1
|
Negrón-Piñeiro LJ, Wu Y, Mehta R, Maguire JE, Chou C, Lee J, Dahia CL, Di Gregorio A. Fine-Tuned Expression of Evolutionarily Conserved Signaling Molecules in the Ciona Notochord. Int J Mol Sci 2024; 25:13631. [PMID: 39769393 PMCID: PMC11728170 DOI: 10.3390/ijms252413631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
The notochord is an axial structure required for the development of all chordate embryos, from sea squirts to humans. Over the course of more than half a billion years of chordate evolution, in addition to its structural function, the notochord has acquired increasingly relevant patterning roles for its surrounding tissues. This process has involved the co-option of signaling pathways and the acquisition of novel molecular mechanisms responsible for the precise timing and modalities of their deployment. To reconstruct this evolutionary route, we surveyed the expression of signaling molecules in the notochord of the tunicate Ciona, an experimentally amenable and informative chordate. We found that several genes encoding for candidate components of diverse signaling pathways are expressed during notochord development, and in some instances, display distinctive regionalized and/or lineage-specific patterns. We identified and deconstructed notochord enhancers associated with TGF-β and Ctgf, two evolutionarily conserved signaling genes that are expressed dishomogeneously in the Ciona notochord, and shed light on the cis-regulatory origins of their peculiar expression patterns.
Collapse
Affiliation(s)
- Lenny J. Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Yushi Wu
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Ravij Mehta
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Julie E. Maguire
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Cindy Chou
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Joyce Lee
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Chitra L. Dahia
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Science, New York, NY 10065, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| |
Collapse
|
2
|
Johnson CJ, Razy-Krajka F, Zeng F, Piekarz KM, Biliya S, Rothbächer U, Stolfi A. Specification of distinct cell types in a sensory-adhesive organ important for metamorphosis in tunicate larvae. PLoS Biol 2024; 22:e3002555. [PMID: 38478577 PMCID: PMC10962819 DOI: 10.1371/journal.pbio.3002555] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/25/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
The papillae of tunicate larvae contribute sensory, adhesive, and metamorphosis-regulating functions that are crucial for the biphasic lifestyle of these marine, non-vertebrate chordates. We have identified additional molecular markers for at least 5 distinct cell types in the papillae of the model tunicate Ciona, allowing us to further study the development of these organs. Using tissue-specific CRISPR/Cas9-mediated mutagenesis and other molecular perturbations, we reveal the roles of key transcription factors and signaling pathways that are important for patterning the papilla territory into a highly organized array of different cell types and shapes. We further test the contributions of different transcription factors and cell types to the production of the adhesive glue that allows for larval attachment during settlement, and to the processes of tail retraction and body rotation during metamorphosis. With this study, we continue working towards connecting gene regulation to cellular functions that control the developmental transition between the motile larva and sessile adult of Ciona.
Collapse
Affiliation(s)
- Christopher J Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Fan Zeng
- Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Katarzyna M Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Shweta Biliya
- Molecular Evolution Core, Petit H. Parker Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ute Rothbächer
- Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
3
|
Tokuoka M, Satou Y. A digital twin reproducing gene regulatory network dynamics of early Ciona embryos indicates robust buffers in the network. PLoS Genet 2023; 19:e1010953. [PMID: 37756274 PMCID: PMC10530022 DOI: 10.1371/journal.pgen.1010953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
How gene regulatory networks (GRNs) encode gene expression dynamics and how GRNs evolve are not well understood, although these problems have been studied extensively. We created a digital twin that accurately reproduces expression dynamics of 13 genes that initiate expression in 32-cell ascidian embryos. We first showed that gene expression patterns can be manipulated according to predictions by this digital model. Next, to simulate GRN rewiring, we changed regulatory functions that represented their regulatory mechanisms in the digital twin, and found that in 55 of 100 cases, removal of a single regulator from a conjunctive clause of Boolean functions did not theoretically alter qualitative expression patterns of these genes. In other words, we found that more than half the regulators gave theoretically redundant temporal or spatial information to target genes. We experimentally substantiated that the expression pattern of Nodal was maintained without one of these factors, Zfpm, by changing the upstream regulatory sequence of Nodal. Such robust buffers of regulatory mechanisms may provide a basis of enabling developmental system drift, or rewiring of GRNs without changing expression patterns of downstream genes, during evolution.
Collapse
Affiliation(s)
- Miki Tokuoka
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
4
|
Shimai K, Veeman M. Quantitative Dissection of the Proximal Ciona brachyury Enhancer. Front Cell Dev Biol 2022; 9:804032. [PMID: 35127721 PMCID: PMC8814421 DOI: 10.3389/fcell.2021.804032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
A major goal in biology is to understand the rules by which cis-regulatory sequences control spatially and temporally precise expression patterns. Here we present a systematic dissection of the proximal enhancer for the notochord-specific transcription factor brachyury in the ascidian chordate Ciona. The study uses a quantitative image-based reporter assay that incorporates a dual-reporter strategy to control for variable electroporation efficiency. We identified and mutated multiple predicted transcription factor binding sites of interest based on statistical matches to the JASPAR binding motif database. Most sites (Zic, Ets, FoxA, RBPJ) were selected based on prior knowledge of cell fate specification in both the primary and secondary notochord. We also mutated predicted Brachyury sites to investigate potential autoregulation as well as Fos/Jun (AP1) sites that had very strong matches to JASPAR. Our goal was to quantitatively define the relative importance of these different sites, to explore the importance of predicted high-affinity versus low-affinity motifs, and to attempt to design mutant enhancers that were specifically expressed in only the primary or secondary notochord lineages. We found that the mutation of all predicted high-affinity sites for Zic, FoxA or Ets led to quantifiably distinct effects. The FoxA construct caused a severe loss of reporter expression whereas the Ets construct had little effect. A strong Ets phenotype was only seen when much lower-scoring binding sites were also mutated. This supports the enhancer suboptimization hypothesis proposed by Farley and Levine but suggests that it may only apply to some but not all transcription factor families. We quantified reporter expression separately in the two notochord lineages with the expectation that Ets mutations and RBPJ mutations would have distinct effects given that primary notochord is induced by Ets-mediated FGF signaling whereas secondary notochord is induced by RBPJ/Su(H)-mediated Notch/Delta signaling. We found, however, that ETS mutations affected primary and secondary notochord expression relatively equally and that RBPJ mutations were only moderately more severe in their effect on secondary versus primary notochord. Our results point to the promise of quantitative reporter assays for understanding cis-regulatory logic but also highlight the challenge of arbitrary statistical thresholds for predicting potentially important sites.
Collapse
|
5
|
Winkley KM, Reeves WM, Veeman MT. Single-cell analysis of cell fate bifurcation in the chordate Ciona. BMC Biol 2021; 19:180. [PMID: 34465302 PMCID: PMC8408944 DOI: 10.1186/s12915-021-01122-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Inductive signaling interactions between different cell types are a major mechanism for the further diversification of embryonic cell fates. Most blastomeres in the model chordate Ciona robusta become restricted to a single predominant fate between the 64-cell and mid-gastrula stages. The deeply stereotyped and well-characterized Ciona embryonic cell lineages allow the transcriptomic analysis of newly established cell types very early in their divergence from sibling cell states without the pseudotime inference needed in the analysis of less synchronized cell populations. This is the first ascidian study to use droplet scRNAseq with large numbers of analyzed cells as early as the 64-cell stage when major lineages such as primary notochord first become fate restricted. RESULTS AND CONCLUSIONS We identify 59 distinct cell states, including new subregions of the b-line neural lineage and the early induction of the tail tip epidermis. We find that 34 of these cell states are directly or indirectly dependent on MAPK-mediated signaling critical to early Ciona patterning. Most of the MAPK-dependent bifurcations are canalized with the signal-induced cell fate lost upon MAPK inhibition, but the posterior endoderm is unique in being transformed into a novel state expressing some but not all markers of both endoderm and muscle. Divergent gene expression between newly bifurcated sibling cell types is dominated by upregulation in the induced cell type. The Ets family transcription factor Elk1/3/4 is uniquely upregulated in nearly all the putatively direct inductions. Elk1/3/4 upregulation together with Ets transcription factor binding site enrichment analysis enables inferences about which bifurcations are directly versus indirectly controlled by MAPK signaling. We examine notochord induction in detail and find that the transition between a Zic/Ets-mediated regulatory state and a Brachyury/FoxA-mediated regulatory state is unexpectedly late. This supports a "broad-hourglass" model of cell fate specification in which many early tissue-specific genes are induced in parallel to key tissue-specific transcriptional regulators via the same set of transcriptional inputs.
