compared to the adult surface fish, cavefish have large oral jaws with an increased number of structurally-complex teeth. Early tooth development has not been studied in detail in cavefish populations. In this study, bone-stained growth series and vital dye staining was used to trace the development and replacement of dentitions in Pachón cavefish. Our results show that first tooth eruption was delayed in cavefish compared to the surface fish. In particular, the first tooth eruption cycle persisted until 35 days post fertilization (dpf). Unlike surface fish, there are multicuspid teeth in cavefish first generation dentition. In addition to the teeth in the marginal oral jaw bones, Pachón cavefish have teeth in the ectopterygoid bone of the palatine roof. Next, we characterised the expression of ectodysplasin signalling pathway genes in tooth-forming regions of surface and cavefish. Interestingly, higher expression of Eda and Edar was found in cavefish compared to the surface fish. The altered ectodysplasin expression needs further investigation to confirm the different molecular mechanisms for tooth development in the oral and pharyngeal regions of surface fish and cavefish.
Collapse
Affiliation(s)
- Devi Atukorallaya
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E0W2, Canada.
| | - Vikram Bhatia
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E0W2, Canada
| | - Jessica Gonzales
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E0W2, Canada
| |
Collapse
|
8
|
Gu Q, Yuan H, Zhong H, Wei Z, Shu Y, Wang J, Ren L, Gong D, Liu S. Spatiotemporal characteristics of the pharyngeal teeth in interspecific distant hybrids of cyprinid fish: Phylogeny and expression of the initiation marker genes. Front Genet 2022; 13:983444. [PMID: 36051700 PMCID: PMC9424816 DOI: 10.3389/fgene.2022.983444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
As an important feeding organ and taxonomical characteristic, the pharyngeal teeth of cyprinid fish have very high morphological diversity and exhibit species-specific numbers and arrangements. Many genes have been verified to regulate the pharyngeal teeth development and act as the initiation marker for teeth. Six initiation marker genes for pharyngeal teeth were used as RNA probes to investigate the expression pattern, and these genes were further used to construct a phylogenetic tree for cyprinid fish including some distant hybrids. The results from in situ hybridization showed that similarities and differences existed in the expression of dlx2b, dlx4b, dlx5a, pitx2, fth1b, and scpp5 in the pharyngeal region of the hybrids (BT) by the crosses of blunt snout bream (BSB, ♀) × topmouth culter (TC, ♂). Particularly, we found a high specificity marker gene scpp5 for the early development of pharyngeal teeth. The Scpp5 expression pattern established a clear graphic representation on the spatiotemporal characteristics of the early morphogenesis of pharyngeal teeth in BT and BSB. Our results suggested that the scpp5 expression in 4V1, 3V1, and 5V1 in BT occurred earlier than that in BSB, while the replacement rate of pharyngeal teeth (4V2, 3V2, and 5V2) was faster in BSB. Phylogenetic analysis revealed that the six marker genes were highly conserved and could be used as the molecular marker for identifying the parents of the distant hybrids in cyprinid fish. The expression patterns of the scpp5 gene was examined in various tissues, including the brain, gill, heart, liver, muscle, skin, fins, gonad, eye, and kidney, showing that the scpp5 gene was ubiquitously expressed, indicating its important role in cyprinid fish.
Collapse
Affiliation(s)
- Qianhong Gu
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui Yuan
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui Zhong
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zehong Wei
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuqin Shu
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jing Wang
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Ren
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Dingbin Gong
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Shaojun Liu,
| |
Collapse
|
9
|
Dash S, Trainor PA. Nucleolin loss of function leads to aberrant Fibroblast Growth Factor signaling and craniofacial anomalies. Development 2022; 149:dev200349. [PMID: 35762670 PMCID: PMC9270975 DOI: 10.1242/dev.200349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
Ribosomal RNA (rRNA) transcription and ribosome biogenesis are global processes required for growth and proliferation of all cells, yet perturbation of these processes in vertebrates leads to tissue-specific defects termed ribosomopathies. Mutations in rRNA transcription and processing proteins often lead to craniofacial anomalies; however, the cellular and molecular reasons for these defects are poorly understood. Therefore, we examined the function of the most abundant nucleolar phosphoprotein, Nucleolin (Ncl), in vertebrate development. ncl mutant (ncl-/-) zebrafish present with craniofacial anomalies such as mandibulofacial hypoplasia. We observed that ncl-/- mutants exhibited decreased rRNA synthesis and p53-dependent apoptosis, consistent with a role in ribosome biogenesis. However, we found that Nucleolin also performs functions not associated with ribosome biogenesis. We discovered that the half-life of fgf8a mRNA was reduced in ncl-/- mutants, which perturbed Fgf signaling, resulting in misregulated Sox9a-mediated chondrogenesis and Runx2-mediated osteogenesis. Consistent with this model, exogenous FGF8 treatment significantly rescued the cranioskeletal phenotype in ncl-/- zebrafish, suggesting that Nucleolin regulates osteochondroprogenitor differentiation. Our work has therefore uncovered tissue-specific functions for Nucleolin in rRNA transcription and post-transcriptional regulation of growth factor signaling during embryonic craniofacial development.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
10
|
Kasprzak R, Grzeszkiewicz AB, Górecka A. Performance of Co-Housed Neon Tetras ( Paracheirodon innesi) and Glowlight Rasboras ( Trigonostigma hengeli) Fed Commercial Flakes and Lyophilized Natural Food. Animals (Basel) 2021; 11:ani11123520. [PMID: 34944294 PMCID: PMC8697964 DOI: 10.3390/ani11123520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Little to no research has been conducted thus far regarding aquarium fish nutrition. In order to ensure the welfare of house-kept ornamentals, such studies should take into account that there are distinct biological differences occurring between different fish species/taxa, especially in regard to the structure of their digestive organs. Accordingly, a 12-week trial was executed to assess the effects of two commercial flakes and a mix of lyophilized natural food on the condition of co-reared neon tetras, Paracheirodon innesi (Characidae), and glowlight rasboras, Trigonostigma hengeli (Danionidae). The four feeding groups were as follows: (T)-Tetra flakes; (O)-Omega flakes; (TO)-Tetra + Omega; (TOL)-Tetra + Omega + Lyophilizate (twice a week). There were no differences in final body weight (FBW) between the feeding groups of either species, but in the case of neon tetras, FBW increased significantly from the initial value only for the T group. However, histological observations and measurements of digestive organs (livers, intestines) showed pronounced differences between the two species. The supplementation with natural food in group TOL caused lipoid hepatic degeneration only in the rasboras. The healthiest histological structure of livers and longest intestinal folds were found in group T of the tetras and group TO of the rasboras. Whole-mount staining for bone and cartilage did not reveal any significant deformities or differences in terms of bone mineralization. In conclusion, it was outlined that concurrent feeding of co-housed, anatomically diverse ornamental fish species is a highly ambiguous task, because the nutritional strategy applied for a community tank may yield radically divergent effects, most of which may remain unnoticed when depending only on external body observations and measurements. Most emphatically, this was highlighted in regard to the dietary supplementation with natural food-although no significant effects were observed in neon tetras, severe lipoid liver degeneration occurred in glowlight rasboras.
Collapse
|
11
|
Pospisilova A, Stundl J, Brejcha J, Metscher BD, Psenicka M, Cerny R, Soukup V. The remarkable dynamics in the establishment, rearrangement, and loss of dentition during the ontogeny of the sterlet sturgeon. Dev Dyn 2021; 251:826-845. [PMID: 34846759 DOI: 10.1002/dvdy.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Sturgeons belong to an early-branching lineage often used as a proxy of ancestor-like traits of ray-finned fishes. However, many features of this lineage, such as the transitory presence and the eventual loss of dentition, exemplify specializations that, in fact, provide important information on lineage-specific evolutionary dynamics. RESULTS Here, we introduce a detailed overview of the dentition during the development of the sterlet sturgeon. The dentition is composed of tooth fields at oral, palatal, and anterior pharyngeal regions. Oral fields are single-rowed, non-renewed and are shed early. Palatal and pharyngeal fields are multi-rowed and renewed from the adjacent superficial epithelium without the presence of the successional dental lamina. The early loss of oral fields and subsequent establishment of palatal and pharyngeal fields leads to a translocation of the functional dentition from the front to the rear of the oropharyngeal cavity until the eventual loss of all teeth. CONCLUSIONS Our survey shows the sterlet dentition as a dynamic organ system displaying differential composition at different time points in the lifetime of this fish. These dynamics represent a conspicuous feature of sturgeons, unparalleled among extant vertebrates, and appropriate to scrutinize developmental and evolutionary underpinnings of vertebrate odontogenesis.
Collapse
Affiliation(s)
- Anna Pospisilova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Stundl
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.,Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Jindrich Brejcha
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic
| | - Brian D Metscher
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Martin Psenicka
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimír Soukup
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Huysseune A, Cerny R, Witten PE. The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits. Biol Rev Camb Philos Soc 2021; 97:414-447. [PMID: 34647411 PMCID: PMC9293187 DOI: 10.1111/brv.12805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
There are several competing hypotheses on tooth origins, with discussions eventually settling in favour of an 'outside-in' scenario, in which internal odontodes (teeth) derived from external odontodes (skin denticles) in jawless vertebrates. The evolution of oral teeth from skin denticles can be intuitively understood from their location at the mouth entrance. However, the basal condition for jawed vertebrates is arguably to possess teeth distributed throughout the oropharynx (i.e. oral and pharyngeal teeth). As skin denticle development requires the presence of ectoderm-derived epithelium and of mesenchyme, it remains to be answered how odontode-forming skin epithelium, or its competence, were 'transferred' deep into the endoderm-covered oropharynx. The 'modified outside-in' hypothesis for tooth origins proposed that this transfer was accomplished through displacement of odontogenic epithelium, that is ectoderm, not only through the mouth, but also via any opening (e.g. gill slits) that connects the ectoderm to the epithelial lining of the pharynx (endoderm). This review explores from an evolutionary and from a developmental perspective whether ectoderm plays a role in (pharyngeal) tooth and denticle formation. Historic and recent studies on tooth development show that the odontogenic epithelium (enamel organ) of oral or pharyngeal teeth can be of ectodermal, endodermal, or of mixed ecto-endodermal origin. Comprehensive data are, however, only available for a few taxa. Interestingly, in these taxa, the enamel organ always develops from the basal layer of a stratified epithelium that is at least bilayered. In zebrafish, a miniaturised teleost that only retains pharyngeal teeth, an epithelial surface layer with ectoderm-like characters is required to initiate the formation of an enamel organ from the basal, endodermal epithelium. In urodele amphibians, the bilayered epithelium is endodermal, but the surface layer acquires ectodermal characters, here termed 'epidermalised endoderm'. Furthermore, ectoderm-endoderm contacts at pouch-cleft boundaries (i.e. the prospective gill slits) are important for pharyngeal tooth initiation, even if the influx of ectoderm via these routes is limited. A balance between sonic hedgehog and retinoic acid signalling could operate to assign tooth-initiating competence to the endoderm at the level of any particular pouch. In summary, three characters are identified as being required for pharyngeal tooth formation: (i) pouch-cleft contact, (ii) a stratified epithelium, of which (iii) the apical layer adopts ectodermal features. These characters delimit the area in which teeth can form, yet cannot alone explain the distribution of teeth over the different pharyngeal arches. The review concludes with a hypothetical evolutionary scenario regarding the persisting influence of ectoderm on pharyngeal tooth formation. Studies on basal osteichthyans with less-specialised types of early embryonic development will provide a crucial test for the potential role of ectoderm in pharyngeal tooth formation and for the 'modified outside-in' hypothesis of tooth origins.
Collapse
Affiliation(s)
- Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 128 44, Czech Republic
| | - P Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| |
Collapse
|
13
|
Hovorakova M, Zahradnicek O, Bartos M, Hurnik P, Stransky J, Stembirek J, Tucker AS. Reawakening of Ancestral Dental Potential as a Mechanism to Explain Dental Pathologies. Integr Comp Biol 2021; 60:619-629. [PMID: 32492167 DOI: 10.1093/icb/icaa053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During evolution, there has been a trend to reduce both the number of teeth and the location where they are found within the oral cavity. In mammals, the formation of teeth is restricted to a horseshoe band of odontogenic tissue, creating a single dental arch on the top and bottom of the jaw. Additional teeth and structures containing dental tissue, such as odontogenic tumors or cysts, can appear as pathologies. These tooth-like structures can be associated with the normal dentition, appearing within the dental arch, or in nondental areas. The etiology of these pathologies is not well elucidated. Reawakening of the potential to form teeth in different parts of the oral cavity could explain the origin of dental pathologies outside the dental arch, thus such pathologies are a consequence of our evolutionary history. In this review, we look at the changing pattern of tooth formation within the oral cavity during vertebrate evolution, the potential to form additional tooth-like structures in mammals, and discuss how this knowledge shapes our understanding of dental pathologies in humans.
Collapse
Affiliation(s)
- Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic.,Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Oldrich Zahradnicek
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Martin Bartos
- Department of Stomatology, First Faculty of Medicine, Charles University, General University Hospital in Prague, Katerinska 32, 12801 Prague 2, Czech Republic.,Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, 128 00, Czech Republic
| | - Pavel Hurnik
- Department of Pathology, University Hospital Ostrava, 17. listopadu 1790, Ostrava-Poruba, 708 52, Czech Republic.,Department of Pathology at Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava-Zabreh, 703 00, Czech Republic
| | - Jiri Stransky
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava-Poruba, Czech Republic
| | - Jan Stembirek
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava-Poruba, Czech Republic.,Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno 2, Czech Republic
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
14
|
Soukup V, Tazaki A, Yamazaki Y, Pospisilova A, Epperlein HH, Tanaka EM, Cerny R. Oral and Palatal Dentition of Axolotl Arises From a Common Tooth-Competent Zone Along the Ecto-Endodermal Boundary. Front Cell Dev Biol 2021; 8:622308. [PMID: 33505974 PMCID: PMC7829593 DOI: 10.3389/fcell.2020.622308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Vertebrate dentitions arise at various places within the oropharyngeal cavity including the jaws, the palate, or the pharynx. These dentitions develop in a highly organized way, where new tooth germs are progressively added adjacent to the initiator center, the first tooth. At the same time, the places where dentitions develop house the contact zones between the outer ectoderm and the inner endoderm, and this colocalization has instigated various suggestions on the roles of germ layers for tooth initiation and development. Here, we study development of the axolotl dentition, which is a complex of five pairs of tooth fields arranged into the typically tetrapod outer and inner dental arcades. By tracking the expression patterns of odontogenic genes, we reason that teeth of both dental arcades originate from common tooth-competent zones, one present on the mouth roof and one on the mouth floor. Progressive compartmentalization of these zones and a simultaneous addition of new tooth germs distinct for each prospective tooth field subsequently control the final shape and composition of the axolotl dentition. Interestingly, by following the fate of the GFP-labeled oral ectoderm, we further show that, in three out of five tooth field pairs, the first tooth develops right at the ecto-endodermal boundary. Our results thus indicate that a single tooth-competent zone gives rise to both dental arcades of a complex tetrapod dentition. Further, we propose that the ecto-endodermal boundary running through this zone should be accounted for as a potential source of instruction factors instigating the onset of the odontogenic program.
Collapse
Affiliation(s)
- Vladimír Soukup
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Akira Tazaki
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Yosuke Yamazaki
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Anna Pospisilova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | | | - Elly M Tanaka
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
15
|
Jackman WR, Gibert Y. Retinoic Acid Signaling and the Zebrafish Dentition During Development and Evolution. Subcell Biochem 2020; 95:175-196. [PMID: 32297300 DOI: 10.1007/978-3-030-42282-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Explaining how the extensive diversity in form of vertebrate teeth arose in evolution and the mechanisms by which teeth are made during embryogenesis are intertwined questions that can merit from a better understanding of the roles of retinoic acid (RA) in tooth development. Pioneering studies in rodents showed that dietary vitamin A (VA), and eventually RA (one of the major active metabolites of VA), are required for proper tooth formation and that dentin-forming odontoblast cells seem to be especially sensitive to changes in RA levels. Later, rodent studies further indicated that RA signaling interactions with other cell-signaling pathways are an important part of RA's actions in odontogenesis. Recent investigations employing zebrafish and other teleost fish continued this work in an evolutionary context, and specifically demonstrated that RA is required for the initiation of tooth development. RA is also sufficient in certain circumstances to induce de novo tooth formation. Both effects appear to involve cranial-neural crest cells, again suggesting that RA signaling has a particular influence on odontoblast development. These teleost studies have also highlighted both evolutionary conservation and change in how RA is employed during odontogenesis in different vertebrate lineages, and thus raises the possibility that developmental changes to RA signaling has led to some of the diversity of form seen across vertebrate dentitions. Future progress in this area will come at least in part from expanding the species examined to get a better picture of how often RA signaling has changed in evolution and how this relates to the evolution of dental form.