Collapse
Affiliation(s)
- Konner M Winkley
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Wendy M Reeves
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Michael T Veeman
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
6
|
Hudson C, Yasuo H. Neuromesodermal Lineage Contribution to CNS Development in Invertebrate and Vertebrate Chordates. Genes (Basel) 2021; 12:genes12040592. [PMID: 33920662 PMCID: PMC8073528 DOI: 10.3390/genes12040592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Ascidians are invertebrate chordates and the closest living relative to vertebrates. In ascidian embryos a large part of the central nervous system arises from cells associated with mesoderm rather than ectoderm lineages. This seems at odds with the traditional view of vertebrate nervous system development which was thought to be induced from ectoderm cells, initially with anterior character and later transformed by posteriorizing signals, to generate the entire anterior-posterior axis of the central nervous system. Recent advances in vertebrate developmental biology, however, show that much of the posterior central nervous system, or spinal cord, in fact arises from cells that share a common origin with mesoderm. This indicates a conserved role for bi-potential neuromesoderm precursors in chordate CNS formation. However, the boundary between neural tissue arising from these distinct neural lineages does not appear to be fixed, which leads to the notion that anterior-posterior patterning and neural fate formation can evolve independently.
Collapse
|
7
|
Kobayashi K, Maeda K, Tokuoka M, Mochizuki A, Satou Y. Using linkage logic theory to control dynamics of a gene regulatory network of a chordate embryo. Sci Rep 2021; 11:4001. [PMID: 33597570 PMCID: PMC7889898 DOI: 10.1038/s41598-021-83045-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/28/2021] [Indexed: 11/09/2022] Open
Abstract
Linkage logic theory provides a mathematical criterion to control network dynamics by manipulating activities of a subset of network nodes, which are collectively called a feedback vertex set (FVS). Because many biological functions emerge from dynamics of biological networks, this theory provides a promising tool for controlling biological functions. By manipulating the activity of FVS molecules identified in a gene regulatory network (GRN) for fate specification of seven tissues in ascidian embryos, we previously succeeded in reproducing six of the seven cell types. Simultaneously, we discovered that the experimentally reconstituted GRN lacked information sufficient to reproduce muscle cells. Here, we utilized linkage logic theory as a tool to find missing edges in the GRN. Then, we identified a FVS from an updated version of the GRN and confirmed that manipulating the activity of this FVS was sufficient to induce all seven cell types, even in a multi-cellular environment. Thus, linkage logic theory provides tools to find missing edges in experimentally reconstituted networks, to determine whether reconstituted networks contain sufficient information to fulfil expected functions, and to reprogram cell fate.
Collapse
Affiliation(s)
- Kenji Kobayashi
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Kazuki Maeda
- Faculty of Informatics, The University of Fukuchiyama, 3370 Hori, Fukuchiyama, Kyoto, 620-0886, Japan
| | - Miki Tokuoka
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Atsushi Mochizuki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, 606-8507, Japan.
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.
| |
Collapse
|
8
|
Zhang T, Xu Y, Imai K, Fei T, Wang G, Dong B, Yu T, Satou Y, Shi W, Bao Z. A single-cell analysis of the molecular lineage of chordate embryogenesis. SCIENCE ADVANCES 2020; 6:eabc4773. [PMID: 33148647 PMCID: PMC7673699 DOI: 10.1126/sciadv.abc4773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/16/2020] [Indexed: 05/05/2023]
Abstract
Progressive unfolding of gene expression cascades underlies diverse embryonic lineage development. Here, we report a single-cell RNA sequencing analysis of the complete and invariant embryonic cell lineage of the tunicate Ciona savignyi from fertilization to the onset of gastrulation. We reconstructed a developmental landscape of 47 cell types over eight cell cycles in the wild-type embryo and identified eight fate transformations upon fibroblast growth factor (FGF) inhibition. For most FGF-dependent asymmetric cell divisions, the bipotent mother cell displays the gene signature of the default daughter fate. In convergent differentiation of the two notochord lineages, we identified additional gene pathways parallel to the master regulator T/Brachyury Last, we showed that the defined Ciona cell types can be matched to E6.5-E8.5 stage mouse cell types and display conserved expression of limited number of transcription factors. This study provides a high-resolution single-cell dataset to understand chordate early embryogenesis and cell lineage differentiation.
Collapse
Affiliation(s)
- Tengjiao Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, China
| | - Yichi Xu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Kaoru Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Teng Fei
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Guilin Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Tianwei Yu
- School of Data Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen, Guangdong 518172, China
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Weiyang Shi
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
9
|
Guignard L, Fiúza UM, Leggio B, Laussu J, Faure E, Michelin G, Biasuz K, Hufnagel L, Malandain G, Godin C, Lemaire P. Contact area-dependent cell communication and the morphological invariance of ascidian embryogenesis. Science 2020; 369:369/6500/eaar5663. [PMID: 32646972 DOI: 10.1126/science.aar5663] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/29/2020] [Indexed: 12/18/2022]
Abstract
Marine invertebrate ascidians display embryonic reproducibility: Their early embryonic cell lineages are considered invariant and are conserved between distantly related species, despite rapid genomic divergence. Here, we address the drivers of this reproducibility. We used light-sheet imaging and automated cell segmentation and tracking procedures to systematically quantify the behavior of individual cells every 2 minutes during Phallusia mammillata embryogenesis. Interindividual reproducibility was observed down to the area of individual cell contacts. We found tight links between the reproducibility of embryonic geometries and asymmetric cell divisions, controlled by differential sister cell inductions. We combined modeling and experimental manipulations to show that the area of contact between signaling and responding cells is a key determinant of cell communication. Our work establishes the geometric control of embryonic inductions as an alternative to classical morphogen gradients and suggests that the range of cell signaling sets the scale at which embryonic reproducibility is observed.
Collapse
Affiliation(s)
- Léo Guignard
- CRBM, Université de Montpellier, CNRS, 34293 Montpellier, France.,Virtual Plants, Université de Montpellier, CIRAD, INRA, Inria, 34095 Montpellier, France.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ulla-Maj Fiúza
- CRBM, Université de Montpellier, CNRS, 34293 Montpellier, France.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bruno Leggio
- CRBM, Université de Montpellier, CNRS, 34293 Montpellier, France.,Virtual Plants, Université de Montpellier, CIRAD, INRA, Inria, 34095 Montpellier, France.,Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Inria, 69342 Lyon, France
| | - Julien Laussu
- CRBM, Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Emmanuel Faure
- CRBM, Université de Montpellier, CNRS, 34293 Montpellier, France.,Virtual Plants, Université de Montpellier, CIRAD, INRA, Inria, 34095 Montpellier, France.,Institut de Recherche en Informatique de Toulouse (IRIT), Universités Toulouse I et III, CNRS, INPT, ENSEEIHT, 31071 Toulouse, France
| | - Gaël Michelin
- Morpheme, Université Côte d'Azur, Inria, CNRS, I3S, France
| | - Kilian Biasuz
- CRBM, Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Lars Hufnagel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | | | - Christophe Godin
- Virtual Plants, Université de Montpellier, CIRAD, INRA, Inria, 34095 Montpellier, France. .,Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Inria, 69342 Lyon, France
| | - Patrick Lemaire
- CRBM, Université de Montpellier, CNRS, 34293 Montpellier, France.
| |
Collapse
|
10
|
Di Gregorio A. The notochord gene regulatory network in chordate evolution: Conservation and divergence from Ciona to vertebrates. Curr Top Dev Biol 2020; 139:325-374. [PMID: 32450965 DOI: 10.1016/bs.ctdb.2020.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The notochord is a structure required for support and patterning of all chordate embryos, from sea squirts to humans. An increasing amount of information on notochord development and on the molecular strategies that ensure its proper morphogenesis has been gleaned through studies in the sea squirt Ciona. This invertebrate chordate offers a fortunate combination of experimental advantages, ranging from translucent, fast-developing embryos to a compact genome and impressive biomolecular resources. These assets have enabled the rapid identification of numerous notochord genes and cis-regulatory regions, and provide a rather unique opportunity to reconstruct the gene regulatory network that controls the formation of this developmental and evolutionary chordate landmark. This chapter summarizes the morphogenetic milestones that punctuate notochord formation in Ciona, their molecular effectors, and the current knowledge of the gene regulatory network that ensures the accurate spatial and temporal orchestration of these processes.