Collapse
Affiliation(s)
| | - Yann Gibert
- University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
16
|
Atukorala ADS, Bhatia V, Ratnayake R. Craniofacial skeleton of MEXICAN tetra (Astyanax mexicanus): As a bone disease model. Dev Dyn 2018; 248:153-161. [PMID: 30450697 DOI: 10.1002/dvdy.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
A small fresh water fish, the Mexican tetra (Astyanax mexicanus) is a novel animal model in evolutionary developmental biology. The existence of morphologically distinct surface and cave morphs of this species allows simultaneous comparative analysis of phenotypic changes at different life stages. The cavefish harbors many favorable constructive traits (i.e., large jaws with an increased number of teeth, neuromast cells, enlarged olfactory pits and excess storage of adipose tissues) and regressive traits (i.e., reduced eye structures and pigmentation) which are essential for cave adaptation. A wide spectrum of natural craniofacial morphologies can be observed among the different cave populations. Recently, the Mexican tetra has been identified as a human disease model. The fully sequenced genome along with modern genome editing tools has allowed researchers to generate transgenic and targeted gene knockouts with phenotypes that resemble human pathological conditions. This review will discuss the anatomy of the craniofacial skeleton of A. mexicanus with a focus on morphologically variable facial bones, jaws that house continuously replacing teeth and pharyngeal skeleton. Furthermore, the possible applications of this model animal in identifying human congenital and metabolic skeletal disorders is addressed. Developmental Dynamics 248:153-161, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Atukorallaya Devi Sewvandini Atukorala
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vikram Bhatia
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ravindra Ratnayake
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Atukorala ADS, Franz-Odendaal TA. Genetic linkage between altered tooth and eye development in lens-ablated Astyanax mexicanus. Dev Biol 2018; 441:235-241. [PMID: 30017604 DOI: 10.1016/j.ydbio.2018.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022]
Abstract
The phenotype of lens-ablated Mexican tetra (Astyanax mexicanus) compared to wild-type surface fish has been described and includes, among other effects, eye degeneration, changes in tooth number and cranial bone changes. Here, we investigate the spatiotemporal expression patterns of several key genes involved in the development of these structures. Specifically, we show that the expression of pitx2, bmp4 and shh is altered in the eye, oral jaw, nasal pit and forebrain in these lens-ablated fish. Furthermore, for the first time, we show altered pitx2 expression in the cavefish, which also has altered eye and tooth phenotypes. We thus provide evidence for a genetic linkage between the eye and tooth modules in this fish species. Furthermore, the altered pitx2 expression pattern, together with the described morphological features of the lens-ablated fish suggests that Astyanax mexicanus could be considered as an alternative teleost model organism in which to study Axenfeld-Rieger syndrome (ARS), a rare autosomal dominant developmental disorder that is associated with PITX2 and which has both ocular and non-ocular abnormalities.
Collapse
|
18
|
The genome of the Gulf pipefish enables understanding of evolutionary innovations. Genome Biol 2016; 17:258. [PMID: 27993155 PMCID: PMC5168715 DOI: 10.1186/s13059-016-1126-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Evolutionary origins of derived morphologies ultimately stem from changes in protein structure, gene regulation, and gene content. A well-assembled, annotated reference genome is a central resource for pursuing these molecular phenomena underlying phenotypic evolution. We explored the genome of the Gulf pipefish (Syngnathus scovelli), which belongs to family Syngnathidae (pipefishes, seahorses, and seadragons). These fishes have dramatically derived bodies and a remarkable novelty among vertebrates, the male brood pouch. Results We produce a reference genome, condensed into chromosomes, for the Gulf pipefish. Gene losses and other changes have occurred in pipefish hox and dlx clusters and in the tbx and pitx gene families, candidate mechanisms for the evolution of syngnathid traits, including an elongated axis and the loss of ribs, pelvic fins, and teeth. We measure gene expression changes in pregnant versus non-pregnant brood pouch tissue and characterize the genomic organization of duplicated metalloprotease genes (patristacins) recruited into the function of this novel structure. Phylogenetic inference using ultraconserved sequences provides an alternative hypothesis for the relationship between orders Syngnathiformes and Scombriformes. Comparisons of chromosome structure among percomorphs show that chromosome number in a pipefish ancestor became reduced via chromosomal fusions. Conclusions The collected findings from this first syngnathid reference genome open a window into the genomic underpinnings of highly derived morphologies, demonstrating that de novo production of high quality and useful reference genomes is within reach of even small research groups. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1126-6) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Ahi EP. Signalling pathways in trophic skeletal development and morphogenesis: Insights from studies on teleost fish. Dev Biol 2016; 420:11-31. [PMID: 27713057 DOI: 10.1016/j.ydbio.2016.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
During the development of the vertebrate feeding apparatus, a variety of complicated cellular and molecular processes participate in the formation and integration of individual skeletal elements. The molecular mechanisms regulating the formation of skeletal primordia and their development into specific morphological structures are tightly controlled by a set of interconnected signalling pathways. Some of these pathways, such as Bmp, Hedgehog, Notch and Wnt, are long known for their pivotal roles in craniofacial skeletogenesis. Studies addressing the functional details of their components and downstream targets, the mechanisms of their interactions with other signals as well as their potential roles in adaptive morphological divergence, are currently attracting considerable attention. An increasing number of signalling pathways that had previously been described in different biological contexts have been shown to be important in the regulation of jaw skeletal development and morphogenesis. In this review, I provide an overview of signalling pathways involved in trophic skeletogenesis emphasizing studies of the most species-rich group of vertebrates, the teleost fish, which through their evolutionary history have undergone repeated episodes of spectacular trophic diversification.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria; Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland.
| |
Collapse
|
20
|
Smith EE, Yelick PC. Progress in Bioengineered Whole Tooth Research: From Bench to Dental Patient Chair. ACTA ACUST UNITED AC 2016; 3:302-308. [PMID: 28255531 DOI: 10.1007/s40496-016-0110-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tooth loss is a significant health issue that affects the physiological and social aspects of everyday life. Missing teeth impair simple tasks of chewing and speaking, and can also contribute to reduced self-confidence. An emerging and exciting area of regenerative medicine based dental research focuses on the formation of bioengineered whole tooth replacement therapies that can provide both the function and sensory responsiveness of natural teeth. This area of research aims to enhance the quality of dental and oral health for those suffering from tooth loss. Current approaches use a combination of dental progenitor cells, scaffolds and growth factors to create biologically based replacement teeth to serve as improved alternatives to currently used artificial dental prosthetics. This article is an overview of current progress, challenges, and future clinical applications of bioengineered whole teeth.
Collapse
Affiliation(s)
- Elizabeth E Smith
- Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School Medicine, Department of Orthodontics, Tufts University School of Dental Medicine
| | - Pamela C Yelick
- Director, Division of Craniofacial and Molecular Genetics, Professor, Department of Orthodontics, Tufts University School of Dental Medicine, Department of Biomedical Engineering, Tufts University, Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences Tufts University School of Medicine, 136 Harrison Avenue, M824, Boston MA 02111
| |
Collapse
|
21
|
Ellis NA, Donde NN, Miller CT. Early development and replacement of the stickleback dentition. J Morphol 2016; 277:1072-83. [PMID: 27145214 PMCID: PMC5298556 DOI: 10.1002/jmor.20557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/12/2016] [Accepted: 04/17/2016] [Indexed: 11/09/2022]
Abstract
Teeth have long served as a model system to study basic questions about vertebrate organogenesis, morphogenesis, and evolution. In nonmammalian vertebrates, teeth typically regenerate throughout adult life. Fish have evolved a tremendous diversity in dental patterning in both their oral and pharyngeal dentitions, offering numerous opportunities to study how morphology develops, regenerates, and evolves in different lineages. Threespine stickleback fish (Gasterosteus aculeatus) have emerged as a new system to study how morphology evolves, and provide a particularly powerful system to study the development and evolution of dental morphology. Here, we describe the oral and pharyngeal dentitions of stickleback fish, providing additional morphological, histological, and molecular evidence for homology of oral and pharyngeal teeth. Focusing on the ventral pharyngeal dentition in a dense developmental time course of lab-reared fish, we describe the temporal and spatial consensus sequence of early tooth formation. Early in development, this sequence is highly stereotypical and consists of seventeen primary teeth forming the early tooth field, followed by the first tooth replacement event. Comparing this detailed morphological and ontogenetic sequence to that described in other fish reveals that major changes to how dental morphology arises and regenerates have evolved across different fish lineages. J. Morphol. 277:1072-1083, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas A. Ellis
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA, 94720, USA
| | - Nikunj N. Donde
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA, 94720, USA
| | - Craig T. Miller
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA, 94720, USA
| |
Collapse
|
22
|
Grieco TM, Hlusko LJ. Insight from Frogs: Sonic Hedgehog Gene Expression and a Re-evaluation of the Vertebrate Odontogenic Band. Anat Rec (Hoboken) 2016; 299:1099-109. [DOI: 10.1002/ar.23378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/26/2016] [Accepted: 03/30/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Theresa M. Grieco
- Department of Oral Health Sciences; Life Sciences Institute, University of British Columbia; Vancouver British Columbia Canada
| | - Leslea J. Hlusko
- Department of Integrative Biology; University of California Berkeley; Berkeley California
| |
Collapse
|
23
|
Hulsey CD, Fraser GJ, Meyer A. Biting into the Genome to Phenome Map: Developmental Genetic Modularity of Cichlid Fish Dentitions. Integr Comp Biol 2016; 56:373-88. [DOI: 10.1093/icb/icw059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
24
|
What shapes the oral jaws? Accommodation of complex dentition correlates with premaxillary but not mandibular shape. Mech Dev 2016; 141:100-108. [PMID: 27236201 DOI: 10.1016/j.mod.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Teeth are integrated into the vertebrate oral jaws to provide a functional unit for feeding, however little is known about how this integration occurs during growth and development. The purpose of this study is to identify the ontogenetic changes in oral jaw shape that are associated with the transition of the oral dentition from unicuspid teeth to multicuspid teeth. Here, we compare the shape of the occluding upper (premaxilla) and lower (mandible) jaws of the toothed Mexican tetra (Astyanax mexicanus) and the toothless (oral teeth present, pharyngeal teeth absent) zebrafish (Danio rerio) over development. Gross morphology combined with morphometric analyses were used to analyse shape changes of the occluding oral jaws in each species. Histological analyses were also used to examine the development of the mandibular symphysis. RESULTS The occluding edge of the premaxilla is the first region to ossify in the Mexican tetra, but the last to ossify in zebrafish. Morphometric analyses revealed that the early shape of the premaxillae (in fish younger than 8mm SL) is the same in each species but that the premaxilla shape changes significantly at larger sizes. These changes are apparent in the tooth bearing region of the Mexican tetra. The rostral region of the mandible also houses teeth, however ossification and shape in this region were surprisingly similar between species despite differences in the presence of oral dentition. Furthermore, we found that the mandibular symphysis of the Mexican tetra is composed of interdigitating bone, while the symphyseal region of the zebrafish is composed of fibrous connective tissue. CONCLUSIONS These differences in the jaw skeleton have likely evolved due to different feeding strategies utilised by each species. Our results show that premaxillae shape correlates strongly with the development of complex dentitions unlike in the mandible. This study provides important insights into the relationship between jaw and tooth development in bony fishes and suggests that these mechanisms may be similar amongst vertebrates.
Collapse
|
25
|
Rasch LJ, Martin KJ, Cooper RL, Metscher BD, Underwood CJ, Fraser GJ. An ancient dental gene set governs development and continuous regeneration of teeth in sharks. Dev Biol 2016; 415:347-370. [PMID: 26845577 DOI: 10.1016/j.ydbio.2016.01.038] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/11/2016] [Accepted: 01/29/2016] [Indexed: 12/20/2022]
Abstract
The evolution of oral teeth is considered a major contributor to the overall success of jawed vertebrates. This is especially apparent in cartilaginous fishes including sharks and rays, which develop elaborate arrays of highly specialized teeth, organized in rows and retain the capacity for life-long regeneration. Perpetual regeneration of oral teeth has been either lost or highly reduced in many other lineages including important developmental model species, so cartilaginous fishes are uniquely suited for deep comparative analyses of tooth development and regeneration. Additionally, sharks and rays can offer crucial insights into the characters of the dentition in the ancestor of all jawed vertebrates. Despite this, tooth development and regeneration in chondrichthyans is poorly understood and remains virtually uncharacterized from a developmental genetic standpoint. Using the emerging chondrichthyan model, the catshark (Scyliorhinus spp.), we characterized the expression of genes homologous to those known to be expressed during stages of early dental competence, tooth initiation, morphogenesis, and regeneration in bony vertebrates. We have found that expression patterns of several genes from Hh, Wnt/β-catenin, Bmp and Fgf signalling pathways indicate deep conservation over ~450 million years of tooth development and regeneration. We describe how these genes participate in the initial emergence of the shark dentition and how they are redeployed during regeneration of successive tooth generations. We suggest that at the dawn of the vertebrate lineage, teeth (i) were most likely continuously regenerative structures, and (ii) utilised a core set of genes from members of key developmental signalling pathways that were instrumental in creating a dental legacy redeployed throughout vertebrate evolution. These data lay the foundation for further experimental investigations utilizing the unique regenerative capacity of chondrichthyan models to answer evolutionary, developmental, and regenerative biological questions that are impossible to explore in classical models.
Collapse
Affiliation(s)
- Liam J Rasch
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Kyle J Martin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Rory L Cooper
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Brian D Metscher
- Department of Theoretical Biology, University of Vienna, Vienna A-1090, Austria
| | - Charlie J Underwood
- Department of Earth and Planetary Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Gareth J Fraser
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| |
Collapse
|
26
|
Smith MM, Johanson Z, Butts T, Ericsson R, Modrell M, Tulenko FJ, Davis MC, Fraser GJ. Making teeth to order: conserved genes reveal an ancient molecular pattern in paddlefish (Actinopterygii). Proc Biol Sci 2015; 282:rspb.2014.2700. [PMID: 25788604 PMCID: PMC4389609 DOI: 10.1098/rspb.2014.2700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Ray-finned fishes (Actinopterygii) are the dominant vertebrate group today (+30 000 species, predominantly teleosts), with great morphological diversity, including their dentitions. How dental morphological variation evolved is best addressed by considering a range of taxa across actinopterygian phylogeny; here we examine the dentition of Polyodon spathula (American paddlefish), assigned to the basal group Acipenseriformes. Although teeth are present and functional in young individuals of Polyodon, they are completely absent in adults. Our current understanding of developmental genes operating in the dentition is primarily restricted to teleosts; we show that shh and bmp4, as highly conserved epithelial and mesenchymal genes for gnathostome tooth development, are similarly expressed at Polyodon tooth loci, thus extending this conserved developmental pattern within the Actinopterygii. These genes map spatio-temporal tooth initiation in Polyodon larvae and provide new data in both oral and pharyngeal tooth sites. Variation in cellular intensity of shh maps timing of tooth morphogenesis, revealing a second odontogenic wave as alternate sites within tooth rows, a dental pattern also present in more derived actinopterygians. Developmental timing for each tooth field in Polyodon follows a gradient, from rostral to caudal and ventral to dorsal, repeated during subsequent loss of teeth. The transitory Polyodon dentition is modified by cessation of tooth addition and loss. As such, Polyodon represents a basal actinopterygian model for the evolution of developmental novelty: initial conservation, followed by tooth loss, accommodating the adult trophic modification to filter-feeding.