Collapse
Affiliation(s)
- Anna Di Gregorio
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
11
|
Fiuza UM, Negishi T, Rouan A, Yasuo H, Lemaire P. A Nodal/Eph signalling relay drives the transition from apical constriction to apico-basal shortening in ascidian endoderm invagination. Development 2020; 147:dev.186965. [DOI: 10.1242/dev.186965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/02/2020] [Indexed: 01/13/2023]
Abstract
Gastrulation is the first major morphogenetic event during animal embryogenesis. Ascidian gastrulation starts with the invagination of 10 endodermal precursor cells between the 64- and late 112-cell stages. This process occurs in the absence of endodermal cell division and in two steps, driven by myosin-dependent contractions of the acto-myosin network. First, endoderm precursors constrict their apex. Second, they shorten apico-basally, while retaining small apical surfaces, thereby causing invagination. The mechanisms that prevent endoderm cell division, trigger the transition between step 1 and step 2, and drive apico-basal shortening have remained elusive. Here, we demonstrate a conserved role for Nodal and Eph signalling during invagination in two distantly related ascidian species, Phallusia mammillata and Ciona intestinalis. Specifically, we show that the transition to step 2 is triggered by Nodal relayed by Eph signalling. Additionally, our results indicate that Eph signalling lengthens the endodermal cell cycle, independently of Nodal. Finally, we find that both Nodal and Eph signals are dispensable for endoderm fate specification. These results illustrate commonalities as well as differences in the action of Nodal during ascidian and vertebrate gastrulation.
Collapse
Affiliation(s)
- Ulla-Maj Fiuza
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Takefumi Negishi
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Sorbonne Universités, 06230 Villefranche-sur-Mer, France
| | - Alice Rouan
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Sorbonne Universités, 06230 Villefranche-sur-Mer, France
| | - Hitoyoshi Yasuo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Sorbonne Universités, 06230 Villefranche-sur-Mer, France
| | | |
Collapse
|
12
|
Satou Y. A gene regulatory network for cell fate specification in Ciona embryos. Curr Top Dev Biol 2020; 139:1-33. [DOI: 10.1016/bs.ctdb.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Abstract
Tunicates are a diverse group of invertebrate marine chordates that includes the larvaceans, thaliaceans, and ascidians. Because of their unique evolutionary position as the sister group of the vertebrates, tunicates are invaluable as a comparative model and hold the promise of revealing both conserved and derived features of chordate gastrulation. Descriptive studies in a broad range of tunicates have revealed several important unifying traits that make them unique among the chordates, including invariant cell lineages through gastrula stages and an overall morphological simplicity. Gastrulation has only been studied in detail in ascidians such as Ciona and Phallusia, where it involves a simple cup-shaped gastrula driven primarily by endoderm invagination. This appears to differ significantly from vertebrate models, such as Xenopus, in which mesoderm convergent extension and epidermal epiboly are major contributors to involution. These differences may reflect the cellular simplicity of the ascidian embryo.
Collapse
Affiliation(s)
- Konner M Winkley
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Matthew J Kourakis
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States
| | - Anthony W DeTomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States
| | - Michael T Veeman
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
14
|
Winkley K, Ward S, Reeves W, Veeman M. Iterative and Complex Asymmetric Divisions Control Cell Volume Differences in Ciona Notochord Tapering. Curr Biol 2019; 29:3466-3477.e4. [PMID: 31607534 DOI: 10.1016/j.cub.2019.08.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/29/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
The notochord of the invertebrate chordate Ciona forms a tapered rod at tailbud stages consisting of only 40 cylindrical cells in a single-file column. This tapered shape involves differences in notochord cell volume along the anterior-posterior axis. Here, we quantify sibling cell volume asymmetry throughout the developing notochord and find that there are distinctive patterns of unequal cleavage in all 4 bilateral pairs of A-line primary notochord founder cells and also in the B-line-derived secondary notochord founder cells. A quantitative model confirms that the observed patterns of unequal cleavage are sufficient to explain all the anterior-posterior variation in notochord cell volume. Many examples are known of cells that divide asymmetrically to give daughter cells of different size and fate. Here, by contrast, a series of subtle but iterative and finely patterned asymmetric divisions controls the shape of an entire organ. Quantitative 3D analysis of cell shape and spindle positioning allows us to infer multiple cellular mechanisms driving these unequal cleavages, including polarized displacements of the mitotic spindle, contributions from the shape of the mother cell, and late changes occurring between anaphase and abscission that potentially involve differential cortical contractility. We infer differential use of these mechanisms between different notochord blastomeres and also between different rounds of cell division. These results demonstrate a new role for asymmetric division in directly shaping a developing organ and point toward complex underlying mechanisms.
Collapse
Affiliation(s)
- Konner Winkley
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA
| | - Spencer Ward
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA
| | - Wendy Reeves
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA
| | - Michael Veeman
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA.
| |
Collapse
|
15
|
Cao C, Lemaire LA, Wang W, Yoon PH, Choi YA, Parsons LR, Matese JC, Wang W, Levine M, Chen K. Comprehensive single-cell transcriptome lineages of a proto-vertebrate. Nature 2019; 571:349-354. [PMID: 31292549 PMCID: PMC6978789 DOI: 10.1038/s41586-019-1385-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 06/10/2019] [Indexed: 11/17/2022]
Abstract
Ascidian embryos highlight the importance of cell lineages in animal development. As simple proto-vertebrates they also provide insights into the evolutionary origins of novel cell types, such as cranial placodes and neural crest. To build upon these efforts we have determined single cell transcriptomes for more than 90,000 cells spanning the entirety of Ciona intestinalis development, from the onset of gastrulation to swimming tadpoles. This represents an average of over 12-fold coverage for every cell at every stage of development, owing to the small cell numbers of ascidian embryos. Single cell transcriptome trajectories were used to construct “virtual” cell lineage maps and provisional gene networks for nearly 40 different neuronal subtypes comprising the larval nervous system. We summarize several applications of these datasets, including annotating the synaptome of swimming tadpoles and tracing the evolutionary origin of novel cell types such as the vertebrate telencephalon.
Collapse
Affiliation(s)
- Chen Cao
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Laurence A Lemaire
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Wei Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Peter H Yoon
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yoolim A Choi
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Lance R Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - John C Matese
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Wei Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA. .,Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Kai Chen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA. .,The Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
16
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
17
|
Transcriptional regulation of the Ciona Gsx gene in the neural plate. Dev Biol 2018; 448:88-100. [PMID: 30583796 DOI: 10.1016/j.ydbio.2018.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022]
Abstract
The ascidian neural plate consists of a defined number of identifiable cells organized in a grid of rows and columns, representing a useful model to investigate the molecular mechanisms controlling neural patterning in chordates. Distinct anterior brain lineages are specified via unique combinatorial inputs of signalling pathways with Nodal and Delta-Notch signals patterning along the medial-lateral axis and FGF/MEK/ERK signals patterning along the anterior-posterior axis of the neural plate. The Ciona Gsx gene is specifically expressed in the a9.33 cells in the row III/column 2 position of anterior brain lineages, characterised by a combinatorial input of Nodal-OFF, Notch-ON and FGF-ON. Here, we identify the minimal cis-regulatory element (CRE) of 376 bp, which can recapitulate the early activation of Gsx. We show that this minimal CRE responds in the same way as the endogenous Gsx gene to manipulation of FGF- and Notch-signalling pathways and to overexpression of Snail, a mediator of Nodal signals, and Six3/6, which is required to demarcate the anterior boundary of Gsx expression at the late neurula stage. We reveal that sequences proximal to the transcription start site include a temporal regulatory element required for the precise transcriptional onset of gene expression. We conclude that sufficient spatial and temporal information for Gsx expression is integrated in 376 bp of non-coding cis-regulatory sequences.
Collapse
|
18
|
Onai T. Canonical Wnt/β-catenin and Notch signaling regulate animal/vegetal axial patterning in the cephalochordate amphioxus. Evol Dev 2018; 21:31-43. [PMID: 30288919 DOI: 10.1111/ede.12273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In bilaterians, animal/vegetal axial (A/V) patterning is a fundamental early developmental event for establishment of animal/vegetal polarity and following specification of the germ layers (ectoderm, mesoderm, endoderm), of which the evolutionary origin is enigmatic. Understanding A/V axial patterning in a basal animal from each phylum would help to reconstruct the ancestral state of germ layer specification in bilaterians and thus, the evolution of mesoderm, the third intermediate cell layer. Herein, data show that the canonical Wnt/β-catenin (cWnt) and Notch signaling pathways control mesoderm specification from the early endomesoderm in the basal chordate amphioxus. Amphioxus belongs to the deuterostome, one of the main superphyla in Bilateria. In the present study, genes (tcf, dsh, axin, gsk3β) encoding cWnt components were expressed in the endomesoderm during the gastrula stages. Excess cWnt signaling by BIO, a GSK3 inhibitor, expanded the expression domains of outer endomesodermal genes that include future mesodermal ones and suppressed inner endomesodermal and ectodermal genes. Interfering Notch signaling by DAPT, a γ-secretase inhibitor, resulted in decreased expression of ectodermal and endomesodermal markers. These results suggest that cWnt and Notch have important roles in mesoderm specification in amphioxus embryos. The evolution of the mesoderm is also discussed.
Collapse
Affiliation(s)
- Takayuki Onai
- Department of Anatomy, University of Fukui, School of Medical Sciences, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan
| |
Collapse
|
19
|
Harder M, Reeves W, Byers C, Santiago M, Veeman M. Multiple inputs into a posterior-specific regulatory network in the Ciona notochord. Dev Biol 2018; 448:136-146. [PMID: 30287118 DOI: 10.1016/j.ydbio.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/28/2018] [Indexed: 11/28/2022]
Abstract
The gene regulatory networks underlying Ciona notochord fate specification and differentiation have been extensively investigated, but the regulatory basis for regionalized expression within the notochord is not understood. Here we identify three notochord-expressed genes, C11.331, C12.115 and C8.891, with strongly enriched expression in the secondary notochord cells at the posterior tip of the tail. C11.331 and C12.115 share a distinctive expression pattern that is highly enriched in the secondary notochord lineage but also graded within that lineage with the strongest expression at the posterior tip. Both genes show similar responses to pharmacological perturbations of Wnt and FGF signaling, consistent with an important role for Wnt and FGF ligands expressed at the tail tip. Reporter analysis indicates that the C11.331 cis-regulatory regions are extensively distributed, with multiple non-overlapping regions conferring posterior notochord-enriched expression. Fine-scale analysis of a minimal cis-regulatory module identifies discrete positive and negative elements including a strong silencer. Truncation of the silencer region leads to increased expression in the primary notochord, indicating that C11.331 expression is influenced by putative regulators of primary versus secondary notochord fate. The minimal CRM contains predicted ETS, GATA, LMX and Myb sites, all of which lead to reduced expression in secondary notochord when mutated. These results show that the posterior-enriched notochord expression of C11.331 depends on multiple inputs, including Wnt and FGF signals from the tip of the tail, multiple notochord-specific regulators, and yet-to-be identified regulators of regional identity within the notochord.
Collapse
Affiliation(s)
- Matthew Harder
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Wendy Reeves
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Chase Byers
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Mercedes Santiago
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Michael Veeman
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
20
|
Kobayashi K, Maeda K, Tokuoka M, Mochizuki A, Satou Y. Controlling Cell Fate Specification System by Key Genes Determined from Network Structure. iScience 2018; 4:281-293. [PMID: 30240747 PMCID: PMC6147236 DOI: 10.1016/j.isci.2018.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/19/2018] [Accepted: 05/07/2018] [Indexed: 11/25/2022] Open
Abstract
Network structures describing regulation between biomolecules have been determined in many biological systems. Dynamics of molecular activities based on such networks are considered to be the origin of many biological functions. Recently, it has been proved mathematically that key nodes for controlling dynamics in networks are identified from network structure alone. Here, we applied this theory to a gene regulatory network for the cell fate specification of seven tissues in the ascidian embryo and found that this network, which consisted of 92 factors, had five key molecules. By controlling the activities of these key molecules, the specific gene expression of six of seven tissues observed in the embryo was successfully reproduced. Since this method is applicable to all nonlinear dynamic systems, we propose this method as a tool for controlling gene regulatory networks and reprogramming cell fates.
Collapse
Affiliation(s)
- Kenji Kobayashi
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kazuki Maeda
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Mathematical Sciences, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Miki Tokuoka
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Atsushi Mochizuki
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Theoretical Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan.
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
21
|
|
22
|
Reeves WM, Wu Y, Harder MJ, Veeman MT. Functional and evolutionary insights from the Ciona notochord transcriptome. Development 2017; 144:3375-3387. [PMID: 28928284 DOI: 10.1242/dev.156174] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
The notochord of the ascidian Ciona consists of only 40 cells, and is a longstanding model for studying organogenesis in a small, simple embryo. Here, we perform RNAseq on flow-sorted notochord cells from multiple stages to define a comprehensive Ciona notochord transcriptome. We identify 1364 genes with enriched expression and extensively validate the results by in situ hybridization. These genes are highly enriched for Gene Ontology terms related to the extracellular matrix, cell adhesion and cytoskeleton. Orthologs of 112 of the Ciona notochord genes have known notochord expression in vertebrates, more than twice as many as predicted by chance alone. This set of putative effector genes with notochord expression conserved from tunicates to vertebrates will be invaluable for testing hypotheses about notochord evolution. The full set of Ciona notochord genes provides a foundation for systems-level studies of notochord gene regulation and morphogenesis. We find only modest overlap between this set of notochord-enriched transcripts and the genes upregulated by ectopic expression of the key notochord transcription factor Brachyury, indicating that Brachyury is not a notochord master regulator gene as strictly defined.
Collapse
Affiliation(s)
- Wendy M Reeves
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Yuye Wu
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Matthew J Harder
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Michael T Veeman
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
23
|
Pekar O, Ow MC, Hui KY, Noyes MB, Hall SE, Hubbard EJA. Linking the environment, DAF-7/TGFβ signaling and LAG-2/DSL ligand expression in the germline stem cell niche. Development 2017; 144:2896-2906. [PMID: 28811311 DOI: 10.1242/dev.147660] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/01/2017] [Indexed: 02/04/2023]
Abstract
The developmental accumulation of proliferative germ cells in the C. elegans hermaphrodite is sensitive to the organismal environment. Previously, we found that the TGFβ signaling pathway links the environment and proliferative germ cell accumulation. Neuronal DAF-7/TGFβ causes a DAF-1/TGFβR signaling cascade in the gonadal distal tip cell (DTC), the germline stem cell niche, where it negatively regulates a DAF-3 SMAD and DAF-5 Sno-Ski. LAG-2, a founding DSL ligand family member, is produced in the DTC and activates the GLP-1/Notch receptor on adjacent germ cells to maintain germline stem cell fate. Here, we show that DAF-7/TGFβ signaling promotes expression of lag-2 in the DTC in a daf-3-dependent manner. Using ChIP and one-hybrid assays, we find evidence for direct interaction between DAF-3 and the lag-2 promoter. We further identify a 25 bp DAF-3 binding element required for the DTC lag-2 reporter response to the environment and to DAF-7/TGFβ signaling. Our results implicate DAF-3 repressor complex activity as a key molecular mechanism whereby the environment influences DSL ligand expression in the niche to modulate developmental expansion of the germline stem cell pool.