Collapse
Affiliation(s)
- Moya M Smith
- Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, London, UK Department of Earth Sciences, Natural History Museum, London, UK
| | - Zerina Johanson
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Thomas Butts
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Rolf Ericsson
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Melinda Modrell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Frank J Tulenko
- Department of Biology and Physics, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, USA
| | - Marcus C Davis
- Department of Biology and Physics, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, USA
| | - Gareth J Fraser
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
27
|
Ahi EP, Steinhäuser SS, Pálsson A, Franzdóttir SR, Snorrason SS, Maier VH, Jónsson ZO. Differential expression of the aryl hydrocarbon receptor pathway associates with craniofacial polymorphism in sympatric Arctic charr. EvoDevo 2015; 6:27. [PMID: 26388986 PMCID: PMC4574265 DOI: 10.1186/s13227-015-0022-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/04/2015] [Indexed: 12/03/2022] Open
Abstract
Background The developmental basis of craniofacial morphology hinges on interactions of numerous signalling systems. Extensive craniofacial variation in the polymorphic Arctic charr, a member of the salmonid family, from Lake Thingvallavatn (Iceland), offers opportunities to find and study such signalling pathways and their key regulators, thereby shedding light on the developmental pathways, and the genetics of trophic divergence. Results To identify genes involved in the craniofacial differences between benthic and limnetic Arctic charr, we used transcriptome data from different morphs, spanning early development, together with data on craniofacial expression patterns and skeletogenesis in model vertebrate species. Out of 20 genes identified, 7 showed lower gene expression in benthic than in limnetic charr morphs. We had previously identified a conserved gene network involved in extracellular matrix (ECM) organization and skeletogenesis, showing higher expression in developing craniofacial elements of benthic than in limnetic Arctic charr morphs. The present study adds a second set of genes constituting an expanded gene network with strong, benthic–limnetic differential expression. To identify putative upstream regulators, we performed knowledge-based motif enrichment analyses on the regulatory sequences of the identified genes which yielded potential binding sites for a set of known transcription factors (TFs). Of the 8 TFs that we examined using qPCR, two (Ahr2b and Ap2) were found to be differentially expressed between benthic and limnetic charr. Expression analysis of several known AhR targets indicated higher activity of the AhR pathway during craniofacial development in benthic charr morphotypes. Conclusion These results suggest a key role of the aryl hydrocarbon receptor (AhR) pathway in the observed craniofacial differences between distinct charr morphotypes. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0022-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Sophie S Steinhäuser
- Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Arnar Pálsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Sigrídur Rut Franzdóttir
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Sigurdur S Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Valerie H Maier
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Zophonías O Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| |
Collapse
|
28
|
Cho SW, van Rijssel JC, Witte F, de Bakker MA, Richardson MK. The sonic hedgehog signaling pathway and the development of pharyngeal arch Derivatives in Haplochromis piceatus, a Lake Victoria cichlid. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Schachat SR, Oliver JC, Monteiro A. Nymphalid eyespots are co-opted to novel wing locations following a similar pattern in independent lineages. BMC Evol Biol 2015; 15:20. [PMID: 25886182 PMCID: PMC4335541 DOI: 10.1186/s12862-015-0300-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variation in the number of repeated traits, or serial homologs, has contributed greatly to animal body plan diversity. Eyespot color patterns of nymphalid butterflies, like arthropod and vertebrate limbs, are an example of serial homologs. These eyespot color patterns originated in a small number of wing sectors on the ventral hindwing surface and later appeared in novel wing sectors, novel wings, and novel wing surfaces. However, the details of how eyespots were co-opted to these novel wing locations are currently unknown. RESULTS We used a large data matrix of eyespot/presence absence data, previously assembled from photographs of contemporary species, to perform a phylogenetic investigation of eyespot origins in nine independent nymphalid lineages. To determine how the eyespot gene regulatory network acquired novel positional information, we used phylogenetic correlation analyses to test for non-independence in the origination of eyespots. We found consistent patterns of eyespot gene network redeployment in the nine lineages, where eyespots first redeployed from the ventral hindwing to the ventral forewing, then to new sectors within the ventral wing surface, and finally to the dorsal wing surface. Eyespots that appeared in novel wing sectors modified the positional information of their serial homolog ancestors in one of two ways: by changing the wing or surface identity while retaining sector identity, or by changing the sector identity while retaining wing and surface identity. CONCLUSIONS Eyespot redeployment to novel sectors, wings, and surfaces happened multiple times in different nymphalid subfamilies following a similar pattern. This indicates that parallel mutations altering expression of the eyespot gene regulatory network led to its co-option to novel wing locations over time.
Collapse
Affiliation(s)
- Sandra R Schachat
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA. .,Department of Paleobiology, Smithsonian Institution, Washington, DC, 20013, USA.
| | - Jeffrey C Oliver
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Antónia Monteiro
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, 06520, USA. .,Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore. .,Yale-NUS College, 138614, Singapore, Singapore.
| |
Collapse
|
30
|
Lainoff AJ, Moustakas-Verho JE, Hu D, Kallonen A, Marcucio RS, Hlusko LJ. A comparative examination of odontogenic gene expression in both toothed and toothless amniotes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:255-69. [PMID: 25678399 DOI: 10.1002/jez.b.22594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/20/2014] [Indexed: 11/11/2022]
Abstract
A well-known tenet of murine tooth development is that BMP4 and FGF8 antagonistically initiate odontogenesis, but whether this tenet is conserved across amniotes is largely unexplored. Moreover, changes in BMP4-signaling have previously been implicated in evolutionary tooth loss in Aves. Here we demonstrate that Bmp4, Msx1, and Msx2 expression is limited proximally in the red-eared slider turtle (Trachemys scripta) mandible at stages equivalent to those at which odontogenesis is initiated in mice, a similar finding to previously reported results in chicks. To address whether the limited domains in the turtle and the chicken indicate an evolutionary molecular parallelism, or whether the domains simply constitute an ancestral phenotype, we assessed gene expression in a toothed reptile (the American alligator, Alligator mississippiensis) and a toothed non-placental mammal (the gray short-tailed opossum, Monodelphis domestica). We demonstrate that the Bmp4 domain is limited proximally in M. domestica and that the Fgf8 domain is limited distally in A. mississippiensis just preceding odontogenesis. Additionally, we show that Msx1 and Msx2 expression patterns in these species differ from those found in mice. Our data suggest that a limited Bmp4 domain does not necessarily correlate with edentulism, and reveal that the initiation of odontogenesis in non-murine amniotes is more complex than previously imagined. Our data also suggest a partially conserved odontogenic program in T. scripta, as indicated by conserved Pitx2, Pax9, and Barx1 expression patterns and by the presence of a Shh-expressing palatal epithelium, which we hypothesize may represent potential dental rudiments based on the Testudinata fossil record.
Collapse
Affiliation(s)
- Alexis J Lainoff
- Department of Orthopaedic Surgery, University of California, San Francisco, California
| | | | | | | | | | | |
Collapse
|
31
|
Selection and constraint underlie irreversibility of tooth loss in cypriniform fishes. Proc Natl Acad Sci U S A 2014; 111:7707-12. [PMID: 24821783 DOI: 10.1073/pnas.1321171111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The apparent irreversibility of the loss of complex traits in evolution (Dollo's Law) has been explained either by constraints on generating the lost traits or the complexity of selection required for their return. Distinguishing between these explanations is challenging, however, and little is known about the specific nature of potential constraints. We investigated the mechanisms underlying the irreversibility of trait loss using reduction of dentition in cypriniform fishes, a lineage that includes the zebrafish (Danio rerio) as a model. Teeth were lost from the mouth and upper pharynx in this group at least 50 million y ago and retained only in the lower pharynx. We identified regional loss of expression of the Ectodysplasin (Eda) signaling ligand as a likely cause of dentition reduction. In addition, we found that overexpression of this gene in the zebrafish is sufficient to restore teeth to the upper pharynx but not to the mouth. Because both regions are competent to respond to Eda signaling with transcriptional output, the likely constraint on the reappearance of oral teeth is the alteration of multiple genetic pathways required for tooth development. The upper pharyngeal teeth are fully formed, but do not exhibit the ancestral relationship to other pharyngeal structures, suggesting that they would not be favored by selection. Our results illustrate an underlying commonality between constraint and selection as explanations for the irreversibility of trait loss; multiple genetic changes would be required to restore teeth themselves to the oral region and optimally functioning ones to the upper pharynx.
Collapse
|
32
|
Tucker AS, Fraser GJ. Evolution and developmental diversity of tooth regeneration. Semin Cell Dev Biol 2014; 25-26:71-80. [PMID: 24406627 DOI: 10.1016/j.semcdb.2013.12.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 02/06/2023]
Abstract
This review considers the diversity observed during both the development and evolution of tooth replacement throughout the vertebrates in a phylogenetic framework from basal extant chondrichthyan fish and more derived teleost fish to mammals. We illustrate the conservation of the tooth regeneration process among vertebrate clades, where tooth regeneration refers to multiple tooth successors formed de novo for each tooth position in the jaws from a common set of retained dental progenitor cells. We discuss the conserved genetic mechanisms that might be modified to promote morphological diversity in replacement dentitions. We review current research and recent progress in this field during the last decade that have promoted our understanding of tooth diversity in an evolutionary developmental context, and show how tooth replacement and dental regeneration have impacted the evolution of the tooth-jaw module in vertebrates.