Collapse
Affiliation(s)
- Olga Pekar
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Kailyn Y Hui
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Marcus B Noyes
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Sarah E Hall
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
24
|
Abstract
Cytokines of the transforming growth factor β (TGF-β) family, including TGF-βs, bone morphogenic proteins (BMPs), activins, and Nodal, play crucial roles in embryonic development and adult tissue homeostasis by regulating cell proliferation, survival, and differentiation, as well as stem-cell self-renewal and lineage-specific differentiation. Smad proteins are critical downstream mediators of these signaling activities. In addition to regulating the transcription of direct target genes of TGF-β, BMP, activin, or Nodal, Smad proteins also participate in extensive cross talk with other signaling pathways, often in a cell-type- or developmental stage-specific manner. These combinatorial signals often produce context-, time-, and location-dependent biological outcomes that are critical for development. This review discusses recent progress in our understanding of the cross talk between Smad proteins and signaling pathways of Wnt, Notch, Hippo, Hedgehog (Hh), mitogen-activated protein (MAP), kinase, phosphoinositide 3-kinase (PI3K)-Akt, nuclear factor κB (NF-κB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
25
|
Luo K. Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways. Cold Spring Harb Perspect Biol 2017. [PMID: 27836834 DOI: 10.1101/cshperspect] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytokines of the transforming growth factor β (TGF-β) family, including TGF-βs, bone morphogenic proteins (BMPs), activins, and Nodal, play crucial roles in embryonic development and adult tissue homeostasis by regulating cell proliferation, survival, and differentiation, as well as stem-cell self-renewal and lineage-specific differentiation. Smad proteins are critical downstream mediators of these signaling activities. In addition to regulating the transcription of direct target genes of TGF-β, BMP, activin, or Nodal, Smad proteins also participate in extensive cross talk with other signaling pathways, often in a cell-type- or developmental stage-specific manner. These combinatorial signals often produce context-, time-, and location-dependent biological outcomes that are critical for development. This review discusses recent progress in our understanding of the cross talk between Smad proteins and signaling pathways of Wnt, Notch, Hippo, Hedgehog (Hh), mitogen-activated protein (MAP), kinase, phosphoinositide 3-kinase (PI3K)-Akt, nuclear factor κB (NF-κB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
26
|
Abstract
Asymmetric cell division during embryogenesis contributes to cell diversity by generating daughter cells that adopt distinct developmental fates. In this chapter, we summarize current knowledge of three examples of asymmetric cell division occurring in ascidian early embryos: (1) Three successive cell divisions that are asymmetric in terms of cell fate and unequal in cell size in the germline lineage at the embryo posterior pole. A subcellular structure, the centrosome-attracting body (CAB), and maternal PEM mRNAs localized within it control both the positioning of the cell division planes and segregation of the germ cell fates. (2) Asymmetric cell divisions involving endoderm and mesoderm germ layer separation. Asymmetric partitioning of zygotically expressed mRNA for Not, a homeodomain transcription factor, promotes the mesoderm fate and suppresses the endoderm fate. This asymmetric partitioning is mediated by transient nuclear migration toward the mesodermal pole of the mother cell, where the mRNA is delivered. In this case, there is no special regulation of cleavage plane orientation. (3) Asymmetric cell divisions in the marginal region of the vegetal hemisphere. The directed extracellular FGF and ephrin signals polarize the mother cells, inducing distinct fates in a pair of daughter cells (nerve versus notochord and mesenchyme versus muscle). The directions of cell division are regulated and oriented but independently of FGF and ephrin signaling. In these examples, polarization of the mother cells is facilitated by localized maternal factors, by delivery of transcripts from the nucleus to one pole of each cell, and by directed extracellular signals. Two cellular processes-asymmetric fate allocation and orientation of the cell division plane-are coupled by a single factor in the first example, but these processes are regulated independently in the third example. Thus, various modes of asymmetric cell division operate even at the early developmental stages in this single type of organism.
Collapse
Affiliation(s)
- Takefumi Negishi
- Division of Morphogenesis, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-Cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
27
|
Esposito R, Yasuo H, Sirour C, Palladino A, Spagnuolo A, Hudson C. Patterning of brain precursors in ascidian embryos. Development 2016; 144:258-264. [PMID: 27993985 DOI: 10.1242/dev.142307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/02/2016] [Indexed: 11/20/2022]
Abstract
In terms of their embryonic origins, the anterior and posterior parts of the ascidian central nervous system (CNS) are associated with distinct germ layers. The anterior part of the sensory vesicle, or brain, originates from ectoderm lineages following a neuro-epidermal binary fate decision. In contrast, a large part of the remaining posterior CNS is generated following neuro-mesodermal binary fate decisions. Here, we address the mechanisms that pattern the anterior brain precursors along the medial-lateral axis (future ventral-dorsal) at neural plate stages. Our functional studies show that Nodal signals are required for induction of lateral genes, including Delta-like, Snail, Msxb and Trp Delta-like/Notch signalling induces intermediate (Gsx) over medial (Meis) gene expression in intermediate cells, whereas the combinatorial action of Snail and Msxb prevents the expression of Gsx in lateral cells. We conclude that despite the distinct embryonic lineage origins within the larval CNS, the mechanisms that pattern neural precursors are remarkably similar.
Collapse
Affiliation(s)
- Rosaria Esposito
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli 80121, Italy
| | - Hitoyoshi Yasuo
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Villefranche-sur-mer 06230, France
| | - Cathy Sirour
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Villefranche-sur-mer 06230, France
| | - Antonio Palladino
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli 80121, Italy
| | - Antonietta Spagnuolo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli 80121, Italy
| | - Clare Hudson
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Villefranche-sur-mer 06230, France
| |
Collapse
|
28
|
Imai KS, Hikawa H, Kobayashi K, Satou Y. Tfap2 and Sox1/2/3 cooperatively specify ectodermal fates in ascidian embryos. Development 2016; 144:33-37. [PMID: 27888190 DOI: 10.1242/dev.142109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/14/2016] [Indexed: 12/17/2022]
Abstract
Epidermis and neural tissues differentiate from the ectoderm in animal embryos. Although epidermal fate is thought to be induced in vertebrate embryos, embryological evidence has indicated that no intercellular interactions during early stages are required for epidermal fate in ascidian embryos. To test this hypothesis, we determined the gene regulatory circuits for epidermal and neural specification in the ascidian embryo. These circuits started with Tfap2-r.b and Sox1/2/3, which are expressed in the ectodermal lineage immediately after zygotic genome activation. Tfap2-r.b expression was diminished in the neural lineages upon activation of fibroblast growth factor signaling, which is known to induce neural fate, and sustained only in the epidermal lineage. Tfap2-r.b specified the epidermal fate cooperatively with Dlx.b, which was activated by Sox1/2/3 This Sox1/2/3-Dlx.b circuit was also required for specification of the anterior neural fate. In the posterior neural lineage, Sox1/2/3 activated Nodal, which is required for specification of the posterior neural fate. Our findings support the hypothesis that the epidermal fate is specified autonomously in ascidian embryos.
Collapse
Affiliation(s)
- Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Hiroki Hikawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Kenji Kobayashi
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
29
|
Abstract
Ascidians are invertebrate chordates with a biphasic life cycle characterized by a dual body plan that displays simplified versions of chordate structures, such as a premetamorphic 40-cell notochord topped by a dorsal nerve cord and postmetamorphic pharyngeal slits. These relatively simple chordates are characterized by rapid development, compact genomes and ease of transgenesis, and thus provide the opportunity to rapidly characterize the genomic organization, developmental function, and transcriptional regulation of evolutionarily conserved gene families. This review summarizes the current knowledge on members of the T-box family of transcription factors in Ciona and other ascidians. In both chordate and nonchordate animals, these genes control a variety of morphogenetic processes, and their mutations are responsible for malformations and developmental defects in organisms ranging from flies to humans. In ascidians, T-box transcription factors are required for the formation and specialization of essential structures, including notochord, muscle, heart, and differentiated neurons. In recent years, the experimental advantages offered by ascidian embryos have allowed the rapid accumulation of a wealth of information on the molecular mechanisms that regulate the expression of T-box genes. These studies have also elucidated the strategies employed by these transcription factors to orchestrate the appropriate spatial and temporal deployment of the numerous target genes that they control.
Collapse
Affiliation(s)
- A Di Gregorio
- New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
30
|
Stolfi A, Ryan K, Meinertzhagen IA, Christiaen L. Migratory neuronal progenitors arise from the neural plate borders in tunicates. Nature 2015; 527:371-4. [PMID: 26524532 PMCID: PMC4654654 DOI: 10.1038/nature15758] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022]
Abstract
The neural crest is an evolutionary novelty that fostered the emergence of vertebrate anatomical innovations such as the cranium and jaws. During embryonic development, multipotent neural crest cells are specified at the lateral borders of the neural plate before delaminating, migrating and differentiating into various cell types. In invertebrate chordates (cephalochordates and tunicates), neural plate border cells express conserved factors such as Msx, Snail and Pax3/7 and generate melanin-containing pigment cells, a derivative of the neural crest in vertebrates. However, invertebrate neural plate border cells have not been shown to generate homologues of other neural crest derivatives. Thus, proposed models of neural crest evolution postulate vertebrate-specific elaborations on an ancestral neural plate border program, through acquisition of migratory capabilities and the potential to generate several cell types. Here we show that a particular neuronal cell type in the tadpole larva of the tunicate Ciona intestinalis, the bipolar tail neuron, shares a set of features with neural-crest-derived spinal ganglia neurons in vertebrates. Bipolar tail neuron precursors derive from caudal neural plate border cells, delaminate and migrate along the paraxial mesoderm on either side of the neural tube, eventually differentiating into afferent neurons that form synaptic contacts with both epidermal sensory cells and motor neurons. We propose that the neural plate borders of the chordate ancestor already produced migratory peripheral neurons and pigment cells, and that the neural crest evolved through the acquisition of a multipotent progenitor regulatory state upstream of multiple, pre-existing neural plate border cell differentiation programs.
Collapse
Affiliation(s)
- Alberto Stolfi
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Kerrianne Ryan
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
31
|
|
32
|
Satou Y, Imai KS. Gene regulatory systems that control gene expression in the Ciona embryo. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:33-51. [PMID: 25748582 PMCID: PMC4406867 DOI: 10.2183/pjab.91.33] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Transcriptional control of gene expression is one of the most important regulatory systems in animal development. Specific gene expression is basically determined by combinatorial regulation mediated by multiple sequence-specific transcription factors. The decoding of animal genomes has provided an opportunity for us to systematically examine gene regulatory networks consisting of successive layers of control of gene expression. It remains to be determined to what extent combinatorial regulation encoded in gene regulatory networks can explain spatial and temporal gene-expression patterns. The ascidian Ciona intestinalis is one of the animals in which the gene regulatory network has been most extensively studied. In this species, most specific gene expression patterns in the embryo can be explained by combinations of upstream regulatory genes encoding transcription factors and signaling molecules. Systematic scrutiny of gene expression patterns and regulatory interactions at the cellular resolution have revealed incomplete parts of the network elucidated so far, and have identified novel regulatory genes and novel regulatory mechanisms.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University; CREST, JST, Saitama, Japan.
| | | |
Collapse
|
33
|
Veeman M, Reeves W. Quantitative and in toto imaging in ascidians: working toward an image-centric systems biology of chordate morphogenesis. Genesis 2015; 53:143-59. [PMID: 25262824 PMCID: PMC4378666 DOI: 10.1002/dvg.22828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/20/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022]
Abstract
Developmental biology relies heavily on microscopy to image the finely controlled cell behaviors that drive embryonic development. Most embryos are large enough that a field of view with the resolution and magnification needed to resolve single cells will not span more than a small region of the embryo. Ascidian embryos, however, are sufficiently small that they can be imaged in toto with fine subcellular detail using conventional microscopes and objectives. Unlike other model organisms with particularly small embryos, ascidians have a chordate embryonic body plan that includes a notochord, hollow dorsal neural tube, heart primordium and numerous other anatomical details conserved with the vertebrates. Here we compare the size and anatomy of ascidian embryos with those of more traditional model organisms, and relate these features to the capabilities of both conventional and exotic imaging methods. We review the emergence of Ciona and related ascidian species as model organisms for a new era of image-based developmental systems biology. We conclude by discussing some important challenges in ascidian imaging and image analysis that remain to be solved.
Collapse
Affiliation(s)
- Michael Veeman
- Division of Biology, Kansas State University, Manhattan KS, USA
| | - Wendy Reeves
- Division of Biology, Kansas State University, Manhattan KS, USA
| |
Collapse
|
34
|
Thompson JM, Di Gregorio A. Insulin-like genes in ascidians: findings in Ciona and hypotheses on the evolutionary origins of the pancreas. Genesis 2014; 53:82-104. [PMID: 25378051 DOI: 10.1002/dvg.22832] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 12/22/2022]
Abstract
Insulin plays an extensively characterized role in the control of sugar metabolism, growth and homeostasis in a wide range of organisms. In vertebrate chordates, insulin is mainly produced by the beta cells of the endocrine pancreas, while in non-chordate animals insulin-producing cells are mainly found in the nervous system and/or scattered along the digestive tract. However, recent studies have indicated the notochord, the defining feature of the chordate phylum, as an additional site of expression of insulin-like peptides. Here we show that two of the three insulin-like genes identified in Ciona intestinalis, an invertebrate chordate with a dual life cycle, are first expressed in the developing notochord during embryogenesis and transition to distinct areas of the adult digestive tract after metamorphosis. In addition, we present data suggesting that the transcription factor Ciona Brachyury is involved in the control of notochord expression of at least one of these genes, Ciona insulin-like 2. Finally, we review the information currently available on insulin-producing cells in ascidians and on pancreas-related transcription factors that might control their expression.
Collapse
Affiliation(s)
- Jordan M Thompson
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York
| | | |
Collapse
|
35
|
An otx/nodal regulatory signature for posterior neural development in ascidians. PLoS Genet 2014; 10:e1004548. [PMID: 25121599 PMCID: PMC4133040 DOI: 10.1371/journal.pgen.1004548] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/18/2014] [Indexed: 12/25/2022] Open
Abstract
In chordates, neural induction is the first step of a complex developmental process through which ectodermal cells acquire a neural identity. In ascidians, FGF-mediated neural induction occurs at the 32-cell stage in two blastomere pairs, precursors respectively of anterior and posterior neural tissue. We combined molecular embryology and cis-regulatory analysis to unveil in the ascidian Ciona intestinalis the remarkably simple proximal genetic network that controls posterior neural fate acquisition downstream of FGF. We report that the combined action of two direct FGF targets, the TGFβ factor Nodal, acting via Smad- and Fox-binding sites, and the transcription factor Otx suffices to trigger ascidian posterior neural tissue formation. Moreover, we found that this strategy is conserved in the distantly related ascidian Phallusia mammillata, in spite of extreme sequence divergence in the cis-regulatory sequences involved. Our results thus highlight that the modes of gene regulatory network evolution differ with the evolutionary scale considered. Within ascidians, developmental regulatory networks are remarkably robust to genome sequence divergence. Between ascidians and vertebrates, major fate determinants, such as Otx and Nodal, can be co-opted into different networks. Comparative developmental studies in ascidians with divergent genomes will thus uncover shared ascidian strategies, and contribute to a better understanding of the diversity of developmental strategies within chordates.
Collapse
|
36
|
Chen SH, Li KL, Lu IH, Wang YB, Tung CH, Ting HC, Lin CY, Lin CY, Su YH, Yu JK. Sequencing and analysis of the transcriptome of the acorn worm Ptychodera flava, an indirect developing hemichordate. Mar Genomics 2014; 15:35-43. [PMID: 24823299 DOI: 10.1016/j.margen.2014.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 12/13/2022]
Abstract
Hemichordates are the sister group of echinoderms, and together they are closely related to chordates within the deuterostome lineage. Therefore, hemichordates represent an important animal group for the understanding of both the evolution of developmental mechanisms in deuterostome animals and the origin of chordates. Recently, the majority of studies investigating hemichordates have focused on the direct-developing enteropneust hemichordate Saccoglossus kowalevskii; few have focused on the indirect-developing hemichordates, partly because of the lack of extensive genomic resources in these animals. In this study, we report the sequencing and analysis of a transcriptome from an indirect-developing enteropneust hemichordate Ptychodera flava. We sequenced a mixed cDNA library from six developmental stages using the Roche GS FLX Titanium System to generate more than 879,000 reads. These reads were assembled into 17,990 contigs with an average length of 1316bp. We found that 60% of the assembled contigs, along with 28% of the unassembled singleton reads, had significant hits to sequences in the NCBI database by a BLASTx search, and we also annotated these sequences and obtained Gene Ontology (GO) terms for 6744 contigs and 5802 singletons. We further identified candidate P. flava transcripts corresponding to genes involved in major developmental signaling pathways, including the Wnt, Notch and TGF-β signaling pathways. Using available genome/transcriptome datasets from the direct-developing hemichordate S. kowalevskii, the echinoderm Strongylocentrotus purpuratus and the chordate Branchiostoma floridae, we found that 90%, 80% and 73% of the annotated protein sequences in these respective species matched our P. flava transcriptome in a homology search. We also constructed a database for the P. flava transcriptome, and researchers can easily access this dataset online. Our dataset significantly increases the amount of available P. flava sequence data and can serve as a reference transcriptome for future studies using this species.
Collapse
Affiliation(s)
- Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Kun-Lin Li
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - I-Hsuan Lu
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yu-Bin Wang
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Che-Huang Tung
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Hsiu-Chi Ting
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan; Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan.
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan.