Collapse
Affiliation(s)
- Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, Floor 27 Guy's Tower, Guys Campus, King's College London, SE1 9RT, UK.
| | - Gareth J Fraser
- Department of Animal and Plant Sciences, Alfred Denny Building, Western Bank, University of Sheffield, S10 2TN, UK.
| |
Collapse
|
33
|
Crucke J, Huysseune A. Unravelling the blood supply to the zebrafish pharyngeal jaws and teeth. J Anat 2013; 223:399-409. [PMID: 23937397 DOI: 10.1111/joa.12096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2013] [Indexed: 01/02/2023] Open
Abstract
We describe the vascular supply to the pharyngeal jaws and teeth in zebrafish, from larval stages to juveniles, using serial high quality semithin sections and 3D reconstructions. We have identified that the arterial blood supply to the last pair of branchial arches, which carries the teeth, issues from the hypobranchial artery. Surprisingly, the arteries supplying the pharyngeal jaws show an asymmetric branching pattern that is modified over ontogeny. Moreover, the blood vessel pattern that serves each jaw can best be described as a sinusoidal cavity encircling the bases of both the functional and replacement teeth. Capillaries branching from this sinusoidal cavity enter the pulp and constitute the intrinsic blood supply to the attached teeth. The role of these blood vessels during tooth development (whether instructive or nutritive) remains to be determined and requires further study. However, we have provided a firm morphological basis that will aid in the interpretation of experiments addressing this question.
Collapse
Affiliation(s)
- Jeroen Crucke
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
34
|
Fraser GJ, Bloomquist RF, Streelman JT. Common developmental pathways link tooth shape to regeneration. Dev Biol 2013; 377:399-414. [PMID: 23422830 DOI: 10.1016/j.ydbio.2013.02.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 01/11/2023]
Abstract
In many non-mammalian vertebrates, adult dentitions result from cyclical rounds of tooth regeneration wherein simple unicuspid teeth are replaced by more complex forms. Therefore and by contrast to mammalian models, the numerical majority of vertebrate teeth develop shape during the process of replacement. Here, we exploit the dental diversity of Lake Malawi cichlid fishes to ask how vertebrates generally replace their dentition and in turn how this process acts to influence resulting tooth morphologies. First, we used immunohistochemistry to chart organogenesis of continually replacing cichlid teeth and discovered an epithelial down-growth that initiates the replacement cycle via a labial proliferation bias. Next, we identified sets of co-expressed genes from common pathways active during de novo, lifelong tooth replacement and tooth morphogenesis. Of note, we found two distinct epithelial cell populations, expressing markers of dental competence and cell potency, which may be responsible for tooth regeneration. Related gene sets were simultaneously active in putative signaling centers associated with the differentiation of replacement teeth with complex shapes. Finally, we manipulated targeted pathways (BMP, FGF, Hh, Notch, Wnt/β-catenin) in vivo with small molecules and demonstrated dose-dependent effects on both tooth replacement and tooth shape. Our data suggest that the processes of tooth regeneration and tooth shape morphogenesis are integrated via a common set of molecular signals. This linkage has subsequently been lost or decoupled in mammalian dentitions where complex tooth shapes develop in first generation dentitions that lack the capacity for lifelong replacement. Our dissection of the molecular mechanics of vertebrate tooth replacement coupled to complex shape pinpoints aspects of odontogenesis that might be re-evolved in the lab to solve problems in regenerative dentistry.
Collapse
Affiliation(s)
- Gareth J Fraser
- Parker H. Petit Institute for Bioengineering and Bioscience and School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | |
Collapse
|
35
|
Ma D, Wei Y, Liu F. Regulatory mechanisms of thymus and T cell development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:91-102. [PMID: 22227346 DOI: 10.1016/j.dci.2011.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 05/31/2023]
Abstract
The thymus is a central hematopoietic organ which produces mature T lymphocytes with diverse antigen specificity. During development, the thymus primordium is derived from the third pharyngeal endodermal pouch, and then differentiates into cortical and medullary thymic epithelial cells (TECs). TECs represent the primary functional cell type that forms the unique thymic epithelial microenvironment which is essential for intrathymic T-cell development, including positive selection, negative selection and emigration out of the thymus. Our understanding of thymopoiesis has been greatly advanced by using several important animal models. This review will describe progress on the molecular mechanisms involved in thymus and T cell development with particular focus on the signaling and transcription factors involved in this process in mouse and zebrafish.
Collapse
Affiliation(s)
- Dongyuan Ma
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
36
|
Tokita M, Chaeychomsri W, Siruntawineti J. Developmental basis of toothlessness in turtles: insight into convergent evolution of vertebrate morphology. Evolution 2012; 67:260-73. [PMID: 23289576 DOI: 10.1111/j.1558-5646.2012.01752.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The tooth is a major component of the vertebrate feeding apparatus and plays a crucial role in species survival, thus subjecting tooth developmental programs to strong selective constraints. However, irrespective of their functional importance, teeth have been lost in multiple lineages of tetrapod vertebrates independently. To understand both the generality and the diversity of developmental mechanisms that cause tooth agenesis in tetrapods, we investigated expression patterns of a series of tooth developmental genes in the lower jaw of toothless turtles and compared them to that of toothed crocodiles and the chicken as a representative of toothless modern birds. In turtle embryos, we found impairment of Shh signaling in the oral epithelium and early-stage arrest of odontoblast development caused by termination of Msx2 expression in the dental mesenchyme. Our data indicate that such changes underlie tooth agenesis in turtles and suggest that the mechanism that leads to early-stage odontogenic arrest differs between birds and turtles. Our results demonstrate that the cellular and molecular mechanisms that regulate early-stage arrest of tooth development are diverse in tetrapod lineages, and odontogenic developmental programs may respond to changes in upstream molecules similarly thereby evolving convergently with feeding morphology.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tenno-dai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan.
| | | | | |
Collapse
|
37
|
Jheon AH, Seidel K, Biehs B, Klein OD. From molecules to mastication: the development and evolution of teeth. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:165-82. [PMID: 24009032 DOI: 10.1002/wdev.63] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Teeth are unique to vertebrates and have played a central role in their evolution. The molecular pathways and morphogenetic processes involved in tooth development have been the focus of intense investigation over the past few decades, and the tooth is an important model system for many areas of research. Developmental biologists have exploited the clear distinction between the epithelium and the underlying mesenchyme during tooth development to elucidate reciprocal epithelial/mesenchymal interactions during organogenesis. The preservation of teeth in the fossil record makes these organs invaluable for the work of paleontologists, anthropologists, and evolutionary biologists. In addition, with the recent identification and characterization of dental stem cells, teeth have become of interest to the field of regenerative medicine. Here, we review the major research areas and studies in the development and evolution of teeth, including morphogenesis, genetics and signaling, evolution of tooth development, and dental stem cells.
Collapse
Affiliation(s)
- Andrew H Jheon
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
38
|
Wiweger MI, Zhao Z, van Merkesteyn RJP, Roehl HH, Hogendoorn PCW. HSPG-deficient zebrafish uncovers dental aspect of multiple osteochondromas. PLoS One 2012; 7:e29734. [PMID: 22253766 PMCID: PMC3256178 DOI: 10.1371/journal.pone.0029734] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 12/03/2011] [Indexed: 11/25/2022] Open
Abstract
Multiple Osteochondromas (MO; previously known as multiple hereditary exostosis) is an autosomal dominant genetic condition that is characterized by the formation of cartilaginous bone tumours (osteochondromas) at multiple sites in the skeleton, secondary bursa formation and impingement of nerves, tendons and vessels, bone curving, and short stature. MO is also known to be associated with arthritis, general pain, scarring and occasional malignant transformation of osteochondroma into secondary peripheral chondrosarcoma. MO patients present additional complains but the relevance of those in relation to the syndromal background needs validation. Mutations in two enzymes that are required during heparan sulphate synthesis (EXT1 or EXT2) are known to cause MO. Previously, we have used zebrafish which harbour mutations in ext2 as a model for MO and shown that ext2−/− fish have skeletal defects that resemble those seen in osteochondromas. Here we analyse dental defects present in ext2−/− fish. Histological analysis reveals that ext2−/− fish have very severe defects associated with the formation and the morphology of teeth. At 5 days post fertilization 100% of ext2−/− fish have a single tooth at the end of the 5th pharyngeal arch, whereas wild-type fish develop three teeth, located in the middle of the pharyngeal arch. ext2−/− teeth have abnormal morphology (they were shorter and thicker than in the WT) and patchy ossification at the tooth base. Deformities such as split crowns and enamel lesions were found in 20% of ext2+/− adults. The tooth morphology in ext2−/− was partially rescued by FGF8 administered locally (bead implants). Our findings from zebrafish model were validated in a dental survey that was conducted with assistance of the MHE Research Foundation. The presence of the malformed and/or displaced teeth with abnormal enamel was declared by half of the respondents indicating that MO might indeed be also associated with dental problems.