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
37
|
Razy-Krajka F, Lam K, Wang W, Stolfi A, Joly M, Bonneau R, Christiaen L. Collier/OLF/EBF-dependent transcriptional dynamics control pharyngeal muscle specification from primed cardiopharyngeal progenitors. Dev Cell 2014; 29:263-76. [PMID: 24794633 DOI: 10.1016/j.devcel.2014.04.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/26/2014] [Accepted: 04/01/2014] [Indexed: 01/09/2023]
Abstract
In vertebrates, pluripotent pharyngeal mesoderm progenitors produce the cardiac precursors of the second heart field as well as the branchiomeric head muscles and associated stem cells. However, the mechanisms underlying the transition from multipotent progenitors to distinct muscle precursors remain obscured by the complexity of vertebrate embryos. Using Ciona intestinalis as a simple chordate model, we show that bipotent cardiopharyngeal progenitors are primed to activate both heart and pharyngeal muscle transcriptional programs, which progressively become restricted to corresponding precursors. The transcription factor COE (Collier/OLF/EBF) orchestrates the transition to pharyngeal muscle fate both by promoting an MRF-associated myogenic program in myoblasts and by maintaining an undifferentiated state in their sister cells through Notch-mediated lateral inhibition. The latter are stem cell-like muscle precursors that form most of the juvenile pharyngeal muscles. We discuss the implications of our findings for the development and evolution of the chordate cardiopharyngeal mesoderm.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Karen Lam
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Wei Wang
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Alberto Stolfi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Marine Joly
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Richard Bonneau
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
38
|
Reeves W, Thayer R, Veeman M. Anterior-posterior regionalized gene expression in the Ciona notochord. Dev Dyn 2013; 243:612-620. [PMID: 24288133 DOI: 10.1002/dvdy.24101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND In the simple ascidian chordate Ciona, the signaling pathways and gene regulatory networks giving rise to initial notochord induction are largely understood and the mechanisms of notochord morphogenesis are being systematically elucidated. The notochord has generally been thought of as a non-compartmentalized or regionalized organ that is not finely patterned at the level of gene expression. Quantitative imaging methods have recently shown, however, that notochord cell size, shape, and behavior vary consistently along the anterior-posterior (AP) axis. RESULTS Here we screen candidate genes by whole mount in situ hybridization for potential AP asymmetry. We identify 4 genes that show non-uniform expression in the notochord. Ezrin/radixin/moesin (ERM) is expressed more strongly in the secondary notochord lineage than the primary. CTGF is expressed stochastically in a subset of notochord cells. A novel calmodulin-like gene (BCamL) is expressed more strongly at both the anterior and posterior tips of the notochord. A TGF-β ortholog is expressed in a gradient from posterior to anterior. The asymmetries in ERM, BCamL, and TGF-β expression are evident even before the notochord cells have intercalated into a single-file column. CONCLUSIONS We conclude that the Ciona notochord is not a homogeneous tissue but instead shows distinct patterns of regionalized gene expression.
Collapse
Affiliation(s)
- Wendy Reeves
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Rachel Thayer
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Michael Veeman
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
39
|
From notochord formation to hereditary chordoma: the many roles of Brachyury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:826435. [PMID: 23662285 PMCID: PMC3626178 DOI: 10.1155/2013/826435] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/22/2013] [Indexed: 12/25/2022]
Abstract
Chordoma is a rare, but often malignant, bone cancer that preferentially affects the axial skeleton and the skull base. These tumors are both sporadic and hereditary and appear to occur more frequently after the fourth decade of life; however, modern technologies have increased the detection of pediatric chordomas. Chordomas originate from remnants of the notochord, the main embryonic axial structure that precedes the backbone, and share with notochord cells both histological features and the expression of characteristic genes. One such gene is Brachyury, which encodes for a sequence-specific transcription factor. Known for decades as a main regulator of notochord formation, Brachyury has recently gained interest as a biomarker and causative agent of chordoma, and therefore as a promising therapeutic target. Here, we review the main characteristics of chordoma, the molecular markers, and the clinical approaches currently available for the early detection and possible treatment of this cancer. In particular, we report on the current knowledge of the role of Brachyury and of its possible mechanisms of action in both notochord formation and chordoma etiogenesis.
Collapse
|
40
|
Ettensohn CA. Encoding anatomy: Developmental gene regulatory networks and morphogenesis. Genesis 2013; 51:383-409. [PMID: 23436627 DOI: 10.1002/dvg.22380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh; Pennsylvania
| |
Collapse
|
41
|
β-Catenin-Driven Binary Fate Specification Segregates Germ Layers in Ascidian Embryos. Curr Biol 2013; 23:491-5. [DOI: 10.1016/j.cub.2013.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/18/2013] [Accepted: 02/01/2013] [Indexed: 11/18/2022]
|
42
|
Bertrand S, Fuentealba J, Aze A, Hudson C, Yasuo H, Torrejon M, Escriva H, Marcellini S. A dynamic history of gene duplications and losses characterizes the evolution of the SPARC family in eumetazoans. Proc Biol Sci 2013; 280:20122963. [PMID: 23446527 DOI: 10.1098/rspb.2012.2963] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The vertebrates share the ability to produce a skeleton made of mineralized extracellular matrix. However, our understanding of the molecular changes that accompanied their emergence remains scarce. Here, we describe the evolutionary history of the SPARC (secreted protein acidic and rich in cysteine) family, because its vertebrate orthologues are expressed in cartilage, bones and teeth where they have been proposed to bind calcium and act as extracellular collagen chaperones, and because further duplications of specific SPARC members produced the small calcium-binding phosphoproteins (SCPP) family that is crucial for skeletal mineralization to occur. Both phylogeny and synteny conservation analyses reveal that, in the eumetazoan ancestor, a unique ancestral gene duplicated to give rise to SPARC and SPARCB described here for the first time. Independent losses have eliminated one of the two paralogues in cnidarians, protostomes and tetrapods. Hence, only non-tetrapod deuterostomes have conserved both genes. Remarkably, SPARC and SPARCB paralogues are still linked in the amphioxus genome. To shed light on the evolution of the SPARC family members in chordates, we performed a comprehensive analysis of their embryonic expression patterns in amphioxus, tunicates, teleosts, amphibians and mammals. Our results show that in the chordate lineage SPARC and SPARCB family members were recurrently recruited in a variety of unrelated tissues expressing collagen genes. We propose that one of the earliest steps of skeletal evolution involved the co-expression of SPARC paralogues with collagenous proteins.
Collapse
Affiliation(s)
- Stephanie Bertrand
- CNRS, UMR7232, Université Pierre et Marie Curie Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yoshida K, Ueno M, Niwano T, Saiga H. Transcription regulatory mechanism of Pitx in the papilla-forming region in the ascidian, Halocynthia roretzi, implies conserved involvement of Otx as the upstream gene in the adhesive organ development of chordates. Dev Growth Differ 2012; 54:649-59. [PMID: 22889275 DOI: 10.1111/j.1440-169x.2012.01366.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pitx genes play important roles in a variety of developmental processes in vertebrates. In an ascidian species, Halocynthia roretzi, Hr-Pitx, the only Pitx gene of this species, has been reported to be expressed in the left epidermis at the tailbud stage. In the present study, first, we have shown that Hr-Pitx is also expressed in the papilla-forming region at the neurula to tailbud stages, and then we addressed transcription regulatory mechanisms for the expression of Hr-Pitx in the papilla-forming region. We have identified the genomic region ranging from 850 to 1211 bp upstream from the translation start site of the Hr-Pitx gene as an enhancer region that drives the transcription of Hr-Pitx in the papilla-forming region. Within the enhancer region, putative transcriptional factor binding sites for Otx as well as Fox were shown to be required for its activity. Finally, we carried out knocking down experiments of Hr-Otx function using an antisense morpholino oligonucleotide, in which the knocking down of Hr-Otx function resulted in reduction of the enhancer activity and loss of the expression of Hr-Pitx in the papilla-forming region. In Xenopus laevis, it has been reported that Pitx genes are expressed downstream of Otx function during development of the cement gland, an adhesive organ of its larva. Taken together, it is suggested that the expression regulatory mechanism of Pitx, involving Otx as the upstream gene, in the developing adhesive organ is conserved between ascidians and vertebrates.