Collapse
Affiliation(s)
| | - Zhe Zhao
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Henry H. Roehl
- Department of Biomedical Sciences, The University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
39
|
Homozygosity mapping and candidate prioritization identify mutations, missed by whole-exome sequencing, in SMOC2, causing major dental developmental defects. Am J Hum Genet 2011; 89:773-81. [PMID: 22152679 DOI: 10.1016/j.ajhg.2011.11.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/12/2011] [Accepted: 11/03/2011] [Indexed: 12/16/2022] Open
Abstract
Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on a severe developmental dental defect that results in a dentin dysplasia phenotype with major microdontia, oligodontia, and shape abnormalities in a highly consanguineous family. Homozygosity mapping revealed a unique zone on 6q27-ter. The two affected children were found to carry a homozygous mutation in SMOC2. Knockdown of smoc2 in zebrafish showed pharyngeal teeth that had abnormalities reminiscent of the human phenotype. Moreover, smoc2 depletion in zebrafish affected the expression of three major odontogenesis genes: dlx2, bmp2, and pitx2.
Collapse
|
40
|
Jackman WR, Yoo JJ, Stock DW. Hedgehog signaling is required at multiple stages of zebrafish tooth development. BMC DEVELOPMENTAL BIOLOGY 2010; 10:119. [PMID: 21118524 PMCID: PMC3001715 DOI: 10.1186/1471-213x-10-119] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/30/2010] [Indexed: 12/21/2022]
Abstract
Background The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. Results We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. Conclusion We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution.
Collapse
|
41
|
Fraser GJ, Smith MM. Evolution of developmental pattern for vertebrate dentitions: an oro-pharyngeal specific mechanism. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 316B:99-112. [PMID: 21328527 DOI: 10.1002/jez.b.21387] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 08/15/2010] [Accepted: 10/12/2010] [Indexed: 11/07/2022]
Abstract
Classically the oral dentition with teeth regulated into a successional iterative order was thought to have evolved from the superficial skin denticles migrating into the mouth at the stage when jaws evolved. The canonical view is that the initiation of a pattern order for teeth at the mouth margin required development of a sub-epithelial, permanent dental lamina. This provided regulated tooth production in advance of functional need, as exemplified by the Chondrichthyes. It had been assumed that teeth in the Osteichthyes form in this way as in tetrapods. However, this has been shown not to be true for many osteichthyan fish where a dental lamina of this kind does not form, but teeth are regularly patterned and replaced. We question the evolutionary origin of pattern information for the dentition driven by new morphological data on spatial initiation of skin denticles in the catshark. We review recent gene expression data for spatio-temporal order of tooth initiation for Scyliorhinus canicula, selected teleosts in both oral and pharyngeal dentitions, and Neoceratodus forsteri. Although denticles in the chondrichthyan skin appear not to follow a strict pattern order in space and time, tooth replacement in a functional system occurs with precise timing and spatial order. We suggest that the patterning mechanism observed for the oral and pharyngeal dentition is unique to the vertebrate oro-pharynx and independent of the skin system. Therefore, co-option of a successional iterative pattern occurred in evolution not from the skin but from mechanisms existing in the oro-pharynx of now extinct agnathans.
Collapse
Affiliation(s)
- Gareth J Fraser
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.
| | | |
Collapse
|
42
|
Spatio-temporal patterns of Hox paralog group 3–6 gene expression during Japanese medaka (Oryzias latipes) embryonic development. Gene Expr Patterns 2010; 10:244-50. [DOI: 10.1016/j.gep.2010.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/06/2010] [Accepted: 05/08/2010] [Indexed: 12/20/2022]
|
43
|
Fraser GJ, Cerny R, Soukup V, Bronner-Fraser M, Streelman JT. The odontode explosion: the origin of tooth-like structures in vertebrates. Bioessays 2010; 32:808-17. [PMID: 20730948 PMCID: PMC3034446 DOI: 10.1002/bies.200900151] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Essentially we show recent data to shed new light on the thorny controversy of how teeth arose in evolution. Essentially we show (a) how teeth can form equally from any epithelium, be it endoderm, ectoderm or a combination of the two and (b) that the gene expression programs of oral versus pharyngeal teeth are remarkably similar. Classic theories suggest that (i) skin denticles evolved first and odontode-inductive surface ectoderm merged inside the oral cavity to form teeth (the 'outside-in' hypothesis) or that (ii) patterned odontodes evolved first from endoderm deep inside the pharyngeal cavity (the 'inside-out' hypothesis). We propose a new perspective that views odontodes as structures sharing a deep molecular homology, united by sets of co-expressed genes defining a competent thickened epithelium and a collaborative neural crest-derived ectomesenchyme. Simply put, odontodes develop 'inside and out', wherever and whenever these co-expressed gene sets signal to one another. Our perspective complements the classic theories and highlights an agenda for specific experimental manipulations in model and non-model organisms.
Collapse
Affiliation(s)
- Gareth J. Fraser
- Department of Animal and Plant Sciences, University of Sheffield, UK
| | - Robert Cerny
- Department of Zoology, Charles University in Prague, Czech Republic
| | - Vladimir Soukup
- Department of Zoology, Charles University in Prague, Czech Republic
| | | | - J. Todd Streelman
- School of Biology and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
44
|
Talbot JC, Johnson SL, Kimmel CB. hand2 and Dlx genes specify dorsal, intermediate and ventral domains within zebrafish pharyngeal arches. Development 2010; 137:2507-17. [PMID: 20573696 PMCID: PMC2927700 DOI: 10.1242/dev.049700] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2010] [Indexed: 11/20/2022]
Abstract
The ventrally expressed secreted polypeptide endothelin1 (Edn1) patterns the skeleton derived from the first two pharyngeal arches into dorsal, intermediate and ventral domains. Edn1 activates expression of many genes, including hand2 and Dlx genes. We wanted to know how hand2/Dlx genes might generate distinct domain identities. Here, we show that differential expression of hand2 and Dlx genes delineates domain boundaries before and during cartilage morphogenesis. Knockdown of the broadly expressed genes dlx1a and dlx2a results in both dorsal and intermediate defects, whereas knockdown of three intermediate-domain restricted genes dlx3b, dlx4b and dlx5a results in intermediate-domain-specific defects. The ventrally expressed gene hand2 patterns ventral identity, in part by repressing dlx3b/4b/5a. The jaw joint is an intermediate-domain structure that expresses nkx3.2 and a more general joint marker, trps1. The jaw joint expression of trps1 and nkx3.2 requires dlx3b/4b/5a function, and expands in hand2 mutants. Both hand2 and dlx3b/4b/5a repress dorsal patterning markers. Collectively, our work indicates that the expression and function of hand2 and Dlx genes specify major patterning domains along the dorsoventral axis of zebrafish pharyngeal arches.
Collapse
|
45
|
Pasco-Viel E, Charles C, Chevret P, Semon M, Tafforeau P, Viriot L, Laudet V. Evolutionary trends of the pharyngeal dentition in Cypriniformes (Actinopterygii: Ostariophysi). PLoS One 2010; 5:e11293. [PMID: 20585584 PMCID: PMC2892034 DOI: 10.1371/journal.pone.0011293] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 05/31/2010] [Indexed: 11/19/2022] Open
Abstract
Background The fish order Cypriniformes is one of the most diverse ray-finned fish groups in the world with more than 3000 recognized species. Cypriniformes are characterized by a striking distribution of their dentition: namely the absence of oral teeth and presence of pharyngeal teeth on the last gill arch (fifth ceratobranchial). Despite this limited localisation, the diversity of tooth patterns in Cypriniformes is astonishing. Here we provide a further description of this diversity using X-ray microtomography and we map the resulting dental characters on a phylogenetic tree to explore evolutionary trends. Results We performed a pilot survey of dental formulae and individual tooth shapes in 34 adult species of Cypriniformes by X-ray microtomography (using either conventional X-ray machine, or synchrotron microtomography when necessary) or by dissecting. By mapping morphological results in a phylogenetic tree, it emerges that the two super-families Cobitoidea and Cyprinoidea have followed two distinct evolutionary pathways. Furthermore, our analysis supports the hypothesis of a three-row dentition as ancestral for Cyprinoidea and a general trend in tooth row reduction in most derived lineages. Yet, this general scheme must be considered with caution as several events of tooth row gain and loss have occurred during evolutionary history of Cyprinoidea. Significance Dentition diversity in Cypriniformes constitutes an excellent model to study the evolution of complex morphological structures. This morphological survey clearly advocates for extending the use of X-ray microtomography to study tooth morphology in Cypriniformes. Yet, our survey also underlines that improved knowledge of Cypriniformes life traits, such as feeding habits, is required as current knowledge is not sufficient to conclude on the link between diet and dental morphology.