Collapse
Affiliation(s)
- Keita Yoshida
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachiohji, Tokyo, 192-0397, Japan
| | | | | | | |
Collapse
|
44
|
Nishide K, Mugitani M, Kumano G, Nishida H. Neurula rotation determines left-right asymmetry in ascidian tadpole larvae. Development 2012; 139:1467-75. [PMID: 22399684 DOI: 10.1242/dev.076083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tadpole larvae of the ascidian Halocynthia roretzi show morphological left-right asymmetry. The tail invariably bends towards the left side within the vitelline membrane. The structure of the larval brain is remarkably asymmetric. nodal, a conserved gene that shows left-sided expression, is also expressed on the left side in H. roretzi but in the epidermis unlike in vertebrates. We show that nodal signaling at the late neurula stage is required for stereotypic morphological left-right asymmetry at later stages. We uncover a novel mechanism to break embryonic symmetry, in which rotation of whole embryos provides the initial cue for left-sided expression of nodal. Two hours prior to the onset of nodal expression, the neurula embryo rotates along the anterior-posterior axis in a counterclockwise direction when seen in posterior view, and then this rotation stops when the left side of the embryo is oriented downwards. It is likely that epidermis monocilia, which appear at the neurula rotation stage, generate the driving force for the rotation. When the embryo lies on the left side, protrusion of the neural fold physically prevents it from rotating further. Experiments in which neurula rotation is perturbed by various means, including centrifugation and sandwiching between glass, indicate that contact of the left epidermis with the vitelline membrane as a consequence of neurula rotation promotes nodal expression in the left epidermis. We suggest that chemical, and not mechanical, signals from the vitelline membrane promote nodal expression. Neurula rotation is also conserved in other ascidian species.
Collapse
Affiliation(s)
- Kazuhiko Nishide
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, Japan.
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Nori Satoh
- Marine Genomics Unit; Okinawa Institute of Science and Technology; Onna Okinawa 904-0495 Japan
| | - Kuni Tagawa
- Marine Biological Laboratory; Graduate School of Science; Hiroshima University; Mukaishima Hiroshima 722-0073 Japan
| | - Hiroki Takahashi
- Division of Developmental Biology; National Institute of Basic Biology; Okagaki Aichi 445-8585 Japan
| |
Collapse
|
46
|
Stolfi A, Wagner E, Taliaferro JM, Chou S, Levine M. Neural tube patterning by Ephrin, FGF and Notch signaling relays. Development 2012; 138:5429-39. [PMID: 22110057 DOI: 10.1242/dev.072108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The motor ganglion (MG) controls the rhythmic swimming behavior of the Ciona intestinalis tadpole. Despite its cellular simplicity (five pairs of neurons), the MG exhibits conservation of transcription factor expression with the spinal cord of vertebrates. Evidence is presented that the developing MG is patterned by sequential Ephrin/FGF/MAPK and Delta/Notch signaling events. FGF/MAPK attenuation by a localized EphrinAb signal specifies posterior neuronal subtypes, which in turn relay a Delta2/Notch signal that specifies anterior fates. This short-range relay is distinct from the patterning of the vertebrate spinal cord, which is a result of opposing BMP and Shh morphogen gradients. Nonetheless, both mechanisms lead to localized expression of related homeodomain codes for the specification of distinct neuronal subtypes. This MG regulatory network provides a foundation for elucidating the genetic and cellular basis of a model chordate central pattern generator.
Collapse
Affiliation(s)
- Alberto Stolfi
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
47
|
Similarity and diversity in mechanisms of muscle fate induction between ascidian species. Biol Cell 2012; 100:265-77. [DOI: 10.1042/bc20070144] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Noda T. The maternal genes Ci-p53/p73-a and Ci-p53/p73-b regulate zygotic ZicL expression and notochord differentiation in Ciona intestinalis embryos. Dev Biol 2011; 360:216-29. [PMID: 21925489 DOI: 10.1016/j.ydbio.2011.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/11/2011] [Accepted: 08/14/2011] [Indexed: 02/03/2023]
Abstract
I isolated a Ciona intestinalis homolog of p53, Ci-p53/p73-a, in a microarray screen of rapidly degraded maternal mRNA by comparing the transcriptomes of unfertilized eggs and 32-cell stage embryos. Higher expression of the gene in eggs and lower expression in later embryonic stages were confirmed by whole-mount in situ hybridization (WISH) and quantitative reverse transcription-PCR (qRT-PCR); expression was ubiquitous in eggs and early embryos. Knockdown of Ci-p53/p73-a by injection of antisense morpholino oligonucleotides (MOs) severely perturbed gastrulation cell movements and expression of notochord marker genes. A key regulator of notochord differentiation in Ciona embryos is Brachyury (Ci-Bra), which is directly activated by a zic-like gene (Ci-ZicL). The expression of Ci-ZicL and Ci-Bra in A-line notochord precursors was downregulated in Ci-p53/p73-a knockdown embryos. Maternal expression of Ci-p53/p73-b, a homolog of Ci-p53/p73-a, was also detected. In Ci-p53/p73-b knockdown embryos, gastrulation cell movements, expression of Ci-ZicL and Ci-Bra in A-line notochord precursors, and expression of notochord marker gene at later stages were perturbed. The upstream region of Ci-ZicL contains putative p53-binding sites. Cis-regulatory analysis of Ci-ZicL showed that these sites are involved in expression of Ci-ZicL in A-line notochord precursors at the 32-cell and early gastrula stages. These results suggest that p53 genes are maternal factors that play a crucial role in A-line notochord differentiation in C. intestinalis embryos by regulating Ci-ZicL expression.
Collapse
Affiliation(s)
- Takeshi Noda
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
49
|
Abstract
The tunicates, or urochordates, constitute a large group of marine animals whose recent common ancestry with vertebrates is reflected in the tadpole-like larvae of most tunicates. Their diversity and key phylogenetic position are enhanced, from a research viewpoint, by anatomically simple and transparent embryos, compact rapidly evolving genomes, and the availability of powerful experimental and computational tools with which to study these organisms. Tunicates are thus a powerful system for exploring chordate evolution and how extreme variation in genome sequence and gene regulatory network architecture is compatible with the preservation of an ancestral chordate body plan.
Collapse
Affiliation(s)
- Patrick Lemaire
- Institut du Biologie de Développement de Marseille Luminy (IBDML, UMR 6216, CNRS, Université de la Méditerranée), Parc Scientifique de Luminy Case 907, F-13288, Marseille Cedex 9, France
- Centre de Recherches en Biochimie Macromoléculaire (CRBM, UMR5237, CNRS, Universités Montpellier 1 and 2), 1919 route de Mende, F-34293, Montpellier Cedex 05, France
| |
Collapse
|
50
|
Hudson C, Ba M, Rouvière C, Yasuo H. Divergent mechanisms specify chordate motoneurons: evidence from ascidians. Development 2011; 138:1643-52. [DOI: 10.1242/dev.055426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ascidians are members of the vertebrate sister group Urochordata. Their larvae exhibit a chordate body plan, which forms by a highly accelerated embryonic strategy involving a fixed cell lineage and small cell numbers. We report a detailed analysis of the specification of three of the five pairs of motoneurons in the ascidian Ciona intestinalis and show that despite well-conserved gene expression patterns and embryological outcomes compared with vertebrates, key signalling molecules have adopted different roles. We employed a combination of cell ablation and gene manipulation to analyse the function of two signalling molecules with key roles in vertebrate motoneuron specification that are known to be expressed equivalently in ascidians: the inducer Sonic hedgehog, produced ventrally by the notochord and floorplate; and the inhibitory BMP2/4, produced on the lateral/dorsal side of the neural plate. Our surprising conclusion is that neither BMP2/4 signalling nor the ventral cell lineages expressing hedgehog play crucial roles in motoneuron formation in Ciona. Furthermore, BMP2/4 overexpression induced ectopic motoneurons, the opposite of its vertebrate role. We suggest that the specification of motoneurons has been modified during ascidian evolution, such that BMP2/4 has adopted a redundant inductive role rather than a repressive role and Nodal, expressed upstream of BMP2/4 in the dorsal neural tube precursors, acts as a motoneuron inducer during normal development. Thus, our results uncover significant differences in the mechanisms used for motoneuron specification within chordates and also highlight the dangers of interpreting equivalent expression patterns as indicative of conserved function in evo-devo studies.
Collapse
Affiliation(s)
- Clare Hudson
- UPMC University of Paris 06, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, BP28, 06230, Villefranche-sur-mer, France
- CNRS, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, 06230, BP28, Villefranche-sur-mer, France
| | - Moly Ba
- UPMC University of Paris 06, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, BP28, 06230, Villefranche-sur-mer, France
- CNRS, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, 06230, BP28, Villefranche-sur-mer, France
| | - Christian Rouvière
- UPMC University of Paris 06, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, BP28, 06230, Villefranche-sur-mer, France
- CNRS, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, 06230, BP28, Villefranche-sur-mer, France
| | - Hitoyoshi Yasuo
- UPMC University of Paris 06, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, BP28, 06230, Villefranche-sur-mer, France
- CNRS, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, 06230, BP28, Villefranche-sur-mer, France
| |
Collapse
|