Collapse
Affiliation(s)
- Emmanuel Pasco-Viel
- Evo-devo of Vertebrate Dentition, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Cyril Charles
- iPHEP, CNRS UMR 6046, Université de Poitiers, Poitiers, France
| | - Pascale Chevret
- Molecular Zoology, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marie Semon
- Molecular Zoology, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Laurent Viriot
- Evo-devo of Vertebrate Dentition, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
- iPHEP, CNRS UMR 6046, Université de Poitiers, Poitiers, France
- * E-mail: (VL); (LV)
| | - Vincent Laudet
- Molecular Zoology, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail: (VL); (LV)
| |
Collapse
|
46
|
Gibert Y, Bernard L, Debiais-Thibaud M, Bourrat F, Joly JS, Pottin K, Meyer A, Retaux S, Stock DW, Jackman WR, Seritrakul P, Begemann G, Laudet V. Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling. FASEB J 2010; 24:3298-309. [PMID: 20445074 DOI: 10.1096/fj.09-147488] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One of the goals of evolutionary developmental biology is to link specific adaptations to changes in developmental pathways. The dentition of cypriniform fishes, which in contrast to many other teleost fish species possess pharyngeal teeth but lack oral teeth, provides a suitable model to study the development of feeding adaptations. Here, we have examined the involvement of retinoic acid (RA) in tooth development and show that RA is specifically required to induce the pharyngeal tooth developmental program in zebrafish. Perturbation of RA signaling at this stage abolished tooth induction without affecting the development of tooth-associated ceratobranchial bones. We show that this inductive event is dependent on RA synthesis from aldh1a2 in the ventral posterior pharynx. Fibroblast growth factor (FGF) signaling has been shown to be critical for tooth induction in zebrafish, and its loss has been associated with oral tooth loss in cypriniform fishes. Pharmacological treatments targeting the RA and FGF pathways revealed that both pathways act independently during tooth induction. In contrast, we find that in Mexican tetra and medaka, species that also possess oral teeth, both oral and pharyngeal teeth are induced independently of RA. Our analyses suggest an evolutionary scenario in which the gene network controlling tooth development obtained RA dependency in the lineage leading to the cypriniforms. The loss of pharyngeal teeth in this group was cancelled out through a shift in aldh1a2 expression, while oral teeth might have been lost ultimately due to deficient RA signaling in the oral cavity.
Collapse
Affiliation(s)
- Yann Gibert
- Molecular Zoology Group, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, UCB Lyon 1, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Huysseune A, Sire JY, Witten PE. Evolutionary and developmental origins of the vertebrate dentition. J Anat 2010; 214:465-76. [PMID: 19422425 DOI: 10.1111/j.1469-7580.2009.01053.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
According to the classical theory, teeth derive from odontodes that invaded the oral cavity in conjunction with the origin of jaws (the 'outside in' theory). A recent alternative hypothesis suggests that teeth evolved prior to the origin of jaws as endodermal derivatives (the 'inside out' hypothesis). We compare the two theories in the light of current data and propose a third scenario, a revised 'outside in' hypothesis. We suggest that teeth may have arisen before the origin of jaws, as a result of competent, odontode-forming ectoderm invading the oropharyngeal cavity through the mouth as well as through the gill slits, interacting with neural crest-derived mesenchyme. This hypothesis revives the homology between skin denticles (odontodes) and teeth. Our hypothesis is based on (1) the assumption that endoderm alone, together with neural crest, cannot form teeth; (2) the observation that pharyngeal teeth are present only in species known to possess gill slits, and disappear from the pharyngeal region in early tetrapods concomitant with the closure of gill slits, and (3) the observation that the dental lamina (sensu Reif, 1982) is not a prerequisite for teeth to form. We next discuss the progress that has been made to understand the spatially restricted loss of teeth from certain arches, and the many questions that remain regarding the ontogenetic loss of teeth in specific taxa. The recent advances that have been made in our knowledge on the molecular control of tooth formation in non-mammalians (mostly in some teleost model species) will undoubtedly contribute to answering these questions in the coming years.
Collapse
|
48
|
Autocrine and paracrine Shh signaling are necessary for tooth morphogenesis, but not tooth replacement in snakes and lizards (Squamata). Dev Biol 2009; 337:171-86. [PMID: 19850027 DOI: 10.1016/j.ydbio.2009.10.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 10/12/2009] [Accepted: 10/12/2009] [Indexed: 11/23/2022]
Abstract
Here we study the role of Shh signaling in tooth morphogenesis and successional tooth initiation in snakes and lizards (Squamata). By characterizing the expression of Shh pathway receptor Ptc1 in the developing dentitions of three species (Eublepharis macularius, Python regius, and Pogona vitticeps) and by performing gain- and loss-of-function experiments, we demonstrate that Shh signaling is active in the squamate tooth bud and is required for its normal morphogenesis. Shh apparently mediates tooth morphogenesis by separate paracrine- and autocrine-mediated functions. According to this model, paracrine Shh signaling induces cell proliferation in the cervical loop, outer enamel epithelium, and dental papilla. Autocrine signaling within the stellate reticulum instead appears to regulate cell survival. By treating squamate dental explants with Hh antagonist cyclopamine, we induced tooth phenotypes that closely resemble the morphological and differentiation defects of vestigial, first-generation teeth in the bearded dragon P. vitticeps. Our finding that these vestigial teeth are deficient in epithelial Shh signaling further corroborates that Shh is needed for the normal development of teeth in snakes and lizards. Finally, in this study, we definitively refute a role for Shh signaling in successional dental lamina formation and conclude that other pathways regulate tooth replacement in squamates.
Collapse
|
49
|
Meredith RW, Gatesy J, Murphy WJ, Ryder OA, Springer MS. Molecular decay of the tooth gene Enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals. PLoS Genet 2009; 5:e1000634. [PMID: 19730686 PMCID: PMC2728479 DOI: 10.1371/journal.pgen.1000634] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/06/2009] [Indexed: 11/19/2022] Open
Abstract
Vestigial structures occur at both the anatomical and molecular levels, but studies documenting the co-occurrence of morphological degeneration in the fossil record and molecular decay in the genome are rare. Here, we use morphology, the fossil record, and phylogenetics to predict the occurrence of "molecular fossils" of the enamelin (ENAM) gene in four different orders of placental mammals (Tubulidentata, Pholidota, Cetacea, Xenarthra) with toothless and/or enamelless taxa. Our results support the "molecular fossil" hypothesis and demonstrate the occurrence of frameshift mutations and/or stop codons in all toothless and enamelless taxa. We then use a novel method based on selection intensity estimates for codons (omega) to calculate the timing of iterated enamel loss in the fossil record of aardvarks and pangolins, and further show that the molecular evolutionary history of ENAM predicts the occurrence of enamel in basal representatives of Xenarthra (sloths, anteaters, armadillos) even though frameshift mutations are ubiquitous in ENAM sequences of living xenarthrans. The molecular decay of ENAM parallels the morphological degeneration of enamel in the fossil record of placental mammals and provides manifest evidence for the predictive power of Darwin's theory.
Collapse
Affiliation(s)
- Robert W. Meredith
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| | - John Gatesy
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Oliver A. Ryder
- San Diego Zoo's Institute for Conservation Research, Escondido, California, United States of America
| | - Mark S. Springer
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
50
|
Relaxed selection in the wild. Trends Ecol Evol 2009; 24:487-96. [DOI: 10.1016/j.tree.2009.03.010] [Citation(s) in RCA: 367] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 03/19/2009] [Accepted: 03/23/2009] [Indexed: 11/23/2022]
|